
Specifying and Verifying Requirements for Election
Processes

Borislava I. Simidchieva, Matthew S. Marzilli, Lori A. Clarke, Leon J. Osterweil
Laboratory for Advanced Software Engineering Research (LASER)

Computer Science Department
University of Massachusetts, Amherst

140 Governors Drive, Amherst, MA 01003
{bis | mmarzill | clarke | ljo}@cs.umass.edu

ABSTRACT
In this paper we outline an approach for modeling election
processes and then performing rigorous analysis to verify
that these process models meet selected behavioral require-
ments. We briefly outline some high-level requirements that
an election process must satisfy and demonstrate how these
are refined into a collection of lower-level properties that can
be used as the basis for verification. We present a motivating
example of an election process modeled using the Little-JIL
process definition language, capture the lower-level proper-
ties using the PROPEL property elicitation tool, and per-
form formal analysis to verify that the process model adheres
to these properties using the FLAVERS finite-state verifier.
We illustrate how this approach can identify errors in the
process model when a property is violated.

Keywords
Process, elections, requirements, properties, verification

1. INTRODUCTION
The ability to carry out fair elections has long been con-
sidered a cornerstone of democracy. Election defects and
frauds have been alleged on many occasions in the past, and
such allegations have been particularly prominent in recent
elections in the United States. There have been many at-
tempts to use technological approaches to try to assure that
elections are fair. Recently these attempts have focused pri-
marily upon the development and use of Direct Recording
Electronic (DRE) machines. DREs are intended to assure
that votes are captured and tabulated correctly. As such,
they are addressing an important aspect of the election and
warrant the scrutiny that they are now receiving. But we
note that an election entails far more than just the casting
and tabulating of votes. A full election process starts with
such activities as the establishment of voter rolls and the
qualification of poll workers, and extends through final tab-
ulations, and, perhaps, recounts and challenges. We note
that this far larger and more extensive election process cre-
ates possibilities for many types of errors that cannot be
addressed by work that solely focuses on analyzing DREs.

In this paper we demonstrate technologies for reasoning rig-
orously about the presence or absence of errors during all
phases of an election process. In particular, we suggest that
it is feasible to define precisely all the phases of an elec-
tion process, ranging from the earliest activities through re-
counts, to define the desired low-level requirements, or prop-

erties, to which such a process must adhere, and then to
reason about whether the process adheres to those prop-
erties. Election processes are hard to define clearly and
precisely, because they are large and complex, and thus we
introduce Little-JIL [26], a rigorously defined language that
seems adept at supporting the precise definition of such pro-
cesses. The properties to which elections must adhere are
diverse and hard to define precisely, and thus we introduce
PROPEL [24], a system for facilitating the definition of such
properties. Finally we note that Finite-State Verification
(FSV) can be used as a vehicle for reasoning definitively
about whether an election process model adheres to defined
properties and describe how the FLAVERS FSV system [11]
was used to verify the adherence of a defined election process
model to defined properties. When FLAVERS determines
the possibility that a process model could result in the viola-
tion a property it indicates an example of how the violation
can occur. We demonstrate how this feedback can then be
used to guide the improvement of the process model.

Thus, this paper indicates the potential of applying rigorous
approaches to election processes to help assure that elections
are fair. We show that for specified properties, the rigor-
ously defined election process model can either be shown to
be consistent with these properties or, if it is not consistent,
example traces can be provided to show how the process
model could violate the properties. These example traces
can be used to help modify the process model so that it no
longer violates the properties. If the error is actually asso-
ciated with the real process, as opposed to merely being a
mistake in the encoding of the process model or the proper-
ties, then the real-world process should be modified as well.

Section 2 summarizes previous work in improving elections
and in using processes definitions (models) to support pro-
cess improvement in other domains. Section 3 introduces
the notion of rigorous process definition and uses the Little-
JIL process definition language to define a small portion of
an example election process. Section 4 shows how election
process requirements may be first developed at a very high
level, but must then be clarified by being refined and decom-
posed into precisely-stated, lower-level properties. We use
the PROPEL property elicitation tool to specify these prop-
erties and generate a representation that is suitable basis for
verification. Section 5 shows how the FLAVERS finite-state
verifier is used to determine the adherence of the process
model described in section 3 to properties described in sec-



tion 4. Section 5 also shows how FSV can suggest ways
to improve the process model. Section 6 summarizes our
approach and suggests directions for future work.

2. RELATED WORK
As noted there has been major interest in studying the con-
duct of elections, especially with respect to electronic voting
machines [5, 2]. Many aspects of elections have been stud-
ied. The risks associated with the use of DREs stemming
from both errors in their operation and their susceptibility
to various forms of fraud have recently been explored [1, 3].
Jones [15] provides a good survey of the various voting tech-
nologies that are used in elections, including DREs. Our
work seeks to develop election process models at a higher
level of abstraction, so that the actions of any vote record-
ing mechanism are a small, although crucial, piece of the
overall process.

Many states have begun to reevaluate the use of electronic
voting machines because of security and reliability concerns.
Florida, Maryland, and New York, among others, have per-
formed extensive studies on the use of DREs. Most recently,
Ohio commissioned a study to evaluate the voting machines
used in the state. The study, called Project EVEREST
(Evaluation & Validation of Election-Related Equipment,
Standards & Testing), is the most comprehensive to date
and included independent panels of industry and university
experts who performed security assessments of the electronic
voting machines used in Ohio. The report’s findings [7]
concludes that the e-voting machines used in Ohio (these
machines include models from three different DRE vendors,
namely Premier Election Systems–formerly Diebold, Elec-
tion Systems & Software, and Hart InterCivic) “failed to
adopt, implement and follow industry standard best prac-
tices in the development of the system.”

