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Abstract. The feedback given by e-learning tools that support incremen-
tally solving problems in mathematics, logic, physics, etc. is limited, or
laborious to specify. In this paper we introduce a language for specifying
strategies for solving exercises. This language makes it easier to automati-
cally calculate feedback when users make erroneous steps in a calculation.
Although we need the power of a full programming language to specify
strategies, we carefully distinguish between context-free and non-context-
free sublanguages of our strategy language. This separation is the key to
automatically calculating all kinds of desirable feedback.

1 Introduction

Tools like Aplusix [9], LeActiveMath [13], and MathPert [4]support solving
mathematical exercises incrementally. Ideally a tool gives detailed feedback
on several levels. For example, when a student rewrites p → (r ↔ p) into
¬p ∨ (r ↔ p, our tool will tell the student that there is a missing parenthesis. If
the same expression is rewritten into ¬p ∧ (r ↔ p), it will tell the student that
an error has been made when applying the definition of implication: correct
application of this definition would give ¬p ∨ (r ↔ p). Finally, if the student
rewrites ¬(p ∧ (q ∨ r)) into ¬((p ∧ q) ∨ (p ∧ r)), it will tell the student that al-
though this step is not wrong, it is better to first eliminate occurrences of ¬
occurring at top-level, since this generally leads to fewer rewrite steps.

The first kind of error is a syntax error, and there exist good error-repairing
parsers that suggest corrections to formulas with syntax errors. The second
kind of error is a rewriting error: the student rewrites an expression using a
non-existing or buggy rule. There already exist some interesting techniques for
finding the most likely error when a student incorrectly rewrites an expression.
The third kind of error is an error on the level of the procedural skill or strategy
for solving this kind of exercises. This paper discusses how we can formulate
and use strategies to construct the latter kind of feedback.

This paper. The main contribution of this paper is the formulation of a strategy
language as a domain-specific embedded language, with a clear separation be-
tween a context-free and a non-context-free part. The strategy language can be
used for any domain, and can be used to automatically calculate feedback on
the level of strategies, given an exercise, the strategy for solving the exercise,



and student input. Another contribution of our work is that the specification
of a strategy and the calculation of feedback is separated: we can use the same
strategy specification to calculate different kinds of feedback.

This paper is organized as follows. Section 2 introduces strategies, and dis-
cusses how they can help to improve feedback in e-learning systems or intel-
ligent tutoring systems. We continue with some example strategies from the
domain of logical expressions (Section 3). Then, we present our language for
writing strategies in Section 4. We do so by defining a number of strategy com-
binators, and by showing how the various example strategies can be specified
in our language. Section 5 discusses the several possibilities for giving feed-
back or hints using our strategy language. The last section concludes and gives
directions for future research.

2 Strategies and feedback

Strategies. Whatever aspect of intelligence you attempt to model in a computer
program, the same needs arise over and over again [8]:

• The need to have knowledge about the domain.
• The need to reason with that knowledge.
• The need for knowledge about how to direct or guide that reasoning.

In the case of exercises, the latter kind of knowledge is often captured by a
so-called procedure or procedural skill. A procedure describes how basic steps
may be combined to solve a particular problem. A procedure is often called a
strategy (or ‘meta-level reasoning’, ‘meta-level inference’ [8], ‘procedural nets’ [6],
‘plans’, ‘tactics’, etc.), and we will use this term in the rest of this paper.

Many subjects require a student to learn strategies. At elementary school,
students have to learn how to calculate a value of an expression, which may
include fractions. At high school, students learn how to solve a system of linear
equations, and at university, students learn how to apply Gaussian elimination
to a matrix, or how to rewrite a logical expression to disjunctive normal form
(DNF). Strategies are not only important for mathematics, logic, and computer
science, but also for physics, biology (Mendel’s laws), and many other subjects.
Strategies are taught at any level, in almost any subject, and range from simple,
for example describing how a simple arithmetic expression with constants, +
and − can be simplified, to very complex, describing a complicated procedure
for solving an exercise from linear algebra.

E-learning systems for learning strategies. Strategic skills are almost always ac-
quired by practicing exercises, and indeed, students usually equate mathemat-
ics with solving exercises. In schools, the dominant practice still is a student
performing a calculation using pen-and-paper, and the teacher correcting the
calculation (the same day, in a couple of days, after a couple of weeks). There
exist many software solutions that support practicing solving exercises on a
computer. Using a computer for practicing strategies has several advantages.
An e-learning system or an intelligent tutoring system can:



• immediately tell a student whether or not a solution to an exercise is correct,
• explain the most likely error when an answer is incorrect,
• maintain a model of the student, and use this model to give specialized

feedback to a student,
• generate an infinite amount of exercises,
• give hints when a student is stuck, etc.

There exist many variants of tools that support solving exercises. The simplest
kinds of tools offer multiple-choice questions, possibly with an explanation of
the error if a wrong choice is submitted. A second class of tools asks for an an-
swer to a question, again, possibly with an analysis of the answer to give feed-
back when an error has been made. The class of tools we consider in the paper
are tools that support the incremental, step-wise calculation of a solution to an
exercise, thus mimicking the pen-and-paper approach more or less faithfully.
Since e-learning tools for practicing procedural skills seem to offer so many ad-
vantages, hundreds of tools that support practicing strategies in mathematics,
logic, physics, etc. have been developed.

