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Abstract: In this quantitative review, we specified the anatomical basis of brain activity reported in the
Temporo-Parietal Junction (TPJ) in Theory of Mind (ToM) research. Using probabilistic brain atlases, we
labeled TPJ peak coordinates reported in the literature. This was carried out for four different atlas
modalities: (i) gyral-parcellation, (ii) sulco-gyral parcellation, (iii) cytoarchitectonic parcellation and (iv)
connectivity-based parcellation. In addition, our review distinguished between two ToM task types (false
belief and social animations) and a nonsocial task (attention reorienting). We estimated the mean proba-
bilities of activation for each atlas label, and found that for all three task types part of TPJ activations fell
into the same areas: (i) Angular Gyrus (AG) and Lateral Occpital Cortex (LOC) in terms of a gyral atlas,
(ii) AG and Superior Temporal Sulcus (STS) in terms of a sulco-gyral atlas, (iii) areas PGa and PGp in
terms of cytoarchitecture and (iv) area TPJp in terms of a connectivity-based parcellation atlas. Beside
these commonalities, we also found that individual task types showed preferential activation for particu-
lar labels. Main findings for the right hemisphere were preferential activation for false belief tasks in AG/
PGa, and in Supramarginal Gyrus (SMG)/PFm for attention reorienting. Social animations showed stron-
gest selective activation in the left hemisphere, specifically in left Middle Temporal Gyrus (MTG). We dis-
cuss how our results (i.e., identified atlas structures) can provide a new reference for describing future
findings, with the aim to integrate different labels and terminologies used for studying brain activity
around the TPJ. Hum Brain Mapp 38:4788–4805, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

The TPJ

The term Temporo-Parietal Junction (TPJ) is often used
for labeling functional activations around the border of
parietal and posterior temporal lobes in multiple fields of
research. In the social cognitive neurosciences, TPJ activa-
tion is a prominent neural correlate of Theory of Mind
(ToM), that is, the human ability to ascribe mental states
like beliefs and desires to other people [see e.g., Molen-
berghs et al., 2016; Saxe and Kanwisher, 2003; Schurz
et al., 2014; Spreng et al., 2009; Van Overwalle, 2009]. A
crucial role of the right TPJ for mentalizing was found in
transcranial magnetic stimulation studies, showing that a
transient disruption of the area impairs reasoning about
the beliefs of others [Krall et al., 2016; Young et al., 2010].
Moreover, imaging studies [for meta-analysis, see Sugra-
nyes et al., 2011] found TPJ dysfunction in clinical disor-
ders that involve ToM impairments, as for example autism
[Yirmiya et al., 1998] and schizophrenia [Sprong et al.,
2007].

To date, there exists little consensus regarding microana-
tomical or macroanatomical landmarks that topographically
define the TPJ area [c.f. Bzdok et al., 2013a,b; Geng and
Vossel, 2013; Mars et al., 2011], hampering a precise com-
parison of theories and conclusions drawn about the neuro-
cognitive processes underlying TPJ activity across different
ToM studies, and across ToM and nonToM studies. Ana-
tomical characterizations of the TPJ are found sporadically
in the literature. We illustrate some of them in Figure 1A:
Characterizations have been ranging from a focal area
within one gyrus [Chambers et al., 2004] to an intersection
area between different gyri/sulci [Mort et al., 2003] and a
broader area comprising several gyri and sulci [Corbetta
et al., 2008; Decety and Lamm, 2007]. Figure 1A also shows
a historical example of an early mentioning of “temporo-
parietale” used to classify the locus of brain damage pro-
ducing a certain form of behavioral, cognitive and motor
dysfunctions [Kr€onlein, 1886; see also Stenger, 1881].

Aims of the Present Review

This review aims to shed light on the relation between
functional activations of the TPJ and underlying brain
structure in ToM research. More specifically, we take a
quantitative approach to test if functional activations of
the TPJ are systematically related to specific brain struc-
tures, or unsystematically distributed across diverse corti-
cal areas/lobes. We seek to advance knowledge regarding

function-structure correspondence in the TPJ for ToM by
addressing three important issues surrounding the topic:
(i) The anatomical level at which correspondence can be
found (ii) The role of interindividual variability in brain
anatomy (iii) The effects of stimuli and task-instructions
for probing ToM brain activation. In the following sec-
tions, we motivate each issue and lay out our approach for
addressing it.

i. The Anatomical Level at which

Correspondence Can be Found

The existence of a consistent relation between functional
activations of the TPJ and anatomical structures commonly
used for labeling is an open question for several reasons.
First, TPJ activations may not fall into a gyrus or several
gyri, but alternatively (or additionally) in sulci such as the
posterior Superior Temporal Sulcus (pSTS). In fact, both
the labels TPJ [e.g., Saxe and Kanwisher, 2003, Schaafsma
et al., 2015; Spunt and Adolphs, 2014; Spunt et al., 2016]
and pSTS [Carrington and Bailey, 2009; Frith and Frith,
2003, 2008; Lieberman, 2007; Singer, 2006] are highly popu-
lar for characterizing brain functions involved in social
cognition and ToM. However, since most ToM research
relied on volume-based brain analyses and gyral parcella-
tions, explicit distinctions between temporo-parietal gyri
and adjacent pSTS are rare [for a recent exception, see
Deen et al., 2015]. Nevertheless, it is estimated that around
55% [Destrieux et al., 2010] to 60% [Van Essen, 2005; Zilles
et al., 1997] of cortex are buried in sulci and lateral fossa.
To address this issue in our review, we label functional
activations not only with a gyral atlas, but also with a
sulco-gyral atlas based on freesurfer cortical surface analy-
sis (using a 3D transformed version, see Methods).

