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We describe an algorithm based on shrinkage in the curvelet domain to attenuate speckles in optical coher-
ence tomography (OCT) images. The algorithm exploits the curvelet transform’s sparse representation of
edge discontinuities that are common in OCT images and its ability to map signals and noise into different
areas in the curvelet domain. The speckle attenuation is controlled by a single parameter that determines
the threshold in the curvelet domain. Applying the algorithm to OCT images shows significant improvement

of image quality. © 2009 Optical Society of America
OCIS codes: 110.4500, 110.6150, 100.2980.

Recent years have seen increasing interest in the use
of optical coherence tomography (OCT) for a variety
of imaging applications, especially in the field of bio-
medical imaging [1]. Many issues remain to be ad-
dressed in order for OCT to be widely used in clinical
applications. One of these is the degradation of OCT
image quality owing to speckles [2]. Speckles make it
particularly challenging to perform further quantita-
tive image analysis such as edge detection, segmen-
tation, and pattern recognition. Consequently, much
research has been carried out to develop methods to
reduce speckles. The methods developed include
spatial compounding [2,3], frequency compounding
[2], and digital filtering such as an enhanced Lee
filter [4], median filter [4], a symmetric nearest
neighbor filter [4], an adaptive Wiener filter [4], an
I-divergence regularization [5], as well as filtering in
a transform domain such as the wavelet [4,6-9].
Among them, filtering in a transform domain is one
of the most promising approaches.

The basic principle of transform domain filtering is
to shrink transformed coefficients according to some
threshold values. This method is based on the as-
sumption that, in the transform domain, signals are
usually more concentrated and represented by some
large coefficients, while noise is more spread out and
coded in small ones. As a result, by zeroing out small
coefficients and keeping large ones, it is possible to
effectively attenuate noise without significantly dam-
aging signal components. Two elements are therefore
essential for the method: a domain that provides
sparse representation of signals and an optimal
threshold value. The wavelet is one such domain. It
provides a sparse representation for signals contain-
ing singularities that satisfy a variety of local
smoothness constraints including, for example, piece-
wise smoothness [10]. Different thresholding strate-
gies in the wavelet domain have been applied for
OCT images previously [6,8,11].

OCT images, however, are usually characterized by
edge discontinuities rather than individual point dis-
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continuities, as many biological tissues have layered
structures. The wavelet representation of this kind of
feature is not optimally sparse and therefore limits
the application of the thresholding strategy. Recently,
another multiscale method called curvelet transform
was developed [12]. The basis functions of the curve-
let transform, so called curvelets, can represent
curved edges much more efficiently than wavelets.
This concept is illustrated in Fig. 1, which shows
that, for the same image, the signal energy is concen-
trated in a fewer number of curvelet coefficients than
of wavelet coefficients. Importantly, the error of re-
constructing original signals based on curvelet coeffi-
cients as a function of the largest coefficients decays
rapidly, which makes denoising via coefficient thresh-
olding quite robust. Curvelets are also directionally
sensitive, which offers many degrees of freedom to
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Fig. 1. (Color online) Energies of the curvelet and wavelet
coefficients of the OCT image shown in Fig. 2(a). The coef-
ficients are sorted in descending order of energy from left to
right. Curvelets provide a sparser representation of the im-
age, as the signal energy is concentrated in fewer curvelet
coefficients than wavelet coefficients.
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manipulate signals along certain directions. In con-
trast, the 2D wavelet transform decomposes data in
only three directional subbands. Given the many su-
perior properties of curvelets, we present in this work
a method based on the curvelet transform to attenu-
ate speckle noise in OCT images. Our results indicate
that image quality is significantly improved.

There are several software implementations of cur-
velet transform. We use the wrapping method of fast
discrete curvelet transform to perform both the for-
ward and inverse transformations [13]. The forward
transformation involves several steps, and one of the
major steps is to partition the frequency plane into
dyadic annuli and trapezoidal regions. The dyadic
annuli provide scale information, and trapezoidal re-
gions provide the orientation information of image
features. The curvelets are localized in both fre-
quency plane and space domain, and hence the trans-
formed coefficient is a function of the scale j, the ori-
entation /, and the spatial coordinates p and q.

The denoising procedure of our algorithm closely
mimics those in the wavelet domain and consists of
four steps: logarithm transformation, forward curve-
let transform, thresholding, and inverse curvelet
transform. As speckles are usually well modeled as
multiplicative noises, a logarithm transformation is
first applied to convert them to additive noises:
log(s)=log(x)+1log(z), where s is the acquired data, x
is the noise-free signal to be recovered, and z is the
speckle. Then a forward curvelet transform is per-
formed on the converted data to produce curvelet co-
efficients Sj,lvpvq =X;1p.q+Zj1pq Where .S , X, and Z are
the coefficients for measured data, noise-free signals,
and speckle noise, respectively. Following that, a
hard threshold T}, is applied to each curvelet coeffi-
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=0, otherwise. Then an inverse curvelet

cient S;
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transform is performed to S;;,, to reconstruct the
denoised image, and a simple exponential calculation
of base 10 would convert the denoised image in the
logarithm scale back to the original linear scale.

