
 Open access Journal Article DOI:10.1007/S10458-010-9139-0

Specifying recursive agents with GDTs — Source link

Bruno Mermet, Gaële Simon

Institutions: University of Caen Lower Normandy

Published on: 01 Sep 2011 - Autonomous Agents and Multi-Agent Systems (Springer US)

Topics: Recursive language, Correctness, Formal verification and Recursion

Related papers:

 An Operational Semantics for Network Datalog

 Formal Verification of Open Multi-Agent Systems

 Model Checking Recursive Programs with Exact Predicate Abstraction

 Operationally-based Program Equivalence Proofs using LCTRSs.

 Automatic Reasoning on Recursive Data-Structures with Sharing

Share this paper:

View more about this paper here: https://typeset.io/papers/specifying-recursive-agents-with-gdts-
iq259xielg

https://typeset.io/
https://www.doi.org/10.1007/S10458-010-9139-0
https://typeset.io/papers/specifying-recursive-agents-with-gdts-iq259xielg
https://typeset.io/authors/bruno-mermet-vhyhqccvxu
https://typeset.io/authors/gaele-simon-1mf0539cci
https://typeset.io/institutions/university-of-caen-lower-normandy-15kcas0e
https://typeset.io/journals/autonomous-agents-and-multi-agent-systems-2vp287ru
https://typeset.io/topics/recursive-language-1ppetp7y
https://typeset.io/topics/correctness-v0oe2aje
https://typeset.io/topics/formal-verification-42wfiuvr
https://typeset.io/topics/recursion-3oha8jlv
https://typeset.io/papers/an-operational-semantics-for-network-datalog-2v4oftt13x
https://typeset.io/papers/formal-verification-of-open-multi-agent-systems-4v5gdtn6d6
https://typeset.io/papers/model-checking-recursive-programs-with-exact-predicate-12j7u5bpn4
https://typeset.io/papers/operationally-based-program-equivalence-proofs-using-lctrss-1xswblhbcq
https://typeset.io/papers/automatic-reasoning-on-recursive-data-structures-with-48d5o63qru
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/specifying-recursive-agents-with-gdts-iq259xielg
https://twitter.com/intent/tweet?text=Specifying%20recursive%20agents%20with%20GDTs&url=https://typeset.io/papers/specifying-recursive-agents-with-gdts-iq259xielg
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/specifying-recursive-agents-with-gdts-iq259xielg
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/specifying-recursive-agents-with-gdts-iq259xielg
https://typeset.io/papers/specifying-recursive-agents-with-gdts-iq259xielg

HAL Id: hal-00955953
https://hal.archives-ouvertes.fr/hal-00955953

Submitted on 6 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Specifying recursive agents with GDTs
Bruno Mermet, Gaële Simon

To cite this version:
Bruno Mermet, Gaële Simon. Specifying recursive agents with GDTs. Journal of Autonomous Agents
and Multi-agent Systems (JAAMAS), 2011, 23 (2), pp.273-301. ฀hal-00955953฀

https://hal.archives-ouvertes.fr/hal-00955953
https://hal.archives-ouvertes.fr

2

be proven. This model has significant advantages that make it a good choice
for specifying multi-agent systems:

– the verification process is fully specified thanks to proof schemas;
– the verification of the correctness of the different parts of an agent is com-

positional. The main consequence is that partial proofs are possible: a
local modification of a specification does not require to verify the whole
behaviour of the agent again;

– the verification process of a system made of many agents is also composi-
tional and so, proving the correctness of a multiagent system relies essen-
tially on the proofs of the agents, and only few proofs have to be performed
at the system level;

– the program implementing the MAS derived from the specifications can be
produced automatically thanks to automata.

However, there are few limitations to this model:

– communications between agents are not yet modeled;
– specifying an agent with several achievement goals is not easy, although it

is possible;
– specifying agents performing concurrent tasks is not possible.

This article demonstrates how recursive agents can be used to solve these
limitations. After a brief reminder of the GDT model, we describe formally
how the model can be extended to define recursive agents (informally, a recur-
sive agent is an agent whose behaviour is partly achieved by “sub-agents”).
Several design patterns allowing the implementation of standard behaviours
with recursive agents are then presented in section 4. Modeling communica-
tions and integrating them with those design patterns is also discussed in
section 5. The consequences of using recursive agents on the proof obligations
are detailed in section 6. Finally, a comparison with other works is performed
before concluding.

2 The GDT4MAS model

The GDT4MAS [MS09] model has been developed to specify and to verify
the behaviour of multi-agent systems. This model is an extension of the GDT
model that was introduced in [MFS06] and that has already been extended
in [MSSZ07]. It has been formally defined using the Linear Temporal Logic
(LTL) [CM88]. As a consequence, in the sequel, the following standard op-
erators of the temporal logic are used: always (✷), eventually (⋄) and next
(◦).

2.1 Environment

In the GDT4MAS model, an agent is situated in an environment defined as
follows:

3

Definition 1 (Environment) An environment is a triple E = (VE , IE , sE),
where:

– VE is the set of environment variables,
– IE is the invariant of the environment,
– sE is the set of stable properties of the environment.

Please note that:

– environment variables can a priori be modified by any agent of the system.
Their value can also change without any action of an agent;

– the invariant of the environment is a predicate that is always true. It spec-
ifies the set of valid states of the system;

– a stable property S is a predicate that may be false at the begining of the
system. However, if S becomes true, it will remains true.

Example 1 (The RoM problem) The RoM (Robots on Mars) problem has been
specified in [BFVW03]. Two agents collaborate to clean the Mars Planet rep-
resented as a grid. Robot R2 can burn pieces of garbage that are on its cell,
but it is unable to move. Robot R1 can pick up and drop waste, and it can
move (the complete solution using GDTs can be found in [MSSZ07]).

In this example, the invariant property specifies the size of the grid and the
fact that each cell is either clean or dirty. It can be written: G ∈ xmin..xmax ×
ymin..ymax → {clean, dirty}

The fact that a cell different from R2’s cell is empty is an example of stable
property, as no agent can drop a piece of garbage (except R1 on R2’s cell).

2.2 Agent Type and Agent

An agent is specified by instantiating an agent type. An agent type is specified
as follows:

Definition 2 (Agent type) Let E be an environment. An agent type T is a
tuple:

(namet, V ti, V ts, V tE , initt, It, Lt, St, Actionst, Beht))

Where:

– namet is the name of the type;
– V ti is the set of internal variables; the internal variables of an agent ag are

variables that the other agents cannot see and that may only be modified
by ag;

– V ts is the set of surface variables of this type and we have V ts ⊆ V ti.
Surface variables are variables that other agents can see but cannot modify;

– V tE is the set of environment variables seen; this is a subset of the variables
of the environment in which the agent is situated;

– initt is the list of initial values of the internal variables;
– It is the invariant property; this predicate only deals with internal variables;

4

– Lt is the set of leads-to properties relying on environment and surface
variables; informally, a leads−tob means that if a becomes true, b will
eventually be true;

– St is the set of the stable properties of the agent;
– Actionst is the set of capabilities;
– Beht describes the behaviour of the agent using a parameterised GDT, or

pGDT (see section 2.3).

Example 2 (Agent type of robot R2) Robot R2 is defined by its position that
is determined by two surface variables, (xR2, yR2), its status (busy or not,
specified by a boolean variable busy), a leads-to property that specifies that it
always cleans the cell on which it stays, a set of actions Actions2 (not detailed
here) and a behaviour GDT (x, y) not detailed yet. So we have: TR2(x, y) =








R2, {busy, xR2, yR2}, {xR2, yR2}, {G}, {false, x, y},
busy ∈ B ∧ (xR2, yR2) ∈ N

2,
{✷(G(xR2, yR2) = dirty → ⋄G(xR2, yR2) = clean)},
{}, ActionsR2, GDTR2









Example 3 (Invariant) The invariant It of an agent a is a predicate that must
be verified in every state of a. It states the type of the internal variables of a,
but it can also be used to specify other safety properties, as, for instance:

battery level < 10 → wifi = off

Given this definition, an agent can be defined as follows:

Definition 3 (Agent) An agent a is defined by a tuple (name, type, param)
where:

– name is the name of the agent;
– type is the type of the agent;
– param is a list of values for the parameters of the GDT.

If a = (namea, typea, parama) is an agent, we will write name(a) to denote
its name (namea), type(a) its type and param(a) its list of parameters.

In this definition, the parameters allow to specialise both the initialisation
and the behaviour.

Example 4 (Specification of two robots of type R2) Suppose there are two
robots of type R2. The first one, called R2a, is situated in the cell (xa, ya). The
second one, called R2b, is situated in the cell (xb, yb). These robots will be spec-
ified by the following two tuples (R2a, T 2, (xa, ya)) and ((R2b, T 2, (xb, yb))).