Validation and verifiability of voting systems are actively
researched; Mercuri and Neuman [18] give an overview of
how electronic voting systems can be verified and emphasizes
the importance of a verifiable paper trail, and Saltman [22]
outlines different techniques for performing auditing and im-
proving public confidence for both ballot and non-artifactual
systems. Saltman, however, fails to identify the importance
of static analysis and only relies on testing of DREs. While
our approach also provides a framework for verification, we
concentrate on the holistic election process rather than any
one aspect of election technology or conduct. With this fo-
cus in mind, we attempt to verify properties that are general
requirements of most election processes.

There has been some effort on specifying holistic election
processes and their requirements, notably [4] advocates pre-
cise specification of election processes, which is similar to
our approach on a high level but does not identify concrete
technologies or formalisms that can be used to achieve this
goal. Our work allows the process to be rigorously and un-
ambiguously defined, and the framework we use allows us to
perform formal verification. Raunak [21] uses the same ap-
proach to define election processes and reason about frauds
and collusion, while we reason about correctness.

Significant research has been done on identifying require-
ments that elections must satisfy, such as privacy, anonymity,

ensuring each eligible voter can cast at most one vote, ac-
cessibility, etc. Mitrou et al [19] outline several high level
requirements that elections must satisfy and what implica-
tions these requirements might have on the voting technol-
ogy used but, unlike our approach, these requirements are
specified at a very abstract level, making it very difficult
to reason whether or not an election process satisfies them.
Lambrinoudakis et al [16] similarly identify a small set of
requirements and reason about how these may interrelate
or conflict with each other once they are elaborated into a
lower level of abstraction but this reasoning is limited to
manually examining the English definitions of the require-
ments, which are inherently imprecise. By precisely defining
the properties as finite-state machines and using finite-state
verification, we are able to perform a more rigorous evalua-
tion of whether the requirements are satisfied.

This paper focuses on demonstrating a software framework
for defining and reasoning about election processes. We de-
fine these processes in a manner that facilitates the use of
software analysis techniques to reason about the presence or
absence of errors in the process. This strategy builds upon
previous work in which process definitions were used to rea-
son about election vulnerability with respect to incorrect or
fraudulent behaviors by election officials [21]. Process defi-
nitions have also been used as the basis for reasoning about
processes in several other domains, including science[6, 20],
medicine [8, 13], and business[12, 25].

3. DEFINING THE PROCESS
The example discussed in this paper is a subset of an ex-
tended, more detailed process definition, which is in itself
a subset of a real-world process. For simplicity, this exam-
ple process defines an election with two opposing candidates.
The process also assumes a physical ballot and includes some
steps that assume the existence of a voting machine, but no
assumptions are made about the voting machine technol-
ogy. In an attempt to make the process general enough
to accommodate different voting machine technologies, it is
defined at a high level of abstraction and does not include
technology-specific details.

On a high level, the process outlined in Section 3.2 consists
of three main phases–the pre-polling events that must occur
before election day, the events that occur on election day,
and the counting of the votes after the election is over. The
example process focuses primarily on the events that occur
on election day, and therefore some of the process details
that are not directly relevant (for example the details of
how registration is carried out or how recounts are handled)
are omitted.

The pre-polling events include training the election officials
and registering eligible voters. Before election day, the vot-
ing rolls (i.e. the lists of registered voters) are generated and
distributed to the precincts. The events that occur on elec-
tion day include the initial checks and setup of any voting
machines that may be used and the actual voting process,
which encompasses verifying the voter’s credentials and al-
lowing the voter to cast a ballot (in the case where the voter
has been previously checked off as having voted, the voter
casts a provisional ballot, which is kept separately from the
regular ballots).



After the election is complete, the vote totals are recorded
and transmitted to a higher-level election authority that may
consolidate totals from multiple voting sites, may do verifi-
cation, and declare official election results. A recount pro-
cedure is specified in exceptional situations, such as when
the reported totals from a precinct do not pass a sum con-
sistency check (i.e. the total number of votes for the first
candidate plus the total number of votes for the second can-
didate does not equal the total number of votes cast). A
high-level overview of the process as modeled in the Little-
JIL process definition language appears in Figure 1. Before
explaining the process in detail, we present a brief overview
of the features of the Little-JIL language.

3.1 Overview of Little-JIL Features
Little-JIL[26] is a visual process definition language that
provides rich semantics. In this discussion, we only describe
the features pertinent to the example election process de-
fined in section 3.2. A Little-JIL process coordination di-
agram, such as the one shown in Figure 1, consists of a
hierarchical decomposition of steps. A step is denoted by
a black bar, with the step name appearing above that bar.
Associated with each step is an agent that is responsible for
its execution. The behavior of a step consists of the be-
haviors of its children (the steps that connect to the lower
left side of the parent step bar via edges) and the order in
which they are executed. Each step that has children also
has a sequence badge, which appears in the left half of the
step bar and determines the order in which its children will
be executed. For example, the root step conduct election

in Figure 1 has an arrow, which means it is a sequential
step, and hence all of its children will be executed in left to
right order. The pre-polling checks step has an equal sign
as its sequence badge indicating it is a parallel step, which
means its children can be executed in any order, including
any arbitrary interleaving.