Second, it is an open question if functional specialization
of the TPJ area consistently relates to sulcal and gyral pat-
terns at all. While functional specialization of an area is
known to be strongly determined by cytoarchitectonic fea-
tures [e.g., Luppino et al., 1991], the relationship between
cytoarchitectonic borders and surrounding sulci and gyri
is rather loose for most multimodal association areas such
as the TPJ [e.g., Amunts et al., 1999; see also Amunts
et al., 2007]. To address this issue, we will specify the ana-
tomical basis of functional TPJ activations not only by
gyral and sulco-gyral atlases, but also in terms of a
cytoarchitectonic atlas [Caspers et al., 2006, 2008].

In addition, our labeling based on a cytoarchitectonic
atlas will be complemented by a recent connectivity-based
parcellation (CBP) atlas, grouping together voxels with a
common connectivity pattern to the rest of the brain
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Figure 1.

(A) Example anatomical specifications of the TPJ. Colored areas show

major gyri, according to a widely used macroscopic parcellation of the

MNI brain [Tzourio-Mazoyer et al., 2002]. LOC, Lateral Occipital Cor-

tex (area labeled LOC for consistency with some TPJ definitions, actu-

ally corresponds to Middle Occipital Gyrus); AG, Angular Gyrus; SMG,

Supramarginal Gyrus; IPL, Inferior Parietal Lobule; STG, Superior Tem-

poral Gyrus; pSTS, posterior Superior Temporal Sulcus. Image A.6.

from “€Uber die Trepanation bei Blutungen aus der A. meningea media

und geschlossener Sch€adelkapsel” by R.U. Kr€unlein, 1886, Deutsche

Zeitschrift f€ur Chirurgie, p. 216. Adapted with permission of Springer.

(B) Display of all TPJ relevant structures in different atlases. Structures

from gyral, cytoarchitectonic and connectivity-based parcellation atlases

are shown in MNI space, sulco-gyral atlas structures are shown in TAL

space. For display purposes, we thresholded the probabilistic atlas

maps of connectivity-parcellations and cytoarchitectonics at 0.50, of

gyral-parcellations at 0.25 and of sulco-gyral parcellations at 0.20.

[Color figure can be viewed at wileyonlinelibrary.com]
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[Johansen-Berg et al., 2004]. A consistent relation between
single-subject connectivity-patterns and task-based func-
tional activations was shown in previous studies [e.g.,
Osher et al., 2016; Saygin et al., 2016; Tavor et al., 2016].
Furthermore, a recent study showed high correspondence
between cytoarchitectonic and connectivity-based parcella-
tion areas [Henssen et al., 2016], which motivates the use
of both types of atlases in our review for obtaining a
robust and detailed characterization of brain anatomy of
the TPJ.

ii. The Role of Interindividual Variability in Brain

Anatomy

Another issue we address is that TPJ shows high interin-
dividual variability in macroanatomy [e.g., Segal and Pet-
rides, 2012; Zlatkina and Petrides, 2014], which is
characteristic for multimodal association areas of the cor-
tex [Van Essen, 2005]. This could obscure an accurate ana-
tomical characterization of functional activations found in
the area. The present review tackles this problem by using
probabilistic atlases of the different imaging modalities we
motivated above [Caspers et al., 2006, 2008; Desikan et al.,
2006; Destrieux et al., 2010; Mars et al., 2012]. These atlases
are probabilistic in the sense that they explicitly incorpo-
rate measurements of interindividual variability in struc-
ture at any coordinate [Devlin and Poldrack, 2007].
Concretely, this means that one coordinate can be proba-
bilistically assigned to multiple areas, that is, probability
values indicate in how many subjects the coordinate is
referring to particular areas.1

iii. The Effects of Stimuli and Task-Instructions

for Probing ToM Brain Activation

The third issue we address is the role of stimulus-type
and task-instructions in probing brain activity for ToM.
We recently found in a voxel-wise imaging meta-analysis
that activation in posterior temporo-parietal areas is
largely distinct for different ToM task types [Schurz et al.,
2014]. In the present review, we follow up this finding by
systematically studying the underlying anatomy. Compar-
ing anatomy between different ToM task types adds a
new level of detail to insights from earlier reviews [e.g.,
Bzdok et al., 2012; Decety and Lamm, 2007; Geng and Vos-
sel, 2013], where different experimental paradigms have
been pooled together to identify common activation across
all ToM tasks.

Concretely, we will compare findings from the ToM
tasks false belief and social animations. Research shows
that these tasks activate slightly different parts of the
temporo-parietal cortex [e.g., Bahnemann et al., 2010; Gob-
bini et al., 2007; Schurz et al., 2014], which was linked to
conceptual differences between the tasks: False belief stud-
ies present stories about persons with incorrect assump-
tions or beliefs about a state of affairs. Such stories are
thought to represent a prototypical and theoretically
important test of ToM reasoning abilities [e.g., Saxe and
Kanwisher, 2003; Saxe et al., 2004]. In contrast, social ani-
mations are intended [Castelli et al., 2000, 2002] as a low-
level alternative to the verbal stimuli used in many ToM
tasks. In social animation tasks, a movie shows simple
geometrical shapes (e.g., two triangles) moving across the
display and portraying actions that are typical for an
intentional or social interaction. Examples for both false
belief and social animations tasks are given in Figure 2.