The complete description of the system can be found in [MS09].

5

2.3 Behaviour

The behaviour of an agent type is specified by a parameterised Goal Decom-
position Tree (or parameterised GDT). A GDT is essentially a tree of goals, in
which each goal is decomposed into simpler subgoals, combined via a decom-
position operator. The definition of a GDT is given hereafter. A parameterised
GDT is obviously a GDT with parameters (see [MS09]).

Definition 4 (GDT) A GDT of an agent type AT is a triple (pre, tc, root)
where:

– pre is the precondition of the GDT; it must be established by initAT and
if the behaviour of the agent must be executed several times, it must be
preserved.

– tc is the triggering context of the GDT. An agent executes its behaviour
each time its triggering context is true (and it is not already executing its
behaviour). This triggering context can be set to the boolean constant true
if the agent must execute its behaviour for all time.

– root is the root goal of the GDT.

Each node (or goal) in a GDT has a name and is formally specified by
a Satisfaction Condition (SC) and a Guaranteed Property in case of Failure
(GPF). An SC (resp. GPF) is a temporal formula linking the states before the
beginning of the goal resolution process and after it when this process succeeds
(resp. fails). If G is a goal, we write SCG (resp. GPFG) its SC (resp. its GPF).
Notice that, as described in [MSSZ07], GPFs can be inferred from leaf goals.
In SCs and GPFs, variables known by the agents (internal or environment
variables) can be either primed or unprimed. Unprimed occurences refer to
the values of the variables in the state in which the goal resolution process
begins whereas primed occurences correspond to the values of the variables in
the state in which the goal resolution process ends. Thus, progress goals can
be defined.

Definition 5 (Progress goal) A Progress goal is a goal whose satisfaction
condition establishes a relation between the values of the variables before the
goal resolution process and the values of the variables after the goal resolution
process.

Example 5 (Progress goal) The goal that consists in increasing the value of a
variable x is a progress goal that can be specified by the satisfaction condition
x′ > x. In the same way, a goal that specifies that after its execution, the value
of a variable y must be equal to the value of the variable x before the resolution
process is a progress goal that is specified by the satisfaction condition y′ = x.

However, goals are not always Progress goals.

Definition 6 (State Reaching goal) A State reaching goal is a goal whose
SC does not establish a link between the value of variables before the resolution
process and after. In the satisfaction conditions of such goals, variables are
never primed.

6

Example 6 (State Reaching goal) The goal filling a tank can be specified by the
following satisfaction condition tank = tankmax where tankmax is a constant.

In addition, a goal is typed with two flags:

– the laziness flag: a goal G is said to be lazy (L) if its resolution process
is executed only if the SC of G is false when G is to be executed. On
the contrary, a goal is said to be non-lazy (NL) if its resolution process is
executed as soon as the goal is to be executed.

– the necessary satisfiability flag: a goal is said to be necessarily satisfiable
(NS) if each execution of the goal resolution process ensures the establishe-
ment of the SC of the goal. Otherwise, the goal is said to be non-necessarily
satisfiable (NNS). Notice that this flag can be inferred from leaf goals using
the process given in [SMF06]. When an NNS goal fails, its GPF is however
established. The GPF of NS goals is assumed to be false.

Example 7 (Lazy and Non-Lazy goals) A progress goal cannot be a lazy goal.
For instance, a progress goal with a satisfaction condition x′ = x + 1 that
requires a change of the value of x during the goal resolution process implies
that a goal resolution process runs. A state reaching goal is a goal that specifies
a desired state, such as a goal g with the satisfaction condition x = 10. In most
cases, such a goal will be labelled Lazy (L) because, when this goal has to be
achieved, is the value of x is already 10, the agent is satisfied and nothing has
to be done. However, in some cases, the resolution process associated to g will
also perform other tasks that are necessary for the overall behaviour of the
agent. In that case, g will be labelled NL.

Example 8 (NS and NNS goals) Consider a robot with an arm and a projector.
The robot can always switch its projector on. As a consequence, the goal
consisting in switching the projector on is labelled NS (necessarily satisfiable).
The arm can also take objects. But this action does not always succeed (the
object may be too much round for instance). So the goal consisting in catching
an object should be labelled NNS. However, even if the robot fails to catch
the object, after the goal, its clamp will be closed. So, the GPF of the goal
could specify this.

Finally, the resolution process of a goal can be either an action (for a
leaf goal) or a combination of one or several subgoals using a decomposition
operator (for non-leaf goals).

2.3.1 Internal goal

Definition 7 (Internal goal) Let A be an agent in an environment E . An
Internal goal G of a GDT is a 7-tuple:

(name,Op ,Children , sc , gpf , lz ,nsat)

where:

7

– name is the name of the goal;
– Op is a decomposition operator;
– Children is a sequence of goals whose length
– sc is the Satisfaction Condition of the goal;
– gpf is the Guaranteed Property in case of Failure of the goal;
– lz is the laziness flag of the goal;
– nsat is the necessary satsfiability flag of the goal; matches the arity of Op .

In our model, several decomposition operators have been defined using tem-
poral logic. The definitions given hereafter are only informal ones (see [SMF06]
for more details):

– SeqAnd is an operator that allows the decomposition of a goal sequentially
into two subgoals. For instance, to achieve the goal x′ = (x + 1)2, we can
choose to first achieve the goal x′ = x + 1 and then to achieve the goal
x′ = x2.

– SeqOr is an operator that allows the decomposition of a goal G into two
subgoals G1 and G2 with the following informal semantics: if the resolution
process of G1 succeeds, then G is achieved. Otherwise, the agent has to
attempt to achieve G2.

– And is a non-deterministic operator that allows to decompose a goal into
two subgoals that can be achieved in any order to achieve the parent goal.
For instance, to achieve the goal x′ = x + 3, we either try to achieve
x′ = x + 1 and then x′ = x + 2 or try to achieve x′ = x + 2 and then
x′ = x + 1.

– Or is a non-deterministic or operator.
– SyncSeqAnd(V) and SyncSeqOr(V) are operators that can lock environ-

ment variables V to prevent from any concurrent access.
– Case(cond1, cond2) decomposes a goal into two subgoals with conditions

for each subgoal.
– Iter decomposes a goal G into a subgoal S. Iterating on the resolution of

S will eventually achieve goal G. For instance, we could have SCG ≡ (x′ =
x − 10) and SCS ≡ (x′ = x − 1).

Example 9 (Internal goal and decomposition operator) The main goal G1 of
robot R2 is to clean its cell and to be not busy. This can be specified by the
following SC : SCG1

≡ ¬busy∧G(xR2, yR2) = clean. This goal can be achieved
by first picking up the waste on the cell (xR2, yR2) (goal G2, the robot is then
busy) and then by burning the piece of garbage (goal G3, the robot is not
busy anymore). So we specify that G1 is decomposed into G2 SeqAndG3 with
SCG2

≡ busy∧G(xR2, yR2) = clean and with SCG3
≡ ¬busy∧G(xR2, yR2) =

clean.

2.3.2 Leaf goal and action

An action specifies a capability of an agent and is formally defined as follows:

8

Definition 8 (Action) An action a is a 5-tuple (namea, prea, posta, gpf a,nsata),
where:

– namea is the name of the action,
– prea is the precondition of the action (a predicate that must be true in the

state in which the action must be executed),
– posta is the postcondition of the action (the property that is established if

the action succeeds),
– gpf a is the guaranteed property in case of failure of the action (the property

that is established if the action fails),
– nsata is the necessary satisfiability of the action; it is true if the action

always succeeds, false otherwise.

A leaf goal is a node that is not decomposed into subgoals but that has an
action linked to it:

Definition 9 (Leaf goal) A leaf goal G is a 6-tuple:

(name, a, sc , gpf , lz ,nsat)

where:

– name is the name of the goal,
– sc , gpf , lz and nsat play the same role as for internal goals,
– a is the name of the action that will be executed to achieve the goal.

Example 10 (Leaf goal and Action) The goal G2 of robot R2 presented in ex-
ample 9 is a leaf goal. The action linked to it is the action specified by the fol-
lowing tuple: (pick action,¬busy∧G(xR2, yR2) = dirty, busy∧G(xR2, yR2) =
clean, false, true). Indeed, to pick a piece of garbage, the robot arm must be
empty and a piece of garbage must be on the cell of the robot. Once the action
has been executed, the robot is busy but the cell is clean. We assume that this
action always succeeds.

Definition 10 (Goal execution) In the rest of the paper, the expression
“executing a goal” is often used. This means “executing its resolution process”,
that is to say, for an internal goal, executing its subgoals as specified by the
operator, and, for a leaf goal, executing the action associated with this goal.

