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Specifying Software Requirements for Complex
Systems: New Techniques and Their

Application

KATHRYN L. HENINGER

Absfmct-This  paper concerns new techniques for making require-

ments specifications precise, concise, unambiguous, and easy to check

for completeness and consistency. The techniques are well-suited for

complex real-time software systems; they were developed to document

the requirements of existing flight software for the Navy’s A-7 aircraft.

The paper outlines the information that belongs in a requirements

document and discusses the objectives behind the techniques. Each
technique is described and illustrated with examples from the A-7

document. The purpose of the paper is to introduce the A-7 document

as a model of a disciplined approach to requirements specification; the

document is available to anyone who wishes to see a fully worked-out

example of the approach.

Index Terms-Documentation techniques, functional specifications,

real-time software, requirements, requirements definition, software

requirements, specifications.

I .  INTRODUCTION

M
UCH software is difficult to understand, change, and

maintain. Several software engineering techniques have

been suggested to ameliorate this situation, among them mod-

ularity and information hiding [ 111,  [ 121,  formal specifica-

tions [4], [9], [lo], [ 131,  [ 161,  [20],  abstract interfaces [ 151,

cooperating sequential processes [2], [ 181,  [21],  process syn-

chronization routines [2],  [8], and resource monitors [l],

[6], [7]. System developers are reluctant to use these tech-

niques both because their usefulness has not been proven for

programs with stringent resource limitations and because there

are no fully worked-out examples of some of them. In order

to demonstrate feasibility and to provide a useful model, the

Naval Research Laboratory and the Naval Weapons Center

are using the techniques listed above to redesign and rebuild

the operational flight program for the A-7 aircraft. The new

program will undergo the acceptance tests established for the

current program, and the two programs will be compared both

for resource utilization and for ease of change.

The new program must be functionally identical to the

existing program. That is to say, the new program must meet

the same requirements as the old program. Unfortunately,

when the project started there existed no requirements docu-

mentation for the old program; procurement specifications,

which were originally sketchy, are now out-of-date. Our first

step was to produce a complete description of the A-7 pro-
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gram requirements in a form that would facilitate the develop-

ment of the new program and that could be updated easily as

the requirements continue to change.

Writing down the requirements turned out to be surprisingly

difficult in spite of the availability of a working program and

experienced maintenance personnel. None of the available

documents were entirely accurate; no single person knew the

answers to all our questions; some questions were answered

differently by different people; and some questions could not

be answered without experimentation with the existing sys-

tern. We found it necessary to develop new techniques based

on the same principles as the software design techniques listed

above to organize and document software requirements. The

techniques suggested questions, uncovered ambiguities, and

supported crosschecking for completeness and consistency.

The techniques allowed us to present the information rela-

tively concisely, condensing several shelves of documentation

into a single, 500-page  document.

This paper shares some of the insights we gained from de-

veloping and applying these techniques. Our approach can be

useful for other projects, both to document unrecorded re-

quirements for existing systems and to guide software pro-

curers as they define requirements for new systems. This

paper introduces the techniques and illustrates them with

simple examples. We invite anyone interested in more detail

to look at the requirements document itself as a complete

example of the way the techniques work for a substantial

system [ 51.
First this paper addresses the objectives a requirements

document ought to meet. Second it outlines the general de-

sign principles that guided us as we developed techniques; the

principles helped us achieve the objectives. Finally it presents

the specific techniques, showing how they allowed us to

achieve completeness, precision, and clarity.

II. A-7 P R O G RA M C H A R A C T E R I S T I C S

The A-7 flight program is an operational Navy program with

tight memory and time constraints. The code is about 12 000

assembler languge instructions and runs on an IBM System 4

PI model TC-2 computer with 16K bytes of memory. We

chose this program because we wanted to demonstrate that

the run-time overhead incurred by using software engineering

principles is not prohibitive for real-time programs and because

U.S. Government work not protected by U.S. copyright

,
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the maintenance personnel feel that the current program is

difficult to change.

The A-7 flight program is part of the Navigation/Weapon

Delivery System on the A-7 aircraft. It receives input data

from sensors, cockpit switches, and a panel with which the

pilot keys in data. It controls several display devices in the

cockpit and positions several sensors. Twenty-two devices

are connected to the computer; examples include an inertial

measurement set providing velocity data and a head-up dis-

play device. The head-up display projects symbols into the

pilot’s field of view, so that he sees them overlaying the world

ahead of the aircraft. The program calculates navigation in-

formation, such as present position, speed, and heading; it

also controls weapon delivery, giving the pilot steering cues

and calculating when to release weapons.

III. REQUIREMENTS D OCUMENT O BJECTIVES

For documentation to be useful and coherent, explicit

decisions must be made about the purposes it should serve.

Decisions about the following questions affect its scope,

organization, and style: 1) What kinds of questions should it

answer? 2) Who are the readers? 3) How will it be used?

4) What background knowledge does a reader need? Con-

sidering these questions, we derived the following six objec-

tives for our requirements document.
1) Specify external behavior only. A requirements docu-

ment should specify only the external behavior of a system,

without implying a particular implementation. The user or

his representative defines requirements using his knowledge

of the application area, in this case aircraft navigation and

weapons delivery. The software designer creates the imple-

mentation, using his knowledge of software engineering. When

requirements are expressed in terms of a possible implementa-

tion, they restrict the software designer too much, sometimes

preventing him from using the most effective algorithms and

data structures. In our project the requirements document

must be equally valid for two quite different implementations:

the program we build and the current program. For our pur-

poses it serves as a problem statement, outlining what the new

program must do to pass acceptance tests. For those main-

taining the current program, it fills a serious gap in their doc-

umentation: they have no other source that states exactly

what the program must do. They have pilot manuals, which

supply user-level documentation for the entire avionics sys-

tem, of which the program is only a small part. Unfortunately,

the pilot manuals make it difficult to separate the activities

performed by the computer program from those performed

by other devices and to distinguish between advice to the pilot

and restrictions enforced by the program. The maintainers

also have implementation documentation for the current pro-

gram : mathematical algorithm analyses, flowcharts, and

12 000 lines of sparsely commented assembler code. But

the implementation documents do not distinguish between

the aspects that are dictated by the requirements and those

that the software designer is free to change.