Finally, we not only seek to find out how well our label-
ing approach characterizes TPJ anatomy for ToM, but also
in how far this characterization is distinct from what is
found for nonsocial tasks. An important debate over the
last decade regards the TPJ’s role in attention versus socio-
cognitive processes [Decetyand Lamm, 2007; Igelstr€om
et al., 2016; Krall et al., 2015, 2016; Kubit and Jack, 2013;
Lee and McCarthy, 2016; Mitchell, 2008; €Ozdem et al.,
2017; Scholz et al., 2009; see also Carter and Huettel, 2013].
Therefore, we include attention reorienting tasks in our
review, allowing us to contrast the anatomical characteri-
zation for ToM tasks to that found for a nonsocial task,
which requires the redirection of attention toward a target
stimulus after a breach of expectation. By specifying the
anatomical basis of TPJ activations for ToM and attention
reorienting, we provide a starting point for studying over-
laps and differences in TPJ activation reported for ToM
and many other research fields outside the scope of this
review, such as reasoning about actions [e.g., Molenberghs
et al., 2009; Spunt et al., 2016; Van Overwalle, 2009], empa-
thy [e.g., Bzdok et al., 2012; Lamm et al., 2011; Singer and
Lamm, 2009], episodic memory [e.g., Spreng et al., 2009],
semantic processing [e.g., Binder et al., 2009], visuospatial
navigation [e.g., Spreng et al., 2009], reading and compre-
hension [e.g., Seghier, 2013], bodily awareness [e.g., Blanke
et al., 2002] or inhibition in go/no-go tasks [e.g., Nee et al.,
2007].

Questions and Hypotheses

We laid out outstanding issues for finding structure-
function correspondence in the TPJ, and presented how
our review will address them by a multiple-modality and
probabilistic atlas labeling approach, focusing on two dif-
ferent ToM task types and a task type outside the social
domain. Our review will cover functional activity for both
left and right TPJ, although the right TPJ tends to be dis-
cussed more frequently in the Theory of Mind literature

1Note that while all atlases in our review are “probabilistic” in the
sense that they explicitly measured interindividual variability in
brain structure, they are based on different sources of neurobiologi-
cal evidence and analysis approaches for generating underlying
maps in individuals (e.g., observer independent microstructural
analysis for cytoarchitectonic maps; see Schleicher et al., 1999; for
reviewAmunts et al., 2007).
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[e.g., Bzdok et al., 2013b; Corbetta et al., 2008; Decety and
Lamm, 2007; Krall et al., 2015, 2016; Kubit and Jack, 2013;
Saxe and Kanwisher, 2003]. Our main interest is to provide
an evaluation of the following questions: (i) Within each
task type, do activations labeled as “TPJ” fall reliably into
individual anatomical structures, or are they distributed
broadly and with high variance over the temporo-parietal
cortex? (ii) When comparing different task types, do acti-
vations labeled as “TPJ” fall in the same or into different
anatomical structures?

METHODS

Atlases for Labeling

Gyral and sulco-gyral anatomy

For labeling functional activations, we used two macroana-
tomical atlases. First, we used a standard macroanatomical
(i.e., gyral parcellation) brain atlas (Harvard-Oxford Cortical
Structural Atlas) [Desikan et al., 2006]. Second, we used a
sulco-gyral parcellation atlas that is based on a freesurfer cor-
tical surface analysis [Dale et al., 1999; Fischl et al., 1999].
The approach for this atlas [Destrieux et al., 2010] was to first
define gyri based on a 3D reconstruction of the cortex, and
then inflate this model to label sulci. As activation coordi-
nates reported in this review have been generated by 3D
volume-based frameworks, we use a 3D transformed Talair-
ach space version of the sulco-gyral atlas, referred to as
TT_desai_ddpmaps in AFNI (https://afni.nimh.nih.gov/
afni/) and provided by R. Desai and colleagues [e.g., Lieben-
thal et al., 2014]. The map is shown Figure 1B.

Cytoarchitecture

We additionally used a cytoarchitectonic atlas, which is
based on segregating cortical areas according to the type
and organization of cells they contain. Cytoarchitectonics
have been found to closely correspond to functional spe-
cialization of an area [e.g., Luppino et al., 1991]. At pre-
sent, cytoarchitectonic maps do not cover the whole brain,
and mapping is still in progress as it is a time-consuming
process [Amunts et al., 2007]. For currently available maps
see the SPM Anatomy Toolbox [Eickhoff et al., 2005,
www.fil.ion.ucl.ac.uk/spm/ext/]. With respect to areas
surrounding the TPJ, cytoarchitectonic maps are to date
available for the Inferior Parietal Lobule (IPL), and not for
posterior temporal lobe structures such as posterior supe-
rior temporal gyrus and sulcus. As shown in Figure 1B,
the IPL can be divided into into seven subareas based on
cytoarchitectonic features [Caspers et al., 2006, 2008]. In
addition to differences in cytoarchitecture, these seven
subareas of IPL also show different white-matter connec-
tivity fingerprints [Caspers et al., 2011], and have different
patterns of neurotransmitter receptor densities [Caspers
et al., 2013].

Figure 2.