2.4 Formal semantics

The formal semantics of the GD4MAS model has been given in [MSZ08a,
MS09] using temporal logic. In particular, each operator is defined by a set
of temporal formulae (slightly different depending on whether the goal is L
or NL). Some of these formulae are common to all operators, the others are
specific. To define these formulae, new temporal variables have been specified:

– initg is a variable that is true in every state where goal g begins to be
executed. It is false in the other states;

9

– endg is true in every state where the execution of g ends;
– ing is true during the execution of the goal g (between initg and endg and

false otherwise). So, ing verifies the following formulae:
– ✷(initg → ing): when the execution of g begins, ing is true,
– ✷(ing ∧ ¬endg → ◦ing): if ing is true and g does not end, then ing

remains true,
– ✷(¬ing∧◦¬initg → ◦¬ing): ing cannot become true when the execution

of g does not start,
– ✷(endg∧◦¬initg → ◦¬ing): if the execution of g ends, then ing becomes

false (except if a new execution of g starts immediately)
– satg is true when the execution of the goal g ends successfully (the goal is

achieved).

Example 11 (SeqAnd formal semantics) The formal semantics of the SeqAnd
operator is defined by the following formulae (g1 and g2 are the first and
second subgoals of g):

– general formulae:
– ✷(¬ing1 ∨ ¬ing2): both subgoals are not executed simultaneously;
– ✷(ing1 ∨ ing2 → ing): executing a subgoal means executing the parent

goal;
– ✷(¬initg ∨ ¬endg): trying to achieve a goal requires at least one state

transition;
– ✷((ing ∧ ¬endg) → ¬initg): while the execution of g is in progress, no

other execution can begin;
– formulae specific to the SeqAnd operator:

– ✷(satg1 → ◦initg2): the execution of g2 begins just after g1 has been
achieved;

– ✷((endg1∧¬satg1) → ◦endg): if the execution of g1 ends with a failure,
then the execution of goal g ends;

– ✷(satg2 → (endg ∧satg)): if goal g2 is achieved, then g is also achieved;
– ✷(endg2 ∧ ¬satg2 → ◦endg): if g2 is not achieved, the execution of g

also ends;
– ✷(initg → initg1): starting to execute g consists in starting to execute

g1.

2.5 Proof

In the context of the GDT4MAS model, several kinds of proof must be per-
formed:

– the preservation of the invariant of the system by each agent;
– the preservation of the invariant of each agent by itself;
– the establishment of the satisfaction condition of the leaf goals if the action

linked to them succeeds;
– the establishment of the precondition of an action each time it is used;
– the establishment of the leads-to properties of an agent by its GDT;

10

– the correctness of each goal decomposition.

The proofs to perform are called proof obligations (PO). They are generated
using proof schemas (PS). Details about proof schemas and their validity can
be found in [MSZ08a]. In order to have compositional proofs, a Proof Context
(PC) is associated with each node. It is used as a local hypothesis for each
local proof. The proof context of each node is inferred from the GDT thanks
to rules that are given in [MSSZ07] and are validated in [MSZ08a,MSZ08b].
Notice that the proof context of a node only depends on its parent node or
its sibling node. Here, a simplified proof schema for the SeqAnd operator is
given, as well as the sketch of the proof schema of the Iter operator.

2.5.1 Verifying a SeqAnd decomposition

Let A be a goal decomposed into B SeqAnd C. The notation φ[a/b] is used
to represent the formula obtained by substituting within φ any free occurence
of b by a. Using V in the following formula means that this substitution is
performed for any free variable occuring in the formula. The simplified proof
schema associated with such a decomposition is the following1:

(SCB)[V tmp/V ′] ∧ (SCC)[V tmp/V] → SCA

This proof schema is called simplified because it does not take into account:

– the hypotheses that can be assumed (context, invariants, etc.)
– the fact that environment variables may have been modified between the

execution of the resolution process of B and the execution of the resolution
process of C

– the fact that the satisfaction conditions of state-reaching goals are specified
without using primed variables

Notice that the effective proof schema that can be found in [MSZ08a] takes
this into account.

Example 12 (Proof Obligation generation for a SeqAnd) Consider the case
where SCA ≡ x′ = (x + 1)2, SCB ≡ x′ = x + 1 and SCC ≡ x′ = x2. Applying
the simplified proof schema of the SeqAnd operator gives the following proof
obligation:

xtmp = x + 1 ∧ x′ = xtmp2

→ x′ = (x + 1)2

Which is obvious (proof is left to the reader).

1 In this proof schema, V tmp is a set of fresh variables containing a variable vtmp for each
variable v of V .

11

2.5.2 Verifying an Iter decomposition

We do not give here the detailed proof schema of the Iter operator, but only
its principle. When a goal G is decomposed into a subgoal S thanks to the Iter
operator, we have to prove that goal G will eventually be achieved. To do so,
a variant is used. A variant is a decreasing sequence defined on a well-founded
structure (a well-founded structure is a pair (set,≤) on which each decreasing
sequence is bounded). So proof obligations are generated to establish that:

– each time S is executed (successfully or not), the variant decreases;
– when the variant reaches its lower bound, the goal G is achieved.

This proof process is a standard proof process for loop termination. A conse-
quence is that each time an Iter operator is used, we prove that the number
of iterations that may be performed is finite.

2.6 External goals

In order to specify collaborating agents, external goals have been defined.

Definition 11 (External goal) An external goal E of a GDT T of an agent
A is a leaf goal of T specified by a tuple (name, sc , lz). Such a goal is a goal
that cannot be achieved by A. However, it is required to prove that another
agent in the system will achieve such a goal when needed. When E is to be
executed by A, A waits until E is achieved. An external goal is obviously an
NS goal.

Example 13 (External goal) In the RoM problem, R1 must wait for R2’s cell
to be empty before dropping the waste it carries on it. This goal is not achieved
by R1 but by R2. So, it is an external goal.

The proof process associated with external goals is described in [MS09].

2.7 Graphical representation

Internal goals and leaf goals are represented by ellipses2. When a goal is de-
composed into two subgoals, the parent goal is linked to its children with two
edges and the name of the decomposition operator is written between both
edges. If a goal is decomposed into one subgoal (this is the case with the Iter
operator), the name of the operator is written near the edge. An NS goal is
represented by two concentric ellipses. The name of the action linked to a leaf
node is written under the representation of the node.

An external goal is represented by a rectangle.
A Lazy goal is indicated by a kind of tab with an “L” label. Non-Lazy

goals are optionally indicated by the same tab with an “NL” label.

2 This ellipse may be a circle.

12

In most cases, the figure representing a goal (either an ellipse or a rectangle)
is labeled with the name of the goal. However, it can also be directly labeled
with its satisfaction condition.

Example 14 (Graphical representation of a GDT) In the case of the RoM prob-
lem, the GDT of robot R1 is shown in figure 1. Details about this GDT can
be found in [MSSZ07].

L

L

LL

L

L

L

SeqAnd

Case

CaseSeqAnd

SeqAnd

SeqAnd

CaseSeqAnd

Case

Case

Iter

Iter

Iter

Iter

Iter

1

2

25

26

2827

29 3021

22

2423

10

5

3

4

6

7 8

9 12

14

13

11

18

19 2015

16 17

SyncSeqAndd
G(x,y)

G(x,y)
SyncSeqAnd

record
clean
cell

initialize
nb. attempts

pick posSaved’
=pos

moveH(...)

wait R2’s
cell empty

drop

moveH(...)

skip

moveV(+1) moveH(...)

...

pos!=endGrid

G(x,y)

dxR2!=0 dyR2!=0

moveV(...)

moveV(...)

dxSaved!=0 dySaved!=0

! G(x,y)

pos=endGrid

Fig. 1 example of a GDT

2.8 Related work

The GDT4MAS model is connected to several different kinds of works. A
detailed comparison with these works can be found in [SMF06] but is sum-
marised hereafter. First of all, there are links with formal agent models like
MetateM [Fis94], Desire [BvET97] or Gäıa [WJK00]. These works are focused
on agent models on which it is possible to reason. There are also links between
our proposal and agent programming languages like AgentSpeak [Rao96],
3APL [DdBDM03], ConGolog [GLL00]. These languages allow to specify agents

13

behaviours which can be directly executed, which is one of the goals of the GDT
model. However, 3APL does not allow to prove the specified behaviour and
ConGolog is dedicated to situation calculus. Our approach can also be com-
pared to goal-oriented MAS development methods like Prometheus [KW05],
MaSe [CHSS01], KAOS or Tropos. Indeed, our proposal is also intended to
provide a complete MAS design process from the specification to the imple-
mentation. Moreover our approach takes place in the framework of “formal
transformation systems” as defined in [CHSS01]. Other works use the term of
subgoal, but with different meanings. For instance, in [dBHvdHM07], a subgoal
S of a goal G is a logical consequence of G, whereas in [TPW03], a subgoal
S of a goal G is a goal whose achievement is necessary to achieve G and as
a consequence, corresponds to our subgoals when the And operator is used.
Last but not least, our proposal can be directly compared to SMA verification
methods. Two subtypes can be distinguished: theorem proving based (like in
PROSOCS) and model checking.