2) Specify constraints on the implementation. In addition

to defining correct program behavior, the document should

describe the constraints placed on the implementation, espe-

cially the details of the hardware interfaces. As is usually the

case with embedded systems,’ we are not free to define the
interfaces to the system, but must accept them as given for

the problem. A complete requirements description should

therefore include the facts about the hardware devices that

can affect the correctness of the program.

3) Be easy to change. Because requirements change, re-

quirements documentation should be easy to change. If the

documentation is not maintained during the system life cycle,

control is lost over the software evolution; it becomes difficult

to coordinate program changes introduced by maintenance

personnel.

4) Serve as a reference tool. The primary function of the

document is to answer specific questions quickly, rather than

to explain in general what the program does. We expect the

document to serve experienced programmers who already have

a general idea about the purpose of the program. Precision

and conciseness are valued. Indispensable reference aids in-

clude a glossary, detailed table of contents, and variousindices.

Since tutorial material has different characteristics, such as a

narrative style,it should be developed separately if it is needed.

5) Record forethought about the life cycle of the system.

During the requirements definition stage, we believe it is

sensible to exercise forethought about the life cycle of the

program. What types of changes are likely to occur [22]  ?

What functions would maintainers like to’ be able to remove

easily [ 17]?  For any software product some changes are easier

to make than others; some guidance in the requirements will

help the software designer assure that the easy changes cor-

respond to the most likely changes.

6) Characterize acceptable responses to undesired events.

Undesired events [14],  such as hardware failures and user

errors, should be anticipated during requirements definition.

Since the user knows the application area, he knows more

than the software designer about acceptable responses. For

example, a pilot knows better than a programmer whether

a particular response to a sensor failure will decrease or in-

crease his difficulties. Responses to undesired events should

be stated in the requirements document; they should not be

left for the programmer to invent.

IV. REQUIREMENTS D OCUMENT D ESIGN PRINCIPLES

Our approach to requirements documentation can be sum-

marized by the three principles discussed below. These
principles form the basis of all the techniques we developed.

1) State questions before trying to answer them. At every

stage of writing the requirements, we concentrated first on

formulating the questions that should be answered. If this

is not done, the available material prejudices the requirements

investigation so that only the easily answered questions are

asked. First we formulated the table of contents in Fig. 1 in

order to characterize the general classes of questions that

should be answered. We wrote it before we looked at the A-7

1 An embedded system functions as a component of a significantly
larger system. Parnas [ 151 has a discussion of embedded system
characteristics.
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Chapter

0 Introduct ion

1 Computer Characteristics

2 Hardware Interfaces

3 Software Functions

4 Timing Constraints

5 Accuracy Constraints

6 Response to Undes i red

Events

7 Subsets

8 Fundamental Aeaumptions

9 Changes

10 GlcJllsary

11 Sources

contents

Organizat i on  pr inc ip les ;  abs t rac t s  f o r  o ther

s e c t i o n s ; notation guide

If the computer is predetermined,  a g e n e r a l

des c r ip t i on  w i th  par t i cu lar  a t t ent i on  to its

id iosyncras ies ; otherwise a summary of its
requ ired  charac ter i s t i c s

Co nc i s e  d e s c r ip t i o n  o f  informatipn  rece ived

or  transmitted by the computer

What the software must do to meet its

requirements, in various situations and in
response to various events

How often and how fast each function must be

performed. This section is separate from

section 3 since “what” and “when”  can change

independently.

How close output values must be to ideal

values to be acceptable

What the software must do if sensors go down,

the  p i l o t  keys  in  inva l id  data ,  e t c .

What parts of the program should be easy to

remove

The characteristics of the program that will

stay the same,  no matter what changes are made

The  types of changes that have been made or
are expected

Most documentation is fraught with acronyms

and technical terms. At first we prepared

thin  gu ide  f o r  ourse lves ; as we learned the

language, we retained it for newcomers.

Annotated list of documentation and

personne l ,  ind i ca t ing  the  types  o f  ques t i ons

each can  answer

Fig. 1. A-7 Requirements table of contents.

at all, basing it on our experience with other software. Then

we generated questions for the individual sections. Like any

design effort, formulating questions requires iteration: we gen-

erated questions from common sense, organized them into

forms, generated more questions by trying to fill in the blanks,

and revised the forms.

2) Separate concerns. We used the principle of “separation

of concerns” [3] to organize the document so that each proj-

ect member could concentrate on a well-defined set of ques-

tions. This principle also serves the objective of making the

document easy to change, since it causes changes to be well-

confined. For example, hardware interfaces are described

without making any assumptions about the purpose of the

program; the hardware section would remain unchanged if

the behavior of the program changed. The software behavior

is described without any references to the details of the hard-

ware devices; the software section would remain unchanged if

data were received in different formats or over different

channels.

3) Be as formal as possible. We avoided prose and devel-

oped formal ways to present information in order to be pre-

cise, concise, consistent, and complete.

The next two sections of the paper show how these prin-

ciples are applied to describe the hardware interfaces and the

software behavior.

V. T ECHNIQUES FOR D E S C R I B I N G

H ARDWARE I N T E R F A C E S

Organization by Data Item

To organize the hardware interfaces description, we have a

separate unit, called a data item, for each input or output

that changes value independently of other inputs or outputs.

