
B. Benatallah, F. Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, pp. 588 – 593, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Specifying Web Service Compositions on the Basis of
Natural Language Requests

Alessio Bosca1, Giuseppe Valetto2, Roberta Maglione2, and Fulvio Corno1

1 Politecnico di Torino, Torino, Italy
{alessio.bosca, fulvio.corno}@polito.it

2 Telecom Italia Lab, Torino, Italy
{roberta.maglione, giuseppe.valetto}@tilab.com

Abstract. The introduction of the Semantic Web techniques in Service-oriented
Architectures enables explicit representation and reasoning about semantically
rich descriptions of service operations. Those techniques hold promise for the
automated discovery, selection, composition and binding of services. This paper
describes an approach to derive formal specifications of Web Service composi-
tions on the basis of the interpretation of informal user requests expressed in
(controlled) Natural Language. Our approach leverages the semantic and onto-
logical description of a portfolio of known service operations (called Semantic
Service Catalog).

1 Introduction

The recent introduction of Semantic Web [1] ideas and results in the field of service-
oriented computing has originated a vision of Semantic Web Services [6, 7], founded
on machine understandability of the nature of operations made available as Web Ser-
vices. The linguistic and ontological means for representing the properties and the ca-
pabilities of Web Services, and thus enhancing the ability to reason about the tasks
they perform, seem particularly appealing for the support, based on operation seman-
tics, of highly dynamic service selection and composition, which is an important goal
of the Web Service paradigm. A major outstanding challenge to reach that goal is how
to map the requirements describing a complex, composite service-oriented application
(sometimes called a Value-Added Service, or VAS) to a multiplicity of simple,
atomic Web Service operations, as well as to an overall service logic that coordinates
their interactions.

We present an approach for the automatic generation of a high-level VAS specifi-
cation (Abstract Composition in the remainder) on user demand, that is, starting from
informal user requests. Our approach leverages semantic information about the opera-
tions exposed by a portfolio of Web Services and targets simple requests that can be
expressed in (restricted) Natural Language, covering a range of workflows that can be
modeled according to a set of modular logic templates. The Abstract Composition
generated from the interpretation of a user request can be translated into an executable
flow, and maps the user needs and intentions – as inferred from the original request -
to known Web Service operations that can satisfy them, in a “task-oriented” way [5].

 Specifying Web Service Compositions on the Basis of Natural Language Requests 589

We employ OWL-S annotations to provide a formal representation of service and
operation semantics, as well as a classification of the Web Services in the portfolio.

2 Approach Overview

Our approach for the specification of service compositions at run-time has two start-
ing points: the user request, which is processed and interpreted on the fly, to elicit
functional requirements as well as a high-level view of the composition logic implied
in the request; and a repertoire of well-known services that are described by rich se-
mantic meta-data. Those two elements are, respectively, the Request Interpreter and
the Service Catalog, displayed in Figure 1 together with other elements of our
prototype.

This technique follows from two major assumptions: user requests are relatively
simple and concise, in structure and terminology, to be expressed with a controlled
subset of natural language; furthermore, a common ontological vocabulary can be es-
tablished, and is consistently applied to all entries in the Service Catalog. While the
latter assumption is unfeasible in a context, in which Web Services over the Internet
at large and owned by multiple parties should be summoned in response to the user
request, it seems reasonable and manageable in the context of a limited set of Web
Services that are kept under the control of a single entity, like in the case of a provider
or operator that offers value-added services to its customer base.

Fig. 1. System overview

Besides being used for the annotation of Web Services included in the Catalog, we
exploit OWL-S also in the Request Interpreter, to support NLP techniques and our
approach also includes mechanisms to transform that abstract service specification
into a concrete one: the Service Generator. Although, functionally speaking, the role
of the Service Generator – as shown in figure 1 – is simply to translate Abstract Com-
positions into a notation that can be executed over a service-oriented runtime of
choice, its task is multifold and its structure complex, therefore a complete discussion
of our solution, detailing its internal architecture, mechanisms and algorithms is not
feasible here due to space limitations, and is outside the scope of this paper.

Request
Interpreter

Service
Generator

Semantic
Service
Catalog

Natural
Language
Request

Abstract Composition

Knowled
ge Base

Executable
Service

590 A. Bosca et al.

3 A Semantic Service Catalog in OWL-S

OWL-S is a framework to describe services from several perspectives: more precisely
it characterizes services through a set of sub-ontologies. We have recognized the need
for models and algorithms to select services on the basis of semantic annotations
stored not only in their profile (as proposed for example in [2]), but also in their IO-
PEs (see [3, 4]). We also propose to exploit IOPEs as a means to drive composition.