PROSOCS [BED+06] agents are agents whose behaviour is described by
goal decomposition rules à la Prolog. Rules are parameterised by time variables
allowing to perform proofs about the evolution of the system state. Many
characteristics of PROSOCS agents are very interesting for performing proofs,
and a proof procedure has been implemented in Prolog. However, the system is
limited to propositional logic formulas. The Goal method [dBHvdHM07] also
has a proof model, but the notion of Progf Obligation is missing.

Model checking is a verification method consisting in testing all the situa-
tions which may be encountered by the system. Two kinds of model checking
techniques can be distinguished: bounded model checking [BFVW03] and un-
bounded model checking [ALW04,RL04,KLP04]. However, with the two tech-
niques, proofs can only be performed on finite models or on models that can
be considered as finite ones.

3 The recursive extension of the GDT4MAS model

As stated in the introduction, the GDT4MAS model lacks expressiveness. How-
ever, the gaps detected (several achievement goals, concurrent tasks, message
reception management) can all be filled by introducing parallelism into the
agents. Indeed, managing concurrent task and several achievement goals can
be obviously achieved by introducing parallelism. But managing message re-
ception can also be performed so: with such a system, a task can be dedicated
to the management of the message reception, letting the main process run
normally, and being able to react as soon as possible to message reception.

Using an agent for each task is a way to specify parallel tasks. As a conse-
quence, as our model allows the specification of agents, it seems a natural way
to specify an agent needing parallel tasks by using several internal agents.

14

3.1 Recursive agents

Given definitions 2 and 1, it can be seen that an agent type

T = (namet, V ti, V ts, V tE , init, It, L, St, Actions, Beht)

can be considered as an environment Et = (VEt, IEt, sEt) computed as follows:

VEt = V ti ∪ V tE
IEt = It ∧ IE
sEt = St

So, the following transformer function is introduced:

Notation 1 envir function Let T be an agent type. We note envir(T) the
environment that can be computed from T .

This transformation allows the consideration of sub-agents:

Definition 12 (Recursive agent and Sub-agent) Let A and R be two
agents. If the environment of A is envir(R), then R is called a recursive agent.
A is called a sub-agent of R.

Definition 13 (Recursive Multi-Agent System) A recursive Multi-Agent
System is a multi-agent system made of at least one recursive agent. Such a
system can also contain non-recursive agents.

Please note that sub-agents are also agents, and so:

– are associated with an agent type with a GDT;
– are specified by an invariant;
– have a set of internal variables;
– run with an interleaving parallelism model;
– . . .

Please note also that a recursive agent is also an agent and so, the fact
that it has a recursive structure is not seen by other agents of the system in
which it is situated. This is a key point to preserve the compositional aspect
of the GDT model.

By introducing recursive agents, we first want to allow an agent to perform
several plans in parallel. As a consequence, sub-agents have to contribute to
the goal of the agent they are part of. To do so, new decomposition operators
must be introduced. But before that, we have to be able to specify that an
agent is included in another agent.

Here are some identified properties about sub-agents. Let A be an agent
situated in an environment E. Let S be a sub-agent of A. The following prop-
erties must be verified:

– S cannot be a sub-agent of another agent (this differs from other recursive
agent models, as the one described in [HDF08]),

– S cannot read variables of E that A is unable to see,

15

– internal variables of A must be considered by S as environment variables
because they can also be modified by other sub-agents of A,

– S must be able to exchange information with other sub-agents of A.

We then need to describe the structure of a recursive agent model.

3.2 Relationship between an agent and its sub-agents

In order to help the reader and to maintain consistency with the existing termi-
nology, we have chosen to reuse the two following terms introduced in [HDF08].

Definition 14 (Context agent) Let A and a be two agents where a is a
sub-agent of A. A is called the context agent of a.

Definition 15 (Content agent) Let A and a be two agents where a is a
sub-agent of A. a is called a content agent of A.

A shared point between the huge number of agent’s definitions is that
agents are autonomous entities [FG98,WJ95]. This is also our point of view.
However, as content agents have to participate to the goals of their context
agent, it seems natural that their context agent has a kind of control over
them. So, we choose to give to context agents the following responsabilities:

– it is the role of the context agent to specify when a content agent starts to
live;

– although a content agent can die when it wishes, its context agent can also
force it to die.

These responsabilities will be operated differently, according to the decompo-
sition operators. As a consequence, it is also clear that a recursive agent is not
a MAS: its context agents are parts of a structured single behaviour.

3.3 Parallel decomposition operators (PDO)

3.3.1 Informal definition

Until now, decomposition operators consisted in decomposing a goal into one
or several subgoals. Now, new decomposition operators are needed in order to
help to decompose a context agent into several content agents. More precisely,
as content agents have to contribute to goals of the context agents, these
operators decompose a goal of the context agent into sub-agents that will
contribute to the resolution of this goal. More formally:

Definition 16 (Parallel Decomposition Operator (PDO)) Let A be a
context agent and ca = {ai, 1 ≤ i ≤ n} the set of its content agents. A Parallel
Decomposition Operator is an operator allowing the decomposition of a goal
G of A into a list of pairs (SCj , aj) where aj is an agent of ca and SCj is the
satisfaction condition of the main goal of aj .

16

To simplify, we will write in the sequel that a goal is decomposed by a
PDO into subagents.

From then on, two PDOs can be informally described:

Definition 17 (The ParAND PDO) The ParAND PDO (Parallel And)
allows a decomposition of a goal G of a context agent A into a set of content
agents ca with the following semantics: when A has to achieve a goal G, all
the content agents of ca start the execution of their behaviour. As soon as
one of these agents stops with a failure (it fails to achieve its main goal), A
stops all the other agents of ca and ends the resolution process of G. G may be
achieved or not. If all the agents of ca stop successfully, the resolution process
of G ends and G is achieved.

Definition 18 (The ParOR PDO) The ParOR PDO (Parallel Or) allows
a decomposition of a goal G of a context agent A into a set of content agents
ca with the following semantics: when A has to execute goal G, all the content
agents of ca start the execution of their behaviour. As soon as one of these
agents stops successfully, A stops all the other agents of ca, ends the resolution
process of G and G is achieved. If all the agents of ca stop with a failure, the
resolution process of G ends. G may be achieved or not.

A synchronised version of the parAND operator is also proposed: the
SyncParANDV operator. This operator enables to lock a set V of environ-
ment variables during the execution of the parallel decomposition.

3.3.2 Formal semantics

The semantics of the ParAND and ParOR operators can be now formally spec-
ified. We assume that the goal of the context agent to be decomposed is called
G. We also consider that this goal will be achieved thanks to n content agents
ai and that the main goal of each agent ai is called mgi and its satisfaction
condition is SCi.

For each content agent ai, A new variable must be introduced: endedi,
that memorises the fact that ai has already ended or not. In other words,
when endedi is true, it means that agent ai has ended since the beginning of
the execution of G. The values of these variables can be computed has follows:

✷(∀i.(initG → ¬endedi)) (1)

✷(∀i.(¬endedi ∧ ¬endmgi
→ ◦¬endedi)) (2)

✷(∀i.(endmgi
→ endedi)) (3)

✷(∀i.(endedi ∧ inG → ◦endedi)) (4)

Formula 1 specifies that when the execution of G begins, no content agent
may have ended. Formula 2 specifies that a non-ended agent cannot be ended
if it does not end. Formula 3 specifies that an agent becomes ended when it

17

ends. And finally, formula 4 specifies that during the execution of G, an ended
content agent remains ended.

As the parent goal of a PDO is a goal, formulae defining the value of inG

and that were given in section 2.4 apply and so, they are not given in the
following table. On the contrary, as a PDO does not decompose a goal into
subgoals but into content agents, general formulae of the other decomposition
operators that were also given in section 2.4 do not apply.

Formal semantics of the parAND operator is given in table 1.

initG →

n̂

i=1

(initmgi
) (5)

∀i.
�
(endmgi

∧ ¬satmgi
) →

�
endG ∧ (∀j.(¬endedj → endmgj

))
��

(6)

(∀i. (endedi) ∧ ∀i. (endi → sati)) → (endG ∧ satG) (7)

Table 1 ParAND formal semantics

These formulae have the following meanings:

– formula 5 specifies that all content agents start when the execution of G
starts;

– formula 6 specifies that if one of the content agents ends with failure, then
the execution of G ends and the other content agents are interrupted (That
is to say, for each content agent of an agent A, if it ends with a failure, the
executions of the parent goal and of the other content agents of A end) ;

– formula 7 specifies that if all the content agents end successfully, then
the execution of G ends successfully. Please note that this formula does
not specify that content agents that have ended before the last one ended
successfully. Indeed, in this case, formula 6 specifies that the other agents
are stopped.