A step without children is called a leaf step and responsibil-
ity for execution of such a step is left entirely to the step’s
agent. A step is reasonably thought of as a procedure that
is invoked whenever there is a reference to that step from
anywhere in the process.

In addition to the coordination diagram, a Little-JIL process
definition includes agent specifications and artifact specifi-
cations. One of the important features of Little-JIL is that
it allows the definition of both human and automated (exe-
cuted by a hardware device or software system) agents and
does not discriminate between them. For the election pro-
cess, Voter, Election Official, and Registration Place are
some examples of types of agents. Note that the former
two are human agents while the latter can be an automated
agent. Little-JIL processes only specify the type of agent
(e.g. Voter) that should execute a specific step, rather than
a specific agent instance (e.g. Jane Doe). Little-JIL employs
a dynamic resource management system, which assigns the
appropriate agent instances to types during process execu-
tion.

Little-JIL also provides comprehensive exception handling
semantics. For example, the do recount step in Figure 1
connects to the X in the right half of the step bar of its par-
ent, conduct election, which indicates that do recount is

an exception handler. Exceptions in Little-JIL are typed and
different exception handlers must be defined for each excep-
tion kind. Do recount is an exception handler for exceptions
of type Checksum as the edge that connects do recount to
its parent indicates.

The artifact specification consists of all the artifacts that are
used in the process, which for this election process example
includes Voter preference (this may be a paper ballot or some
sort of a persistent record in a voting machine) and Voting
roll (the list of all registered voters for a given precinct).
Each step has artifact declarations to define which artifacts
it will be accessing or providing. Artifacts are generally
passed within the coordination hierarchy (from parents to
children and vice versa). As steps can be thought of as
procedures, this artifact passing is essentially a parameter
passing mechanism.

3.2 An Example Election Process
The diagram in Figure 1 outlines the high level election pro-
cess used in this example. As noted earlier, the root step
conduct election is a sequential step and so all of its chil-
dren, namely pre-polling activities, generate voting

roll for each precinct, prepare for and conduct elec-

tion at precinct, and count votes are to be executed in
this specific order. Note that the edge connecting con-

duct election to pre-polling activities has the nota-
tion Registration Place +. This indicates that the pre-

polling activities step will be instantiated one or more
times, once for each agent that executes it. In the case of the
pre-polling activities step, the agent is specified to be
of type Registration Place, so this step will be executed once
for each agent instance of type Registration Place, which ef-
fectively enumerates all Registration Places specified in the
system.

The pre-polling activities step is also a sequential step
and consists of election official training and quali-

fication, followed by the register step. Note that the
edges to both children also have the Election Official +

and Voter + notations, respectively, so they will be instan-
tiated for each agent that executes them. Thus, the elec-

tion official training and qualification step will be
invoked once for each agent of type Election Official, and
the register step will be executed once for each Voter type
agent.

After the pre-polling activities are completed, conduct
election proceeds by next executing generate voting roll

for each precinct. Once the voting rolls are generated,
the prepare for and conduct election at precinct step
is executed. Since the edge leading to it again has the
Precinct + notation, this step is also multiply executed,
once for each executing agent, in this case specified to be
of type Precinct. Prepare for and conduct election at

precinct is a sequential step, and it consists of executing
the pre-polling checks first, followed by the pass veri-

fication and vote step.

As noted earlier, pre-polling checks is a parallel step (it
has an equal sign as its sequence badge) and its children can
therefore be executed in any order, including parallel exe-
cution. The children in this case are the check if voting



Figure 1: Little-JIL diagram for the conduct election process

rolls are present step and the check voting machines

step, which is instantiated multiple times because it has
the Voting Machine + notation (i.e. we perform this check
once for every machine). The check voting machines step
consists of completing the step assure totals are ini-

tialized to zero. Once pre-polling checks completes,
prepare for and conduct election at precinct contin-
ues by executing its second child step, namely pass veri-

fication and vote, which is executed once for each agent
of the type specified in the agent declaration, in this case a
Voter agent (denoted by the Voter + notation).

Note that prepare for and conduct election at precinct

has one more child, namely handle faulty voting machine,
which connects to the X in the right half of the step bar
via an edge. This step is an exception handler and illus-
trates Little-JIL’s built-in support for dealing with excep-
tional behavior. In this case, the process specifies that the
check voting machines step can trigger a Faulty Voting

Machine exception during the pre-polling checks. A Faulty
Voting Machine exception can also occur during the ac-
tual voting process, namely in the pass verification and

vote step. Because of the fact that prepare for and con-

duct election at precinct is a common ancestor of both
of these steps, one handler at the parent step can handle
the exception regardless of which child triggers it. Once the
election at all precincts completes, the execution continues
with the count votes step, where the vote totals are tallied.
The count votes step can trigger an exception in the case
of a discrepancy, in which case the do recount exception
handler of the conduct election step is invoked.

The pass verification and vote Little-JIL subprocess is
further elaborated in Figure 2. The pass verification

and vote step consists of executing the present ID, per-

form pre-vote verification, check off voter as voted,

and, finally, record voter preference in exactly this or-
der. The step present ID can trigger an exception, Miss-
ing ID, if no identification is presented, or an Inadmissible
ID exception if the identification presented does not meet
the established criteria. In both cases, the exceptions are
handled by exception handlers emanating from below the X
in the right side of the step bar of the pass verification

and vote step. The behavior of these exception handlers
specifies that in the case of either exception, process exe-
cution will continue as if the pass verification and vote

step has completed (denoted by the white check mark in
the dark circle). This exception-handling scenario effects
the preemption of the voting process and thus prevents the
voter from casting a vote in the case where the voter cannot
provide an acceptable form of identification.

