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Abstract
Object-oriented software architectures, such as design patterns and frameworks, have found extensive use in soft-
ware industry. As a design technique, these architectural structures have proven themselves very valuable. Their
implementation in traditional object-oriented programming languages, however, is often difficult, since these lan-
guages provide no support for the explicit specification of software architectures. In this paper, we develop the
notion of architectural fragments, i.e. reusable architectural specifications that describe a design pattern or a frame-
work architecture. An architectural fragment describes the structure of an architecture in terms of its components
(roles), the architecture-specific behaviour of the components and the architecture-specific interaction between the
components. Fragments can be composed with each other and with reusable components. To illustrate the use of
fragments, we describe the role and architecture language constructs in the layered object model (LayOM) and
present examples.

1  Int roduction

Reusable object-oriented software architectural structures such as frameworks and design patterns have proven highly
valuable assets for software development. During design, design patterns are extensively used by software engineers
for the actual design process as well as for communicating a design to others. The implementation of design patterns,
however, has received considerably less attention and most consider the implementation of design patterns in a con-
ventional OO programming language to be a time-consuming but necessary activity [Budinsky et al. 96]. For object-
oriented frameworks, one can identify an similar situation, i.e. the software industry makes extensive use of object-
oriented frameworks and frameworks are generally recognised to reduce the required development effort for appli ca-
tions. However, the use of frameworks during the implementation of applications has received less attention, even
though the process might be far from trivial.

One of the underlying causes for these problems, we believe, is due to the fact that conventional object-oriented lan-
guages provide no support for representing architectural structures as first-class entities. A design pattern, being used
as a conceptual entity during design, is implemented as a collection of code pieces embedded in two or more classes.
An object-oriented framework, generally treated as an identif iable entity during design, easily loses this structure dur-
ing implementation due to the large amount of classes and the inabil ity to distinguish between relevant, i.e. entities
part of the framework architecture, and irrelevant classes, i.e. entities providing reusable implementations for archi-
tecture components.

The reason why no support for describing architectural structures is available in conventional languages is that the
paradigm on which these languages are based requires that the behaviour of a single software component is described
as one, complete specif ication. Architectural structures, on the other hand, describe the part of the behaviour of a
group of components related to the architecture.

Inheritance in object-oriented programming languages addresses this up to some extent. However, as identif ied in the
work on mixins [Bracha & Cook 90], inheritance is unable to deal with the composition of class behaviour from dif-
ferent sources if these behaviours are not orthogonal. Mixins only solve the problem of behaviour composition for
individual classes and provide no support for architectural structures that encompass multiple components.

Since no language support is available, the implementation of architectural structures suffers from several problems.
In [Bosch 96], we identifi ed that the implementation of design patterns may suffer from problems related to traceabil-
ity, self problem, reusability and implementation overhead. In [Bosch et al. 97] and [Mattsson & Bosch 97], we iden-
tif ied that framework implementation, among others, may suffer from problems related to implicit architecture, cross-
framework dependencies, framework instantiation, legacy components and framework composition.

http://www.ide.hk-r.se/~bosch/header.html
http://www.ide.hk-r.se/
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In this paper, we propose to describe reusable parts of application architectures, e.g. design patterns and framework
architectures, as architectural fragments. An application architecture is, in this approach, composed from multiple
architectural fragments, requiring composability of these fragments in order to construct an application. The problems
and requirements of specifying architectural fragments are discussed and an integrated language model is proposed
for describing architectural fragments in addition to traditional object-components such as classes and objects. The
composition of an application from one or more architectural fragments and classes is achieved using a composition
technique called superimposition [Bosch 97]. 

The contribution of this paper, we believe, is that an approach to explicitly specifying software architectures, i.e.
architectural fragments, is proposed that provides support for reusable, first-class specification of object-oriented
architectures. In addition, the approach is concretised using a language model that is suitable for specifying architec-
tural fragments and reusable components and their instantiations in applications.

The remainder of this paper is organised as follows. In the next section, the problems of architectural definition lan-
guages and programming languages for specifying architectural fragments are described. Section 4 introduces the
conceptual notion of architectural fragments. Section 5 introduces the layered object model that, in section 6, is
extended with functionality for specifying architectural fragments. In section 7, the approach proposed in this paper is
compared to related work and the paper is concluded in section 8.

2  Example

To illustrate the ideas presented in this paper, an object-oriented framework for measurements systems will be used.
The framework has been designed in cooperation with EC-Gruppen, a swedish company developing, among others,
embedded systems. Measurement systems are a class of systems used to measure the relevant aspects of a process or
product. These systems are different from the, better known, process control systems in that the measured values are
not directly, i.e. as part of the same system, used to control the production process that creates the product or process
that is measured. A measurement system is used for quality control on produced products that can then be used to sep-
arate acceptable from unacceptable products or to categorise the products in quality categories. In some systems, the
results from the measurement are stored in case in the future the need arises to refer to this information, e.g. if custom-
ers complain about products that passed the measurement system.

A typical measurement cycle in a measurement system starts with a trigger indicating that a product, or measurement
item, is entering the system. The first step after the trigger is the data-collection phase by the sensors. The sensors
measure the various relevant variables of the measurement item. The second step is the analysis phase during which
the data from the sensors is collected in one representation and transformed until it has the form in which it can be
compared to the ideal values. Based on this comparison, certain discrepancies can be deduced which, in turn, lead a
classification of the measurement item. In the third step, actuation, the classification of the measurement item is used
to perform the actions that are associated with the classification of the measurement item. Example actions may be to
reject the item, causing the actuators to remove the item from the conveyer belt and put it in a separate store, or to
print the classification on the item so that it can be automatically recognised at a later stage. One of the requirements
on the analysis phase is that the way the transformation takes place, the characteristics based on which the item is clas-
sified and the actions associated with each classification should be flexible and easily adaptable, both during system
construction, but also, up to some extent, during the actual system operation.