To obtain the threshold, we use a method called &
sigma [14]: T; j=ko,0,. Here k is an adjustable pa-
rameter, o is the standard deviation of speckles in a
background region, and o, is the standard deviation
of speckles in the curvelet domain at a specific scale j
and orientation /. By choosing a background region,
which contains only speckles, one can compute the
mean value and the standard deviation o;. Based on
those values, o9 is computed using the Monte Carlo
simulation method [14]. We note that, in the compu-
tation of oy, speckles after logarithm operation are
assumed to have a Gaussian distribution, but exten-
sive data analysis shows that they generally do not
fully satisfy this assumption, so the computed value
will be theoretically slightly off. However, since % is
adjustable, that effect turns out not to be critical. The
value of £ can be scale and orientation dependent. It
is usually obtained by trial and error.

Figure 2 shows a Fourier domain OCT image of the
optical nerve head (a) before and (b) after curvelet de-
noising. The details of the OCT instrument and
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Fig. 2. (Color online) Fourier domain OCT images of the
optical nerve head (a) before and (b) after curvelet despeck-
ling. For direct comparison, the images are shown on the
same color scale. The SNR, CNR, and ENL are all in-
creased, with a high similarity between the images before
and after denoising, as detailed in Table 1. The two white
arrows in (b) indicate the places where features hidden in
the original image are more obvious in the denoised image.
(c) shows the cross section signal along the white dashed
lines in (a) and (b), and they are vertically offset for clarity.
The edge sharpness of the original image is well preserved
in the denoising process, as can be seen in (¢). The curvelet
transform parameters are: the number of scales is 3 and
the number of orientations at the second coarsest scale is
16. A universal threshold is used for all directions, and the
value of & is 0.7.

image acquisition have been previously described
[15]. Much of the speckle in the original image has
been reduced, making some image features hidden in
the original image more obvious, as shown at the
places, for example, indicated by the two white ar-
rows in (b). To better appreciate the performance of
the algorithm, Fig. 2(c) shows a cross section of the
images at the indicated dashed line in Figs. 2(a) and
2(b). The denoised signal is much cleaner than the
original one: the noise fluctuation at the beginning of
the original signal is attenuated to close to zero and
the noise superimposed on the signal components is
also attenuated significantly. Most importantly, all of
those are achieved when the image features and the
edge sharpness of the original signal are both well
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maintained, demonstrating the ability of the algo-
rithm to preserve signal while attenuating noise.

To quantify the performance of the algorithm, four
quality metrics are computed: contrast-to-noise ratio
(CNR) [6], which measures the contrast between im-
age features and noise; average equivalent number of
looks (ENL) [6], which measure the smoothness of
homogeneous areas; peak-signal-to-noise ratio
(SNR), defined as SNR=20 log;o{[max(X)]/ o}, where
X is the amplitude data and o is the noise variance;
and cross correlation (XCOR), which measures the
similarity between the images before and after
denoising and is defined as XCOR
=Em,nsm}nym,n/(Zm,nsfn,nﬁm,nyfnyn), where s is the in-
tensity data before denoising, y is the intensity data
after denoising, and m and n are the indices of the
images. Both CNR and ENL are computed using
logarithmic scale data, while SNR and XCOR are
computed using linear scale data. The value of XCOR
is smaller than 1, and the larger is the XCOR, the
closer the denoised image is to the original image.

Table 1 lists the results of the quality metrics for
different thresholds. With a small increase in the
threshold, as expected, the cross correlation de-
creases, since more data are zeroed, while the values
of SNR, CNR, and ENL all increase. For comparison,
we have also performed wavelet-based thresholding.
The wavelet filtering is based on undecimated dis-
crete wavelet transform and the threshold is chosen
to be 4.2 times the noise variance, obtained from the
robust median estimator of the highest subband of
the transform [16], with the number 4.2 obtained by
trial and error to give the best results. Comparing
curvelet- with wavelet-based methods, for a similar
cross-correlation value, our curvelet method (£=0.7)
further improves the SNR by 7.84 dB.

While the curvelet transform provides an optimally
sparse representation of OCT images, it is still un-
avoidable that image features can be attenuated in
the process of thresholding. This can be the result of
setting too large a threshold and/or some image noise
may have curvelet coefficients that are comparable to
those of signals. To minimize the impact, one can
take advantage of the direction selectivity of the cur-
velets. For example, when signals are mainly along
certain directions, a small threshold should be used
for those directions to preserve signals and a large
threshold can be used for other directions to attenu-
ate more noise. This property of the curvelet trans-

Table 1. Image Quality Metrics

SNR CNR
Image XCOR (dB) (dB) ENL
Original 1 33.67 3.38 6.84
Curvelet, £=0.65 0.932 57.89 5.31 18.07
Curvelet, £=0.70 0.926 61.34 5.43 20.08
Curvelet, £=0.75 0.920 64.50 5.53 21.99
Wavelet 0.927 53.50 4.91 17.79
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form makes it superior to wavelets, as it can distin-
guish image events in more directions than the 2D
wavelet transform, which only decomposes data into
three directions: horizontal, vertical, and diagonal.
Another advantage is that here the whole process is
computationally very efficient, taking only a few sec-
onds in a typical dual-processor laptop computer; by
contrast, while many simple wavelet filters take
about a few seconds, the spatially adaptive wavelet
filter takes about 7 min [6].

To summarize, a curvelet based algorithm is dem-
onstrated that significantly suppresses speckles in
OCT images. The image quality is significantly im-
proved: the SNR is increased by 27.7 dB, and the con-
trast ratio as well as smoothness measure are en-
hanced, with a small 7.4% loss of similarity. These
results highlight the power of the curvelet transform
in OCT image analysis and processing. We anticipate
that this approach can be applied to other problems
in biophotonic and biomedical imaging where noise
poses a serious challenge.
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