Should e-learning systems give feedback? In Rules of the Mind [1], Anderson dis-
cusses the ACT-R principles of tutoring, and the effectiveness of feedback in
intelligent tutoring systems. One of the tutoring principles deals with student
errors. If a student made a slip in performing a step (s)he should be allowed to
correct it without further assistance. However, if a student needs to learn the
correct rule, the system should give a series of hints with increasing detail, or
show how to apply the correct rule. Finally, it should also be possible to give
an explanation of an error made by the student. The question on whether or
not to give immediate feedback is still debated. Anderson observed no positive
effects in learning with deferred feedback, but observed a decline in learning
rate instead. Erev et al. [19] also claim that immediate feedback is often to be
preferred.

Feedback in e-learning systems supporting incrementally solving exercises. There are
only very few tools that mimic the incremental pen-and-paper approach and
that give feedback at intermediate steps different from correct/incorrect. Al-
though the correct/incorrect feedback at intermediate steps is valuable, it is
unfortunate that the full possibilities of e-learning tools are not used. There are
several reasons why the feedback that is given is limited. The main reasons
probably are that supporting detailed feedback for each exercise is very labori-
ous, providing a comprehensive set of possible bugs for a particular domain re-
quires a lot of research (see for example Hennecke’s work [14] on student bugs
in calculating fractions), and automatically calculating feedback for a given ex-
ercise, strategy, and student input is very difficult.

Feedback should be calculated automatically. We think specifying feedback together
with every exercise that is solved incrementally is a dead-end: teachers will
want to enter new exercises on a regular basis, and completely specifying feed-
back is just too laborious, error prone, and repetitive. Instead, feedback should



in general be calculated automatically, given the exercise, the strategy for the
exercise, buggy rules and strategies, and the input from the student. To au-
tomatically calculate feedback, we need information about the domain of the
exercise, the rules for manipulating expressions in this domain, the strategy
for solving the exercise, and common bugs. For example, for Gaussian elimi-
nation of a matrix, we have to know about matrices (which can be represented
by a list of rows), about the rules for manipulating matrices (the elementary
matrix operations such as scaling a row, subtracting a row from another row,
and swapping two rows), buggy rules and strategies for manipulating matrices
(subtracting a rule from itself), and about the strategy for Gaussian elimination
of a matrix (which we will give in the appendix).

Representing strategies. Representing the domain and the rules for manipulating
an expression in the domain is often relatively straightforward. Specifying a
strategy for an exercise is more challenging in many cases. To specify a strategy,
we need the power of a full programming language: many strategies require
computations of values. However, to calculate feedback based on a strategy, we
need to know more than that it is a program. We need to know its structure and
basic components, which we can use to report back on errors. Furthermore,
we claim that if we ask a teacher to write a strategy as a program, instead of
specifying feedback with every exercise, the automatic approach is not going to
be very successful.

An embedded domain-specific language for specifying strategies. This paper dis-
cusses the design of a language for specifying strategies for exercises. The do-
mains and rules vary for the different subjects, but the basic constructs for
describing strategies are the same for different subjects (‘first do this, then do
that’, ‘either do this or that’). So the strategy language can be used for any do-
main (mathematics, logic, physics, etc). It consists of several basic constructs
from which strategies can be built. These basic constructs are combined with
program code in a programming language to be able to specify any strategy.
The strategy language is formulated as an embedded domain-specific language
(EDSL) in a programming language [17] to easily facilitate the combination of
program code with a strategy. Here ‘domain-specific’ means specific for the do-
main of strategies, not specific for the domain of exercises. The separation into
basic strategy constructs and program code offers us the possibility to analyse
the basic constructs, from which we can derive several kinds of feedback.

What kind of feedback? We can automatically calculate the following kinds of
feedback, many of which are part of the tutoring principles of Anderson [1].

• Is the student still on the right path towards a solution? Does the step made
by the student follow the strategy for the exercise? What is the next step the
student should take?
• We produce hints based on the strategy.
• Based on the position on the path from the starting point to the solution of

an exercise we create a progress bar.



• If a student enters a wrong final answer, we ask the student to solve sub-
problems of the original problem.
• We allow the formulation of buggy strategies to explain common mistakes

to students.

We do not build a model of the student to try to explain the error made by the
student. According to Anderson, an informative error message is better than
bug diagnosis.

How do we calculate feedback on strategies? The strategy language is defined as an
embedded domain-specific language in Haskell [24]. Using the basic constructs
from the strategy language, we can create something that looks like a context-
free grammar. The sentences of this grammar are sequences of transformation
steps (applications of rules). We can thus check whether or not a student fol-
lows a strategy by parsing the sequence of transformation steps, and checking
that the sequence of transformation steps is a prefix of a correct sentence from
the context-free grammar. Many steps require student input, for example when
a student wants to multiply a row by a scalar, or when a student wants to sub-
tract two rows. This part of the transformation cannot be checked by means of
a context-free grammar, and here we make use of the fact that our language is
embedded into a full programming language, to check input values supplied
by the student. The separation of the strategy into a context-free part, using
the basic strategy combinators, and a non-context-free part, using the power of
the programming language, offers us the possibility to give the kinds of feed-
back mentioned above. Computer Science has almost 50 years of experience in
parsing sentences of context-free languages, including error-repairing parsers,
which we can use to improve feedback on the level of strategies.

Related work. Explaining syntax errors has been studied in several contexts,
most notably in compiler construction [27], but also for e-learning tools [16].
Some work has been done on trying to explain errors made by students on the
level of rewrite rules [14, 20, 23, 5].