Formal semantics of the parOR operator is given in table 2.

initG →

n̂

i=1

(initmgi
) (8)

∀i.
�
(endmgi

∧ satmgi
) →

�
endG ∧ satG ∧ (∀j.(¬endedj → endmgj

))
��

(9)

(∀i. (endedi) ∧ ∀i. (endmgi
→ ¬sati)) → ◦endG (10)

Table 2 ParOR formal semantics

Formula 9 specifies that when one of the content agents ends successfully,
then the parent goal ends also successfully and the other content agents must
be interrupted.

18

Finally, formula 10 specifies that if all the content agents end with failure
then the execution of G ends (if already ended content agents had ended
successfully, by formula 9, other content agents should have been stopped.

3.4 Using recursive GDT4MAS agents

In previous articles, we have shown that many features of the GDT4MAS
model make it suitable to solve concrete problems. For instance, the fact that
environment variables can evolve regardless of the agents makes our model
usable to model complex systems. The compositional aspect of the proof is
also a key feature, because, contrary to verification methods based on model-
checking, the verification process remains tractable even with many agents
and infinite state spaces. The application of the model to few case studies (a
prey-predator system - in which we have proven that the predators catch the
moving prey -, the robots on mars problem, and an extension of this problem
with several robots of type R2) has shown it should be adequate to specify
and implement real-size problems, even if the lack of a CASE-tool to support
the method prevents us from proceeding to such an application. We claim that
the extension proposed in this paper not only does not reduce the usability of
the method, but rather should increase it.

There are two main ways to use recursive agents: with a top-down ap-
proach or with a bottom-up one. The first case will appear during the design
phase, when having to design an agent that must perform several tasks in a
concurrent way. The second case is a consequence of the specifications of the
studied problem: when an agent relies on several modules, or when the robot
being modeled is made of several actuators, and if certain tasks can only be
performed by one of these modules or actuators, the designer will use recursive
agents.

4 Design patterns using PDO

As stated above, recursive agents can be used to solve different kinds of stan-
dard problems. As a consequence, to help the designer to build a MAS, several
design patterns are given in order to answer to these different situations.

4.1 Graphical representation

The overall graphical representation of a GDT has already been presented. To
distinguish children nodes of PDO that correspond to content agents, they are
represented by hexagons. Such an hexagon is labeled by a couple “name : SC”
where name is the name of the content agent and SC is the satisfaction con-
dition of its main goal.

19

4.2 Several autonomous actuators

A basic usage of PDOs is to allow an agent to perform several tasks simultane-
ously. This is for instance necessary for a robot with several actuators working
independently, like an autonomous motion system and an autonomous camera:
the robot can move while observing its environment. In this case, a content
agent can be associated with each actuator. For instance, in figure 2, agent A1

would be in charge of moving the robot whereas agent A2 would manage the
camera. The GDT of the content agents are not represented.

Fig. 2 design pattern for a robot with several autonomous actuators

4.3 Several achievement goals

Another trivial usage of the ParAND PDO is the following: an agent has several
achievement goals to achieve. With the previous GDT models, this could be
implemented by two different means. The first solution (see figure 3) was to
decompose the main goal of the agent with an AND operator between the
different achievement goals of the agent. However, this meant that the agent
had to achieve completely one of the goals before trying to achieve another
one. The second solution (see figure 4) was to propagate the conjunction of
satisfaction conditions of the different achievement goals to the leaf nodes.
This leads however to a less clear specification.

With the recursive GDT model, the more intuitive specification given in
figure 5 can be used. In this version, two content agents (whose GDTs are
not represented on the figure) are dedicated to achieve each one of the 2
achievement goals.

4.4 Allowing an external event to interrupt a task

Suppose that an agent A has, as part of its GDT, a task T to perform (that is
to say a goal to achieve). Suppose also that depending on external events (a
message income, an evolution of the environment, etc.), this task becomes not
relevant anymore. This can be implemented thanks to recursive agents by the
GDT structure presented in figure 6. In this figure, agent A uses two content

20

Fig. 3 2 achievement goals: first old version

Fig. 4 2 achievement goals: second old version

agents. The first one, AT is dedicated to the achievement of the task T . The
second one, AE , detects the external event E that would make T not relevant
anymore. The expected behaviour of A is the following: if T is achieved before
E occurs, then T is achieved for A and it can continue to execute its normal
behaviour. On the contrary, if E occurs before T is achieved, the resolution
process has to be stopped and A must continue its normal behaviour. This
correponds to the ParOr Semantics. The behaviour of agent AE is very simple:
its GDT is made of a single node, its root node, which is also an external goal
(and thus, a leaf node), waiting for the external event.

21

Fig. 5 2 achievement goals: new version

Fig. 6 Interruptible behaviour

4.5 Sharing reactive and autonomous behaviours

Suppose an agent A has an autonomous cognitive behaviour. Suppose then
that this agent must also respond to external events in a reactive manner.
Such an agent can be decomposed into two content agents: the first one, AC

will achieve the cognitive behaviour of A. The second one, AR will take into
account the reactive behaviour. We might imagine that the end of the cognitive
behaviour determines the end of the agent execution, and that the reactive
behaviour must remain active while the cognitive behaviour has not been
completely performed. This can be implemented by a GDT structure following
the schema presented on the figure 7 for agent A and on the figure 8 for the
agent AR. On this last figure, the exernal goal waits for an event to occur (its
SC is a formula describing the event) and the goal labeled SCR is the root
goal of a sub-tree. The behaviour of this agent is then the following:

– it waits for an event to occur (external goal);
– when this event occurs (SeqAnd), it reacts (sub-tree with root goal SCR);
– as the root goal of this agent is not achieved (its SC is false), it waits for

the event again;

Please note that this implies to allow iter parent goals that are not nec-
essarily satisfiable, which was not allowed before. This can be done because
in that case, the termination is however guaranteed (because the execution of
AC will eventually stop and this will stop the execution of AR, as specified by
the formal semantics of ParOR). This termination problem will be discussed
in section 6.

22

Fig. 7 Reactive and autonomous agent

Fig. 8 Reactive and autonomous agent: reactive component

5 Communications

Reacting to a message without waiting explicitly for it was not very easy to
specify with the previous version of the GDTs. Indeed, it required to test very
often if the message had been received or not. The recursive agents help to
give a pretty solution to this problem: the design pattern sharing reactive and
autonomous behaviours presented above in section 4.5 can be used and the
external goal of the reactive component (see figure 8) can be replaced by a leaf
goal with the received() action attached to it.

To examplify this, in this article, a simplified version of a communication
system is described. Firstly, only peer-to-peer messages are studied and not
broadcast communications. We also suppose that each agent has an infinite
message queue where all incoming messages are stored until they are read. We
also suppose messages are read in the order they are received and that reading
a message removes it from the queue. Other kinds of communications could
be easily modeled but this is not the main aim of this article.

23

5.1 Sending a message

We choose to specify the sending of a message by an atomic action send(dest, msg)
where dest is the identifier of the agent the message is sent to. This action adds
to the end of the message queue of the dest agent the couple (from, msg),
where from is the identifier of the sender and msg is the message itself. As
any agent can write a message into the message queue of a given agent, it
means that message queues must be considered, for the proof, as environment
variables. So, we choose to represent message queues by a unique functional
environment variable mq3. As in [MS09], we suppose that A is an environ-
ment variable containing the set of agents of the MAS. The type of mq is the
following:

mq ∈ A → seq(A× MSG)

where MSG is the type of the messages (no assumption on this type is
made here) and seq is a set-theory constuctor for sequences.

As a consequence, writing send(dest, msg) as an action of an agent a will
be a shortcut for the following expression:

mq′(dest) = mq(dest) • (a, msg)

where • denotes the addition at the end of a sequence.

5.2 Reading a received message

Reading messages received by an agent a consists in reading the head of mq(a).
This will be performed by an action noted (sender’,msg’)=received() returning
two values: the sender of the message and the message itself. This action is a
shortcut for the following action:

(sender′, msg′) = head(mq(a)) ∧ mq′ = tail(mq(a))

By convention, if mq(a) is an empty sequence, head(mq(q)) equals (null, null)
and tail(mq(a)) is an empty sequence.

5.3 Managing communications

Managing message sending is straightforward: the send action must be asso-
ciated with a leaf node specifying when a message must be sent.

Waiting for a message is also easy: an external goal consisting in waiting
for the message queue to be modified can be introduced in the GDT where
the message is awaited. This goal can be part of a content agent dedicated to
message reception management, as specified in the introduction of this section,
while another content agent achieves the main goal.

3 Considering message queues as a unique environment variable is only for the proof.
Concretely, the message queue of an agent should be a variable of the agent itself.