Examples for the three task types reviewed. (A). False belief

tasks presenting written stories about false belief (left) versus

false photo controls (right). (B). Social animations presenting

movies of geometrical shapes that portray a social interaction

(left: mother playing with child) or purely mechanical move-

ments (right: billiard-balls moving on the table). (C). In the criti-

cal experimental condition, attention reorienting tasks ask for

redirecting attention towards a target stimulus after a breach of

expectation (here: invalid cueing condition). [Color figure can be

viewed at wileyonlinelibrary.com]
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Connectivity-based parcellations

Connectivity-based parcellation analysis [CBP,
Johansen-Berg et al., 2004; for reviews see Eickhoff et al.,
2015; Mars et al., 2016] groups voxels into an area if they
show a common pattern of structural brain connectivity
with the rest of the brain—distinct from that in neighbor-
ing voxels. In the present review, we use connectivity-
based parcellation atlases of TPJ and adjacent IPL that
are based on diffusion weighted imaging data [Mars et
al., 2011, 2012]. As illustrated in Figure 1B, the TPJ is
divided into three subareas TPJa, TPJp and IPL, which
are linked to distinct brain networks. Further
connectivity-based parcellations of the TPJ have been per-
formed recently [Bzdok et al., 2013b; Igelstr€om et al.,
2015; Yeo et al., 2011, see also Uddin et al., 2010]. For
example, Bzdok et al. [2013b] relied on resting-state fMRI
and meta-analytic coactivation data for connectivity-
parcellation, and results are in good correspondence to
Mars et al. [2012] with respect to an anterior/posterior
division in the TPJ—Bzdok et al.’s [2013b] parcellation is
shown in Figure 1A. All atlases used in the review were
accessed with FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslview/)
or AFNI (https://afni.nimh.nih.gov/afni/) software.

Literature Samples

We analyzed the literature samples from our meta-
analysis on ToM [Schurz et al., 2014] and a meta-analysis
on attention reorienting [Kubitand Jack, 2013]. We
included 15 studies using false belief tasks, 14 studies pre-
senting social animations, and 15 studies presenting atten-
tion reorienting tasks [for further details see Kubit and
Jack, 2013; Schurz et al., 2014]. All studies reported activa-
tion coordinates in standard space, and whenever neces-
sary (different with each atlas we used for labeling), we
converted from/to MNI or TAL space by using a matrix
transformation by Lancaster et al. [2007].

For the ToM task types, literature samples were
retrieved by a database search with the key words (i)
“neuroimaging” or “fMRI” or “PET” and (ii) “theory-of-
mind” or “mentalizing” or “mindreading,” and addition-
ally by considering studies cited in earlier ToM reviews
[e.g., Bzdok et al., 2012; Denny et al., 2012; Mar, 2011;
Murray et al., 2012; Perner and Leekam, 2008; Spreng
et al., 2009; Van Overwalle, 2009; Van Overwalle and Baet-
ens, 2009].

Studies were included in the false belief sample if they pre-
sented written stories about a person’s false belief (see Fig.
2A). Activation coordinates were only taken from contrasts
between false belief versus false photo control stories. In this
closely matched type of control condition, participants read
stories where they have to represent the outdated content of
a physical representation. Studies were included in the social
animations category, if they presented movies with simple
geometrical shapes (e.g., triangles) that portrayed a social or
intentional interaction (Fig. 2B). Activation coordinates were

taken from contrasts between movies showing movements
that characterize social/intentional interactions and movies
showing random or purely mechanical movements.

For attention reorienting tasks, a database search with
the key-words (i) “fMRI” or “PET” and (ii) “reorienting”
or “posner” was performed, and additionally studies cited
in earlier attention reorienting reviews were considered
[Corbettaand Shulman, 2002; Corbetta et al., 2008; Decety
and Lamm, 2007].

Tasks were considered as attention reorienting, if partici-
pants had to redirect attention towards a target stimulus
after a breach of expectation (see Fig. 2C). Activation coor-
dinates were taken from contrasts that compared partici-
pants having to redirect attention after being misinformed
about the location of an upcoming target stimulus versus
participants being correctly informed about the location of
the upcoming target.

Procedure: Definition of TPJ and Steps for

Labeling

Figure 3 illustrates the steps of our review. The first step
was forming a “democratic” common denominator of the
label TPJ. We went through results and discussion sections
of individual papers and looked for coordinates of activa-
tions that were referred to as “Temporo-Parietal Junction”
or “TPJ.” We collected all these coordinates and labeled
them with a standard macroanatomical brain atlas that is
covering all temporal and parietal cortical territory (Har-
vard-Oxford Cortical Structural Atlas) [Desikan et al.,
2006]. That is, we assigned the most probable label to each
coordinate, resulting in a list of all atlas structures referred
to as “TPJ” (see Fig. 3—Step 2): Angular Gyrus (AG), pos-
terior division of Supramarginal Gyrus (SMGpd), superior
division of Lateral Occipital Cortex (LOCsd), and temporo-
occipital part of Middle Temporal Gyrus (MTGtop). In Step
3, we took into account that not all authors in the litera-
ture use the label “TPJ” for their findings, so some might
be still missing. Therefore, in Step 3 we went back to all
papers not mentioning the term “TPJ” and looked for
additional coordinates that fell into the atlas structures
defined in the step before (i.e., in Step 2). Taking together
findings from Steps 2 and 3, we found 109 coordinates
that could be labeled as “TPJ” (41 Left, 68 Right). These
consisted of 36 coordinates from false belief tasks (18L, 18
R), 32 from social animations (17 L, 15 R) and 41 from
attention reorienting tasks (6 L, 35 R). In Step 4, we started
our actual probabilistic labeling procedure with the differ-
ent atlases: For every coordinate, we determined the prob-
ability for falling into each area of our probabilistic atlases.
This procedure produces multiple probabilities per coordi-
nate—(i.e., one location can be linked to multiple atlas
labels with varying probabilities, e.g., the MNI coordinate
x5 45, y5 54, z 530 is 15% Angular Gyrus, 7% Supramar-
ginal Gyrus, etc.)
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Statistical Analysis