The perform pre-vote verification comprises three steps
that are executed in parallel, namely confirm voter ID matches

voter, confirm voter ID matches voting roll, and ver-

ify voter has not voted. If confirm voter ID matches

voter or confirm voter ID matches voting roll fails, an
ID Mismatch exception is triggered and similarly, in the case
verify voter has not voted fails, a Voter Already Checked

Off exception is triggered. The ID Mismatch exception is
handled similarly to the exceptions raised in the present ID

step outlined above–the process continues as if pass ver-

ification and vote has completed and thus the voter is
unable to vote. The Voter Already Checked Off exception
involves a more complicated compensation mechanism, spec-
ified in the handle voter already checked off exception

exception handler. This exception handler consists of a sin-
gle step, let voter vote with provisional ballot, which
in turn reinvokes the record voter preference procedure.
Thus, if a voter has already been checked off but presents



Figure 2: Little-JIL diagram for the pass verification and vote subprocess

proper credentials, a provisional ballot is cast. This ballot
is kept separate from the regular ballots.

After a voter’s ID has been verified successfully in the per-

form pre-vote verification step, the check off voter

as voted step is executed. The voter is also given a bal-
lot in this step. Lastly, the record voter preference step
is a sequential step, which involves fill out ballot and
then put ballot in repository. Put ballot in reposi-

tory is a choice step (denoted by the blue circle with a bar
going through it), which means that it can be executed by
executing either one of its children, namely submit as reg-

ular ballot or submit as provisional ballot. A choice
is made according to the circumstances–if the voter had not
previously been checked off, then submit as regular bal-

lot is chosen; if, on the other hand the voter is voting as a
result of a ballot dispute, submit as provisional ballot

is chosen.

4. REFINING THE REQUIREMENTS
To reason that our example process model is correct, it must
be evaluated with respect to the requirements for the pro-
cess. There are many requirements that a real-world election
process may need to satisfy. Some examples of these are:

• each eligible voter is allowed at most one vote;

• the election is safe with respect to a voter’s privacy
and anonymity; and

• voters cannot be coerced (i.e. voters cannot be threat-
ened or tricked into voting a certain way).

These requirements are specified at a high level of abstrac-
tion in an attempt to keep them independent from the spe-

Figure 3: Refinement of a high-level requirement
into lower-level properties

cific manner in which an election is carried out. For example,
an election process that uses physical ballots or allows vot-
ers to vote remotely by means of e-voting should still satisfy
these requirements. While the specification of high-level re-
quirements may be a useful starting point for specifying elec-
tion intent, it is often difficult to formally verify that these
requirements are satisfied by a particular process definition
without first refining each requirement into a collection of
lower-level, observable properties.

Refined properties provide a more precise description of the
overall requirement, but are sometimes specific to certain
types of election processes. As an example, in Figure 3,we
provide a refinement of the requirement “each eligible voter
is allowed at most one vote” into a collection of lower-level
properties. These properties assume an election where there
are physical voting booths and physical ballots, and thus this
refinement is specific to certain types of election processes.
For e-voting elections, the example election requirements we
have provided and others were described by Mitrou et. al
[19]. The dependence of the properties in Figure 3 on specific
election processes suggests that different refinements of the



same high-level requirement would be necessary to support
different election processes.

As previously mentioned, Lambrinoudakis et al [16] also con-
sidered a set of requirements for e-voting elections and dis-
cussed how they are related to a group of lower level abstrac-
tions necessary for formal verification. The requirements of
[16] and the properties given in Figure 3 are defined in natu-
ral language, a notation that is often imprecise and ambigu-
ous. For example, the property that states “a voter must
be verified before entering voting booth” says nothing about
whether a voter can be verified more than once before enter-
ing a voting booth or whether, after being verified, the voter
can enter the voting booth again. To formally verify that
a process definition satisfies the properties in our example
will require a more precise property specification.

To provide precise specifications of properties we used PRO-
PEL (PROPerty ELucidator [24]), a software tool that helps
users formalize all the details associated with a property
specification. PROPEL provides templates for commonly
occurring property specification patterns [10]. Each tem-
plate provides a set of pre-defined options that must be con-
sidered in order to define a property precisely. The tem-
plates are represented in three alternative, but equivalent,
notations: a collection of disciplined English sentences where
the user selects the appropriate phrases, a hierarchical series
of questions where the user indicates the answers, or as an
extended Finite-State Automaton (FSA) where the user se-
lects transitions, labels, and accepting states as allowed by
the options associated with a template. For each property in
Figure 3, PROPEL was used to create a FSA that provides
precise property definition of what is intended. PROPEL
properties are specified independently from the Little-JIL
language, reflecting the fact that an election process defined
in any process definition language must satisfy these prop-
erties.

After all the options are specified, the detailed property
specification can be quite long to state in natural language.
The following is the PROPEL disciplined English represen-
tation of the property“voter must be verified before entering
voting booth.”

VoterEntersVotingBoth cannot occur until after Voter-
IsVerified has occurred. VoterIsVerified is not required
to occur, however.

VoterIsVerified can occur multiple times before the first
subsequent VoterEntersVotingBooth occurs.