Examples of input data items include barometric altitude,

radar-measured distance to a point on the ground, the setting

of the inertial platform mode switch, and the inertial platform

ready signal. Examples of output data items include co-

ordinates for the flight path marker on the head-up display,

radar antenna steering commands, and the signal that turns

on and off the computer-failed light. The A-7 computer re-

ceives 70 input data items and transmits 95 output data items.
In order to have a consistent approach, we designed a form

to be completed for each data item. We started with an initial

set of questions that occurred to us as we read about the inter-

faces. How does the program read or write these data? What is

the bit representation of the value? Can the computer tell

whether a sensor value is valid? As we worked on specific

data items, new questions occurred to us. We added these

questions to the form, so that they would be addressed for

all data items. The form is illustrated in Figs. 2 and 3 at the

end of this section.
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Symbolic Names for Data Items and Values

The hardware section captures two kinds of information

about data items: arbitrary details that might change if a de-

vice were replaced with a similar device, and essential charac-

teristics that would be shared by similar devices. The bit

representation of a value is an arbitrary detail; the semantics

of the value is an essential characteristic. For example, any
barometric altitude sensor provides a reading from which

barometric altitude can be calculated-this information is

essential. But the resolution, representation, accuracy, and

timing might differ between two types of barometric altitude

sensors-this information is arbitrary.

Essential information must be expressed in such a way that

the rest of the document can use it without referencing the

arbitrary details. For example, each data item is given a

mnemonic name, so that it can be identified unambiguously

in the rest of the document without reference to instruction

sequences or channel numbers. If a data item is not numerical

and takes on a fixed set of possible values, the values are given

mnemonic names so that they can be used without reference

to bit encodings. For example, a switch might be able to take

the values “on” and “off.”  The physical representation of the

two values is arbitrary information that is not mentioned in

the rest of the document in case it changes. The names allow

the readers and writers of the rest of the document to ignore

the physical details of input and output, and are more visually

meaningful than the details they represent.

We bracket every mnemonic name in symbols indicating the

item type, for example /input-data-items/, //output-data-

items//, and $nonnumeric-values$. These brackets reduce con-

fusion by identifying the item type unambiguously, so that the

reader knows where to find the precise definition. Moreover,

the brackets facilitate systematic cross referencing, either by

people or computers.

Templates for Value Descriptions

The values of the numerical data items belong to a small

set of value types, such as angles and distances. At first we

described each data item in an ad hoc fashion, usually imitat-

ing the descriptions in the documents we referenced. But

these documents were not consistent with each other and the

descriptions were not always complete. We made great prog-

ress when we developed informal templates for the value de-

scriptions, with blanks to be completed for specific data items.

For example, the template for angles might read:

angle (?) is measured from line (?) to line (?) in the (?)

direction, looking (?)

For example, magnetic is measured from the line

from the aircraft to magnetic north to the horizontal compo-

nent of the aircraft X axis, in the clockwise direction look-

ing down.

Although templates were not used as hard-and-fast rules,

their existence made values easier to describe, made the de-

scriptions consistent with each other, and helped us apply the

same standards of completeness to all items of the same type.

Input Data Items Described as Resources,

Independent of Software  Use

When describing input data items, we refrain from mention-

ing how or when the data is used by the software, to avoid

making any assumptions about the software function. In-

stead, we describe the input data items as if taking inventory

of the resources available to solve a problem. We define

numerical values in terms of what they measure. For ex-

ample, the value of the input data item called /RADALT/  is

defined as the distance above local terrain as determined by

the radar altimeter. Many nonnumerical inputs indicate

switch positions; these are described without reference to
the response the pilot expects when he changes the switch,

since the response is accomplished by the software. For ex-

ample, when the pilot changes the scale switch on the pro-

jected map display, he expects the map scale to change. Since

the response is achieved by the software, it is not mentioned

in the input data item description, which reads, “ /PMSCAL/

indicates the position of a two-position toggle switch on the

projected map panel. This switch has no hardware effect on

the projected map display. ”

Example of an Input Data Item Description

Fig. 2 shows the completed form for a nonnumerical input

data item. The underlined words are the form headings.

Value encoding shows how the mnemonic value names used

in the rest of the document are mapped into specific bit

representations. “Switch nomenclature” indicates the names

of the switch positions as seen by the pilot in the cockpit.

Instruction sequence gives the TC-2 assembler language in-

structions that cause the data to be transmitted to or from

the computer. We are not usurping the programmer’s job by

including the instruction sequence because there is no other

way to read in this data item-the instruction sequence is not

an implementation decision for the programmer. The channel

number is a cross reference to the computer chapter where the

general characteristics of the eight channels are described.

Data representation shows the location of the value in the

16-bit  input word. Notice how the Comments section defines

the value assumed by the switch while the pilot is changing it.

This is an example of a question we asked about all switches,

once it had occurred to us about this one.

Output Data Items Described in Terms of Effects on

External Hardware

Most output data items are described in terms of their effects

on the associated devices. For example, the description of

the output data items called //STEERAZ//  and //STEEREL//

shows how they are used to communicate the direction to

point the antenna of the radar. This section does not explain
how the software chooses the direction. For other output

data items we define the value the peripheral device must

receive in order to function correctly. For example, the de-

scription of the output data item called //FPANGL//  shows

that .the radar assumes the value will be a certain angle which
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Input Data Item: INS Mode Switch

Acronym:JIMSMODEI

Hardware: Inertial Measurement Set

Description: /IMSHODE/ indicates the position of a six-position rotary switch
on the IMS control panel.

Switch nomenclature:
GYlD

Characteristics of Values

Value Encoding: $Offnone$
$Gndal$
$Norm$
$1ner$
$Grid$

wags 1s

OFF; GND ALIGN; NORM; INERTIAL; MAG SL;

(00000)

I;%:;
(00100)
(00010)
(00001)

Instruction Sequence: READ 24 (Channel 0)

Data Representation: Bits 3-7

c"lmwnts: /lMSMODE/ = $Off"one$ when the witch is between two positions.