In order to enable the selection of service operations that satisfy some user re-
quests or needs our modeling approach promotes the description of Effects in terms of
the computing task that is performed by each atomic operation exposed by each ser-
vice in our Catalog. To this end, we have implemented an ad hoc ontology called Ef-
fects (see bottom of Fig. 2). Additionally, we focus on I/O parameters semantics re-
ferring to a set of concepts collected in another ad hoc ontology called IOtypes. In
order to reason on inputs and outputs for the automatic, semantic-based composition
of operations, we extended the OWL-S model with a couple of bi-directional proper-
ties that allow us to link processes to their I/O parameters and parameter to processes
that can produce or consume them (see Fig. 2).

Place

owl:subClassOf

Parameter
cinema

Effect

Find

Send

Connect

Locate

owl:subClassOf

owl:subClassOf

owl:subClassOf

owl:subClassOf

Purchase
owl:subClassOf

owl:subClassOf FindShow

FindInformation

owl:subClassOf

AtomicProcess
findCinema

Parameter
city

Parameter
title

xowls:hasInput

xowls:actAsInput

xowls:hasInput

xowls:actAsInput

xowls:hasOutput

xowls:actAsOutput

FindInformation
FindCinema

process:hasEffect

rdf:type

Cinema Theatre

Entertainment
Education

Job-Work

IOTypes

xowls:hasSemanticType

owl:subClassOf

owl:subClassOf

owl:subClassOf

owl:subClassOf

owl:subClassOf

Fig. 2. Atomic Process: findCinema

4 Request Interpreter

Starting from a user request expressed in Natural Language (NL) the Request Inter-
preter is in charge of decomposing the sentence in order to isolate expressions that

 Specifying Web Service Compositions on the Basis of Natural Language Requests 591

can be semantically associated to Effects listed in the Semantic Service Catalog, and
hence mapped onto specific service functionality provided by atomic operations. At
that end, the Request Interpreter translates the NL request into an Abstract Composi-
tion document, that is, a formal VAS specification. That specification includes a lat-
tice of logic templates, describing how they relate to and can be composed with each
other into the global VAS flow; moreover, it includes a list of Effects, which act as
generic, semantic placeholders for operations that must be invoked along that flow.

Rather than completely parsing the sentence and interpreting each single fragment,
we chose a simpler algorithmic approach that in a first step decomposes the request
into fragments according to a proper logic template (if then, while do, sequence..).
Then it leverages the dictionary in order to search for lexical patterns within the frag-
ments and consequently infer the user’s intention and eligible parameters.

4.1 An Instrument for Request Interpretation: The SSC Dictionary

As stated before, the dictionary contains lexical elements related to some entities
within OWL-S ontology and includes pure lexical resources (as lists of verbs or
preposition grouped by their role or meaning), as well as more complex ones, related
to the sentence structure and its verbal governance (the Sentence Constructions List
and the Recognizer Catalog).

The Sentence Constructions List is the main resource within the dictionary and it
models the distinct expressive ways through which it is possible to request a service
identified by a given Effect concept (see Fig. 2 for the relation between AtomicProc-
esses and Effects). For each Effect present in the SSC a set of thematic keywords and
a list of eligible constructions are reported, each construction specifying a group of
verbs and a set of parameters.

The Recognizer Catalog is the other key resource within the dictionary and models
the different information the system should be able to recognize as potential parame-
ters. It focuses on the different IOTypes present in the SSC and specifies for each of
them a set of features which enable the isolation and recognition of a given IOType
within a free text. Such features both concern how the data appears and which value
it holds; the recognition process in fact relies on data format, on the presence of a
keyword or on the candidate parameter’s occurrence within a given list.

4.2 The Request Interpretation Process

This section details the various phases of the interpretation process and describes how
it exploits the lexical resources within the dictionary.

The first operative step consists in recognizing the logic flow behind the request
and coupling it to one of the logic templates supported in the system (if then, if then
else, while do, sequence). A set of parsers properly tailored to the aforementioned
templates process the request by trying to validate it against their own sentence model
and if it matches, extract the distinct sentence blocks tagging them as conditions or
actions. The result of this phase thus consists in the identification of the logical tem-
plate and of the distinct clauses.

After this parsing procedure, we assume that different propositions have been iden-
tified and that each sentence block is constituted by only one clause with a principal

592 A. Bosca et al.

verb and a set of objects. The following steps (2, 3 in Fig. 3) consist then in the inter-
pretation of any individual action or condition retrieved in the precedent phase.