Figure 1. Measurement system architecture

In figure 1, the architecture of the measurement system is shown. A measurement system consists of one or more sen-
sors that measure aspects of a measurement item, one or more actuators causing some effect in the real world based on
the measured values and the control, a trigger identifying the entrance of a physical measurement item into the system,
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the item factory that generates measurement item in response to the trigger and a measurement item object that repre-
sents its real-world counterpart in the system.

The measurement system architecture makes use of a number of design patterns, among others the observer, abstract
factory and strategy patterns. In this paper, the framework architecture and the observer pattern will be used as exam-
ples.

3  Motivation

Design patterns and object-oriented frameworks are generally identified as powerful techniques during design, but
their implementation has received considerably less attention. However, their implementation using traditional object-
oriented languages suffers from a number of problems. In [Bosch 96] we identified the following problems associated
with the implementation of design patterns:

• Traceability : A design pattern can generally not be traced in the implementation since the programming language
does not support a corresponding concept. This problem has also been identified by [Soukup 95].

• Self problem: The implementation of several design patterns requires forwarding of messages. Once the message
is forwarded, the reference to the object originally receiving the message is no longer available. The problem is
known as the self problem [Lieberman 86].

• Reusability: Since design patterns generally specify part of the behaviour a group of objects, patterns have no first
class representation at the implementation level. Hence, the implementation of a design pattern cannot be reused.

• Implementation overhead: Implementation of a design pattern often requires several methods with only trivial
behaviour, e.g. forwarding a message to another object or method

In [Bosch et al. 97, Mattsson & Bosch 97] the problems associated with the implementation of object-oriented frame-
works that we identified are described. The most relevant ones are:

• Implicit architecture : When using a framework, the first step is to understand its architecture. Since the imple-
mentation of the framework is often dominated by implementation classes that provide reuse at the implementation
level, the architecture of the framework disappears in the implementation details and can be hard to identify by the
software engineer. 

• Cross-framework dependencies: A typical situation in framework-based application development is when select-
ing a class in one class hierarchy limits the selection of classes to a subset in another class hierarchy. Such depend-
encies are often implicit and identifying them requires considerable understanding of the internal workings of the
framework.

• Framework instantiation: Due to the implicit architecture and cross-framework dependencies, but also by the
sheer size of most frameworks and the lack of a clear, well-defined framework interface, instantiating a framework
requires considerably understanding of the framework internals.

• Legacy components: Legacy components can generally not be used in combination with frameworks without con-
siderable adaptation, due to typing conflicts and the cohesive behaviour required from framework classes.

• Framework composition: Frameworks are generally designed to form the reused part of closed applications,
rather than to be components in a larger system. This leads to composition problems, such as 

3.1  Architectural description languages

The specification of architectures has been studied been studied by the software architecture community, in particular
by those working on architectural description languages (ADLs). One can identify three categories of ADL
approaches in this domain, i.e. general purpose ADLs, e.g. Rapide [Luckham et al. 95] and Darwin [Magee et al. 95],
domain specific ADLs, e.g. MetaH [Binns et al. 94], and generative ADL approaches, e.g. the Aesop system [Garlan
et al. 94], providing a general purpose basis, but the ability to be extended with domain-specific language constructs
for specifying architectures in a particular domain. 

The approach on which ADLs are based assumes a dichotomy between the architecture and the components. The
architecture specifies what components play a role in the architecture and how these components are connected to
each other. The components, on the other hand, are supposed to contain both the domain functionality and the archi-
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tecture-specific behaviour associated with the architecture. For example, in an architecture based on the pipe&filter
style, the components should not only contain the domain functionality, but should be able to act as a filter.

The position taken in this paper is that the architecture specification should, in addition to specifying what compo-
nents the system consists of and how they are connected, also specify the architecture-specific behaviour of the com-
ponents. The components should only contain domain-specific behaviour. 

Although architecture description languages have explicitly been defined for the specification of software architec-
tures, these approaches lack some aspects that we believe to be important for the use of architecture specifications in
combination with existing software. Below, these issues are discussed in more detail.

• Architecture-specific behaviour of roles: An architecture specification generally specifies a number of roles that
have to be played by components that are selected when instantiating the architecture. Roles are often required to
exhibit behaviour that is specific to the architecture. ADLs do not provide support specifying architecture-specific
role behaviour as part of the architecture, but require the component selected for the role to contain this behaviour.
This is problematic since it reduces the usefulness of specifying an architecture independent of the components
that play a role in the architecture and, secondly, since it reduces the reusability of the components that are
required to contain architecture-specific behaviour, potentially complicating the use of the components in other
architectures.

• Reusability of architectures: Most ADL designers assume that the ADL is used to describe the top-level design
of applications in a particular domain, i.e. a DSSA, or the architecture of a system. The resulting architecture
description itself is reusable, but the approach does not allow for reusable specification and instantiation of archi-
tectural styles or patterns.

• Composition of architectures: In general, most software engineers will associate the term “architecture” to the
top level structure of a software system. Consequently, existing ADLs generally do not provide means to compose
two or more architectural specifications. Due to this, the software engineer is forced to define an application archi-
tecture from scratch rather than to compose it from existing architecture specifications. 

3.2  Requirements

From the discussion in the above sections, it can be concluded that object-oriented software architectures, such as
frameworks and design patterns, cannot be implemented without problems either using a traditional object-oriented
language or using an ADL. Based on the identified problems, the requirements that should be fulfilled by a description
approach can be identified:

• First-class representation: ADLs were developed in recognition of the importance of specifying an architecture
explicitly. The first-class representation of an architecture is a prerequisite for reuse and composition.