24

6 Proof schemas

As stated in section 2.5, a key concept of the GDT4MAS model is the notion
of proof schema. This concept, that can also be found for instance in the B
method for the verification of standard software [Abr96], gives a way to gen-
erate a set of formulae whose truth establishes the correctness of the software.
As new constructs are introduced in this article, the associated proof schemas
must be provided.

6.1 Variables status

Let A be a context agent. Let b and c be two content agents of A. Then, internal
variables of A and environment variables of A are environment variables for
b and c. b (resp. c) may moreover have its own internal variables that can be
neither seen nor modified by c (resp. b) or A. However, b (resp. c) may have
surface variables whose values can be read by c (resp. b) and A.

6.2 Relationships between agents

In the work considered here, a content agent represents a part of a context
agent, and as a consequence, cannot be a part of several context agents. So,
in the model presented here, the MAS structure is a tree of agents.

6.3 Operators’ Proof Schemas

6.3.1 Proof schema associated with parAND

When a goal G is decomposed into a set of content agents sai by a ParAND
operator, it means that when all the content agents have achieved their main
goal, the parent goal is also achieved. So, we would expect a proof schema
such as:

∧

(SCi) → SCG (where SCi is the satisfaction condition of the main
goal of ai).

But the two following constraints must be considered:

– as content agents do not end at the same time, environment variables can
be modified between the end of a content agent and the end of the last
content agent.

– internal variables of content agents cannot be seen by the context agent.

As a consequence, in the proof schemas, the satisfaction conditions of the
main goal of the content agents must be restricted to surface variables. We
note Ps the projection of a property P of an agent a to the surface variables
of a4. Then, the first part of the proof schema associated with the ParAND

4 and so, (SCi)s is the projection of SCi to the surface variables of a.

25

operator, and that helps to satisfy formula 7, is the following:

n
∧

i=1

((SCi)s) → SCG (11)

Moreover, we also have to establish rule 5 which specifies that when the
context agent has to achieve goal G, each subagent of G starts to execute
its GDT. Given the definition of the triggering context of an agent given
in [MSSZ07], this can be ensured by proving that the context CG of the parent
goal of the parAND operator implies the triggering context TCi of each of the
content agents introduced by the operator. So, the second part of the proof
schema associated with the parAND operator is the following:

CG →

n
∧

i=1

(TCi) (12)

For the synchronised version SyncParANDV , the projection used in equa-
tion 11 is performed on surface variables and on the locked variables.

6.3.2 Proof schema associated with ParOR

The reasoning process to determine the proof schema associated with the
parOR operator is the same as the one done for the parAND operator. So,
the proof schema is made of two parts:

– the first one must establish that the parent goal is achieved when one of
the content agents achieves its main goal, and so, helps to establish rule 9;

– the second one must establish that content agents start their execution
when the context agent starts executing the parent goal, and so, helps to
establish rule 8.

This leads to the following proof schema made of two parts where (SCi)s,e

is the projection of SCi to the union of the surface variables and the environ-
ment variables of the context agent :

n
∨

i=1

((SCi)s,e) → SCG (13)

Please note that the satisfaction conditions of the main goals of the content
agents are projected on surface variables and also on environment variables
because as soon as a content agent achieves its main goal, the parent goal of
the parOR operator is achieved.

CG →

n
∧

i=1

(TCi) (14)

26

6.4 Necessary Satisfiability inference

As explained before, the Necessary Satisfiability flag of internal goals of an
agent are inferred from the leaf nodes by rules associated with each decompo-
sition operator. Such rules can also be given for parallel operators.

6.4.1 NS inference for the ParAND operator

The parent goal of a ParAND operator is NS if all the main goals of its
subagents are NS.

6.4.2 NS inference for the ParOR operator

The parent goal of a ParOR operator is NS if at least one of the main goals
of its subagents is NS.

6.5 GPF Propagation rules

Guaranteed Properties in Case of Failure are properties that are guaranteed to
be established by the execution of a goal if it is not achieved. As explained in
previous papers about GDTs [MSSZ07], they can be computed in a bottom-up
manner from leaf nodes to the root node. The same process can be applied to
parallel operators.

6.5.1 GPF inference for the ParAND operator

The parent goal of a parAND operator fails as soon as one of its subagents
ends without having achieved its main goal. So, we have:

GPFG =

n
∨

i=1

((GPFi)s,e) (15)

where GPFi is the GPF of the main goal of the content agent ai. The pro-
jection is on surface variables and environment variables because as soon as
a content agent ends without having achieved its main goal, the parent goal
fails.

6.5.2 GPF inference for the ParOR operator

The parent goal of a parOR operator fails if all the subagents have ended
without having achieved their main goal. So we have:

GPFG =

n
∧

i=1

((GPFi)s) (16)

27

6.6 Termination

Termination is a necessary property to ensure that the behaviour of an agent
is correct. Until now, in the standard GDT model, agents had to terminate,
and thus, a variant had to be associated with each iter operator to ensure
this. However, as stated above in section 4.5, it may be interesting to have a
subagent whose behaviour does not end explicitly. However, as this content
agent must eventually terminate, such a content agent must be used under
constraints.

Definition 19 (infIter) A new iteration operator called infIter is introduced.
The definition of this operator is identical to that of the standard iter operator
but termination is not required.

Definition 20 (Infinite agent) an infinite agent is an agent whose GDT
contains an infIter operator.

Please note that the behaviour of an infinite agent may be finite.

Proposition 1 Infinite agent usage An infinite agent can only be used as
a subagent of a parOR operator and of which at least one subagent is finite
and has an NS main Goal.

This last proposition guarantees the termination of a recursive agent even
if some of its content agents are infinite.

7 Example of application

We propose to extend the problems of robots on Mars already presented in
this paper by giving more details on the structure of the robot R2. Robot R2
has an arm that can collect wastes and put them in a tank with a limited
capacity of 10 pieces of garbage. When this tank contains at least 3 pieces of
garbage, a conveyor belt brings all the wastes one by one to the incinerator of
the robot. From an external point of view, the behaviour of R2 remains the
same: when its cell is dirty, the robot will eventually clean the cell. From an
internal point of view, however, the robot is made of several systems that can
act concurrently.

7.1 Robot R2

Robot R2 has a single internal variable: the tank, represented by an integer
variable T . The root goal of R2 G1 is to have its cell empty and not to have
its tank full. So we have SCG1

= G(xR2, yR2) = clean ∧ T < 10. Robot R2
will begin to execute its behaviour when its cell is not empty or when its
tank contains at least 3 pieces of garbage. So we have TCR2

= G(xR2, yR2) =
dirty∨T ≥ 3. Then the behaviour of R2 consists in cleaning its cell and saving

28

the tank to be full. These two tasks will be performed by the two effectors of
the robots (the arm and the conveyor belt) and so, are associated with the root
goal using a SyncParAND operator. The GDT of R2 is shown in figure 9.

Fig. 9 GDT of robot R2g

7.2 The arm of R2

The arm of R2 has a single internal variable, busy, a boolean that is true if
and only if the arm carries a waste. As a content agent of R2, its environment
variables are the internal variables and the environment variables of R2. Here,
environment variables of the arm are G, the grid (G is an environment variable
of R2) and the tank T (T is an internal variable of R2). The triggering context
of R2 is true. Two actions are available for the arm: pick and drop. Both
actions are NS. Their preconditions are prepick ≡ ¬busy∧G(xR2, yR2) = dirty
and predrop ≡ busy ∧ T < 10. Their postconditions are postpick ≡ busy ∧
G(xR2, yR2) = clean and postdrop ≡ ¬busy ∧ T ′ = T + 1.

The GDT of the arm of R2 is presented in figure 10. The main goal of the
arm is lazy. Indeed, if the cell (xR2, yR2) is not dirty, the arm has nothing to
do. Otherwise, it must first pick the piece of garbage and then, it must drop
the waste it carries in the tank as soon as it is not full. As the arm is unable
to empty the tank, emptying the tank is an external goal. Please note that the
arm can drop its waste in the tank while the conveyor belt is emptying it (as
soon as there is at least one slot available).

7.3 The conveyor belt

The conveyor belt has no internal variable. Its only environment variable is
the tank (T). The triggering context of R2 is true. The only action this
agent can perform is the convey action. Its precondition and postcondition
are preconvey ≡ T > 0 and postconvey ≡ T ′ = T − 1. This agent has also a
leads-to property: T = 10 leads− to T = 0.

The main goal of the conveyor belt is to prevent the tank from being full.
This goal is of course lazy. If the tank contains less than 3 wastes, there is

29

Fig. 10 GDT of the arm of R2

nothing to do. Otherwise, the agent iterates on the action convey to empty
the tank.

Fig. 11 GDT of the conveyor belt of R2

30

7.4 Verification of the behaviour of R2

To verify the correctness of the behaviour of R2, we have to apply the proof
schemas on each content agent of R2 (the arm and the conveyor belt) but also
on the main agent itself (R2).