The presence within the clause of a thematic keyword (recorded in the dictionary)
provides hints about the user’s intention and focuses the algorithm’s attention on a set
of services, considered as potential solutions and therefore inserted into a list of eligi-
ble Effects. By taking in exam the advices contained in the Sentence Constructions
List, the system guesses the information to look for and if a suitable verbal form is
found, a search is triggered over the sentence block for values that fit the parameters
reported in the dictionary. A proper recognizer is thus tuned according both to the
functional features reported in the parameters’ description (as the introductive prepo-
sitions) and to the semantic ones reported in the correspondent IOType element of the
dictionary, and it accordingly tries to identify a block of text as eligible information.

Fig. 3. Request Interpretation

If the functional information about where we expect to find the parameter and its
“appearance” (the format of the data) are both verified as well as the semantic coun-
tercheck (the presence of a proper keyword in the same sentence chunk or the occur-
rence of the data in a list of known values), then a strong “found” is triggered, other-
wise, a weak one. Once all eligible parameter values are found, the textual fragments
identified as weak founds are evaluated in order to be promoted or rejected.

The analysis of each sentence block generates an Interpreted Sentence reporting
the Effect id, the verbal form found, the list of the recognized parameters and the
conditional expression, if present. These Interpreted Sentences are gathered into a
list of candidate solutions and processed by a selection algorithm that constitutes
the final step (phase 4) of the Request Interpretation. The algorithm works under the
hypothesis that an interpretation holding more information should constitute a better
solution, thus it simply assigns a score to the Interpreted Sentences for each element
found (verbs, parameters, conditions) and then selects the ones with the highest
rank.

The structural information concerning the logical flow of the request, retrieved
from the template parsing (phase 1), and the distinct Interpreted Sentences, obtained
in the followings (phases 2-4), are then unified into an AbstractComposition docu-
ment.

Select by
Keywords
presence

Search for Verbs,
Parameters &
Conditions

Dictionary

Weight & Se-
lection Algo-
rithm

Request Interpretation

32

Template Parsing List of eligi-
ble Effects 1

4

List of candidate In-
terpreted SentencesSentence

Blocks

 Specifying Web Service Compositions on the Basis of Natural Language Requests 593

5 Conclusions

We presented an approach that allows the specification of Web Services Composi-
tions starting from user requests expressed in Natural Language. This paper shows
how, under the assumptions stated in Section 2, it is possible to establish a synergy
between the semantic service descriptions and the interpretation of user requests
through a common ontology and consistent vocabulary. We have presently deployed a
prototypal version of the system, provided with a semantic Service Catalog in OWL-
S, comprising several tenths entries, and with a limited set of logic templates able to
capture a range of simple workflow constructs. Our preliminary experiments with the
system are encouraging, since they already enable to express and synthesize signifi-
cant service compositions on demand.

We are currently working to expand the Service Catalog with a wealth of informa-
tion, communication and e-commerce services in order to constitute a wider source of
information, thus increasing the stress and the overall noise in the recognizing and se-
lection procedures. At the same time, we are developing a test set of user requests that
focus on our SSC servicing scope, in order to establish a validation resource for prov-
ing and tuning the algorithm.

References

1. T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web”, Scientific American,
2001, 284(5): 34–43.

2. D. Mandell, and S. McIlraith, “Adapting BPEL4WS for the Semantic Web: The Bottom-Up
Approach to Web Service Interoperation”, Proceedings of the Second International Seman-
tic Web Conference, 2003.

3. K. Sivashanmugam, K. Verna, A. Sheth and J. Miller, Adding Semantics to Web Services
Standards, Proceedings of the International Conference on Web Services, 2003.

4. E. Sirin, B. Parsia, and J. Hendler, Composition-driven filtering and selection of semantic
web services, AAAI Spring Symposium on Semantic Web Services, 2004.

5. Y. Ye and G. Fisher. Supporting Reuse by Delivering Task-Relevant and Personalized In-
formation, Proceedings of the 24th International Conference on Software Engineering,
2002.

6. DAML-S, “Semantic Wes Services”, http://www.daml.org/services/.
7. WSMO, “Web Services Modeling Ontology”, http://www.wsmo.org/.

	Introduction
	Approach Overview
	A Semantic Service Catalog in OWL-S
	Request Interpreter
	An Instrument for Request Interpretation: The SSC Dictionary
	The Request Interpretation Process

	Conclusions
	References

