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The optical intensity transmitted through a random pattern of subwavelength holes in a metal film exhibits a
speckle pattern. We study the variation of this speckle pattern as a function of wavelength. We find that the resulting
speckle correlation function (SCF) separates into a wavelength-dependent part and a wavelength-independent
background. The wavelength dependence is caused by surface plasmons excited at one hole and coupled out
at another hole, while the constant background originates from light transmitted directly through the holes. By
analyzing the SCF for a set of samples of varying hole density, we find the propagation length of the surface
plasmons and the scattering losses induced by the holes.
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I. INTRODUCTION

Structuring materials on a scale comparable to or smaller
than the wavelength of light allows control over their optical
properties in an unprecedented way. Famous examples are
photonic crystals, metal hole arrays, and metamaterials. As
the complexity of these structures increases, it becomes more
challenging to understand their physics. For example, to quan-
titatively model the extraordinary optical transmission (EOT)1

of metal hole arrays a large set of parameters that need to be cal-
culated numerically is required.2 Also the transmission of light
through a single hole in a metal film is surprisingly complex.3

In contrast, disordered media can be characterized
relatively easy. By studying the variations of speckle as a
function of wavelength or angle, speckle correlation functions
(SCFs) can be calculated analytically.4 These functions,
which can also be measured,5–9 provide insight in the dwell
time inside a medium. Only three quantities are needed to
describe the SCF in volume scattering: the transport mean
free path, the energy velocity,10 and the sample thickness.

In this work we apply the framework of speckle correlation
functions to surface plasmons. To this extent, we study the
optical transmission through random patterns of subwave-
length holes. These random patterns were previously studied
using a broadband source,11,12 but when illuminated with laser
light, the transmitted intensity exhibits a speckle pattern.13 The
intensity in this speckle pattern has two contributions: light that
is directly transmitted through the holes and light transmitted
via surface waves. By studying the change of these speckle
patterns as we scan the wavelength of the laser we can record
a SCF. Because of the two different contributions to the speckle
intensity, we expect that these correlation functions are differ-
ent from the ones found in three-dimensional random media.

From the SCF we hope to infer a propagation length. As
it is unclear whether the losses are dominated by absorption
or scattering, we study a set of samples with different hole
densities. We analyzed a set of nine samples for which
the hole density is 1/(qa2

0), where a0 = 450 nm and q =
1,2,3,4,9,16,25,36,81. Each sample covers a square area of
400 μm × 400 μm. The average side length of these square
holes is 125 ± 5 nm. The layer structure is as follows: on the
glass substrate we subsequently deposited 150 nm of gold and
20 nm of chrome, and we then perforated this metal layer. The

function of the chrome layer is to damp the surface plasmons
on the gold-air interface, limiting the analysis to one interface.
Figure 1 shows scanning electron microscopy (SEM) images
of three of the studied samples, with densities of 0.19, 1.2, and
4.9 μm−2, which is, q = 25, q = 4, and q = 1, respectively.

II. THEORY

Before showing the experimental results, we will first derive
an expression for the expected correlation function. In the far
field the speckle intensity is a function of wavelength and
angle: I (λ,�θ ). We define the speckle correlation function as
follows:

C ≡ 〈I (λ0, �θ0)I (λ1, �θ1)〉
〈I (λ0, �θ0)〉〈I (λ1, �θ1)〉 − 1, (1)

where 〈·〉 denotes ensemble averaging.4 We can rewrite
the intensity correlation function in terms of the optical
fields E(λ,�θ ) using Isserlis’s theorem14 for Gaussian random
variables:15

C = |〈E(λ0, �θ0)E∗(λ1, �θ1)〉|2
〈I (λ0, �θ0)〉〈I (λ1, �θ1)〉 , (2)

where the asterisk (∗) is the complex conjugate.
When measuring in the far field, at an angle �θ , the light

transmitted through the randomly positioned holes is a sum
over all illuminated holes Ei . Depending on the position �xi ,

FIG. 1. SEM images of three of the nine studied samples. From
left to right the hole density is 0.19, 1.2, and 4.9 μm−2.
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the field from each hole acquires a random phase: �k||(λ)�xi ,
with |�k||(λ)| = 2π sin(|�θ |)/λ. Hence the correlation is

C ∝
∣∣∣∣∣
∑
i,i ′

〈
Ei(λ0)E∗

i ′(λ1)ei[�k||(λ0)�xi−�k||(λ1)�xi′ ]
〉∣∣∣∣∣

2

, (3)

where the proportionality sign indicates that normalization
is now omitted. Calculations can be performed with this
expression, but the decorrelation from ei[�k||(λ0)�xi−�k||(λ1)�xi′ ] may
have a strong influence on the correlation function.16 Hence,
we take �k||(λ0) = �k||(λ1), such that the exponent becomes 1
for �xi = �xi ′ . The phase of this term is random when �xi 	= �xi ′

and �k|| is sufficiently large, i.e., if we are outside the zeroth
diffraction order.13 Hence, after ensemble averaging, the terms
with i 	= i ′ are zero, and therefore the double sum over i and
i ′ reduces to a single sum.