7.4.1 R2

As the behaviour of R2 is reduced to a parAND operator, we just have to
apply the proof schema associated with this operator and that is given in
equations 11 and 12. Both of the following properties are obtained:

(G(xR2, yR2) = clean) ∧ T < 10 → (G(xR2, yR2) = clean ∧ T < 10) (17)

CG1 → (true ∧ true) (18)

The verification of both formulae is trivial. For the second one, the value
of CG1 is not calculated because it is not required to verify the property.

7.4.2 arm of R2

Verifications of both SyncSeqAnd decompositions are trivial and so are not
presented here, as well as the verifications linked to the leaf goals. We briefly
detail the verification associated with the achievement of the external goal
(called E in the sequel). Given the proof schema presented in [MS09], we
have to prove that there is in the system an agent with a leads-to property
A leads − toB with CE ∧ ¬SCE → A and B → SCE . Indeed, another agent
in the system, the conveyor belt, has a leads-to property T = 10 → T = 0.
Moreover, T = 10 is a logical consequence of ¬SCE (as SCE = ¬(T = 10))
and T = 0 implies SCE . So the achievement of the external goal each time it
is required is proven.

7.4.3 conveyor belt of R2

Verifying the behaviour of the conveyor belt is a standard proof of a GDT:
verifying the case decomposition is trivial (as T < 3 → T < 10 and T = 0 →
T < 10) and verifying the Iter decomposition is easy as the variant to choose
is T (a natural), the subgoals makes T decrease, and the fact that the variant
reaches its lower bound (T = 0) trivially implies the satisfaction condition of
the parent goal (T = 0).

8 Comparison with other works

Several works dealing with recursive agents exist. In the sequel, we compare
our proposal with other ones.

31

8.1 Motivation of the recursive model

Some work use recursive agents to model organisations. These organisations
can be human organisations [ASM08] or organisations of agents [HDF08,
DFH08]. The aim of the latter is to propose a very general but simple frame-
work which can be used to specify most of the proposed models for organisa-
tional structuring in multiagent systems such as teams [CL91,Tid93], roles and
organisations [FG98] or roles and permissions [NVSB+07]. The aim is clearly
different from ours: whereas they want to model organisations and groups, we
want to model components of an agent. This explains a first difference between
their work and ours: for them, an agent can be part of several context agents
but for us, this is impossible. However, although the main aim is different
from ours, our proposal is very close to this framework which is inspired from
the group notion used in METATEM [Fis94]. Please notice that, although
this framework is intended to be independent of the underlying language for
agents, this language is restricted to a “BDI-like” language, contrary to our
proposal.

In [GB04], the authors try to specify a model for an abstract recursive
agent as a mean to integrate different pre-existing MAS. Using this model
should help to consider each MAS as a whole, i.e. as an agent with individual
goals, beliefs, actions... This possibility is essential to be able to use the MAS
in a new context. Please note that in this proposal, an abstract recursive agent
exists only during the analysis and design stages but has no implementation.
Actually the authors claim that abstract agents are “modeling artifacts to
represent MAS” and their behaviour. More precisely, as abstract agents are
recursive ones, they contain agents from behaviour of which the behaviour of
the abstract agent can be defined. An abstract recursive agent can be seen as
a set of interacting agents when considering its internal structure but can also
be seen as a single agent with its own properties resulting from those of its
component agents. These concepts are illustrated with an example dealing with
mobile physical cooperative robots. A robot can be modeled by an abstract
agent containing multiple interacting agents, each of which being responsible
for a part of the robot functionalities; this is comparable to one of the design
patterns proposed in this paper (see section 4.2).

Holonic manufacturing systems [BG08] typically use recursive agents to
model robots made of several actuators, which corresponds to one of the design
patterns we propose to help a designer to use our recursive agents.

Finally, our work present some similarities with the proposals described
in [JT02,GHG+08]. Indeed, in these both articles, recursive agents are used
to help to model complex systems.

8.2 Verification

Most recursive agent models do not deal with verification. Indeed, they have
not been developed for that (see [ASM08] for instance).

32

In [GB04] for instance, ordered sequences of actions are used to obtain the
set of goals of the abstract agent using a function f . Unfortunately, even if
the authors give properties about this function, they do not provide any mean
to determine this function in a given context, and so no verifcation can be
performed.

In their papers, Fisher et al. explain that a context agent adds a kind
of glue to its content agents thanks to a special specification that they call
N SPEC (this glue is a formal specification that makes all the content agents
work together). However they do not give any key to write such a specification
or guarantee its consistency with the specification of the content agents. And
so, once again, proofs can no be performed.

Verification is however taken into considerations in a few works. In [JT02],
the authors present a way to specify a multiagent system with a tree of prop-
erties dedicated to sub-processes. Moreover, examples of compositional proofs
are presented. Our solution gives however many answers to questions raised by
this article. For instance, Jonker et al. use a few decomposition operators with-
out giving their semantics, and properties to verify are not justified whereas
our proof schemas and their verification validate our method.

The verification is clearly the main goal in [GHG+08], where examples of
proofs are performed thanks to model checking and thanks to theorem proving
by induction. However, verifications are performed on roles, which does not
take into account compositional problems occuring when an agent implement
several roles. Moreover, the notion of proof obligation is not integrated to the
work, bringing no warranty on the correctness of the system verified.

8.3 Expressiveness

In several models, an agent can be a content agent of several subagents [GHG+08,
ASM08,HDF08]. Moreover, in these model, the recursive structure changes dy-
namically. This is well suited to model organisations, a goal of most of these
models, but it makes proofs harder, and we chose a less expressive model to
increase the success rate of proofs. To simplify proofs once again, our content
agents are not visible outside their context, contrary to most holonic sys-
tems [ASM08,Fis99] and to the model presented in [HDF08]. This makes the
model more compositional, maximizing reuse and compositionality (let recall
that compositionality is a key concept to verify multi-agent sytems). However,
we introduced environment variables and surface variables to express interac-
tions between agents, a concept missing for instance in [JT02].

The problem of task interruption has been addressed in few articles, but
never with recursive agents. The solution proposed in [THMYS07] propose
repair plans when a task is aborted, a feature that our design pattern does not
provide yet, but in this article, tasks cannot be interrupted anytime, and a
task that must be interruptible must be modified, whereas our construct does
not require to modify the task itself.

33

8.4 Gap between specification and implementation

The model we propose is the only one we know that, thanks to automata
composition patterns associated to decomposition operators, allows a code
generation from a verified specification.

9 Conclusion and Perspectives

In this paper, a new extension of the GDT model has been presented. The first
aim of this extension, called “recursive GDT agents”, is to allow agents to run
parallel plans, that is to say to execute two subgoals at the same time. This
was not really possible in the previous version of the GDT model: an agent had
to finish the execution of a subgoal before beginning the execution of another
one. The main principle of this proposal is to introduce the notion of “content
agent”. As a consequence, at different points in time during its execution, an
agent can choose to manage the execution of subgoals resulting from a goal
decomposition by assigning them to content agents. Content agents are GDT
agents, which are not perceived by agents which are outside their context
agent, and which can be controlled by the agent they are included in. As
presented in the paper, this notion is very close to context and content notions
proposed by Fisher et al. in [HDF08]. That is why the same terminology has
been used for our proposal even if some differences exist.

Formal definitions of the notions of content agent and context agent have
first been given. Decomposition operators called “parallel decomposition op-
erators” have also been introduced. These operators help to decompose a goal
into subgoals which are executed by different content agents, and to specify
formally how a context agent and its content agents interact. Such subgoals
are modeled by leaf nodes in the GDT of the context agent. The formal se-
mantics of these operators is provided using logical variables and LTL rules as
for other decomposition operators.

We have also shown that the recursive GDT notions give pretty solutions
to very common behaviours by providing design patterns to build GDT agents,
that is to say partial GDTs which can be instantiated and then integrated in
effective GDTs. Another interesting aspect of this new proposal has also been
shown: the correctness of the behaviour of GDT agents using content agents
can be easily proven (contrary to the other recursive agent models we studied).
Indeed, proof schemas associated with the new parallel operators are given.
The main interest of this extension is that, with the same mechanism, various
behaviours can be specified. More precisely, as far as we know, this is the only
work until now that leads to prove in a compositional way the behaviour of
agents with interruptible behaviours.

Several perspectives derive from the work presented in this article. At first,
we wish to extend thes set of design patterns presented here to design a kind
of library which could be associated with a MAS design method using the
GDT model. This library can be also completed by parameterised GDT’s

34

presented in [MSSZ07]. We also aim at completing the set of design patterns
with new ones helping to model classical communication protocols. The set
of parallel decomposition operators introduced in this article is reduced. A
future work will also consist in specifying new PDOs. CASE-tools to support
the GDT model are limited to prototypes. A great effort has to be performed
to develop other tools. Indeed, one of the main interest of the GDT model is
that it has been designed to make the verification process automatic, but the
implementation has not not yet been fulfilled.