Atlas labeling

Separately for each task type, we estimated for each
atlas area the mean probability of activation (and 95% con-
fidence interval) using percentile bootstrapping analysis
[see Efron and Tibshirani, 1993] with 1,000 replicates.
Analysis was carried out with the IBM SPSS bootstrapping
module (22.0). We used bootstrapping as it is robust in
case of small samples and non-normal data distributions.
To evaluate the main questions we laid out in the Intro-
duction, we carried out two analyses. First, we tested for
the three task types separately if the mean probability of
activation found for each label is different from 0%. This
indicates if a label is systematically associated with the
activations reported for a task type. The statistical criterion
for significance we applied was that the 95% confidence
interval of the mean does not include a probability value
of 0 (all values were rounded off to whole numbers). This
criterion for confidence intervals can be taken to provide

the same evidential standard as null hypothesis testing at
a 5% significance-level [Tryon, 2001]. Second, we tested if
mean probabilities are significantly different between any
two task types which indicates that a label is more
strongly associated with activations for one task-type than
the other. We carried out pairwise comparisons where we
tested if the 95% confidence intervals of the means were
overlapping or not.

Spatial variability. Additionally, we calculated for each
coordinate the mean Euclidean distance to all neighbors
within the same task type and hemisphere. To test whether
the spatial variability differed significantly between the task
types, we used the same bootstrap procedure and statistical
parameters as for the previous analysis.

Neurosynth Custom Meta-Analysis

For the discussion of our results, we also carried out neuro-
synth (www.neurosynth.org) custom meta-analyses for the

Figure 3.

Illustration of the steps of our review. Step 1: Going through

results and discussion sections of individual papers and collect

coordinates that are referred to as “TPJ.” Step 2: Looking-up all

coordinates up in a standard gyral atlas (Harvard-Oxford) and

forming an outline of all targeted areas (common denominator

of TPJ). Step 3: Going back to papers not mentioning the TPJ

and looking for additional coordinates falling into the common

denominator structures. Step 4: Carrying out probabilistic label-

ing with four different atlases. [Color figure can be viewed at

wileyonlinelibrary.com]
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labels “TPJ,” “pSTS” and “Wernicke’s area” (custom meta-
analyses were performed because the default neurosynth
meta-analysis database currently does not cover all of the
three terms). We searched the pubmed database (https://
www.ncbi.nlm.nih.gov/pubmed, October 2016) for all
articles mentioning in their title or abstract the terms (i)
“temporo-parietal junction” AND “fmri,” (ii) “posterior
superior temporal sulcus” AND “fmri” and (iii) “wernicke’s
area” AND “fmri.” For each pubmed results list, we searched
for all corresponding study entries in the neurosynth data-
base, and created custom meta-analyses for all found
matches. This resulted in (i) a TPJ meta-analysis (85 studies,
neurosynth ID: 24e0f983-ede4–4c5c), (ii) a pSTS meta-
analysis (97 studies, neurosynth ID: 3d5b8bc7–4eed-49b8)
and (iii) a Wernicke’s area meta-analysis (19 studies, ID:
58aeb86a-f112–4a17). For results we show reverse inference
maps for the three terms (i.e., likelihood that label is used
given presence of activity at a given voxel in the brain) at a
thresholded of P< 0.01 FDR corrected. Note that for the term
Wernicke’s area we found considerably fewer studies, and
therefore meta-analytic results should be taken with caution.

RESULTS

For sake of brevity, we only mention findings in the text
with an activation probability (or difference in activation
probabilities) of 10% or more. However, detailed results
are given in Table I. An overview of all atlases and struc-
tures is given in Figure 1B.

Gyral Anatomy

Results for task types separately

False belief. Dark blue areas in Figure 4A show that acti-
vation probabilities were highest in bilateral Angular
Gyrus (AG) and bilateral Lateral Occipital Cortex, superior
division (LOCsd), see Table I for details.

Social animations. Light blue areas in Figure 4A show
that in both hemispheres, activation probabilities were
highest in AG, LOCsd and the Middle Temporal Gyrus,
temporo-occipital part (MTGtop). In the left hemisphere,
activation probabilities were also high for the Supramargi-
nal Gyrus, posterior division (SMGpd).

Attention reorienting (RH only). Similar to the pattern
for social animations, activation probabilities were highest
in right AG, SMGpd and LOCsd.

Task differences

Higher activation probabilities for false belief compared
to social animations were found in right AG, see Table I
for details. In contrast, activation probabilities were higher
in bilateral MTGtop for social animations compared to false
belief. Higher probabilities for false belief compared to

attention reorienting were found in right AG, and the
opposite pattern was found in right SMGpd.

Sulco-Gyral Anatomy

Results for task types separately

False belief. Figure 4B shows that activation probabilities
for this task were highest in bilateral Superior Temporal
Sulcus (STS) and Angular Gyrus (AG). In the right hemi-
sphere activation probability was slightly higher for the
STS, and in the left hemisphere slightly higher for AG.

Social animations. In the right hemisphere, activation
probabilities were highest in AG and STS. In the left hemi-
sphere, they were highest in AG and Middle Temporal
Gyrus (MTG).

Attention reorienting (RH only). Activation probabilities
were highest in AG and STS.