Already around 1980, but also later, VanLehn et al. [6, 7, 28], and Anderson
and others from the Advanced Computer Tutoring research group at CMU [1, 2]
worked on representing procedures or procedural networks. VanLehn et al. al-
ready noticed that ‘The representation of procedures has an impact on all parts
of the theory.’ Anderson et al. report that the technical accomplishment was
‘no mean feat’. Both VanLehn et al. and Anderson et al. chose to deploy collec-
tions of condition-action rules, or production systems. In Mind bugs [28], Van-
Lehn states several assumptions about languages for representing procedures.
In Rules of the Mind [1], Anderson formulates similar assumptions. Their lead-
ing argument for selecting a language for representing procedures is that it
should be psychologically plausible. We think our strategy language can be
viewed as a production system. But our leading argument is that it should be
easy to calculate feedback based on the strategy. Using an EDSL for specifying
the context-free part of a strategy simplifies calculating feedback. Furthermore,



our language satisfies the assumptions about representation languages given
by VanLehn, such as the presence of variables in procedures, and the possibil-
ity to define recursive procedures. Neither VanLehn nor Anderson use parsing
for the language for procedures to automatically calculate feedback.

Zinn [30] writes strategies as Prolog programs, in which rules and strategies
(‘task models’) are intertwined.

3 Three example strategies

In this section we present three strategies for rewriting a classical logical expres-
sion to disjunctive normal form. Although the example strategies are relatively
simple, they are sufficiently rich to demonstrate the main components of our
strategy language. In the appendix we give a more involved strategy for Gaus-
sian elimination on matrices.

The domain. Before we can define a strategy, we first have to introduce the do-
main of logical expressions and a collection of available rules. A logical expres-
sion is a logical variable, a constant true or false (written T and F), the negation
of a logical expression, or the conjunction, disjunction, implication, or equiva-
lence of two logical expressions. This results in the following grammar:

Logic ::= Var | T | F | ¬Logic | Logic ∧ Logic
| Logic ∨ Logic | Logic→ Logic | Logic↔ Logic

Var ::= p | q | r | . . .

If necessary, we write parentheses to resolve ambiguities. Examples of valid
expressions are ¬(p ∨ (q ∧ r)) and ¬(¬p↔ p).

The rules. Logical expressions form a boolean algebra, and hence a number
of rules for logical expressions can be formulated. Figure 1 presents a small
collection of basic rules and some tautologies and contradictions. All variables
in these rules are meta-variables and range over arbitrary logical expressions.
The rules are expressed as equivalences, but are only applied from left to right.
For most rules we assume to have a commutative variant, for instance, T ∧
p = p for rule ANDTRUE. With these implicit rules, we can bring every logical
expression to disjunctive normal form.

Every serious exercise assistant for this domain has to be aware of a much
richer set of rules. In particular, we have not given rules for commutativity
and associativity, several plausible rules for implications and equivalences are
omitted, and the list of tautologies and contradictions is far from complete.

Strategy 1: apply rules exhaustively. The first strategy applies the basic rules from
Figure 1 exhaustively: we proceed as long as we can apply some rule somewhere,
and we will end up with a logical expression in disjunctive normal form. This
is a special property of the chosen collection of basic rules, and this is not the
case for a rule set in general. The strategy is very liberal, and approves every
sequence of rules.



Basic Rules:
Constants: ANDTRUE : p ∧ T = p ORTRUE : p ∨ T = T NOTTRUE : ¬T = F

ANDFALSE : p ∧ F = F ORFALSE : p ∨ F = p NOTFALSE : ¬F = T

Definitions: IMPLDEF : p→ q = ¬p ∨ q
EQUIVDEF : p↔ q = (p ∧ q) ∨ (¬p ∧ ¬q)

Negations: DEMORGANAND : ¬(p ∧ q) = ¬p ∨ ¬q NOTNOT : ¬¬p = p
DEMORGANOR : ¬(p ∨ q) = ¬p ∧ ¬q

Distribution: ANDOVEROR : p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r)

Additional Rules:
Tautologies: ORTAUT : p ∨ ¬p = T EQUIVTAUT : p↔ p = T

IMPLTAUT : p→ p = T

Contradic-
tions:

ANDCONTR : p ∧ ¬p = F EQUIVCONTR : p↔ ¬p = F

Fig. 1: Rules for logical expressions

Strategy 2: four steps. Strategy 1 accepts sequences that are not very attractive,
and that no expert would ever consider. We give two examples:

¬¬(p ∨ q) DEMORGANOR=⇒ ¬(¬p ∧ ¬q) T ∨ (¬¬p) NOTNOT=⇒ T ∨ p

In both cases, it is more appealing to select a different rule (NOTNOT and ORTRUE,
respectively). We define a new strategy that proceeds in four steps, and such
that the above sequences are not permitted.

• Step 1: Remove constants from the logical expression with the rules for
”constants” (see Figure 1), supplemented with constant rules for implica-
tions and equivalences. Apply the rules top-down, that is, at the highest pos-
sible position in the abstract syntax tree. After this step, all occurrences of T
and F are removed.
• Step 2: Use IMPLDEF and EQUIVDEF to rewrite implications and equiva-

lences in the formula. Proceed in a bottom-up order.
• Step 3: Push negations inside the expression using the rules for ”nega-

tions”, and do so in a top-down fashion. After this step, all negations appear
directly in front of a logical variable.
• Step 4: Use the distribution rule (ANDOVEROR) to move disjunctions to top-

level. The order is irrelevant.

Strategy 3: tautologies and contradictions. Suppose that we want to extend Strat-
egy 2, and use rules expressing tautologies and contradictions (for example, the
additional rules in Figure 1). These rules introduce constants. Our last strategy
is as follows:



• Follow the four steps of Strategy 2, however:
• Whenever possible, use the rules for tautologies and contradictions (top-

down), and
• clean up the constants afterwards (step 1). Then continue with Strategy 2.