Fig. 2. Completed input data item form.

Output Data Item: Steering Error

Acronym: IISTRRRORII

Hardware: Attitude Direction Indicator (ADI)

Description: //STERRORIf controls the position of the vertical needle on the

‘01. A positive value moves the pointer to the right when
looking at the display. A value of zer" centers the needle.

Characteristics of Values

Unit:- Degrees

Range: -2.5 to +2.5

Accuracy: + .l

Resolution: .00122

Instruction Sequence: WRITE 229 (Channel 7)
Test Carry Bit - 0 for request acknovledged

If not, restart

Data Representation: II-bit two's complement number, bit 0 and bits 3-12
scale = 512/1.25 = 409.6

offset = 0

( ) ( INDICATED VALUE )
Not used ,

r1 z-?_-~------__ooo  4 6 7 8 910 11 12 13 14 15
BIT

Timing Characteristics: Digital t" DC voltage conversion. See Section 1.5.7.

comments:- - The pointer hits a mechanical stop at + 2.5 degrees.

Fig. 3. Completed output data item form.

it uses to determine the climb or dive angle the aircraft should

use during terrain following. We avoid giving any meaning to

an output value that is not a characteristic of the hardware.

Example of an Output Data Item Description

Fig. 3 shows the completed form for a numerical output

data item. Notice how the value is described in terms of its

effect on a needle in a display, rather than in terms of what

the needle is supposed to communicate to the pilot. The value

is characterized by a standard set of parameters, such as range

and resolution, which are used for all numerical data items.

For Data representation, we show how the 16-bit output

word is constructed, including which bits must be zero, which

bits are ignored by the device, and which bits encode the out-

put value. Since the actual output value is not in any standard

units of measurement, we also show how it can be derived

from a value in standard units, in this case degrees. The rela-

tion between output values and values in standard units is

given by the equation

output value = scale X (standard value + offset)

Since the same equation is used for all numerical data items,

we need only provide the scale and offset values for a par-

ticular data item. Thus the output value for the data item

//STERROR//  in Fig. 3 is derived from a value in degrees by

the following expression:

output value = 409.6 X (standard value + 0)
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The Timing considerations section contains a pointer to

another section; since many output data items have the same

timing characteristics, we describe them once, and include

cross references. The comment shows a physical limit of the

device.

VI. TECHNIQUES FOR D E S C R I B I N G

S OFTWARE F U N C T I O N S

Organization by Functions

We describe the software as a set of functions associated

with output data items: each function determines the values

for one or more output data items and each output data item

is given values by exactly one function. Thus every function

can be described in terms of externally visible effects. For ex-

ample, the function calculating values for the output data

item //STERROR//  is described in terms of its effects on a

needle in a display. The meaning conveyed to the pilot by

the needle is expressed here.

This approach, identifying functions by working backward

from output data items, works well because most A-7 out-

puts are specialized; most output data items are used for only

a small set of purposes. The approach breaks down somewhat

for a general-purpose device, such as a terminal, where the

same data items are used to express many different types of

information. We have one general-purpose device, the com-

puter panel, where the same set of thirteen seven-segment dis-

plays can display many types of information, including present

position, wind speed, and sensor status. We handled this situa-

tion by acting as if each type of information had its own panel,

each controlled by a separate function. Thus, we have forty-

eight panel functions, each described as if it always controlled

a panel, and a set of rules to determine which function con-

trols the real panel at any given moment. This approach,

creating virtual panels, allows us to separate decisions about

what the values are from decisions about when they are dis-

played. It also causes the description to be less dependent

on the characteristics of the particular panel device than it

otherwise would be.

Software functions are classified as either demand or peri-

odic. A demand finction  must be requested by the occur-

rence of some event every time it is performed. For example,

the computer-failed light is turned on by a demand function

when a computer malfunction is detected. A periodic func-

tion is performed repeatedly without being requested each

time. For example, the coordinates of symbols on the head-

up display are updated by periodic functions. If a periodic

function need not be performed all the time, it is started and

stopped by specific events. For example, a symbol may be

removed from the head-up display when a certain event

occurs.

This distinction is useful because different performance and

timing information is required for demand and periodic func-

tions. To describe a demand function one must give the

events that cause it to occur; an appropriate timing question

is “ W hat is the maximum deIay  that can be tolerated between

request and action?” To describe a periodic function, one

must give the events that cause it to start and stop and the

conditions  that affect how it is performed after it is started;

an appropriate timing question is “ W hat are the minimum and

maximum  repetition rates  for this function? ”

Output Values as Functions of Conditions and Events

Originally we thought we would describe each output as a

mathematical function of input values. This turned out to be

a naive approach. We found we could seldom describe output

values directly in terms of input values; instead we had to de-

fine intermediate values that the current program calculated,
but that did not correspond to any output values. These in

turn had to be described in terms of other intermediate values.

By the time we reached input values, we would have described

an implementation.

Instead, we expressed requirements by giving output values

as functions of aircraft operating conditions. For example, the

output data item named //LATGT70//  should change value

when the aircraft crosses 70” latitude; how the program detects

this event is left to the implementation. In order to describe

outputs in terms of aircraft operating conditions, we defined a

simple language of conditions and events. Conditions are pred-

icates that characterize some aspect of the system for a mea-

surable period of time. For example, /IMSMODE/  = $Gndal$

is a condition that is true when the IMS mode switch in the

cockpit is set to the GND ALIGN position (see Fig. 2). If a

pilot expects a certain display whenever the switch is in this

position, the function controlling the display is affected by

the value of /IMSMODE/.  An event occurs when the value of

a condition changes from true to false or vice versa. Events

therefore specify instants of time, whereas conditions specify

intervals of time. Events start and stop periodic functions,

and they trigger demand functions. Events provide a conve-

nient way to describe functions where something is done when

a button is first pushed, but not if the pilot continues to hold

it down. Before we distinguished clearly between events and

conditions, situations of this sort were very difficult to de-

scribe simply.