• Architecture-specific behaviour: The behaviour of components that is specific for the architecture should be
specified as part of the architecture description. This increases the reusability of components and the usefulness of
specifying architectures first-class.

• Configurable: An architecture description should both be instantiatable and configurable. An architecture is
instantiated for a system and configured for the particularities of the system.

• One language model: The ADL community explicitly chose to define a separate language for specifying architec-
tures, rather than extending an existing programming language. We believe that it is possible and preferable to
define a unified language model for reasons of complexity and inter-operability.

4  Architectural Fragments

Conventional object-oriented languages allow one to describe the behaviour of one class as a single monolithic
description, even though the class may inherit from other classes. Object-oriented software architectures, e.g. design
patterns and object-oriented frameworks, require support for describing part of the behaviour of a group of compo-
nents as a first-class entity. The entity describes the component behaviour related to the pattern or framework and the
interaction between the components. However, other behaviour that the component should exhibit, e.g. application
domain functionality, should not be described, but composed at a later stage.
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The solution to specifying object-oriented architectures proposed in this paper is the notion of architectural frag-
ments. An architectural fragment describes, for the set of components that play a role in the fragment, that part of the
behaviour that is specific for the architecture. An architectural fragment consists of a set of roles and initialisation
code that is executed when the architectural fragment is instantiated. A role is specified similar to a class, but it pro-
vides additional expressiveness for defining a required interface that has to be fulfilled by the class that is composed
with the role and for configuring an instantiated role to match the interface of a class. The interface declares those
operations that do not belong to the architecture behaviour but that need to be referred to by the roles in the architec-
ture.

Different from traditional ADLs, an architectural fragment defines a partial implementation of the roles. When select-
ing a class to play a role in an instantiated architecture, the class behaviour and the role behaviour are composed. This
sometimes requires that the role behaviour overrides or extends class behaviour. This is achieved using superimposi-
tion. Since superimposition is transparent, the component can generally be used as before by components outside the
architecture. Although able to override the component’s behaviour, the superimposed role behaviour often adapts and
extends the behaviour of the class so that also the roles in the architecture can make use of the class.

In figure 2, the principle approach of architectural fragments is presented graphically. The example consists of two
architectural fragments and three classes. The first architectural fragment consists of three roles whereas the other
contains two roles. The three classes contain application domain behaviour, but lack behaviour for playing a role in
the software architectures, e.g. design patterns or frameworks, defined by the architectural fragments. In the applica-
tion, the two architectural fragments are superimposed on the domain classes. For class c1 this causes the role behav-

iour of rb,1 to be superimposed on c1. The role behaviour from ra,1 is superimposed on the resulting component,
resulting in the presented application entity.

Figure 2. Illustrating the use of architectural fragments

In the remainder of this section, the introduced concepts are discussed in more detail. In the next section, the notion of
role is discussed. Subsequently, in section 4.2, the technique that we use for composing roles with other roles and
classes, i.e. superimposition, is introduced. Finally, the notion of architectural fragments is discussed in section 4.3.

4.1  Roles

Different from a traditional class description that defines the complete behaviour of a component, a role describes
only that part of a component that is specific for a particular aspect of its behaviour. For instance, a role may describe
the behaviour specific for a class playing a part in a design pattern. As mentioned, a role is specified similar to a class,
with the difference that a required interface can be specified and that an instantiated role can be configured for compo-
sition with a particular class.

The specification of a role can differ rather widely. The minimal specification of a role is to just specify an interface
defining what methods a class playing the role should provide. The maximal specification of a role is a complete defi-
nition of a component that does not need to be composed with a class in the application. That is, the role specifies all
the behaviour required for its correct operation by itself and is not supposed to be composed with a component. 

Figure 3 illustrates the composition of a role with a component. The component C consists of an instance variable v1
and two methods m1 and m2, whereas the role R consists of an instance variable v2 and two methods m3 and m4. The

c1
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result of the composition is shown in the figure. Since the role composition is transparent, clients of the component or
the role can still invoke methods of the component, i.e. m1 or m2.

Figure 3. Composing a role and a component

Instantiated roles intercept messages sent to the object. A message is intercepted by the component if it contains, per-
haps after the message has been altered (see section 5 for how to modify messages), a method that matches with the
invoked message. The method in the role will execute its code and can then perform one of two actions, i.e. send a
reply to the sender of the message by using a normal return statement or allow the message to proceed to the part of the
component that is encapsulated by the role, by using the proceed statement. In addition to intercepting normal mes-
sages, a role can also intercept return messages both sent back to or returned by the component. Intercepting return
messages allows a role to add additional behaviour after the original behaviour was executed and not only before the
message is handled in the component core. Below, an example role containing each type of adding and overriding
component behaviour:

Role R
methods

overiding_method(args, ...)
begin

... new response behaviour ...
return  return_obj;

end;
pre_extended_method(args, ...)

begin
... additional behaviour ...
proceed;

end;
return from  post_extended_method(args, ...)

begin
... additional behaviour ...
proceed;

end;
end;

To give an example of using the role concept, an example from the measurement system framework is used. The sys-
tem contains, among others, sensors that measure relevant properties of a measurement item. The description of the
sensor is shown below in pseudo-code:

class Sensor
variables

value : MeasurementValue;
methods

read returns MeasurementValue
begin ... end;

refresh returns Boolean
begin ... end;

calibrate returns Boolean
begin ... end;

end;

The sensor is, obviously, not an ‘island’ and the data it receives from its real-world counterpart needs to be communi-
cated to other entities in the system. To achieve that, at least three solutions exist:

• Observer pattern: One can implement the Observer pattern [Gamma et al. 94] as part of the component behav-
iour. Any dependent object will be notified whenever the sensor value changes and can subsequently request the
new sensor value.

m1 m2v1

C

m4 m3v2
R

m1 m2v1

C

m4 m3v2
R

C?
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• Blackboard: If the blackboard architectural style chosen for the system, individual components submit their
results to the blackboard. Thus, when the sensor is updated, it sends a tuple <sensor-id, value> to the blackboard.
Other components can access the latest sensor value by requesting it from the blackboard.