The field Ei is a sum of a direct contribution Ed,i and a
contribution via surface waves Es,i . The field Es,i consists of
contributions from all neighboring holes. Hence the amplitude
and phase are random and depend on the position of the
surrounding holes. Although the phase is random, it changes
gradually as the excitation wavelength changes. We can now
evaluate Eq. (3) further by inserting Ei(λ) = Ed,i + Es,i(λ)
and taking the ensemble average:

C = |〈|Ed |2〉 + 〈Es(λ0)E∗
s (λ1)〉|2

〈Itot〉2
, (4)

with 〈Itot〉 = 〈Id〉 + 〈Is〉, where 〈Id〉 and 〈Is〉 are assumed to
be wavelength independent for the clarity of the expressions.
Please note that the summation and the i dependence disappear
because the summation is replaced by the number of holes
times the ensemble average. Also the ensemble average of the
cross terms is zero, 〈Ed,iE

∗
s,i + E∗

d,iEs,i〉 = 0, because Es,i

and Ed,i are independent and the ensemble average of Es,i is
zero. Equation (4) is an essential result: the direct transmission
is observable as a constant background correlation, while the
contribution from surface waves does decorrelate in a limited
wavelength range.

Next we calculate the wavelength-dependent correlation
caused by the surface waves. For simplicity we neglect
contributions from the quasicylindrical wave17 and Norton
wave2,18,19 and surface plasmon polaritons (SPP), which we
will simply denote as SPP or surface plasmons. We consider
a particular hole i and write the total SPP field as a sum of
contributions from all the surrounding holes j . We describe
the SPP propagation as a two-dimensional surface wave. As it
propagates, it can be absorbed or scattered out by a hole such
that

Es,i =
∑

j

A0(φj )√
rij

e(−σρ− Im kspp+i Re kspp)rij , (5)

where A0(φ) is a prefactor describing the excitation and
outcoupling of the field, which has units of V/

√
m and depends

on the angle φ between the incident polarization and the
propagation direction,13,20 rij is the distance between hole i

and hole j , Im kspp characterizes the loss due to absorption,
σρ characterizes the loss due to scattering, σ is the scattering
cross section, and ρ is the hole density. We are dealing with

a two-dimensional problem, and therefore the scattering cross
section is a length instead of an area.

When evaluating 〈Es(λ0)E∗
s (λ1)〉, a double sum is found,

for which the cross terms associated with interference orig-
inating from different holes j 	= j ′ again average out. We
rewrite the phase difference of the remaining terms as rij /λ0 −
rij /λ1 = rij�λ/(λ0λ1), as in Ref. 15. We then form concentric
rings around hole i to find that the number of holes in each ring
scales with the radius r . On the other hand, the contribution
from these holes scales as 1/r multiplied by an exponential;
see Eq. (5). By replacing the sum over neighboring holes for
an integral we find

C = 1

〈Itot〉2

∣∣∣∣〈Id〉 + 〈Is〉 λ̃

i�λ + λ̃

∣∣∣∣
2

. (6)

The width of the Lorentzian,

λ̃ = (σρ + Im kspp)
2λ0

Re kspp
, (7)

combines the scattering losses (∝ σρ) and the ohmic losses (∝
Im kspp). The relative strength of the Lorentzian is determined
by the ratio 〈Is〉/〈Id〉, where 〈Is〉 is given by

〈Is〉 ∝ ρ〈|A0(φ)|2〉φ
σρ + Im kspp

, (8)

where the proportionality sign indicates that we omitted
constant prefactors.

To summarize, we expect that we can measure a correlation
function with a background that is independent of wavelength.
In addition to this background correlation, a wavelength-
dependent part is expected, caused by SPPs propagating on
the metal surface. The width of this wavelength-dependent
part is proportional to the losses that the SPP experiences. The
hole density is a crucial parameter for the correlation function,
it determines both the weight of the SPP part and the total loss
that the SPP experiences.