Consistent Notation for Aircraft Operating konditions

Text Macros: To keep the function descriptions concise, we

introduced over two hundred terms that serve as text macros.

The terms are bracketed in exclamation points and defined in

an alphabetical dictionary. A text macro can define a quantity

that affects an output value, but that cannot be directly ob-
tamed from an input. An example is “!ground  track angle!“,

defined as “the. angle measured from the line from the air-

craft to true north to !ground  track!, measured clockwise
looking down.” Although the derivation of such values is left

to the implementation, text macros provide a consistent, en-

capsulated means to refer to them while specifying function
values.

Text macros also serve as abbreviations for compound condi-

tions that are frequently used or very detailed. For example,

!Desig! is a condition that is true when the pilot has per-

formed a sequence of actions that designates a target to the

computer. The list of events defining !Desig! appears only in

the dictionary; while writing or reading the rest of the docu-
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ment, these events need not be considered. If designation pro-

cedures change, only the definition in the dictionary changes.

Another example of a text macro for a compound condition

is !IMS Reasonable!,’ which represents the following bulky,

specific condition:

!IMS total velocity! < 1440 fps AND
change of !IMS total velocity! from .2 seconds

ago < 50 fps

Even though this term is used many times in the function de-

scriptions, only one place in the document need be changed

if the reasonableness criteria change for the sensor.

The use of text macros is an application of stepwise  refine-

ment: while describing functions, we give names to com-

plicated operating conditions or values, postponing the precise

definitions. As the examples above show, we continue in-

troducing new terms in the definitions themselves. This

allows us to limit the amount of detail we deal with at one

time. Furthermore, like the use of /, //, and $ brackets in

the hardware descriptions, the use of 1 brackets for text

macros indicates to the reader that reference is being made

to something that is defined precisely elsewhere. This re-

duces the risk of ambiguity that usually accompanies prose

descriptions (e.g., !Desig! versus designated).

Conditions: We represent these predicates as expressions

on input data items, for example, /IMSMODE/=$Gndal$,

or expressions on quantities represented by text macros, for

example, !ground  track angle! = 30’.  A condition can also

be represented by a text macro, such as !IMS Reasonable!.

Compound conditions can be composed by connecting simple

conditions with the logical operators AND, OR, and NOT.

For example, (!IMS Reasonable! AND /IMSMODE/=$Gndal$)

is true only when both the component conditions are true.

Events: We use the notation @T(condition 1) to denote the

occurrence of condition 1 becoming true and @F(condition 2)

to denote the occurrence of condition 2 becoming false.

For example, the event @T(!ground track angle! < 30’)  oc-

curs when the !ground  track angle! value crosses the 30’

threshold from a larger value. The event @T(!ground track

angle!=30’)  occurs when the value reaches the 30” threshold

from either direction. The event @T(/IMSMODE/  = $Gndal$)

occurs when the pilot moves the switch to the GND ALIGN

position. In some cases, an event only occurs if one condition
changes when another condition is true, denoted by

@T(condition 3) WHEN (condition 4).

Thus, @T(/ACAIRB/=$Yes$) WHEN (/IMSMODE/=$Gndal$)

refers to the event of the aircraft becoming airborne while

the IMS mode switch is in the GND ALIGN position, while

@T(/IMSMODE/=$Gndal$)  WHEN (/ACAIRB/=$Yes$)  re-

fers to the event of the IMS mode being switched to GNP

ALIGN while the airplane is airborne.

2This  text macro represents the condition that the values read from
the inertial measurement set are reasonable; i.e., the magnitude of the
aircraft velocity vector, calculated from inertial measurement set in-
puts, is less than or equal to 1440 feet per second and has changed less
than 50 feet per second from the magnitude 0.2 seconds ago.

Using Modes to Organize and Simplifr

Although each function is affected by only a small subset

of the total set of conditions, we still need to organize con-

ditions into groups in order to keep the function descriptions

simple. To do this, we define modes or classes of system

states. Because the functions differ more between modes

than they do within a single mode, a mode-by-mode descrip-

tion is simpler than a general description. For example, by

setting three switches, deselecting guns, and keying a single

digit on the panel, the pilot can enter what is called the visual

navigation update mode. In this mode, several displays and

the radar are dedicated to helping him get a new position

estimate by sighting off a local landmark. Thus the mode

affects the correct behavior of the functions associated with

these displays. The use of modes has an additional advantage:

if something goes wrong during a flight, the,pilot  is much more

likely when he makes the trouble report to remember the

mode than the values of various conditions.

Each mode is given a short mnemonic name enclosed in

asterisks, for example, *DIG* for IJopplerQertial-gyrocom-

passing navigation mode. The mode name is used in the rest

of the document as an abbreviation for the conditions that

are true whenever the system is in that mode.
The current mode is defined by the history of events that

have occurred in the program. The document shows this by

giving the initial mode and the set of events that cause transi-

tions between any pair of modes. For example, the transition

list includes the entry

*DIG* TO *DI*

@T(!latitude! > 70’)

@(/IMSMODE/=$Iner$)  WHEN (!Doppler coupled!)

Thus the system will move from *DIG* mode to Qoppler-

bertial  (*DI*) mode either if the aircraft goes above 70”

latitude or if the inertial platform mode switch is changed to

INERTIAL while the Doppler Radar is in use.

The table in Fig. 4 summarizes conditions that are true

whenever the system is in a particular navigation mode. Thus

in *DIG* mode the inertial platform mode switch is set to

NORM, the aircraft is airborne, the latitude is less than 70”,

and both the Doppler Radar and the inertial platform are

functioning correctly. “X”  table entries mean the value of

that condition does not matter in that mode.