After VoterIsVerified occurs other events can occur before
the first subsequent VoterEntersVotingBooth occurs

After VoterEntersVotingBooth occurs neither VoterIsVer-
ified nor VoterEntersVotingBooth can occur again.

The bolded terms in these disciplined English sentences are
called events. This property is intended to specify the order
in which events can occur in the process definition. The set
of events that are relevant to a property is called the prop-
erty alphabet. There are usually many different events that
may occur in an election process, but each property is typ-

ically only concerned with a small subset of them. In this
example the property alphabet consists of VoterIsVerified
and VoterEntersVotingBooth. VoterIsVerified corre-
sponds to the voter’s ID being successfully checked by a poll
worker, and VoterEntersVotingBooth corresponds to the
voter entering the physical voting booth.

The FSA in Figure 4 is the equivalent representation of
the property “voter must be verified before entering vot-
ing booth” given above. It defines the acceptable order in
which events can occur for any trace through the process
model. Each of the numbered nodes in this figure represents
a state in the FSA The starting state is annotated with an
arrowhead. Initially the current state is set to the starting
state. The arrows between states are called state transi-
tions. State transitions are labeled with an event name or a
list of event names from the property alphabet. If one of the
events on the transitions emanating from the current state
occurs, then the current state is updated to the target state
of that transition. An event annotation that has a negation
sign (¬) indicates that the transition will occur if any event
within the property alphabet occurs other than the negated
events. The FSA representation that is used is deterministic
and total, meaning that for each state all of the events in
the property alphabet must occur on one and only one tran-
sitions emanating from that state, If an event occurs that
causes the sequence of events to be acceptable, then the cur-
rent state should be updated to a special state, called the
violation state. All the transitions from the violation state
are self-loops, so if the current state becomes the violation
state, it will remain so. To keep the FSA representation in
Figure 4 small and easy to understand, the violation state
and all the transitions to and from that state are not shown.
Thus, whenever a state in this figure does not contain a tran-
sition for an event, there is in fact an unshown transition for
that event to the violation state.

In Figure 4, state 1 is the starting state. If the event Voter-
IsVerified occurs, the current state is updated to state 2
since there is a transition from state 1 to state 2 labeled with
the event VoterIsVerified occurs, meaning the next subse-
quent event will occur from state 2. On the other hand, if the
current state is state 1 and the event VoterEntersVoting-
Booth occurs the current state is updated to the violation
state since the event VoterEntersVotingBooth is not a
label for either of the transitions emanating from state 1.
This FSA therefore specifies the requirement that the voter
must be verified before entering a voting booth and that
once the voter has entered a voting booth, he or she cannot
enter a voting booth or be verified again.

5. PROCESS MODEL VERIFICATION AND
IMPROVEMENT

We use FSV to determine if the process definition satisfies
each property associated with that definition. FSV con-
structs a finite model of the process that represents all the
possible event sequences, for the events in a property, that
could occur for all the possible traces through the process
definition. It then attempts to determine if this model is
consistent with the property specification[9, 17, 11, 14]. If
the model is not consistent with the property, then a counter
example trace through the model is shown so the user can see
the event sequence associated with a trace that causes the



Figure 4: Finite-state automaton corresponding to the “voter must be verified before entering voting booth”
property

FSA to enter the violation state. This inconsistency could
indicate imprecision within the finite model, an incorrectly
defined property or process definition, or it could indicate
an error in the actual process that was represented in the
corresponding process definition.

Using FSV to formally verify that a process definition satis-
fies some property requires determining the correspondence
between the process steps and the events within that prop-
erty’s alphabet. For example, the events in Figure 4 should
correspond to specific steps that can occur in an election
process definition. This correspondence is explicitly defined
indicating a binding between process steps and property
events.

5.1 Binding the Process Steps to the Property
Events

The binding of events of a property alphabet to steps of
a Little-JIL process definition involves not only matching
event names to step names, but also determining the ap-
propriate state of each step to bind to the event. Within
the Little-JIL execution model, each step progresses through
several states before it is considered to have completed suc-
cessfully or to have failed to complete and triggered an ex-
ception. When a step first becomes available to an agent, its
state is POSTED. When an agent starts to perform a step, its
state is STARTED.When a step has been completed success-
fully, its state becomes COMPLETED. If, on the other hand, the
step cannot complete successfully and triggers an exception,
its state becomes TERMINATED.

A binding between event names and step states is necessary
when it is important to reason about where a step is in its
execution. Although it is often the case that an event can be
bound to the STARTED state, sometimes finer grained control
is needed. For example, we may want an event to occur only
when an agent completes a step. When necessary an event
can also bind to more than one step and more than one state
of a step. Clearly, to specify bindings between event names
and step states, one should have a deep understanding of
the process definition.

Figure 5 provides example bindings between the event names
used in Figure 4and step states in the process defined in
Figure 2. In this example, the event VoterIsVerified is
bound to the process step perform pre-vote verification

with the specific state COMPLETED. This means that when a
voter has successfully completed the step perform pre-vote

verification the event VoterIsVerified occurs. Similarly

Figure 5: Bindings of property events to step states

the event VoterEntersVotingBooth is bound to the step
record voter preference with the specific state POSTED.
This means that when this step first becomes available to
an agent the event record voter preference occurs.

5.2 Applying FLAVERS
FLAVERS was used to verify that the example election pro-
cess definition satisfies the properties in Figure3. FLAVERS
was developed to verify Ada and then Java programs, but
has been extended to include support for verifying Little-
JIL process definitions. FLAVERS is able to produce traces
through the process definition that could lead to unsatisfied
properties. These traces can be helpful in identifying possi-
ble errors in the process definition. Moreover, as we demon-
strate in the next section, analyzing the process definition
and these traces can suggest process definition improvements
capable of remedying these errors.