References

[Abr96] J.-R. Abrial. The B-Book. Cambridge Univ. Press, 1996.
[ALW04] N. Alechina, B. Logan, and M. Whitsey. A complete and decidable logic for

resource-bounded agents. In Autonomous Agents and Multi-Agent Systems
(AAMAS’04), 2004.

[ASM08] E. Adam, E. Grislin-Le Strugeon, and R. Mandiau. Flexible hierarchical
organisation of role based agents. In 2nd IEEE Int. Conf. on Self-Adaptive
and Self-Organizing Systems Workshops, pages 186–191, 2008.

[BED+06] A. Bracciali, U. Endriss, N. Demetriou, T. Kakas, W. Lu, and K. Stathis.
Crafting the mind of PROSOCS agents. Applied Artificial Intelligence, 20(2–
4):105–131, 2006.

[BFVW03] R.H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifiable multi-
agent programs. In M. Dastani, J. Dix, and A. Seghrouchni, editors, ProMAS,
2003.

[BG08] V. Botti and A. Giret. ANEMONA: A multi-agent methodology for Holonic
Manufacturing Systems. Springer, 2008.

[BvET97] F.M.T. Brazier, P.A.T. van Eck, and J. Treur. Simulating Social Phenomena,
volume 456, chapter Modelling a Society of Simple Agents: from Conceptual
Specification to Experimentation, pages pp 103–109. Lecture Notes in Eco-
nomics and Mathematical Systems, 1997.

[CHSS01] Scott A. Deloach Clint H. Sparkman and Athie L. Self. Automated derivation
of complex agent architectures from analysis specifications. In Proceedings
of AOSE’01, 2001.

[CL91] P.R. Cohen and H.J. Levesque. Teamwork. Noûs, 25(4):487–512, 1991.
[CM88] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Founda-

tion. Addison-Wesley, 1988.
[dBHvdHM07] F. de Boer, K. Hindriks, W. van der Hoek, and J-J Meyer. A Verifica-

tion Framework for Agent Programming with Declarative Goals. Journal of
Applied Logic, (5):277–302, 2007.

[DdBDM03] M. Dastani, F. de Boer, F. Dignum, and J.-J. Meyer. Programming agent
deliberation: An approach illustrated using the 3apl language. In Proceed-
ings of the Second International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS’03), 2003.

[DFH08] L. Dennis, M. Fisher, and A. Hepple. Language constructs for multi-agent
programming. In Computational Logic in Multi-Agent Systems: 8th Inter-
national Workshop, CLIMA VIII, Porto, Portugal, September 10-11, 2007.
Revised Selected and Invited Papers, pages 137–156, 2008.

[FG98] J. Ferber and O. Gutknecht. A meta-model for the analysis and design of
organisations in multi-agent systems. In Third international Conference on
Multi-Agent Systems (ICMAS’98). IEEE Computer Society, 1998.

[Fis94] M. Fisher. A survey of concurrent METATEM – the language and its ap-
plications. In D. M. Gabbay and H. J. Ohlbach, editors, Temporal Logic -
Proceedings of the First Intemational Conference (LNAI Volume 827), pages
480–505. Springer-Verlag: Heidelberg, Germany, 1994.

35

[Fis99] K. Fischer. Holonic multiagent systems - theory and applications. In Proceed-
ings of the 9th Portuguese Conference on Progress in Artificial Intelligence,
volume 1695 of LNAI. Springer Verlag, 1999.

[GB04] A. Giret and V. Botti. Towards an abstract recursive agent. Integrated
Computer-Aided Engineering, 11:165–177, 2004.

[GHG+08] N. Gaud, V. Hilaire, S. Galland, A. Koukam, and M. Cossentino. A verifi-
cation by abstraction framework for organizational multi-agent systems. In
AT2AI: Froma Agent Theory to Agent Implementation, 2008.

[GLL00] G. De Giacomo, Y. Lesperance, and H. J. Levesque. Congolog, a concurrent
programming language based on the situation calculus. Artificial Intelli-
gence, 121(1-2):109–169, 2000.

[HDF08] A. Hepple, L. Dennis, and M. Fisher. A Common Basis for Agent Organ-
isation in BDI Languages. In Languages, Methodologies and Development
Tools for Multi-Agent Systems: First International Workshop, LADS 2007,
Durham, UK, September 4-6, 2007. Revised Selected Papers, pages 71–88,
2008.

[JT02] C. M. Jonker and J. Treur. Compositional Verification of Multi-Agent Sys-
tems: A Formal Analysis of Pro-activeness and Reactiveness. Int. J. Coop-
erative Inf. Syst., 11(1-2):51–91, 2002.

[KLP04] M. Kacprzak, A. Lomuscio, and W. Penczek. Verification of multiagent
systems via unbounded model checking. In Autonomous Agents and Multi-
Agent Systems (AAMAS’04), 2004.

[KW05] J. Khallouf and M. Winikoff. Towards goal-oriented design of agent systems.
In Proceedings of ISEAT’05, 2005.

[MFS06] B. Mermet, D. Fournier, and G. Simon. An agent compositional proof system.
In From Agent Theory to Agent Implementation (AT2AI’06), 2006.

[MS09] B. Mermet and G. Simon. GDT4MAS: an extension of the GDT model to
specify and to verify MultiAgent Systems. In AAMAS, pages 505–512, 2009.

[MSSZ07] B. Mermet, G. Simon, A. Saval, and B. Zanuttini. Specifying, verifying and
implementing a MAS: A case study. In M. Dastani, A. El Fallah Segrouchni,
A. Ricci, and M. Winikoff, editors, Post-Proc. 5th International Workshop on
Programming Multi-Agent Systems (ProMAS’07), number 4908 in Lecture
Notes in Artificial Intelligence, pages 172–189. Springer, 2007.

[MSZ08a] Bruno Mermet, Gaële Simon, and Bruno Zanuttini. Agent design
with Goal Decomposition Trees. Technical report, 2008. Available at
http://www.info.unicaen.fr/~bmermet/GDT/publications/gdt/msz08.pdf.

[MSZ08b] Bruno Mermet, Gaële Simon, and Bruno Zanuttini. Agent design with
Goal Decomposition Trees: Companion paper. Technical report, GREYC,
CNRS, Université de Caen Basse-Normandie, ENSICAEN, 2008. Avail-
able at http://www.info.unicaen.fr/~bmermet/GDT/publications/gdt/-

msz08companion2.pdf.
[NVSB+07] P. Noriega, J. Vazquez-Salceda, G. Boella, O. Boissier, V. Dignum,

N. Fornara, and E. Matson, editors. Coordination, Organization, Institutions
and Norms in agent systems II (COIN), volume 46386. Springer, 2007.

[Rao96] A.S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable
language. In W. Van de Velde and J. Perram, editors, MAAMAW’96, volume
1038, Eindhoven, The Netherlands, 1996. LNAI.

[RL04] F. Raimondi and A. Lomuscio. Verification of multiagent systems via or-
derd binary decision diagrams: an algorithm and its implementation. In
Autonomous Agents and Multi-Agent Systems (AAMAS’04), 2004.

[SMF06] G. Simon, B. Mermet, and D. Fournier. Goal Decomposition Tree: An agent
model to generate a validated agent behaviour. In Matteo Baldoni, Ulle En-
driss, Andrea Omicini, and Paolo Torroni, editors, Declarative Agent Lan-
guages and Technologies III: Third International Workshop, DALT 2005,
volume 3904 of LNCS, pages 124–140. Springer Verlag, 2006.

[THMYS07] J. Thangarajah, J. Harland, D. Morley, and N. Yorke-Smith. Aborting
Tasks in BDI Agents. In Proceedings of the 6th International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS-07), pages 8–
15, Hawaii, may 2007.

36

[Tid93] G. Tidhar. Team-oriented programming: Prelimaniry report. Technical Re-
port 1993-41, Australian Artificial Intelligence Institute, Melbourne, Aus-
tralia, 1993.

[TPW03] J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and Exploiting
Positive Goal Interaction in Intelligent Agents. In Proceedings of the 2nd
International Joint Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2003), pages 401–408, Melbourne, Australia, 2003.

[WJ95] M. J. Wooldridge and N. R. Jennings. Agent theories, architectures, and
languages: a survey. In Intelligent Agents, volume 890 of LNCS, pages 1–39.
Springer-Verlag, 1995.

[WJK00] M. Wooldridge, N. R. Jennings, and D. Kinny. The gaia methodology for
agent-oriented analysis and design. Journal of Autonomous Agents and
Multi-Agent Systems, 3(3):285–312, 2000.