Task differences

Results of pairwise comparisons in Figure 4B show that
false belief tasks had higher activation probability com-
pared to social animations in left STS. The opposite pattern
was found in left MTG. False belief compared to attention
reorienting showed higher probabilities in right AG and
right STS. No differences were found between social ani-
mations and attention reorienting.

Cytoarchitecture

Figure 1B shows all parietal structures of the Juelich
Histological Atlas where we found coordinates labeled as
TPJ. To date, a Juelich Histological Atlas for the posterior
temporal lobe has not yet been released, so we focus on
parietal areas only.

Results for task types separately

False belief. As shown in Figure 5A, most prominent
findings were bilateral activation in areas PGp and PGa.
On the left side, activation probabilities were also high in
area PFm.

Social animations. For this task type, activation probabil-
ities were highest in areas PGa and PGp bilaterally.

Attention reorienting. Highest probabilities for attention
reorienting were found in PGa and PFm.

Task differences

Results of pairwise comparisons in Figure 5A show that
activation probabilities were higher in right PGa for false
belief compared to both social animations and attention
reorienting. In contrast, attention reorienting had higher
probabilities for activations in right PFm compared to both
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false belief and social animations. In the left hemisphere,
probabilities in PGa were higher for false belief compared
to social animations.

Connectivity-Based Parcellation (RH Only)

Probabilistic atlases of white matter connectivity-based
parcellation of the right TPJ [Mars et al., 2012], right IPL
and SPL [Mars et al., 2011] were used, see Figure 1B. Mars
et al. [2012] defined the outlines of TPJ by the intra-
parietal sulcus (IPS) dorsally, STS ventrally, and MNI

coordinates y5232 and y5264 on the anterior-posterior
axis. Similarly, the outline of lateral parietal cortex was
also based on macroanatomical boundaries.

Results for task types separately

False belief. As shown in Figure 5B, activation probabili-
ties for false belief tasks were highest for the posterior par-
cellation of TPJ – TPJp, and a more anterior parcellation of
the inferior parietal lobule – IPL B.

Figure 4.

Results of probabilistic labeling of TPJ activations based on (A)

gyral anatomy and (B) sulco-gyral anatomy. Polar plots show

mean activation probabilities (%), that is, the chance that

reported peaks are falling into a particular structure. Black

dashes indicate that activation probability is significantly above

chance for an area. Significant probability differences are only

shown if exceeding 10%, for a more detailed report, see Table I.

[Color figure can be viewed at wileyonlinelibrary.com]
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Social animations. Activation probabilities were again
highest for TPJp, see Figure 5B.

Attention reorienting. For this task type, probabilities
were highest in TPJp, TPJa, IPL C and IPL E.

Task differences

For connectivity parcellations, we found higher activa-
tion probabilities in area TPJp for false belief compared to
attention reorienting. Moreover, activation probabilities in
IPL B were higher for false belief compared to social ani-
mations. Activation probabilities in IPL C were higher for
attention reorienting compared to social animations.

Spatial Variability

The spatial variability within task type (mean of the
Euclidian distances from each coordinate to all other coor-
dinates in the same hemisphere) differed significantly
between false belief, social animations and attention reor-
ienting. The smallest variability was found bilaterally for
false belief (RH: M5 9.9, CI5 [8.56; 11.76], LH: M5 12.95,
CI5 [11.77; 14.12]). Social animations showed a signifi-
cantly higher spatial variability compared to false belief
for both left and right TPJ (RH: M5 23.45, CI5 [20.68;
26.40], LH: M5 24.33, CI5 [21.59; 27.47]). Largest variabil-
ity was found for attention reorienting, differing signifi-
cantly from both other task types (RH: M5 28.59,

Figure 5.

Results of probabilistic labeling of TPJ activations based on (A) cytoarchitecture and (B) a

connectivity-based parcellation. Black dashes indicate that activation probability is significantly

above chance for an area. Significant probability differences are only shown if exceeding 10%, for

a more detailed report, see Table I. [Color figure can be viewed at wileyonlinelibrary.com]
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CI5 [26.95; 30.27]). Details on spatial variability are given
in Supporting Information Table I.

DISCUSSION

We used probabilistic brain atlases to characterize the
anatomical basis of brain activation labeled as TPJ. These
atlases [Caspers et al., 2006, 2008; Desikan et al., 2006; Des-
trieux et al., 2010; Mars et al., 2012] are taking into account
interindividual variability in anatomy when labeling brain
coordinates, which addresses the issue of high interindi-
vidual variability in macroanatomy of the TPJ.

Main Findings of Probabilistic Atlas Labeling

Figure 6A shows right hemispheric areas where we
found commonalities or differences in our review, and
illustrates the overlap between them for the three MNI-
space atlases we used (gyral-, cytoarchitecture-, connectiv-
ity-based parcellation). Figure 6B additionally illustrates
main areas identified by the sulco-gyral atlas (shown sepa-
rately as provided in TAL space).

Main commonalities

In the gyral atlas, common TPJ activations were mainly
assigned to bilateral Angular Gyrus (AG) and the Lateral
Occipital Cortex, superior division (LOCsd). In the sulco-
gyral atlas, we found activation mainly in bilateral AG and
Superior Temporal Sulcus (STS). The only exception to these
findings was little activation in left STS for social animations.
In terms of cytoarchitecture, common activation was found
in bilateral areas PGp and PGa, in particular for ToM tasks
(whereas relatively little activation was found in PGp for
attention reorienting). For connectivity-based parcellations,
common activation fell into right TPJp for all task types.