• Data pushing: Instead of letting dependent objects request data from the sensor, the data pushing approach
‘pumps’ data further in the system as soon as it becomes available. In this case, the sensor has references to the
components interested in sensor data and sends updated values to these components.

Each of these approaches has its advantages and disadvantages and which one is selected depends on the type of sys-
tem and the preference of the software engineer. In our cooperation with software industry, we have seen examples of
each approach.

The reusability problem created by this example is that in traditional object-oriented programming, the developer of
the sensor component is forced to select one type of communication and embed it in the sensor component. The com-
ponent can now only be reused for those systems where the same type of communication approach is selected.

Below the role implementations for the approaches to data communication are presented.

When constructing the application, the software engineer can reuse the sensor class and select one of the roles for data
communication between the sensor and the rest of the system. When instantiating a particular role, one has to config-
ure the role in order to connect the role behaviour to the correct class behaviour. Below, three example instantiations
of the sensor class are shown using the different roles. The examples make use of layers for adapting the selectors in
the messages sent to or from the components. Layers are discussed in section 5.

The application description contain an instantiation of the sensor class and of a role. The role defines how the value
read by the sensor component is communicated to other parts of the system. However, an instantiated role needs to be
configured for the particular object is imposed upon. The Observable role uses an Observer layer to be notified when the
sensor is updated, whereas the BBupdater and DataPusher roles make use of an adapter layer to connect the method
names used by the sensor object to those used by the role.

Due to limited space, only the composition of a single role with a class is presented here. Section 6 discusses an exam-
ple of composing multiple roles with a class. 

Role Subject
variables

dependents : Collection;
methods

addDep(d : Object) returns Boolean
begin ... end;

removeDep(d : Object) returns Boolean
begin ... end;

return from  change()
begin

for each d in dependents
d.changed();

end;
end;

Role BBupdater
methods

return from  change()
begin

bb.newTuple(self.id(), self.data());
end;

end;

Role DataPusher
variables

sinks : Collection;
methods

initialize( dependents: Collection)
begin sinks := dependents; end;

return from  change()
begin

for each s in sinks
s.update(self.data());

end;
end;

application SimpleMeasSystem1 begin
components

s :  sensor with roles
Subject with layers

a : Adapter(accept update as change);
end;

end;
...

end;

application SimpleMeasSystem2 begin
components

s :  sensor with roles
BBupdater with layers

o : Adapter(accept update as change);
end;

end;
...

end;

application SimpleMeasSystem3 begin
components

s :  sensor with roles
DataPusher with layers

o : Adapter(accept update as change);
end;

end;
...

end;



8

4.2  Superimposition

Superimposition [Bosch 97] was defined in response to the difficulties of traditional component adaptation and com-
position techniques, such as inheritance, aggregation and wrapping, with respect to the composition of role and class
behaviour. Certain types of role functionality need to be integrated with the component’s behaviour that are orthogo-
nal to its structural parts and may affect e.g. multiple methods. The software engineer needs to superimpose certain
behaviour on a component in such a way that the complete functionality of the component is affected. The notion of
superimposition in computing systems has been identified before, but not in object-oriented or component-based sys-
tems. For example, [Bouge & Francez 88] define and use superimposition in the context of CSP. They define the
superimposition R of P over Q as the additional superimposed control P over the basic algorithm Q. Analogously, we
define object superimposition S of B over O as the additional overriding behaviour B over the behaviour of component
O.

To define superimposition in more detail, some parts of a more precise object model specification is presented. An
object o is defined as  where I indicates the interface of the object, M the set of methods, S the state
space formed by the instance variables and P the mapping from the interface to the methods. The interface of the
object is the set of message selectors that the object can respond to. For a basic object, 

where  is a function that returns the selector using which method m can be invoked. The mapping P is

defined as , i.e. each interface element is either mapped to a method in the method set or rejected.

Also, we define the behaviour B of an object as . The behaviour bm of a method m is

defined as the state change of the object caused by an execution of m. Finally, the notion of a message is defined as
, where n is the sender of the message, r is the receiver and l is the selector. We do not incorporate the mes-

sage arguments in the model for reasons of simplicity, neither do we incorporate state changes at other objects due to
messages sent by a method executed at .

An object can have a set of roles G associated with it; . A role g is defined as

, where I and S are similar to the definition for objects and R is the interface required from the

object the role is composed with. , where Mo indicates the set of overriding methods, Me the set of

extending methods and Mr the set of return message extending messages. Assuming the role is composed with an
object , the mapping function P is defined as 

A role can be composed with an object o. The composition  leads to a new object  that is an adaptation of

o since aspects of it may be changed, i.e. , provided . Since the interface

of the resulting object  is indistinguishable from a basic object, clients treat both types of objects equivalent. An

object superimposed with multiple roles can be defined as .

4.3  Architectural Fragments

An architectural fragment (or fragment) describes two or more roles and their interaction. Using superimposition, an
architectural fragment can be composed with other fragments and with classes. Fragments support the specification of
object-oriented software architectures as first-class entities at the implementation level. Since architectures are treated
as entities at the design level, corresponding concepts at the implementation level improves traceability and concep-
tual integrity of the implementation and the design.