Buggy rules. In addition to the collection of rules and a strategy, we can formu-
late buggy rules. These rules capture mistakes that are often made, such as the
following unsound variations on the two De Morgan rules:

BUGGYDM1 : ¬(p ∧ q) 6= ¬p ∧ ¬q BUGGYDM2 : ¬(p ∨ q) 6= ¬p ∨ ¬q

The advantage of formulating buggy rules is that specialized feedback can be
presented if the system detects that such a rule was applied. Note that these
rules should not appear in strategies, since that would invalidate the strategy.

The idea of formulating buggy rules can easily be extended to buggy strate-
gies. Such a strategy helps to recognize common procedural mistakes, in which
case we can report a detailed message.

4 A language for strategies for exercises

The previous section gives an intuition of strategies for exercises, such as the
three DNF strategies. In this section we define a language for specifying such
strategies. We explore a number of combinators to combine simple strategies
into more complex ones. We start with a set of basic combinators, and gradually
move on to more powerful combinators.

4.1 Basic strategy combinators

Strategies are built on top of basic rules, such as the logic rules from the pre-
vious section. Let r be a rule, and let a be some term. We write r(a) to denote
application of r to a, which returns a set of terms. If this set is empty, we say
that r is not applicable to a, and that the rule fails.

The basic combinators for building strategies are the same as the building
blocks for context-free grammars. In fact, we can view a strategy as a grammar
where the rules form the alphabet of the language.

– Sequence. Two strategies can be composed and put in sequence. We write
s <?> t to denote the sequence of strategy s followed by strategy t.

– Choice. We can choose between two strategies, for which we will write
s <|> t. One of its argument strategies is applied.

– Units. Two special strategies are introduced: succeed is the strategy that
always succeeds, without doing anything, and fail is the strategy that al-
ways fails. These combinators are useful to have: succeed and fail are the
unit elements of the <?> and <|> combinators.



– Labels. With our final combinator we can label strategies. We write label ` s
to label strategy s with some label `. Labels are used to mark positions in a
strategy, and allow us to attach content such as hints and messages to the
strategy. Labeling does not change the language that is generated by the
strategy.

We can apply a strategy s to a term a, written s(a), just as we can apply some
rule. We make the informal description of the presented combinators precise by
giving a formal definition for each of the combinators:

(s <?> t)(a) = {t(b) | b← s(a)}
(s <|> t)(a) = s(a) ∪ t(a)
succeed(a) = {a}
fail(a) = ∅
(label ` s)(a) = s(a)

The rest of this section introduces more strategy combinators to conveniently
specify strategies. All these combinators, however, can be defined in terms of
the combinators that are given above.

4.2 Extensions

Extended Backus-Naur form (EBNF) extends the notation for grammars, and
offers three new constructions that one often encounters in practice: zero or
one occurrence (option), zero or more occurrences (closure), and one or more
occurrences (positive closure). Along these lines, we introduce three new strat-
egy combinators: many s means repeating strategy s zero or more times, with
many1 we have to apply s at least once, and option s may or may not apply
strategy s. We define these combinators using the basic combinators:

many s = (s <?> many s) <|> succeed
many1 s = s <?> many s
option s = s <|> succeed

Observe the recursion in the definition of many. Depending on the implemen-
tation one prefers, the many combinator results in an infinite strategy (which
is not at all a problem in a lazy programming language such as Haskell), or
this combinator gets a special treatment and is implemented as a primitive. It
is quite common for an EDSL to introduce a rich set of combinators on top of a
(small) set of basic combinators.

4.3 Negation and greedy combinators

The next combinators we consider allow us to specify that a certain strategy is
not applicable. Have a look at the definition of not, which only succeeds if the
argument strategy s is not applicable to the current term a:



(not s)(a) = {a} if s(a) = ∅
= ∅ otherwise

Observe that the not combinator can be specified as a single rule that either re-
turns a singleton set or the empty set depending on the applicability of strategy
s. A more general variant of this combinator is check, which receives a predicate
as argument (instead of a strategy) for deciding what to return.

Having defined not, we now specify greedy variations of many, many1, and
option (repeat, repeat1, and try, respectively). These combinators are greedy as
they will apply their argument strategies whenever possible.

repeat s = many s <?> not s
repeat1 s = many1 s <?> not s
try s = s <|> not s
s . t = s <|> (not s <?> t)

The last combinator defined, s . t, is a left-biased choice: t is only considered
when s is not applicable.

4.4 Traversal combinators

In many domains, terms are constructed from smaller subterms. For instance,
a logical expression may have several subexpressions. Because we do not only
want to apply rules and strategies to the top-level term, we need some addi-
tional combinators to indicate that the strategy or rule at hand should be ap-
plied somewhere. For this kind of functionality, we need some support from the
underlying domain. Let us assume that a function once has been defined on
a certain domain, which applies a given strategy to exactly one of the term’s
immediate children. For the logic domain, this function would contain the fol-
lowing definitions:

once s (p ∧ q) = {p′ ∧ q | p′ ← s(p)} ∪ {p ∧ q′ | q′ ← s(q)}
once s (¬p) = {¬p′ | p′ ← s(p)}
once s T = ∅

Using generic programming techniques [15], we can define this function once
and for all, and use it for every domain.