III. EXPERIMENTS

The experimental setup is as follows: the light of a
wavelength tunable Coherent 899 Ti:sapphire laser is led
through a single-mode fiber and collimated to a beam with
a diameter of a few millimeters. This beam is first polarized
and then illuminates a 200-μm pinhole that is imaged onto the
sample with a magnification of 3/8, leaving a 75-μm spot on
the sample. This illuminated pinhole ensures that the size and
position of the spot on the sample are wavelength independent.
The light transmitted through the sample was collected using
an aspheric lens (f = 8 mm). The Fourier plane of this lens
is imaged with a lens onto an intermediate plane, and this
intermediate plane is subsequently imaged onto a CCD. In the
intermediate plane we blocked the zeroth-order transmission
with a black metal rod, and we selected the polarization parallel
to the incident polarization. In all our experiments we scan the
laser wavelength from 740 to 810 nm.

We now first study the speckles that we see on the CCD.
To derive Eq. (4), it was crucial to keep �k|| constant with
wavelength. Experimentally, this is achieved by rescaling the
recorded images. In Fig. 2 we show the original and rescaled
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FIG. 2. (Color online) (top) Uncorrected and (bottom) corrected
speckles as a function of wavelength detuning. The uncorrected
speckle changes shape and gradually shifts upward. After correction
the speckle remains approximately in place and only changes shape.
The amount of correlation is indicated by C.

images as a function of wavelength for a sample of hole
density 1.2 μm−2. The top three images are shown as they are
originally recorded. The zeroth-order peak is located below
these speckles. As the wavelength is tuned, the speckles move
up and change.

In the bottom row in Fig. 2 the three images are corrected
such that �k||(λ) is constant. For these images the speckle shape
changes gradually, but the speckles remain at approximately
the same position. The effect on the correction is illustrated by
the amount of correlation between a reference and the shown
images. For the original images the correlation decreases
rapidly from 1 to −0.042 and 0.014; for the rescaled images
the correlation is 1, 0.84, and 0.84.

For rescaling the images we need to choose a point in the
image for which �k||(λ) = 0. Although we expected this point
to be the zeroth order, we noticed that the correlation between
two images recorded at different wavelengths is a few percent
larger when we choose this point outside the zeroth order. The
origin of this effect has not been resolved so far. For our data
processing we used the optimum point outside the zero order.

Now that we know how to rescale the images, we can
measure the speckle correlation functions. Figure 3 shows
three typical correlation functions for the samples with
densities of 4.9, 1.2, and 0.19 μm−2. The correlation function
changes drastically with the hole density. Nonetheless, all mea-
sured correlation functions exhibit the predicted behavior: a
wavelength-dependent contribution and a constant background
correlation. With increasing hole density, the background
level decreases while the width of the wavelength-dependent
part increases. The decreasing background level is due to
the increasing SPP contribution, as our model suggests. The
increasing width implies shorter propagation lengths. This may
be expected, as the scattering losses are proportional to the hole
density.

To quantify our findings we have fitted the measured
correlation functions to Eq. (6). Figure 3 shows that the theory
describes the data well. The observation that our simple model
describes the data might come as a surprise, as we omitted
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FIG. 3. (Color online) Measured correlation functions for three
different hole densities. Each fit function combines a Lorentzian
part with a wavelength-independent background. With increasing
hole density the Lorentzian becomes wider, while the background
decreases.

the wavelength dependence of both 〈Id〉 and 〈Is〉. Especially
for 〈Id〉 it is well known that it has a strong wavelength
dependence; see, e.g., Ref. 3 for a recent review. There are two
ways to interpret our observation of a constant background
correlation. First, because we normalize the recorded speckle
patterns [see Eq. (1)], a constant background correlation
will also be found if the ratio 〈Is〉/〈Id〉 is constant. So
far, there is not much literature reported on the wavelength
dependence of 〈Is〉, but work on hole chains suggests that this
is possible.17 Second, the normalization makes the effect of
the wavelength dependence smaller, as not only the nominator
of the correlation changes but also the denominator. For a
typical example, with 〈Is〉 / 〈Id〉 = 1/4 and a reduction of
〈Id〉 to 70% of its original value, the background decreases
to 62% instead of 67% for the constant background. To see
this small decay, the scan range would have to be much larger.
Finally, we also have an experimental argument for why the
wavelength dependence of 〈Id〉 and 〈Id〉 are not relevant. If
we scan in the opposite direction, namely, 810 to 740 nm,
instead of increasing the wavelength, we find practically the
same correlation C(�λ).

IV. EXTRACTED FIT PARAMETERS

Two fit parameters are extracted from the fit, the losses
(σρ + Im kspp) and the ratio 〈Is〉/〈Id〉. As seen in Fig. 4(a),
the loss increases linearly with hole density, as expected from
Eq. (7). However, the loss of the highest-hole-density sample
is larger than expected from a linear dependence. For this data
point the error margin is also larger than the other data points
because the background level could not be fitted properly as
the correlation still decreases within our scan range.