Main differences

Main differences between ToM tasks. In the left hemi-
sphere, TPJ activation for false belief compared to social
animations was more strongly linked to area STS in the
sulco-gyral atlas and area PGa in the cytoarchitectonic
atlas. In the gyral atlas, we only observed nonsignificant
trend in left AG and LOCsd. In the right hemisphere, acti-
vation for false belief> social animations was linked to the
AG in the gyral atlas, area PGa in the cytoarchitectonic
atlas, and IPL B in the connectivity-based parcellation
atlas. In the sulco-gyral atlas, AG was found for this com-
parison only as a nonsignificant trend.

In contrast, activation for social animations compared to

false belief was linked to right MTG in the gyral atlas, and

left MTG in both the gyral and the sulco-gyral atlas. No

such corresponding differences were detected in the other

two atlases, which could be due to the facts that (i) both

atlases are not covering (all) posterior temporal structures

and (ii) the connectivity-parcellation atlas is only covering

the right hemisphere.

Main differences between ToM and attention. TPJ activa-
tion for false belief compared to attention reorienting fell
more strongly into right AG (gyral and sulco-gyral atlas)
and right STS (sulco-gyral atlas only). In terms of cytoarch-
itecture, stronger activations for false belief> attention
reorienting fell into right area PGa, and in terms of
connectivity-parcellations to right TPJp. On the other
hand, activation for attention reorienting was more closely
linked to right SMG in terms of gyral anatomy (compared
to false belief), in right area PFm in terms of cytoarchitec-
ture (compared to false belief and social animations) and
in right IPLC in terms of connectivity parcellations (com-
pared to social animations).

Sulco-Gyral Atlas

Our sulco-gyral atlas findings are of interest, as in ToM
research the two labels “TPJ” [e.g., Saxe and Kanwisher,
2003; Schaafsma et al., 2015; Spunt and Adolphs, 2014; Spunt
et al., 2016] and “pSTS” [Carringtonand Bailey, 2009; Frith
and Frith, 2003, 2008; Lieberman, 2007; Singer, 2006] have
been prominently linked to social cognition. In some
accounts, TPJ and pSTS were defined as two distinct areas of
the ToM/social-cognition network [see e.g., Adolphs, 2009;
Carrington and Bailey, 2009; Gobbini et al., 2007; Koster-Hale
and Saxe, 2013; Saxe et al., 2004; Van Overwalle and Baetens,
2009], while other accounts made a less strong distinction
[e.g., Carter and Huettel, 2013; Corbetta et al., 2008; Decety
and Lamm, 2007; Heyes and Frith, 2014].

Since most ToM studies used gyral brain parcellations
for labeling, they did not distinguish between the pSTS
and surrounding gyri. One recent exception is a study by
Deen et al. [2015], where a surface-based analysis of
single-subject fMRI data was performed. The authors
could show an anterior–posterior organization of the STS
for different social tasks. The most posterior part of STS,
adjacent to the IPL, showed selective activation for a ToM
task (false belief) compared to other social but non-ToM
tasks studied. Results from our review are consistent with
this aspect of Deen et al.’s [2015] findings, as we also
show that a considerable part of activation coordinates for
false belief tasks fall into STS bilaterally.

With respect to the two ToM tasks we analyzed in our
review, previous researchers linked activity for social ani-
mations to “pSTS” and activity for false belief to “TPJ”
[Bahnemann et al., 2010; Gobbini et al., 2007; Saxe, 2010].
Interestingly, we found equally high probabilities of activa-
tion in right STS for both tasks, and only a nonsignificant
trend was found in right Angular Gyrus (AG) for false
belief> social animations (in the sulco-gyral atlas). How-
ever, when considering a gyral atlas (i.e., leaving out sulcal
information), this difference in right AG reached signifi-
cance. In the left hemisphere, we found higher activation
probability for false belief compared to social animations in
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Figure 6.

(A) Illustration of the overlap of main findings in different atlases

(MNI space). Three columns show overlaps for three different

saggital sections. Within each column, areas in purple show the

overlap between gyral anatomy (blue) and cytoarchitecture (red),

areas in turquoise show the overlap between gyral anatomy

(blue) and connectivity-parcellations (green) and areas in yellow

show the overlap between cytoarchitecture (red) and

connectivity-parcellations (green). (B) Main findings in the sulco-

gyral atlas, illustrated in red (TAL space). (C) Overlap between

main findings from atlas review in gyral anatomy (black outlines)

and neurosynth meta-analyses for the labels “TPJ” (red), “pSTS”

(green) and “Wernicke’s Area” (blue). For display purposes, we

thresholded the probabilistic atlas maps of connectivity-

parcellations and cytoarchitectonics at 0.50, of gyral-parcellations

at 0.25 and of sulco-gyral parcellations at 0.20. [Color figure can

be viewed at wileyonlinelibrary.com]
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the STS. However, the opposite task-difference was found
in left middle temporal gyrus (MTG), an area lying just lat-
eral/ventral to the STS in the sulco-gyral atlas.