With the once function, we can define some powerful traversal combinators.
The strategy somewhere s applies s to one subterm (including the whole term
itself).

somewhere s = s <|> once (somewhere s)

If we want to be more specific about where to apply a strategy, we can instead
use bottomUp or topDown:

bottomUp s = once (bottomUp s) . s
topDown s = s . once (topDown s)



These combinators search for a suitable location to apply a certain strategy in a
bottom-up or top-down fashion, without imposing an order in which the chil-
dren are visited.

4.5 DNF strategies revisited

In Section 3, we presented three alternative strategies for turning a logical ex-
pression into disjunctive normal form. Having defined a set of strategy combi-
nators, we can now give a precise definition of these strategies in terms of our
combinators. We start with grouping the rules, as suggested by Figure 1:

basicRules = constants <|> definitions <|> negations <|> distribution
constants = ANDTRUE <|> ANDFALSE <|> ORTRUE <|> ORFALSE

<|> NOTTRUE <|> NOTFALSE

Definitions for the other groups are similar. The first two strategies can now
conveniently be written as:

dnfStrategy1 = repeat (somewhere basicRules)
dnfStrategy2 = label "step 1" (repeat (topDown constants))

<?> label "step 2" (repeat (bottomUp definitions))
<?> label "step 3" (repeat (topDown negations))
<?> label "step 4" (repeat (somewhere distribution))

The labels in the second strategy are not mandatory, but they emphasize the
structure of the strategy, and help to attach feedback to this strategy later on.
The third strategy can be defined with the combinators introduced thus far,
but we postpone the discussion and give a more elegant definition after the
reflections.

4.6 Reflections

Is the set of strategy combinators complete? Not really, although we hope to
have convinced the reader how easily the language can be extended with more
combinators. In fact, this is probably the greatest advantage of using an EDSL
instead of defining a new, stand-alone language. We strongly believe that our
combinators are sufficient for specifying the kind of strategies that are needed
in interactive exercise assistants that aim at providing intelligent feedback. Our
language is very similar to strategic programming languages such as Strat-
ego [29, 22], and very similar languages are used in parser combinator libra-
ries [18, 27], boiler-plate libraries [21], workflow applications [25], and data-
conversion libraries [12], which suggests that our library could serve as a firm
basis for strategy specifications.

One strategy combinator that we have not yet tackled is s <‖> t, which
applies the strategies s and t in parallel, i.e., interleaving steps from s with steps
from t. Although this combinator would not allow us to define more strategies,



it does help to specify certain strategies more concisely. We realize that applying
strategies in parallel might not be ideal when trying to teach procedural skills.

With parallel strategy combinators, we can give a concise definition for the
third DNF strategy, in which we reuse our second strategy. We assume to have
the left-biased variant of the parallel combinator at our disposal, for which we
will write s ‖> t. Similar to the left-biased choice operator (.), this strategy
applies a rule from s if possible. We first define a new and reusable combinator,
followed by a definition for the strategy:

whenever s t = repeat s ‖> t
dnfStrategy3 = whenever ((tautologies <|> contradictions) <?> step1)

dnfStrategy2

In the above definition, step1 is equal to repeat (topDown constants).
In Appendix A, we present a complete strategy that implements the Gaus-

sian elimination algorithm. This example is more involved, and shows, amongst
others, how rules can be parameterized, and how to maintain additional infor-
mation in a context while running a strategy.

5 Feedback on strategies

This section briefly sketches how we use the strategy language, as introduced
in the previous sections, to give feedback to users of our e-learning systems, or
to users of other e-learning systems that make use of our feedback services.We
have implemented several kinds of feedback. Most of these categories of feed-
back appear in the tutoring principles of Anderson [1], or in existing tools sup-
porting the stepwise construction of a solution to an exercise. No existing tool
implements more than just a few of these categories of feedback.

Feedback after a step. After each step a student performs, we check whether or
not this step is valid according to the strategy. Checking whether or not a step is
valid amounts to checking whether or not the sequence of steps supplied by the
student is a valid prefix of a sentence of the language specified by the context-
free grammar corresponding to the strategy. Hence, this is essentially a parsing
problem. As soon as we detect that a student no longer follows the strategy, we
have several opportunities to react on this. We can force the student to undo
the last step, and let the student strictly follow the strategy. Alternatively, we
can warn the student that she has made a step that is invalid according to the
strategy, but let the student proceed on her own path.

For steps involving argument- and variable-value computations we have to
resort to generators, which calculate the correct values of these components,
and check these values against the values supplied by the student. These gen-
erators are easily and naturally expressed in our framework.



Progress. Given an exercise and a strategy for solving the exercise, we determine
the minimum number of steps necessary to solve the exercise, and show this
information in a progress bar. Each time a student performs a correct step, the
progress bar is updated.

Strategy unfolding. We have constructed a binding with the MathDox system [11],
in which a student enters a final answer to a question. If the answer is incorrect,
we return a new exercise, which is part of the initial exercise. For example,
if a student does not return a correct disjunctive normal form of a logical ex-
pression, we ask the student to solve the simpler problem of first eliminating
all occurrences of true and false in the logical expression. After completing this
part of the exercise, we ask to solve the remaining part of the exercise.

Hint. A student can ask for a hint. Given an exercise and a strategy for solving
the exercise, we calculate the ‘best’ next step. The ‘best’ next step is an element
of the first set of the context-free grammar specified by the strategy. For the part
of the strategy that is not context-free, we specify generators for generating the
necessary variables and arguments. For example, when doing Gaussian elimi-
nation, our strategy specifies which rows have to be added or swapped when
asked for a hint. An alternative possibility for hints is to also use strategy un-
folding. Instead of giving the ‘best’ next step when asked for a hint, we tell the
student which sub-problem should be solved first.