The mode condition tables are redundant because the in-

formation can be derived from the mode transition lists.

However, the mode condition tables present the information

in a more convenient form. Since the mode condition tables

do not contain all the mode transition information, they do

not uniquely define the current mode.

Special Tables for Precision and Completeness

In an early version of the document, function characteristics

were described in prose; this was unsatisfactory because it

was difficult to find answers to specific questions and because

gaps and inconsistencies did not show up. We invented two

types of tables that helped us express information precisely

and completely.
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MODE /IMSM~DE/ /ACAIRB/

*DIG* $Norm$ STesS

*DI* $Norm$ OR WesS
$1ner$

*I* $1ner$ X

*IHS fail* X X

!latitude!

<700

-2300

<800

X

Other

!IMS Up! AND
!Doppler Up!

!IMS Up! AND
!Doppler Up! AND

!Doppler  Coupled!

!IHS Up!

!IHS Down!

Fig. 4. Section from the navigation mode condition table.

Condition Table: Magnetic heading (//MAGHDGH//)  output values

MODES CONDITIONS

*DIG*, 'DI*, *I+ Always X
Wag sl*,%rid*

*IMS fail*

IluAGlnall
V.¶lU.?

(NOT /IMSMODE/-$Offnone$) /IMSMODEl=$Offnone$

angle defined by 0 (North)
IMAGHCOSI and IMAGHSINI

Fig. 5. Example of a condition table.

Condition tables are used to define some aspect of an out-
put value that is determined by an active mode and a condi-

tion that occurs within that mode. Fig. 5 gives an example

of a condition table. Each row corresponds to a group of one
or more modes in which this function acts alike. The rows

are mutually exclusive; only one mode affects the function

at a time. In each row are a set of mutually exclusive condi-

tions; exactly one should be true whenever the program is in

the modes denoted by the row. At the bottom of the column

is the information appropriate for the interval identified by

the mode-condition intersection. Thus to find the informa-

tion appropriate for a given mode and given condition, first

find the row corresponding to the mode, find the condition

within the row, and follow that column to the bottom of the

table. An “X”  instead of a condition indicates that informa-

tion at the bottom of the column is never appropriate for

that mode.

Event table : When AUTOCAL Light Switched on/off

MODES EVENTS

I
*Lautocal*

*sautoca1*

@T(In mode) @@(In mode)

ACTION
/

//AUTOCAL//:-$On$
/

//AUTOCAL//:=$Off$

Fig. 6. Example of an event table.

In Fig. 5, the magnetic heading value is 0 when the system is in

mode *IMS fail* and the condition (/IMSMODE/=$Offnone$)

is true. Whenever the system is in *IMS fail* mode, the fol-

lowing condition is true, showing that the row is complete,

(/IMSMODE/=$Offnone$ OR(NOT /IMSMODE/=$Offnone$))

and the following statement is false, showing the row entries

are mutually exclusive.

(/IMSMODE/=$Offnone$  AND(NOT/IMSMODE/=$Offnone$))

ent time intervals; the appropriate time interval is determined

by the prevailing mode and conditions. Each row in the table

completely characterizes the intervals within a mode that are

meaningful for that function. The conditions must be mutually

exclusive, and together they must describe the entire time

the program is within the mode. These characteristics ensure

that condition tables be complete, that is, all relevant in-

tervals are indicated. They also ensure that condition tables

be unambiguous, that is, given the aircraft operating condi-

tions, the correct interval can be determined.

Event tables show when demand functions should be per-

formed or when periodic functions should be started or

stopped. Each row in an event table corresponds to a mode

or group of modes. Table entries are events that cause an

action to be taken when the system is in a mode associated

with the row. The action to be taken is given at the bottom

of the column.

Condition tables are used in the descriptions of periodic func- The event table in Fig. 6 specifies that the autocalibration
tions. Periodic functions are performed differently in differ- light controlled by output data item //AUTOCAL//  be turned
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Demand Function Name: Change scale factor

Modes in which function required:
*Lautocal*, *Sautocal*, *Lsndaln*, *SINSal”*,  *HUDaln*, *Airaln*

Output data item: //IMSSCAL/l

Function Request and Output Description:

Event Table: When the Scale Factor Is Changed

MODES EVENTS

*Lautocal* @T(In mode) WHEN X
*Landsln* (IlIt4sscALlI=$Cosrse$)

*luJDs1n*

*Ssutocsl*
*SINSaln*
*Airaln*

@T(In made) WHEN @T(In  mode) WHEN
(/IK+MODE/ = $G”dsl$ (NOT (/IMSMODE/=$G”dal$)
AND /IInssCAL/l-SCoarseS) AND //IWSSCAL//-$Fine$)

X @T(I”  mode) WHEN
(//IlKqSCAL/l-SFineS)

ACTION //IMSSCAL//:=$Fine$ //IMSsCALII:-$Coarse$

Fig. 7. Completed demand function form.

Periodic function name: Update Flight Path Marker coordinates

Uodea in which function required:
*DIG*, *DI*, *I*, *Mag Sl*, *Grid*, *IMS fail*

output Data Items: //FpuA2//, IIFPM-~LII

Initiation and Termination Events:
s t a r t : @T(//~DVEL//  3 SonS)
stop: @T(//HUDVEL// = $Off$)

Output description:

The Flight Path Marker (FPH) symbol on the head-up display shows the
direction of the aircraft velocity vector. If the aircraft is moving straight
ahead from the “ “ se of the aircraft, the FPM is centered on the display. The
horizontal displacement from display center shows the lateral velocity
component and elevation displacement shows the vertical velocity component.