Cytoarchitecture and Connectivity-Based Parcel-

lation Atlases

Cytoarchitectonic and connectivity-based parcellation
atlases provide additional information about the functional
organization of the TPJ, as both modalities have been found
to closely reflect regional information processing. With
respect to cytoarchitecture, combined electrophysiological
and architectonic studies with experimental animals found
that response properties of neurons change at the border
between cytoarchitectonic areas [e.g., Luppino et al., 1991].
With respect to connectivity, studies showed that single-
subject connectivity patterns from diffusion weighted imag-
ing [Osher et al., 2016; Saygin et al., 2012, 2016] and resting-
state fMRI [Tavor et al., 2016] predict if an area is activated
during task-based fMRI on a voxel-by-voxel level; this find-
ing that was replicated across several cognitive (task)
domains. Connectivity-based parcellations have been found
recently not only within the TPJ [Bzdok et al., 2013b; Mars
et al., 2012, 2013], but also within several other areas of the
social brain, such as the medial prefrontal cortex [Bzdok
et al., 2013a; Eickhoff et al., 2016; Neubert et al., 2015; Sallet
et al., 2013], posterior medial cortex/precuneus [Bzdok
et al., 2015; Margulies et al., 2009], and the inferior parietal
lobule [Bzdok et al., 2016; Wang, et al., 2016, 2017].

In terms of cytoarchitectonics and connectivity-based par-
cellations, we found that right PGa/TPJp was particularly
strongly linked to false belief tasks, whereas attention reor-
ienting was more strongly linked to right PFm/IPLC. Mars
et al. [2012] and Bzdok et al. [2013b] found that TPJp is pri-
marily connected to inferior parietal areas, precuneus,
medial prefrontal cortex and middle temporal gyrus. Using
meta-analytic decoding, Bzdok et al. [2013b] further showed
that TPJp’s connectivity network is mainly engaged in the
cognitive domains ToM, memory encoding and episodic
memory retrieval. This supports the idea that part of TPJ’s
functioning in ToM builds on a process shared with epi-
sodic memory retrieval, as put forward in accounts of the
areas function in terms of self-projection [Bucknerand Car-
roll, 2007; Spreng et al., 2009] or processing of internally
generated information [Bzdok et al., 2013b; see also Kanske
et al., 2015]. Results from the present review suggest that
this common process hosted by TPJp is more strongly
linked to false belief tasks than the other tasks in our review
(attention reorienting and social animations—although only
as a nonsignificant trend for the latter).

Relation to Other Labels for Parietal and

Posterior Temporal Activations

In Figure 6C we illustrate the relation between key areas
found in our review (for the gyral atlas) and neurosynth
meta-analysis maps for the labels “TPJ,” “pSTS” and

“Wernicke’s area.” For the neurosynth map of TPJ, we
focus on results in the right hemisphere.2 Outlines of the
four atlas labels identified in our review (black lines in Fig-
ure 6C) are in good correspondence to neuroynth maps for
the label TPJ (red) and the intersection of labels TPJ and
pSTS (yellow). This shows how findings from our review
generalize beyond the studied task types, as neurosynth
meta-analyses cover functional imaging studies of all topics
that contain the terms “TPJ” or “pSTS” in their abstract/
title. However, our labeling review found that only AG and
LOCsd were characterized by common activation for all
task types, whereas SMGpd and MTGtop showed task
related activity differences (right SMGpd: attention> false
belief, bilateral MTGtop: social animations> false belief).

Furthermore, we explored the neurosynth map for the
term “Wernicke’s area,” which is another important func-
tional label for lateral posterior activations. For this term,
the left hemisphere is of central interest.3 Figure 6C shows
that activation for Wernicke’s area overlapped with activa-
tion for pSTS alone (shown in turquoise) as well as activa-
tion for both TPJ and pSTS (which is shown in white).
These findings are in line with results from a recent meta-
analytic coactivation and connectivity-parcellation analysis
[Bzdok et al., 2016], which found that two ventral subareas
of the left inferior parietal lobule show convergent activa-
tion for social cognition and language tasks. Furthermore,
functional decoding of these findings suggested a potential
common role of complex semantic processing in the two
cognitive domains.

CONCLUSION

Our analysis found that brain activity labeled by the term
“TPJ” is linked to specific atlas areas in both hemispheres—
and not randomly or unsystematically distributed across
parietal and posterior temporal lobes. To illustrate with an
example, in a gyral atlas [Desikan et al., 2006] the majority
of reported “TPJ” activations fall either in Angular Gyrus
or the superior division of the Lateral Occipital Cortex.
Moreover, we found that “TPJ” activations systematically
fall in distinct atlas areas for different task types. Taken
together, these findings suggest that adding neuroanatomi-
cal labels to functional activations under the broad term
“TPJ” (for both hemispheres) can reveal systematic and
meaningful differences, not only in terms of brain macroa-
natomy, but also connectivity-based parcellations and
cytoarchitecture. As these areal properties are important

2Note that the term TPJ commonly refers to activation in the right
hemisphere, and thus contralateral (i.e., LH) activations found in the
neurosynth map may reflect coactivations reported in studies that
focused on right TPJ (and not “left TPJ”).
3While neurosynth meta-analyses show bilateral activation for the
terms TPJ, pSTS and Wernicke’s area, we focus on the RH for TPJ
and the LH for Wernicke’s area. pSTS can be linked to both
hemispheres.
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determinants of functional specialization [e.g., connectivity-
patterns: Osher et al., 2016; Saygin et al., 2016, cytoarchitec-
ture: Luppino et al., 1991], we conclude that using such
atlas information for labeling and discussing findings
around the TPJ is a powerful tool for refining functional
accounts of the area—both within and across different
study fields. The present atlas mappings of functional acti-
vations found for ToM can serve as a reference for future
imaging studies, enabling a comparison of new imaging
findings to a neuroanatomical description of ToM. The
atlases used for the present review are freely available in
FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslview/) and AFNI
(https://afni.nimh.nih.gov/afni/) software.
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