Completion problems. Sweller, based on his cognitive load theory, describes a
series of effects and guidelines to create learning materials. The basic idea is
that a student profits from having example solutions played for him or her,
followed by an exercise in which the student fills out some missing steps in
a solution [26]. We can use the strategy for a problem to play a solution for a
student, and we can play all but the middle two (three, last two, etc.) steps, and
ask the student to complete the exercise.

Buggy strategies. If a step supplied by a student is invalid with respect to the
strategy specified, but can be explained by a buggy strategy for the problem, we
give the error message belonging to the buggy strategy. Again, this amounts to
parsing, not just with respect to the specified strategy, but also with respect to
known buggy strategies.

6 Conclusions

We have introduced a strategy language with which we can specify strategies
for exercises in many domains. A strategy is defined as a context-free gram-
mar, extended with non-context-free constructs for, for example, manipulating
variables and arguments. The formulation of a strategy as a context-free gram-
mar allows us to automatically calculate several kinds of feedback to students



incrementally solving exercises. Languages for specifying procedures or strate-
gies for exercises have been developed before. Our language has the same ex-
pressive power and structure; our main contribution is the advanced feedback
we can calculate automatically, and relatively easily. This is achieved by sepa-
rating the strategy language into a context-free language, the strategy combi-
nators, and a non-context-free language, the embedding as a domain-specific
language.

We have several plans for the future. We hope to create bindings of our feed-
back service with more existing tools, such as LeActiveMath. For this purpose,
we need to standardize the protocol for providing feedback. Also, we want
to apply our ideas to domains with less structure, such as computer program-
ming [3], software modelling, and maybe even serious games in which students
have to cooperate to achieve a certain goal. Our tools are going to be used in
several courses during 2008. We will collect data from the experiments, and
analyze and report on the results.
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A Gaussian elimination

In this appendix we present the implementation of a strategy to bring a matrix
into reduced echelon form: this procedure is also known as Gaussian elimi-
nation. Functions to manipulate matrices have been omitted, but most of the
interesting parts are given. We want to emphasize that the given code is a valid
and executable Haskell program.

A.1 Preliminaries

A matrix is represented by the abstract data type Matrix a, where the type vari-
able a is the type of the entries (typically rational numbers). Besides a matrix,
we maintain one variable for the j-th column and the number of rows that is
covered. This is the context in which we perform Gaussian elimination:

data MatrixInContext a = MIC{matrix :: Matrix a, columnJ :: Int, covered :: Int}

We define one helper-function that returns the matrix without its covered rows:

subMatrix :: MatrixInContext a→ Matrix a
subMatrix c = makeMatrix $ drop (covered c) $ rows $ matrix c

Gaussian elimination revolves around three elementary operations on rows:

rowScale :: Num a⇒ Int→ a→ Transformation (MatrixInContext a)
rowExchange :: Int→ Int→ Transformation (MatrixInContext a)
rowAdd :: Num a⇒ Int→ Int→ a→ Transformation (MatrixInContext a)

These three functions all return a transformation. Although we leave this type
undefined, it is useful to have the following type synonym in mind:

type Transformation a = a→ Maybe a

The three transformation functions work as follows: rowScale i a multiplies row
i by a non-zero number a, rowExchange i j interchanges the two rows i and j,
and rowAdd i j a adds a times row j to row i. Both rowScale and rowAdd require
that the entries of the matrix are values supporting the numerical operations
(+) and (∗), hence the type constraint Num a in their type signatures. Having
defined a context and three elementary operations, we are now ready to define
a strategy, and we will do so in a top-down fashion.

A.2 Strategy

The strategy consists of a forward pass, followed by a backward pass:

toReducedEchelon :: Fractional a⇒ Strategy (MatrixInContext a)
toReducedEchelon = label "Gaussian elimination" $

forwardPass <?> backwardPass



The forward pass is again a strategy, consisting of five steps. These steps have
to be repeated until this is no longer possible:

forwardPass :: Fractional a⇒ Strategy (MatrixInContext a)
forwardPass = label "Forward pass" $

repeat $ label "Find j-th column" ruleFindColumnJ
<?> label "Exchange rows" (try ruleExchangeNonZero)
<?> label "Scale row" (try ruleScaleToOne)
<?> label "Zeros in j-th column" (repeat ruleZerosFP)
<?> label "Cover up top row" ruleCoverRow

Each of the five steps uses one ad-hoc rule: ruleFindColumnJ, ruleExchangeNonZero,
etc. These rules will be discussed in detail in the next section. Observe that the
strategy combinators try and repeat are used in some of these steps. The type
class constraint Fractional a arises from ruleScaleToOne which requires division
(/) on the elements of the matrix.

The structure of the backward pass is quite similar to the forward pass:

backwardPass :: Fractional a⇒ Strategy (MatrixInContext a)
backwardPass = label "Backward pass" $

repeat $ label "Uncover row" ruleUncoverRow
<?> label "Sweep" (repeat ruleZerosBP)

A.3 Rules

We now define the seven rules that are mentioned in the forward and the back-
ward pass. We will first consider the rules that change the context (i.e., column j
and the number of covered rows) without changing the matrix. The smart con-
structor makeSimpleRule turns a function of type a → Maybe a into a Rule a1.
Each rule has a unique name.

ruleFindColumnJ :: Num a⇒ Rule (MatrixInContext a)
ruleFindColumnJ = minorRule $ makeSimpleRule "FindColumnJ" $

λc→ do let cols = columns (subMatrix c)
j ← findIndex (any ( 6≡ 0)) cols
return c{columnJ = j}

Column j becomes the first column with a non-zero entry (ignoring the covered
rows). We tag this rule as minor because it only changes the context. The two
other minor rules are for covering and uncovering one row:

ruleCoverRow :: Rule (MatrixInContext a)
ruleUncoverRow :: Rule (MatrixInContext a)

1 In our actual implementation we have overloaded all strategy combinators, for
instance, <?> and repeat. Hence, we don’t have to lift rules into strategies. Both
forwardPass and backwardPass are properly typed.