5.3 Example of Process Model Improvement
To develop a process model that defines the election pro-
cess correctly and provides sufficient detail, it is helpful and
convenient to make iterative process model improvements.
This is especially true when processes are modeled in a pro-
cess definition language that uses hierarchical decomposi-
tion. Little-JIL allows the process model to be defined at a
very high level initially, then iteratively improved or elabo-
rated to include more details. Most of the changes that were
made to the election process model described in section 3
as it was being developed were such iterative improvements
and concentrated on improving the level of abstraction of the
process model to assure that there is a direct correspondence
between steps in the process model and events in properties.

Sometimes, however, verifying a process model against a set
of properties resulted in finding that it is possible for the



process model to violate a property to which it is expected
to adhere. This means there is an error in the process model,
the real-world process, or the property. Carefully inspect-
ing the FLAVERS trace of step states that could result in
a violation helps to identify the source of the error. Once
the source is identified, if the error is in the process defini-
tion or the property, appropriate corrections are made and
verification is performed again to ensure that no other prop-
erties can be violated as a result of the changes. If the error
detected is a manifestation of an error in the real-world pro-
cess, then the process must be modified in consultation with
domain experts. An improved process can then be proposed,
and the corresponding process model and properties can be
updated correspondingly and then reverified.

Through careful specification of the process model and prop-
erties and iterative refinement of both, we discovered a se-
rious error in the process definition, which was not imme-
diately obvious. As previously described, the perform pre-

vote verification step in Figure 2 is executed in paral-
lel. This process definition resulted from the belief that
election officials may wish to perform the three verifica-
tion steps, namely confirm voter ID matches voter, con-
firm voter ID matches voting roll, and verify voter

has not voted in any order, including parallel execution
(i.e. having three election officials execute the three checks
at the same time). Since pass verification and vote is
instantiated multiple times to accommodate multiple voters,
we discovered that our process model includes a loophole
that allows a voter to vote even if they are ineligible to do
so.

Consider the following scenarios in which Jane Doe and
Joan Smith go to vote. In the pass verification and

vote step, Jane presents her identification, then during the
perform pre-vote verification step election officials ver-
ify that the identification matches Jane and her registra-
tion information and that Jane has not yet voted. Jane is
checked off as having voted in the check voter as voted

step and upon the successful completion of that step, she is
handed a ballot. She fills out and submits it as a regular bal-
lot during the record voter preference step and, with
that, the instantiation of the pass verification and vote

step for voter Jane Doe successfully completes. Now Joan
Smith, who is ineligible to vote, attempts to vote as Jane
Doe. The pass verification and vote step gets instanti-
ated and Joan presents her identification in the present ID

step. Since Joan is an impostor, during the pre-vote veri-

fication step two exceptions arise–ID Mismatch exception
because Joan’s ID does not match Jane’s information, as
well as a Voter Already Checked Off exception since Jane
successfully cast her ballot. Since the pre-vote verifica-

tion step happens in parallel, both of these exceptions have
to be handled. Since the ID does not match, the original
instantiation of the pass verification and vote step for
Joan is completed but since Jane was already checked off
as having voted, the handle voter already checked off

exception handler is invoked, allowing Joan Smith to cast
a provisional ballot while impersonating Jane Doe. While
this example may seem contrived and specific to this model,
it is not hard to imagine how seemingly simple errors like
this can occur in real life because of poor communication
among the election officials or insufficient training on how

to handle exceptional situations.

After discovering this error in the process model as a result
of attempting to verify the specified properties outlined in
Figure 3, the process model was changed to remedy this er-
ror. In this case, simply changing the perform pre-vote

verification step from a parallel to a sequential execution
solves the problem. By forcing the ID verification steps to
occur first, any ID Mismatch exception is detected and
handled before verify voter has not voted can even oc-
cur. Thus, the whole pass verification and vote pro-
cess is completed if an ID Mismatch exception is triggered
and an ineligible voter cannot vote with a provisional bal-
lot under any circumstances. The property voter must be

verified before voting was successfully verified after this
change was made to the process model, and the model still
adhered to the remaining properties.

5.4 Evaluative Observations
In this section, we present some observations about the chal-
lenges we encountered while defining the process model and
the requirements, refining the requirements, binding the steps
in the process model to property events, and performing
finite-state verification on the resulting model.

It was somewhat difficult to define the process carefully,
however, the fact that Little-JIL provides hierarchical de-
composition made it easy to initially define the process at a
very high level of abstraction and then iteratively elaborate
it to lower levels of abstraction. Our approach facilitates de-
tection of process definition errors as illustrated in the previ-
ous section. Additionally, since correcting the process model
error described in section 5.3 did not result in a significant
change in the coordination diagram, none of the bindings be-
tween the process model steps and the property events were
changed. As a result, there was little overhead involved in
running the FLAVERS system once again to assure that the
new process model satisfied the original properties.

The initial high-level requirements that were defined in En-
glish required iterative refinement into precisely-defined, lower-
level properties that contain enough detail to make them
amenable to static analysis. As we illustrated, and as previ-
ous work indicates [19, 16], this refinement is often difficult.
However, the PROPEL property elicitation tool significantly
facilitated this process by providing guidance; the template
of hierarchical series of questions provided by PROPEL was
especially useful.