Although the q es”s for deriv ing Flight Path Marker position varies as
show”  in the table below, the position is usually derived from the current
JSystem veloci t ies! . The velocities sre first resolved into forward, lateral.
and vertical components. Then FPM coordinates are derived in the following
manner:

//FPUAZ//  shows Lateral velocity //FPMEL//  shows Vertical velocity
Forward velocity Forward velocity

Condition Table: Coordinates of the Flight Path Marker

MODES CONDITIONS

*DIG*, *DI* X Always X

*1* /ACAIRB/ = $N”$ IACAIRBI  = Suess X

!ADC Up! !ADC Dow”!
*npg rl*, *Grid* /ACAIRB/=$NO$ At4D lA~AIgg/-Sh3$ AND  IACAIRBI=SY~~S

*IMS f.sil* I /ACAIRB/-SNOS I  x I /AcAIRB/-$Y~sS

FPM COORDINATES
/

//FPMAZ//:*  0
/

based on ! System
//muEL//:=  0 ve loc i t i e s ! /

//FPMAZ//:- 0
//FML//:-/AoA/

Fig. 8. Completed periodic function form.

on when the two listed modes are entered and off when they represented by the mode becomes false, i.e., when the system

are exited. We use the symbol “:=”  to denote assignment. changes to a different mode.

The event @T(In  mode) occurs when all the conditions rep- Function Description  Examples
resented by the mode become true, i.e., when the mode is Figs. 7 and 8 illustrate the forms we created for demand and

entered. @F(In mode) occurs when any one of the conditions periodic functions, respectively. All function descriptions in-
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dicate  the associated output data items, thereby providing a

cross reference to the hardware description. The list of modes

gives the reader an overview of when the function is performed;

the overview is refined in the rest of the description.

The event table in Fig. 7 shows both the events that request

the function and the values output by the function at differ-

ent times. For example, if the //IMSSCAL//  value is $Coarse$
when the *Landaln* mode is entered, the function assigns it

the value $Fine$. Notice how the table uses the symbolic

names introduced in the hardware section for data items and

data item values.

In Fig. 8 the initiation and termination section gives the events

that cause this periodic function to start and stop. This func-

tion starts when another output data item, //HUDVEL//,  is as-

signed the value $On$,  and stops when //HUDVEL//  is assigned

the value $Off$. The function positions a symbol on a display

device. The position of the symbol usually represents the direc-

tion of the aircraft velocity vector, but under some conditions

the output data items are given other values. The output de-

scription consists of two parts: a brief prose description of the

usual meaning of the symbol and a condition table that shows

what will  happen under different conditions. Notice that

every mode in the mode list is accounted for in the table. The

relevant conditions for this function are !ADC Up! or !ADC

Down!, (the operating status of the air data computer sensor

which provides a measurement of true airspeed) and /ACAIRB/=

$YesS and /ACAIRB/=$No$  (whether the aircraft is airborne).

Thus, if the system is in the inertial mode (*I*) and the air-

craft is not airborne (/ACAIRB/=$No$ is true), both coordi-

nates of the symbol are set to zero.

VII. TECHNIQUES FOR SPECIFYING U NDESIRED E VENTS

Lists of Undesired Events

In order to characterize the desired response of the system

when undesired events occur, we started with a list of unde-

sired events and interviewed pilots and maintenance program

mers to find out both what they would like to have happen

and what they considered feasible. The key was the list of

possible undesired events. To derive this list, we used the

classification scheme shown in Fig. 9 as a guide.

For example, in the class “Resource failure-temporary,” we

include the malfunctioning of each sensor since the sensors

tend to resume correct functioning; in the class “Resource

failure-permanent,”  we include the loss of areas of memory.

VIII. TECHNIQUES , FOR C HARACTERIZING

TYPES OF CHANGES

In order to characterize types of changes, we looked through

a file of change requests and interviewed the maintainers. To

define requirements for a new system, we would have looked

at change requests for similar systems. We also made a long

list of fundamental assumptions that we thought would always

be true about the system, no matter what. In a meeting with

several maintenance system engineers and programmers, all

but four of the fundamental assumptions were rejected; each

rejected assumption was moved to the list of possible changes!

For example, the following assumption is true about the cur-

l  Resource Failure

1.1 Temporary

1.2 Permanent

2 Incorrect input data

2.1 Detected by examining input only

2.2 Detected by comparison with internal data

2.3 Detected by user realizing he made a mistake

2.4 Detected by user  from incorrect output
3  Incorrec t  in terna l  data

3.1 Detected by internal inconsistency

3.2 Detected by comparison with input data

3.3 Detected by user from incorrect output

Fig. 9. Undesired event classification derived from Parnas [lg].

rent program, but may change in the future: “The computer

will perform weapon release calculations for only one target

at a time. When a target is designated, the previously desig-

nated target is forgotten.” By writing two complementary

lists-possible changes and fundamental assumptions-we

thought about the problem from two directions, and we de-

tected many misunderstandings. Producing a list of funda-

mental assumptions forced us to voice some implicit assump-

tions, so that we discovered possible changes we would have

omitted otherwise. One reason for the success of this pro-

cedure is that it is much easier for a reviewer to recognize an

error than an omission.

Listed below are examples of feasible changes.

1) Assignment of devices to channels may be changed.

2) The rate of symbol movement on the display in re-

sponse to joystick displacement might be changed.

3) New sensors may be added. (This has occurred already

in the history of the program.)

4) Future weapons may require computer control after

release.

5) Computer self-test might be required in the air (at

present it is only required on the ground).

6) It may be necessary to cease certain lower priority func-

tions to free resources for higher priority functions during

stress moments. (At present the program halts if it does not

have sufficient time to perform all functions, assuming a pro-

gram error.)