These functions simply increment and decrement the counter covered that is
stored in the context by one.

All the remaining rules operate on the matrix and use the elementary row
operations for this. These operations are, however, parameterized, and thus we
still have to supply the required arguments. For this purpose, we introduce the
combinator apply:

apply :: (a→ Transformation b)→ (b→ Maybe a)→ Transformation b

For each parameterized transformation we need a function that given a context
(of type b) returns the argument (of type a), or that fails. For convenience, we
define two derived combinators for transformations with multiple arguments:

apply2 f = apply (λ(x, y)→ f x y)
apply3 f = apply (λ(x, y, z)→ f x y z)

We now consider the steps of the forward pass. The following rule exchanges
(if necessary) the first row with another row that has a non-zero entry in the j-th
column:

ruleExchangeNonZero :: Num a⇒ Rule (MatrixInContext a)
ruleExchangeNonZero =

makeRule "ExchangeNonZero" $ apply2 rowExchange $
λc→ do let col = column (columnJ c) (subMatrix c)

i ← findIndex ( 6≡ 0) col
return (covered c, i + covered c)

The function makeRule turns a transformation into a rule, just like makeSimpleRule.
Next, we scale the first row to make the leading entry 1. This rule fails if this is
already the case.

ruleScaleToOne :: Fractional a⇒ Rule (MatrixInContext a)
ruleScaleToOne = makeRule "ScaleToOne" $ apply2 rowScale $

λc→ do let pv = entry (0, columnJ c) (subMatrix c)
return (covered c, 1 / pv)

The next rule introduces zeros in the j-th column during the forward pass. We
extract column j without the first row, and search for a row with a non-zero
entry. We then compute and return the right value for v such that after addition
we get a zero in this row.

ruleZerosFP :: Num a⇒ Rule (MatrixInContext a)
ruleZerosFP =

makeRule "Introduce zeros (forward pass)" $ apply3 rowAdd $
λc→ do let col = drop 1 $ column (columnJ c) (subMatrix c)

i ← findIndex ( 6≡ 0) col
let v = negate (col !! i)
return (i + covered c + 1, covered c, v)



The last rule introduces zeros during the backward pass, and is used multi-
ple times after an application of ruleUncoverRow. First we determine the pivot
position in the first uncovered row: let this be j. Then we search for a row that
has a non-zero entry in the j-th column (variable k), and we calculate the right
value for v to obtain a zero. Note that k can be one of the covered rows.

ruleZerosBP :: Num a⇒ Rule (MatrixInContext a)
ruleZerosBP =

makeRule "Introduce zeros (backward pass)" $ apply3 rowAdd $
λc→ do let j = length $ takeWhile (≡ 0) $ row 0 $ subMatrix c

col = column j (matrix c)
k ← findIndex ( 6≡ 0) col
let v = negate (col !! k)
return (k, covered c, v)

B Simplifying arithmetic expressions

In this appendix we present an implementation of another strategy: simplify an
arithmetic expression, including fractions. Instead of giving the entire imple-
mentation, we only highlight interesting parts. The complete implementation
can be found at the location mentioned in appendix A. We want to stress that
the given strategy is a possible strategy to bring an expression in a simplified
form. There may be other and perhaps more efficient strategies. Furthermore,
we limit ourselves to linear expressions. Before defining the strategy, we briefly
introduce the domain of arithmetic expressions.

B.1 Domain description

An arithmetic expression consists of additions +, subtractions −, multiplica-
tions ∗, divisions /, constants, and variables. Sub-expressions are surrounded
by parentheses. Our arithmetic expressions use constants of the same type, in
our case integers. An example expression:

((7 + 1) ∗ (3− 3)) / (−2 ∗ 1) + 1− 0 + x

The arithmetic expression domain can be described by the following grammar:

AExpr ::= Var | Con | AExpr ∗AExpr | AExpr / AExpr
| AExpr + AExpr | AExpr−AExpr | (AExpr)

Var ::= {a . . . z}+
Con ::= {−}?{0 . . . 9}+

The given grammar can be modeled in Haskell with the following datatype:

data AExpr = Var String
| Con Integer



| AExpr :∗: AExpr
| AExpr :/: AExpr
| AExpr :+: AExpr
| AExpr :−: AExpr

Note that this representation allows to construct invalid expressions2. Instead
of devising a more complex datatype that prohibits such expressions, we use a
generator3 that only produces valid expressions. The representation in AExpr of
the example given above is:

((Con 7 :+: Con 1) :∗: (Con 3 :−: Con 3)) :/:
(Con (−2) :∗: Con 1) :+: Con 1 :−: Con 0 :+: Var "x"

In order to determine if a given step is valid, we need to check if the given term
and the previous term are semantically the same. We need to be able to compare
arithmetic expressions for equivalence. The implementation of this equivalence
function is not trivial. The algorithm we use rewrites expressions to a ‘normal’
form and compares them syntactically. To rewrite an expression in a ‘normal’
form, the coefficient of every variable is calculated. Next the variables, along
with their coefficients, are ordered alphabetically, followed by the result of the
calculation of all constants (which may be a fraction).