To illustrate the use of fragments, the Observer pattern is used as an example. The fragment consists of two roles, i.e.
the subject and the observer. The subject role maintains a collection of dependent objects, i.e. observers, and contains
methods for adding and removing dependents. In addition, it contains an observable method, which represents those
methods in the class composed with the model role that need to be observed. The observedMethod notifies the depend-
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ents and subsequently forwards the message to the class composed with the role using the proceed statement. The
observer role only defines an interface required from the class composed with the role, i.e. the update method. This
method is required since the subject role depends on it. However, when instantiating an architecture, the roles can be
configured to match the class that they are composed with. For instance, the update method can be renamed into
another method name provided by the class. 

architecture Observer
roles

subject
variables

dependents : Collection;
methods

addDependent(newDependent : Object)
begin ... end;

removeDependent(aDependent : Object)
begin ... end;

observedMethod()
begin

for each d in dependents do d.update(self);
proceed;

end;
end;
observer

interface
update(Object);

end;
initial

begin
subject.addDependent(observer);

end;
end; // Observer

The Observer architecture can be instantiated in an application and composed with domain classes. An example is
shown below. Two objects, i.e. instances of the sensor class and measurement item class, respectively, and an instance
of the Observer architecture are composed. The instantiation of the architecture has to be configured, since there are
mismatches in expected and supported method names. The configuring is performed using Adapter layers (see next
section) that convert message selectors. The sensor object is composed with the subject role and the refresh message
selector is changed for the subject role into observedMethod. Note that this adaptation is only valid for the role and not
for the encapsulated object. Thus, once the proceed statement is executed, the encapsulated object will receive a refresh
message. The measurement item object is adapted to accept the update message sent by the subject role to its observers
as a getValue message, which is one of the methods on its interface. In this case, the encapsulated object does receive
the adapted message selector, i.e. getValue, since the message is not intercepted by the role. In section 6, more exten-
sive examples of using architectural fragments are given.

application ObserverExample begin
architectures

anObsArch : Observer where
s is-a subject with layers

o : Adapter(accept refresh as observedMethod);
end;
mi is-a observer with layers

a : Adapter( accept update as getValue);
end;

end;
components

s : Sensor;
mi : MeasurementItem;

end; // ObserverExample

5  Layered Object Model

The concepts of architectural fragments, roles and superimposition require a concrete language model to illustrate
their use and for experimenting with concrete examples. For this purpose, an extension to the layered object model
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(LayOM ), our experimental research language is discussed. LayOM  has been applied to several problems associated
with the traditional object-oriented paradigm, such as representation of inter-object relations, design patterns, abstract
object state, acquaintance handling and component adaptation. In this paper, a solution to the specification of architec-
tural fragments as reusable first-class entities is discussed.

The layered object model is an extended object model, i.e. it defines in addition to the traditional object model compo-
nents, additional components such as layers, states and acquaintance categories. In figure 4, an example LayOM object
is presented. The layers encapsulate the object, so that messages send to or by the object have to pass the layers. Each
layer, when it intercepts a message, evaluates the contents to determine the appropriate course of action. Layer classes
have, among others, been defined for the representation of inter-object relations, design patterns, component adapta-
tion and acquaintance handling.

Figure 4. The layered object model

A LayOM  object contains, as any object model, instance variables and methods. The semantics of these components is
very similar to the conventional object model. The only difference is that instance variables, as these are normal
objects, can have encapsulating layers adding functionality to the instance variable. A state in LayOM  is an abstraction
of the internal state of the object. In LayOM, the internal state of an object is referred to as the concrete state. Based on
the object’s concrete state, the software engineer can define an externally visible abstraction of the concrete state,
referred to as the abstract state of an object.

An acquaintance defines a set of objects that are treated similar by the object by describing the discriminating charac-
teristics of a subset of the external objects that should be treated equally by the class. Among others, behavioural layer
types use acquaintances to determine whether the sender of a message is a member of an acquaintance category. If the
sender is a member, the message is subject to the semantics of the specification of the behavioural layer type instance.

A layer encapsulates the object and intercepts messages. It can perform various kinds of behaviour, either in response
to a message or pro-actively. To illustrate the behaviour of layers, figure 5 presents the RestrictClient layer type, which
represents a behavioural relation. The layer intercepts messages sent to the object. If the message is sent by an object
that is not classified as a member of the acquaintance category indicated by the layer specification, the message will
just be passed on to the next layer. Otherwise, the selector of the message is matched with the identifier list in the layer
specification. Depending on the layer specification, the message may be passed on to the next layer (see (a) in figure
5). If the message is not passed on, the message may be stored in the message queue (see (b) in figure 5). Otherwise,
the message is rejected and an error message is sent to the sender object (see (c) in figure 5). Note that the conceptual
execution model described here does not necessarily represent the actual implementation. Different translation
approaches have been designed that generally favour performance over required implementation effort or visa versa.

Figure 5. The RestrictClient layer
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Next to being an extended object model, the layered object model also is an extensible object model, i.e. the object
model can be extended by the software engineer with new components. LayOM can, for example, be extended with
new layer types, but also with new structural components, such as events. The notion of extensibility, which is a core
feature of the object-oriented paradigm, has been applied to the object model itself. Object model extensibility may
seem useful in theory, but in order to apply it in practice it requires extensibility of the translator or compiler associ-
ated with the language. In the case of LayOM , classes and applications are translated into C++. The generated classes
can be combined with existing, hand-written C++ code to form an executable. The LayOM  compiler is based on dele-
gating compiler objects, a concept that facilitates modularisation and reuse of compiler specifications and extensibil-
ity of the resulting compiler. We are currently working on integrating architectural fragments and roles into the
language implementation.