IX. DISCUSSION

We expect the document to be kept up-to-date as the pro-

gram evolves because it is useful in many ways that are in-

dependent of our project. The maintainers of the current

program plan to use it to train new maintenance personnel,

since it presents the program’s purpose in a consistent, sys-

tematic way. It is the only complete, up-to-date description

of their hardware interfaces. One of the problems they now

face when making changes is that they cannot telI easily if

there are other places in the code that should be changed

to preserve consistency. For example, they changed the code

in one place to turn on a display when the target is twenty

two nautical miles away; in another place, the display is still

turned on when the target is twenty nautical miles away. The

unintended two-nautical-mile difference causes no major

problems, but it adds unnecessary complexity for the pilot

and the programmer. Inconsistencies such as this show up

conspicuously in the function tables in our document. Be-

sides using the document to check the implications of small

I

I

I
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changes, the maintenance staff want to modify it to document

the next version of the program. They expect major benefits

as they prepare system tests, since the document provides a

description of acceptable program behavior that is indepen-

dent of the program. In the past, testers have had to infer

what the program is supposed to do by looking at the code.

Finally they also intend to derive test cases systematically

from the tables and mode transition charts.

The usefulness of these ideas is not limited to existing pro.

grams. They could be used during the requirements definition

phase for a new product in order to record decisions for easy

retrieval, to check new decisions for consistency with pre-

viously made decisions, and to suggest questions that ought to

be considered. However, a requirements document for a new

system would not be as specific as our document. We can de-

scribe acceptable behavior exactly because all the decisions

about the external interfaces have been made. For a new pro-

gram a requirements document describes a set of possible be-

haviors, giving the characteristics that distinguish acceptable

from unacceptable behavior. The system designer chooses the

exact behavior for the new product. The questions are the

same for a new system; the answers are less restrictive. For

example, where we give a specific number for the accuracy

of an input, there might be a range of acceptable accuracy

values for a new program.

X. CO N C LU SIO N S

The requirements document for the A-7 program demon-

strates that a substantial system can be described in terms of

its external stimuli and its externally visible behavior. The

techniques discussed in this paper guided us in obtaining in-

formation, helped us to control its complexity, and allowed

us to avoid dealing with implementation details. The docu-

ment gives a headstart on the design phase of our project.

Many questions are answered precisely that usually would be

left to programmers to decide or to discover as they build the

code. Since the information is expressed systematically, we

can plan for it systematically, instead of working each detail

into the program in an ad hoc fashion.

All of the techniques described in this paper are based on

three principles: formulate questions before trying to answer

them, separate concerns, and use precise notation. From these

principles we developed a disciplined approach including the

following techniques:

symbolic names for data items and values

special brackets to indicate type of name

templates for value descriptions

standard forms

inputs described as resources

outputs described in terms of effects

demand versus periodic functions

output values given as functions of conditions and events

consistent notation for conditions and events

modes for describing equivalence classes of system states

special tables for consistency and complete&s checking

undesired event classification

complementary lists of changes and fundamental assumptions.

This paper is only an introduction to the ideas that are illus-

trated in the requirements document [S]. The document is a

fully worked-out example; no details have been left out to

simplify the problem. Developing and applying the techniques

required approximately seventeen man-months of effort. The

document is available to anyone interested in pursuing the

ideas. Most engineering is accomplished by emulating models.

We believe that our document is a good model of requirements

documentation.
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Notes on Type Abstraction (Version 2)

JOHN GUTTAG

Abstract-This paper, which was initially prepared to accompany a

series of lectures given at the 1978 NATO International Summer School

on Program Construction, is primarily tutorial in nature. It begins by

discussing in a general setting the role of type abstraction and the need

for formal specifications of type abstractions. It then proceeds to ex-

amine in some detail two approaches to the construction of such spec-

ifications: that proposed by Hoare in his 1972 paper “Proofs of Cor-

rectness of Data Representations,” and the author’s own version of

algebraic specifications. The Hoare approach is presented via a dis-

cussion of its embodiment in the programming language Euclid. The

discussion of the algebraic approach includes material abstracted from

earlier papers as well as some new material that has yet to appear. This

new material deals with parameterized types and the specification of

restrictions. The paper concludes with a brief discussion of the relative

merits of the two approaches to type abstraction.

Inde x Terms-Abstract data types, abstraction, algebraic axioms, pro-

gram verification, proof rules.

A
KEY problem in the development of programs is re-

ducing the amount of complexity or detail that must

be considered at any one time. Two common and effective

approaches to accomplishing this are decomposition and

abstraction.

One decomposes a task by factoring it into subtasks each of

which can be treated independently. Unfortunately, for many
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Agency monitored by the Office of Naval Research under Contract
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problems the smallest separable subtasks  are still too complex

to be mastered in toto. The complexity of such problems

must be reduced via abstraction. By providing a mechanism

for separating those attributes that are relevant in a given con-

text from those that are not, abstraction serves to reduce the

amount of detail that one need come to grips with at any one

time.

One of the most significant aids to abstraction used in pro-

gramming is the self-contained subroutine. It performs a

specific, arbitrarily abstract, function by means of an unpre-

scribed algorithm. Thus, at the level where it is invoked, it

separates the relevant detail of “what”  from the irrelevant de-

tail of “how.” Similarly, at the level of the implementation,

it is usually unnecessary to complicate the “how” by consider-

ing the “why,”  i.e., the exact reasons for invoking a subroutine

are rarely of concern to its implementor. By nesting subrou-

tines, one may develop a hierarchy of abstractions.

Unfortunately, the nature of the abstractions that may be

conveniently achieved through the use of subroutines is

limited. Subroutines allow us to abstract single events. Their

applicability is thus limited to problems that are conveniently

decomposable into independent functional units. Type, or

data, abstraction is not amenable to such an attack. To under-

stand why, let us look briefly at the different roles played by

type and procedural abstraction in programming and program-

ming languages.

T HE R OLE OF ABSTRACTION

Imperative programming languages have components dealing

with control flow, state change, and value generation. In re-

cent years, a great deal has been written about the virtues and

drawbacks of various control flow mechanisms. I will not add

to that literature. Considerably less has been written about
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