As noted above each high-level requirement was decomposed
into a set of lower-level properties. In doing so we discovered
that some lower-level properties occurred in more than one
of these decompositions. This resulted in fewer lower-level
properties than initially expected ([16] observed similar be-
havior). This allayed some of our early concerns that the
total number of properties in need of verification in a realis-
tic election process might be excessive. Originally, one of the
properties specified, namely “voter must be verified before
entering voting booth” was violated, but after correcting the
detected error in the process model, all five properties (enu-
merated in Figure 3), which together define the high-level
requirement that each unique eligible voter must be allowed
at most one vote, were successfully verified.



The ability to perform formal verification of election pro-
cesses was unquestionably useful. The formal verification
approach we used also facilitated both error detection and
localization–that is, it not only detected the presence of er-
rors but also provided guidance in finding where the errors
occur. Thus, it was extremely valuable in helping to improve
the election process.

6. CONCLUSION AND FUTURE WORK
We have demonstrated an approach that allows election pro-
cesses to be carefully defined and then evaluated with re-
spect to specific correctness properties. The Little-JIL pro-
cess definition language can be used to develop precise, rigor-
ous process definitions of election processes, and the PRO-
PEL tool supports the development of precise lower-level
properties. Once the events of the PROPEL properties are
bound to step states in the Little-JIL process definition, the
FLAVERS system can be used to perform finite-state veri-
fication that attempts to determine if all traces through the
process model are consistent with the properties. In the case
where the process model violates a property, FLAVERS pro-
vides a textual counterexample, which traces a sequence of
steps in the process model that may lead to the property
violation. Such traces enable the process model developer
to reevaluate the model and make improvements to avoid
the property violation. To ensure that the improvement ad-
dresses the original error, but also that no additional errors
are introduced, the corrected process definition and its re-
spective properties are verified once more using finite-state
verification.

Finite-state verification is commonly used to verify the cor-
rectness of hardware and software and we have begun to
explore how this approach can be applied to verify election
processes. Although this paper concentrated on only one
aspect of the voting process, the approach is extendable to
analysis of global properties and more complex processes.
This approach allows a holistic view of the process, and is
not restricted to concentrating on one specific part of an
election, such as the part that deals with the use of the
DRE.

Our approach also facilitates process model improvement
by providing a specific counterexample when a property is
violated and enables the improved process model to be ver-
ified again. In some cases, this reverification can be ac-
complished without the need to redefine the properties or
the bindings between the properties and the process model
step states (unless the process model changes mandate that
the properties and bindings be changed). This approach is
also easily extendable by allowing further elaboration of the
process definition and properties to lower levels of abstrac-
tion. Indeed, as our approach involves the application of
a verifier to an appropriately annotated graph, and a suffi-
ciently well-defined property, it is applicable whenever such
an annotated graph and property can be constructed. Such
graphs can be built from source code such as is found in
DREs. Thus, this approach can be extended to analyze and
verify the source code contained in DREs against properties
derived by decomposition of the properties of an overall elec-
tion process. Thus, our approach, which begins by verifying
properties of a holistic election process might then devolve
into the verification of whether or not the actual code in a

DRE supports the fulfillment of the desired properties of the
holistic election process.

We have identified many avenues of future work in defining
and analyzing election processes. Currently, when a prop-
erty is violated, FLAVERS produces a textual trace of the
counterexample. It seems beneficial to develop a visual trace
representation also to assist the process model developer in
identifying errors in the model. Although finite-state veri-
fication provides a useful framework for analyzing election
processes and ensuring they comply with rigorously speci-
fied properties, there are other methods that can be used for
verification. One of these methods that we plan to explore is
fault tree analysis (FTA). Fault tree analysis considers how
the incorrect processing of a step can cause an error and,
thus, does not require pre-defined properties. FTA can be
very useful in identifying single points of failure (i.e. single
steps in the process model where an incorrect execution may
lead to the election being compromised).

In the process of refining the requirements into lower-level
properties, we encountered a couple of requirements that,
once decomposed into properties, could potentially result in
properties that may directly conflict with each other (with
respect to a specific process definition). We would like to
be able to determine if and when this is the case, and how
to deal with such conflicts. For example, to remedy a pro-
visional ballot that is later deemed valid, there must be a
mechanism that allows for the retrieval of the ballot that
was originally cast by that voter. However, that might con-
flict with a property that assures that voting is private and
no one except the voter can obtain information about how
the voter voted.

It also seems useful to be able to organize and leverage prop-
erties based on process families [23], collections of different
processes that are significantly similar. For example, the
privacy property might be associated with all members of
an election process family, but might be represented differ-
ently depending on the specific mechanism used for storing
ballots. We would also like to specify process desiderata
that most election processes should meet (e.g. that they are
resistant to certain types of frauds and collusion) and reason
about the relationships among these desiderata.

There has been an abundance of work on process definition
and analysis in other domains [6, 20, 8, 13, 12, 25]. In this
paper, we demonstrate that rigorous scientific reasoning can
be applied to the area of elections as well and described some
technology for supporting this approach. Election processes
are too important to democracy to not be carefully defined
and evaluated.

7. ACKNOWLEDGEMENTS
The authors thank Bin Chen for his help with the verifica-
tion and Alexander Wise for his help with Little-JIL. This
research was supported in part by the U.S. National Media-
tion Board, and in part by the U.S. National Science Founda-
tion under Grant Nos. IIS-0705772, IIS-0429297 and CCF-
0427071. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon. The views and
conclusions contained herein are those of the authors and



should not be interpreted as necessarily representing the of-
ficial policies or endorsements, either expressed or implied
of the U.S. National Mediation Board, or the U.S. National
Science Foundation, or the U.S. Government.