5.1  Role Construct

In section 4.1, the conceptual notion of a role was introduced. In LayOM, the concept has been implemented using the
Role language construct. A role provides a reusable specification of the object behaviour for one aspect particular
aspect, e.g. playing one of the characters in a design pattern or handling communication with other objects. A role is
specified very similar to a LayOM class, but it has additional expressiveness for defining the interface required of the
class the role can superimposed with and for configuring an instantiated role to match the interface of the concrete
object. Below, the most relevant parts of the syntax of the role are shown. A role specification consists of six main ele-
ments, i.e. variables, methods, acquaintances, states, layers and an interface. Each element may be omitted and, if
present, may be defined in any order. The acquaintances part declares objects that an instantiated role requires to have
a binding to in order to function correctly. Layers of type Acquaintance are used to bind the acquaintance name used
inside the role to an external object. The interface declares the methods that should be supported by a class that is
composed with the role.

Role R
variables

x : <variable_type>;
...

methods
<method-name> <arguments> ...
...

acquaintances
acq_1;
...

states
state_1 ... 
...

layers
l : <layer_type> ...
...

interface
<method-name>;
...

end;

5.2  Architecture Construct

The architectural fragment concept was introduced in section 4.3. This concept has been implemented using the archi-
tecture language construct in LayOM . The most relevant parts of the architecture syntax are shown below. An architec-
ture consists of one or more roles and a piece of code executed when the fragment is instantiated. The roles can either
be specified as part of the architecture specification, e.g. role-1, or specified separately and included in the architecture,
e.g. role-2. If a role is included, it may need to be adapted, e.g. role-3. Adapting a role is performed using layers.

architecture A
roles

role-1
..

end;
role-2;
role-3 with layers

l : <layer-type> ...;
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...
end;

initial
begin

... initialisation code for the architectural fragment ...
end;

end; // A

6  Illustrating Architectural Fragments

In section 2, the domain of measurement systems as well as a simplified software architecture were introduced. The
measurement system architecture consists of five entity types. Of these types, multiple instances of the sensor and
actuator type may appear. Below, the code for describing the domain specific software architecture for measurement
systems is shown. The sensor and actuator roles are only specified by their respective required interfaces. The trigger
role consists of a trigger method and an acquaintance relation to the item factory. The item-factory role is actually a
complete object specification and no class is required for this role when the architecture is instantiated. The measure-
ment item role is defined by a required interface and acquaintance relations to the sensor and actuator roles.

architecture MeasurementSystemArchitecture
roles

sensor
interface

read
end;
actuator

interface
activate

end;
trigger

acquaintances
item-factory;

methods
trigger

begin item-factory.trigger; proceed; end;
end;
item-factory

layers
prototype-item : PartOf(measurement-item);

methods
trigger

begin
measurement-item mi;

mi := prototypeItem.copy;
if (inCalibration) then mi.calibrate; end;
mi.start;

end;
calibrate(measurement-item mi)

begin prototype-item.become(mi); end;
end;
measurement-item

acquaintances
sensor;
actuator;

interface
start;

end;
end; // MeasurementSystemArchitecture

6.1  Instantiating the Measurement System Architecture

To illustrate the use of architectural fragments, the instantiation of the measurement system architecture is exempli-
fied using a very simple measurement system consisting of one sensor, one trigger and one actuator. Several details
with respect to calibration of the system, update strategies for the sensor and measurement and actuation strategies for
the measurement item are omitted from the discussion. The system is build for a ceramics factory and weighs prod-
ucts. If the product’s weight is between correct boundaries, the product is assumed to be acceptable. If it is outside the
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boundaries, there is generally something wrong with it and it should be removed from the production output. Since the
product is ceramic, removing it from the conveyer belt is done easiest by a crushing device that breaks the product into
small parts and removes these parts from the belt. The hardware of the system consists of a weight sensor, a light con-
tact trigger and a crushing device. Corresponding software entities have been defined and a measurement item compo-
nent specific for the ceramic pots. Below, the instantiation code for the application is shown.

application SimpleMeasurementSystem-example begin
architectures

aMS : MeasurementSystemArchitecture where
ws is-a sensor with layers

a : Adapter(accept value as getWeight);
end;
tr is-a trigger;
ca is-a actuator;
cpi is-a measurement-item with layers

sensor : Acquaintance(ws);
actuator : Acquaintance(ca);

end;
components

ws : WeightSensor;
tr : LightContactTrigger
ca : Crusher;
cpi : CeramicPotItem;

end; // SimpleMeasurementSystem-example

The application shown above instantiates the measurement system architecture and composes four components with
the instantiated architecture. Since the item factory role is fully specified in the architecture, it does not need to be
composed with a component for instantiation. Since the components do not have to be adapted in any major ways, the
specification of the instantiation is rather brief. Graphically, the example application can be viewed as shown in figure
6.