B.2 Strategy

The strategy to simplify an arithmetic expression consists of three top-level
steps, which are repeated until they cannot be applied anymore. The top-level
steps are: eliminate all zeros, including multiplications by zero, followed by
eliminating all units, including additions with zero, and a calculation step, e.g.
add two constants. The definition of this strategy using the strategy combina-
tors is as follows:

toSimpleExpr :: NamedStrategy AExprInContext
toSimpleExpr = label "Simplify expression" $ repeatNS $

label "Eliminate zeros" eliminateZeros
<?> label "Eliminate units" eliminateUnits
<?> label "Calculatie" calculate

Let us examine the most interesting step, calculate, in more detail:

calculate :: Strategy AExprInContext
calculate = somewhere $

ruleMul <|> ruleDiv <|> ruleAdd <|> ruleSub
<|> ruleGCD
<|> ruleDistMul
<|> calcFrac

2 Like non-linear expressions and expressions containing a division by zero
3 The generator makes use of QuickCheck [10]



The calculate step consists of rules for the trivial operators (like addition and
multiplication), a rule for dividing both components of a fraction by their great-
est common divisor, a rule for distributing multiplication over addition and
subtraction and a sub-strategy called calcFrac, all combined with the choice com-
binator.

Notice that this step is not repeated, just one rule is applied somewhere, us-
ing the somewhere combinator. After applying a calculation rule, the expression
should be freed from units and zeros again before performing the next calcula-
tion step.

The sub-strategy, calcFrac:

calcFrac :: Strategy FracInContext
calcFrac = ruleCommonDenom

<?> (ruleAddFrac <|> ruleSubFrac)
<?> ruleGCD

consists of the following sequential steps: rewrite fractions to have a common
denominator, add or subtract two fractions, and reduce the resulting fraction in
the final step. The rules in this sub-strategy will be examined in more detail in
the next section.

The next derivation shows a simplification that follows the given strategy:

((7 + 1) ∗ (3− 3)) / (−2 ∗ 1) + 1− 0 + x
⇒ ((7 + 1) ∗ (3− 3)) / (−2 ∗ 1) + 1 + x
⇒ ((7 + 1) ∗ (3− 3)) /−2 + 1 + x
⇒ ((7 + 1) ∗ (3− 3)) /−2 + 1 + x
⇒ (8 ∗ (3− 3)) /−2 + 1 + x
⇒ (8 ∗ 0) /−2 + 1 + x
⇒ 0 /−2 + 1 + x
⇒ 0 + 1 + x
⇒ 1 + x

B.3 Rules

In this section we will highlight some rules that are used in the strategy for
simplifying arithmetic expressions. We will start with a simple rule, which is
used in the eliminateUnits step, that removes an addition with zero. Here we
use the makeRuleList function, which turns a list of transformations into a rule:

ruleUnitAdd :: AExprRule
ruleUnitAdd = makeRuleList "UnitAdd"

[ (x :+: Con 0) = x
, (Con 0 :+: x) = x
]

A more elaborate rule is ruleCommonDenom, which transforms the denomina-
tors of two fractions or a fraction and a constant, to a common one. This func-
tion uses pattern matching to select the correct transformation.



ruleCommonDenom :: AExprRule
ruleCommonDenom = makeSimpleRule "CommonDenom" commonDenom
where

commonDenom (Con x :/: Con y :+: Con v :/: Con w)
| y 6≡ w = return $ Con (x ∗w) :/: Con (y ∗w) :+:

Con (v ∗ y) :/: Con (y ∗w)
| otherwise = Nothing

commonDenom (Con x :/: Con y :−: Con v :/: Con w)
| y 6≡ w = return $ Con (x ∗w) :/: Con (y ∗w) :−:

Con (v ∗ y) :/: Con (y ∗w)
| otherwise = Nothing

commonDenom (Con x :+: Con v :/: Con w)
= return $ Con (x ∗w) :/: Con w :+: Con v :/: Con w

commonDenom (Con x :/: Con y :+: Con v)
= return $ Con x :/: Con y :+: Con (v ∗ y) :/: Con y

commonDenom (Con x :−: Con v :/: Con w)
= return $ Con (x ∗w) :/: Con w :−: Con v :/: Con w

commonDenom (Con x :/: Con y :−: Con v)
= return $ Con x :/: Con y :−: Con (v ∗ y) :/: Con y

commonDenom = Nothing

In the sub-strategy calcFrac the next rule, a choice between ruleAddFrac and
ruleSubFrac, is applied after the ruleCommonDenom rule has been applied. It
adds (subtracts) two fractions, which results in a single fraction.

ruleAddAExpr :: AExprRule
ruleAddAExpr = makeSimpleRule "AddAExpr" addAExpr
where

addAExpr (Con x :/: Con y :+: Con v :/: Con w)
| y ≡ w = return $ Con (x + v) :/: Con w
| otherwise = Nothing

addAExpr = Nothing

The last rule of the calcFrac strategy transforms a fraction into its reduced form.
If the fraction is not already reduced, the greatest common divisor is calculated,
which is used to divide both the numerator and denominator.

ruleGCD :: AExprRule
ruleGCD = makeSimpleRule "GCD" rGCD
where

rGCD (Con x :/: Con y)
| a ≡ 1 = Nothing
| otherwise = return $ Con (x ‘div‘ a) :/: Con (y ‘div‘ a)

where
a = gcd x y

rGCD = Nothing