We fitted these loss values with a linear function, from
which we find an offset of 0.049 ± 0.002 μm−1 and the slope
σ = 26 ± 2 nm. The cross section is reasonable, considering
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FIG. 4. (Color online) The loss and intensity ratio plotted as a function of hole density. (a) For all samples except the most dense, the
loss increases linear with hole density. The loss at zero hole density is the surface-plasmon absorption loss, which corresponds roughly to the
literature value. (b) The surface-plasmon contribution 〈Is〉 relative to the direct contribution 〈Id〉 increases nonlinearly with hole density. Using
only the vertical scale as a free parameter, the data can be reasonably fitted to theory.

the hole side length of 125 ± 5 nm. The offset corresponds
reasonably to the values that can be calculated using the
dielectric constant of gold at 740 nm reported by Johnson
and Christy21 (0.056 μm−1) and Palik22 (0.065 μm−1).

In Fig. 4(b) the ratio 〈Is〉/〈Id〉 is plotted versus hole density.
We observe a nonlinear increase. Equation (8) shows that
when σρ is comparable to Im kspp, this nonlinear increase
is expected. We fitted Eq. (8) to these data, using the values of
Im kspp and σ we just obtained, leaving only the vertical scale
as a free parameter. The fit result is reasonable. Interestingly,
both the intensities at low hole density and at the largest density
are underestimated by the fit.

Nevertheless, from fitting the intensity ratio we conclude
that the scattering cross section found in Fig. 4(a) fits the data
reasonably well. The high intensity for the most dense sample
can imply an extra contribution to the field, which may be
caused by the quasicylindrical wave.2,17,19 However, to be able
to make a sensible judgment about this, the correlation function
should be studied theoretically, including and excluding the
quasicylindrical wave. Moreover, it would be of great value
to use a scanning laser with a larger range to measure the full
correlation function for this sample.

Another interesting question that arises from these data
is whether the underestimation of the low hole density is
related to the Norton wave.2,18,19 At the distance probed
with these low densities, roughly five propagation lengths
(ρσ = 1

5 Im kspp), the Norton wave should have the same
amplitude as the SPP. However, at these distances the field is
only 7 × 10−3 of its original strength, and we wonder whether
these small fields contribute to the decorrelation seen. On the
other hand, the Norton wave becomes more than three orders
of magnitude larger than the SPP field for a distance of roughly
ten propagation lengths.19

Besides this set of random patterns with square holes, we
have also analyzed a set of patterns of circular holes, with a
diameter of 120 ± 6 nm. For these samples the signal is smaller
than for square holes, and hence we could only measure the

five most dense samples. The measured correlation functions
show a larger background correlation when comparing patterns
with the same hole density. From a similar analysis as for the
square holes we found a cross section of 18 ± 1 nm and an
absorption loss of 0.035 ± 0.002 μm−1. The loss of the most
dense sample is now not as high as found for the square holes,
and all measured loss values fit the SPP model.

V. CONCLUSION AND DISCUSSION

In conclusion, we have derived a simple expression for
the speckle correlation function for random patterns of
subwavelength holes. The expression has two contributions,
a constant background resulting from the direct transmission
of the holes and wavelength-dependent part due to surface
plasmons propagating on the surface. The predicted behavior
of a constant background and wavelength-dependent part is
also seen in the measured correlation function. By fitting the
experimental results, we find that the propagation length of
the surface plasmon decreases with increasing hole density, as
the surface plasmon has a larger probability of being scattered
out by the holes. This measurement yields the scattering
cross section of the holes. Moreover the surface-plasmon
contribution increases with hole density, as more holes are
available to excite surface plasmons. The results for the most
dense sample are not consistent with the other samples, which
implies that the quasicylindrical wave contribution might be
visible in correlation functions.

We believe the application of speckle correlation functions
to plasmonics can be very valuable. The experiments give
insight into both the surface-plasmon excitation and outcou-
pling by the holes. Moreover, it may be possible to study
the influence of the quasicylindrical wave on the correlation
functions in theory and experiments. Also, the combination of
a constant background and a wavelength-dependent part is new
compared to three-dimensional random media.7 Furthermore
it is interesting that two different transmission processes can
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be separated using speckle correlation functions. It would be
interesting to see if similar behavior is found when the three-
dimensional samples are made sufficiently thin compared to
the transport mean free path or when these media are modified
such that very short paths through the medium exist.23
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