Figure 6. Measurement system application

6.2  Composition of Architectural Fr agments

Multiple architectural fragments can be used for constructing an application. As a second example, a measurement
system is used that inspects beer cans using a camera to verify that each can is clean. The system is located before the
beer cans are filled and dirty cans are to be removed from the conveyer belt. In addition to the measurement system
architecture, a user interface component is present that should present activation of the trigger and the value read by
the sensor. Since beer cans enter the system at irregular times, the UI component is unable to poll. Instead, the trigger
and the sensor component should notify the UI component whenever a relevant state change took place. This is a typ-
ical instance of the Observer pattern, but trigger and sensor roles nor the classes intended to play the role have been
prepared for acting as a subject. Instead of editing the source code of these components, two instances of the Observer
fragment presented in section 4.3 are used. The code of the system instantiation is shown below.

application SecondMeasurementSystem-example begin
architectures

aMS : MeasurementSystemArchitecture where
c is-a sensor with layers

a : Adapter(accept value as getFrame);
end;
tr is-a trigger;
l is-a actuator;

item factory

trigger

triggers

creates

reads activates

tr

sensor
ws

actuator
ca

measurement

cpi
item
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bci is-a measurement-item with layers
sensor : Acquaintance(c);
actuator : Acquaintance(l);

end;
end;
o1 : Observer where

tr is-a subject with layers
a: Adapter(accept trigger as observedMethod);

end;
ui is-a observer,

end;
o2: Observer where

c is-a subject with layers
a: Adapter(accept getFrame as observedMethod);

end;
ui is-a observer;

end;
components

c : Camera;
tr : LightContactTrigger
l : Lever;
bci : BeerCanItem;
ui : UserInterface;

end; // SecondMeasurementSystem-example

In figure 7, the specification of the application is presented graphically. The two instances of the Observer fragment
are superimposed on the object implementing the domain behaviour. The resulting object is superimposed with the
role behaviour for the measurement system. If the ordering of architectural fragments would have been different in the
specification would the order of superimposed roles have been different also.

Figure 7. Composition of architectural fragments

7  Related Work

In this paper, we have investigated the problems of specifying architectural fragments as reusable first-class entities.
We have proposed a solution approach that uniformly extends the object-oriented paradigm. Others have investigated
these or related issues, especially the work on aspect-oriented programming [Lopez et al. 97], on implementing design
patterns, mixins, meta-object protocols and on architecture description languages. Below, the relation to this work is
described in more detail.

Aspect-oriented programming (AOP) is similar to the work described in this paper, but there are some major differ-
ences. [Kiczales et al. 97] suggest to describe the domain functionality in a conventional programming language and
to describe the various aspects of the system using special aspect languages. At system generation time, these specifi-
cations are collected and an aspect weaver merges the domain functionality and the aspect code. The differences to the
approach described in this paper are that in LayOM  all specifications are described using one language and, instead of
an aspect weaver, superimposition is used as a means to compose specifications. The LayOM  compiler can generate
code for each component independently. Another language model categorised under AOP is the composition-filters
(CF) object model [Aksit et al. 93]. Although the filters in the CF model provide some forms of superimposition, the
object model does not allow for modular, reusable description of architectural structures as proposed in this paper.

The implementation of design patterns has been studied by some authors. [Soukup 95] proposes to implement design
patterns as C++ classes. The disadvantage of this approach is that only a few patterns can be implemented as classes.
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[Budinsky et al. 96] discusses a tool for automatic code generation from design patterns. The authors also identified
problems with the implementation of patterns, e.g. some designers have difficulty converting patterns into code and
most designers consider implementing a chore they would rather avoid. [Reenskaug et al. 95] discusses role-based
modelling of objects. Different from our approach, the authors focus on the use of roles during the design phase. Dur-
ing implementation, the different roles are merged (synthesis) in a conventional object-oriented class specification. In
addition, no support for dealing with overriding or conflicting behaviour between roles is provided. In [Bosch 96], we
describe the representation of design patterns as layer types. The model proposed in this paper extends on our earlier
work in that this model also can deal with design patterns influencing the behaviour of multiple objects. In addition,
the proposed model is more general in that it can also represent other architectures, such as framework architectures.
[Kim & Benner 96] and [Florijn et al. 97] propose tool support for representing design patterns. Florijn’s use of frag-
ments is slightly different from ours since it includes classes, methods and associations in addition to design patterns,
whereas our use of fragments only includes architectural structures. The tool support approach embodies the develop-
ment of a design including design patterns and subsequent code generation in an object-oriented language. Depending
on the type of tool support, patterns can be visualised in the generated code. This approach results in two abstraction
levels to be used, whereas our approach integrates first-class architecture representation in the object-oriented lan-
guage itself.

The work on mixins, e.g. [Bracha & Cook 90] and [van Limberghen & Mens 96], also identified the problems dis-
cussed in this paper but for individual classes only. Mixins provide no support for describing architecture-related
behaviour for a group of classes. Roles are similar to mixins in their intention, i.e. describing an object from one per-
spective. Differences are that roles assume an encapsulation structure, whereas mixins are based on a (multiple) inher-
itance model, and that roles can be configured to match objects using layers. Meta-object protocols (MOPs) [Kiczales
et al. 91, Chiba 95] provide a different, but related approach to separate different types of behaviour. A meta-object
can contain role behaviour that can be activated when specified events take place in the base object. The notion of
roles presented in this paper is different from MOPs in two aspects. First, the composition of MOPs is a known prob-
lem, whereas the composition of roles has a well defined and intuitive semantics. Secondly, the meta-object and the
base object form no conceptual entity, whereas a component, even though it is composed from a class and one or more
roles, is an entity both from a structural as well as a conceptual perspective.

An approach that could be applied to describing architectural structures is the research on object group communica-
tion. Most authors are concerned with representing complex communication or interaction patterns in a group of
objects where each object plays some roles in the pattern. The work on contracts [Helm et al. 90] presents an exten-
sion to the conventional object-oriented paradigm that represents such interaction patterns and some formal aspects of
such patterns. Gluons [Pintado 95] also represent interaction patterns, but contain a finite state machine to describe the
interaction protocol. Whereas contracts and gluons describe restrictions on the interactions between objects, other
approaches aim at specifying the actual coordinated behaviour. Multi-methods [Kickzales et al. 91] in CLOS define
multi-polymorphic methods that are selected not only based on the receiver but on all parameters and as such can be
used to define coordinated behaviour of a set of objects of predetermined types. [Schrefl et al. 96] introduce the notion
of cooperation contracts in the context of object-oriented databases and [Järvinen et al. 90] define joint actions. These
approaches model coordinated behaviour of a group of objects as a separate entity that can be explicitly invoked for a
matching set of objects. Abstract communication types (ACTs) [Aksit et al. 93] is a similar approach that uses mes-
sage reflection to implement interaction patterns. However, different from the three aforementioned approaches,
ACTs are intended to be invoked implicitly by one of the objects in a cooperating group. The invocation of the coordi-
nated behaviour is thus hidden from the client. All object group communication approaches are concerned with repre-
senting an interaction pattern between a group of objects as a separate entity that interacts with the involved objects.
However, the interaction is explicit in that the involved objects are aware of the group entity.