8. REFERENCES
[1] ACCURATE A Center for Correct, Usable, Reliable,

Auditable, and Transparent Elections.
http://accurate-voting.org/.

[2] Brennan Center for Justice at NYU School of Law.
http://www.brennancenter.org/.

[3] Caltech/MIT Voting Technology Project.
http://www.vote.caltech.edu/.

[4] Election Assessment Hearing (June 29th, 2005).
http://www.electionassessment.org/.

[5] Verified Voting Foundation.
http://www.verifiedvoting.org/.

[6] I. Altintas, C. Berkeley, E. Jaeger, M. Jones,
B. Ludäscher, and S. Mock. Kepler: An extensible
system for design and execution of scientific
workflows. In Proceedings of the 16th International
Conference on Scientific and Statistical Database
Management, pages 423–424, 2004.

[7] J. L. Brunner. Project EVEREST: Evaluation &
Validation of Election-Related Equipment, Standards
& Testing Report of Findings. Technical report, Ohio
Secretary of State Office, 2007.

[8] L. Clarke, Y. Chen, G. Avrunin, B. Chen,
R. Cobleigh, K. Frederick, E. Henneman, and
L. Osterweil. Process programming to support medical
safety: A case study on blood transfusion. In
Proceedings of the Software Process Workshop, pages
347–359. Springer-Verlag, 2005.

[9] J. C. Corbett and G. S. Avrunin. Using integer
programming to verify general safety and liveness
properties. Formal Methods in System Design: An
International Journal, 6(1):97–123, January 1995.

[10] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in
property specifications for finite-state verification. In
Proceedings of the 21st International Conference on
Software Engineering, pages 411–420, 1999.

[11] M. B. Dwyer, L. A. Clarke, J. M. Cobleigh, and
G. Naumovich. Flow analysis for verifying properties
of concurrent software systems. ACM Trans. Softw.
Eng. Methodol., 13(4):359–430, 2004.

[12] D. Georgakopoulos, M. F. Hornick, and A. P. Sheth.
An overview of workflow management: From process
modeling to workflow automation infrastructure.
Distributed and Parallel Databases, 3(2):119–153,
1995.

[13] E. Henneman, R. Cobleigh, K. Frederick,
E. Katz-Basset, G. Avrunin, L. Clarke, J. Osterweil,
C. Andrzejewski, K. Merrigan, and P. Henneman.
Increasing patient safety and efficiency in transfusion

therapy using formal process definitions. Technical
report, University of Massachusetts, Amherst, 2006.

[14] G. J. Holzmann. The model checker SPIN. Software
Engineering, 23(5):279–295, 1997.

[15] D. Jones. Evaluation of Voting Technologies, pages
3–16. Advances in Information Security. Kluwer
Academic Publishers, 2003.

[16] C. Lambrinoudakis, D. A. Gritzalis, V. Tsoumas,
M. Karyda, and S. Ikonomopoulos. Secure Electronic
Voting: The Current Landscape, pages 101–122.
Advances in Information Security. Kluwer Academic
Publishers, 2003.

[17] J. Magee and J. Kramer. Concurrency: State Models
and Java Programs. Wiley, 2006.

[18] R. Mercuri and P. Neumann. Verification for
Electronic Balloting Systems, pages 31–42. Advances
in Information Security. Kluwer Academic Publishers,
2003.

[19] L. Mitrou, D. A. Gritzalis, S. Katsikas, and
G. Quirchmayr. Electronic Voting: Constitutional and
legal requirements, and their technical implications,
pages 43–60. Advances in Information Security.
Kluwer Academic Publishers, 2003.

[20] L. Osterweil, A. Wise, L. Clarke, A. Ellison, J. Hadley,
E. Boose, and D. Foster. Process technology to
facilitate the conduct of science. In Proceedings of the
Software Process Workshop, pages 403–415.
Springer-Verlag, 2005.

[21] M. S. Raunak, B. Chen, A. Elssamadisy, L. A. Clarke,
and L. J. Osterweil. Definition and analysis of election
processes. In Proceedings of the Software Process
Workshop, volume 3966 of LNCS, pages 178–185.
Springer-Verlag, 2006.

[22] R. Saltman. Public confidence and auditability in
voting systems. In D. A. Gritzalis, editor, Secure
Electronic Voting, Advances in Information Security.
Kluwer Academic Publishers, 2003.

[23] B. I. Simidchieva, L. A. Clarke, and L. J. Osterweil.
Representing process variation with a process family.
In Q. Wang, D. Pfahl, and D. M. Raffo, editors,
Software Process Dynamics and Agility: Proceedings of
the International Conference on Software Process,
volume 4470 of LNCS, pages 109–120. Springer, 2007.

[24] R. L. Smith, G. S. Avrunin, L. A. Clarke, and L. J.
Osterweil. Propel: an approach supporting property
elucidation. In Proceedings of the 24th International
Conference on Software Engineering, pages 11–21,
2002.

[25] O. Weigert. Business Process Modeling and Workflow
Definition with UML. 1998.

[26] A. Wise. Little-JIL 1.5 Language Report. Technical
report, Department of Computer Science, University
of Massachusetts, Amherst, MA, 2006.