As we identified in section 3, one can categorise ADLs into general purpose, domain specific and generative ADL
approaches. Examples of general-purpose ADLs are Rapide [Luckham et al. 95], Unicon [Shaw et al. 95], ArTek
[Terry et al. 94], Wright [Allen & Garlan 97] and RESOLVE [Ogden et al. 94]. These languages aim at specifying
application architectures in terms of components and connectors between these components. The emphasis is on
describing the architecture for a particular application, rather than the specification of reusable architectural patterns
or fragments. Components are only specified in terms of interfaces and, since the ADLs are primarily intended for
specifying application architectures, little support is provided for specifying the architecture specific behaviour of the
components. For the same reason, reusability and composability of architecture specifications is not explicitly sup-
ported. Finally, to the best of our knowledge, the ADLs are specific for architecture specification and do not provide
support for component specification.
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Domain-specific ADLs such as MetaH [Binns et al. 94], despite their usefulness in their intended domain, do not fulfil
the requirements that we have with respect to the specification of architectural fragments. Architecture-specific
behaviour of roles is often specified as part of the domain-specific language model and the reusability of the architec-
tural concepts is consequently very high in their application domain. However, composition of architecture specifica-
tions with architecture specifications from other domains is generally not easily achieved. Also, the ADLs do not
provide support for the specification of components. MetaH has, for that reason, a corresponding language model,
ControlH, that can be used to specify components. However, although domain-specific ADLs have addressed part of
the identified problems in their particular domain, their usability is very limited outside their application domain.

The generative approaches, e.g. Aesop [Garlan et al. 94], provide a system that can generate architecture design envi-
ronments for particular architectural styles and application domains. So, these approaches generate rather than
directly provide ADLs or corresponding environments for using particular architectural styles or defining architec-
tures in an application domain. This approach seems to support reuse of the architectural specifications and provides
means to define constraints on the behaviour of components in the architectures. However, to the best of our under-
standing, no support is provided for component programming, architecture-specific behaviour or composition of
architectures.

8  Conclusion

During recent years, software engineering research has more and more appreciated the value of software architectures
and reusable architectural structures during system design. For example, the design pattern community has developed
a multitude of patterns of interacting classes and objects that address particular problems. Also, the research on object-
oriented frameworks and domain-specific software architectures has shown the importance of explicit architectural
design knowledge.

Despite the recognised importance of architectural design expertise during design, considerably less effort has been
put on providing linguistic support for specifying architectural design in an expressive, reusable and composable man-
ner. The implementation of design patterns in conventional object-oriented languages may suffer from problems
related to traceability, the self problem, reusability and implementation overhead, whereas the implementation of
object-oriented frameworks may suffer from problems related to the implicit architecture, cross-framework dependen-
cies, framework instantiation, legacy components and framework composition.

In this paper, the notion of architectural fragments is introduced to provide a means for representing architectural
specifications, including design patterns and object-oriented frameworks, as reusable first-class entities. An architec-
tural fragment consists of a number of roles and an initialisation method. A role specifies the architecture specific
behaviour of the role and consists of instance variables, methods, acquaintances, layers and an interface. When instan-
tiating an architecture, the software engineer has to select the classes that will play the roles of the architecture. The
architecture-specific behaviour of the role then has to be composed with the component’s behaviour. Since the archi-
tecture-specific behaviour sometimes needs to override the component’s behaviour, the role needs to be superimposed
on the component.

The notion of superimposition, i.e. the additional, overriding behaviour B over the behaviour of a component O, is not
supported by traditional language models and we have, therefore, defined the layered object model (LayOM ) that,
through the use of layers, provides superimposition of various types of behaviour, such as component adaptation types
and role behaviour. The layered object model has been extended with the role and architecture language construct that
facilitate the specification and instantiation of architectural fragments. Both the specification of reusable architectural
fragments as well as instantiations of the fragments are illustrated by several examples, such as the Observer design
pattern and two instantiations of a framework architecture for measurement systems.

The contribution of this paper, we believe, is that it introduces the notions of role and architectural fragment and their
corresponding role and architecture language construct in LayOM  that do not suffer from the identified problems and
allow for reusable first-class specification of architectural fragments. Due to the notion of superimposition and the
LayOM  layers that provide an implementation means, an advanced composition method is provided that facilitates the
composition of roles and components.

The architecture specification language model that we develop in this paper provides the basic features necessary for
specifying reusable architectural fragments that can be composed in powerful ways with suitable reusable compo-
nents. However, several issues need to be investigated in more detail, such as the expressiveness required for config-
uring fragments and the problems that may occur when composing multiple fragments. Also, extending existing
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architectural specifications (‘subclassing’) and more expressive support for architecture instantiation have not been
studied. Finally, we intend to experiment with the introduced concepts in more and different industrial applications.
Based on the extension to the LayOM implementation that we are currently developing, we expect to collect more
information and increase our understanding of the necessary ingredients of a language model both suitable for speci-
fying architectures and components.
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