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short (I,'ln0 r.cc). the atrosphere -"a:, i.o e:-ovt ively !r^:er;. Then a nunxcr cl iinaaes of 

This ; nj.r.. r describes the continuation • : •_.•- ffftrts ; rev ; ™jsl y reported . 1 he 
or nu-:;,S. value Jecoirposi t i on net hoi uses the '--herence obtained Kith second order statis­
tics, i.abcyrie averaged the modulus -f siecklc lf.aceo to obtain the spectrum ar.d auto-
cor re lai ion of isasco, This speckle . ipte: fero:'.-: try has been used to measure the separation 
o! binary star.-,. S'.nox and Thonpscr. " ai •-•c-io:.ed an ad hoc .method which estimates the 
phase i r̂ 'torr a! iO;, ••eded to recover an irooio from the Socorid order statistics. Several 
others ' ' " " ''"' have considered the recovery of imago information using these types of 
methods . 

•fh'- <r:.ha:;:o cd this paper is en the a: i li cat ior. of "optiir-.al" filtering approaches tc 
'his problor. First, the speckle imaging mode! and the first and second order statistics 
"! ;-.!"•;•;:.. ir..a :es will be briefly roviewec. 'i hen the restoration algorithm based upon 
princip!.- v a p j " d'-conuos i t icn will be presented and discussed. Finally, the performance 
will b " illustrated by real and simulated restorations. 

Ipeeck le '.rage Model 

Two principal sources of image distort! MI occur when using a ground-based telescope. The 
first is the turbulence of the inlerveninc atmosphere. The second source is the error or 
noise associated with the physical measurement of the image. Both mechanisms adversely 
affect the quality of the imaging and mask many of the important features of the object. 
While the turbulence effects are the most profound in this regard, it is the presence of 
the noise which has previously made correction for the turbulence difficult. Models for 
both effects will be described next. 

Model for the Turbulence Effects 

For simplicity, consider incoherent imajing over an isoplanatic patch, the image can be 
expressed as a convolution of the object and a point spread response function: 

i f ( X r t ) = / / ><\>SU " *, t U U 11) 

where i f{.\,t; is the formed image, o U ) is the object, and slx.t) is the point spread 
response. The point spread response depenis on the optical system and the phase delav 
and amplitude disturbance processes caused by turbulence. Let S(z,t) be the optical 
transfer function corresponding to s(x,ti, that is, 
f T h i s work was performed under "the auspicer. of the U.S. Department rf Enerqy under Contract 
Number W-7405-ENG-4B. 
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14^-09 
S ( z , 1 I • I I ! ! : ( • ( ( • • •jo(PM 

e>:p [P(<; z, U • ;P! •• - f ! . 

a (•) I K the aperture f u:.---: r :, c: the teies:-ope, 

(I (•) is the phase aberrati":. function of the telescope, 

{(-,•) is the loy-aitpli tude disturbance at the aperature 
caused by turbulence, 

0 (•,•) is the phase delay d i st'irt ji-.c: at the aperture 
"a'jsej by turbujor. e, 

and l'_ !-} indicates Fourier t r.:jns; c:. "' vi*.\ respect to >:. 

Assuming the usual Gaussian distr ibutio:; fer £ ami % allows the mean and ccvariane-e 
.s(z,t) .to be written in terms of the wave structure function, e> (• ) . Using the results 
Fante , the mean and covnrianee of K (;: , * } are well a; pro:-: ima ted by 

K(z) = oxp [- - u(zi J /air + z ; a ! 
/ / • 

and 

[ -. ti !;'. + -,W-)\ d,, 

•%<iV --21 ///f(,-l + ̂ l , a ( - l , a ( - 2 + - 2 ) a ( - 2 ) l - ' x p HMI^+Zjl-jIMH, M j(-(d^.^i-jOie,)) (4) 

D(z. )+D(z-,) " l £ r 5 ' " ' ) l + D | 1 , -_i5,-zni-n(!£,-£.,i--i -1 -2 -1 " * - > > ' di', ,dC-_ 

For mean S(z) the effects of the atmosphere and the telescope separate into a product fcrm, 
but for the covariance S ( z , , ! ] , they do not. S{z_) is dominated by the exponential factor 
and decays to zero rapidly as the spatial : requency increases in magnitude. S(z,,z_-,) is 
quite complex and it's character is determined by the arguments of the exponentials? Thi 
character of S(z_ ,^_) can be best illustrated by example. By using inverse Fourier 
tranbforms, the mean s (x) and covariance R, (x.,x^) functions of s(x) can be obtained from, 
S (z) and S,_ I Z J Z , ) . -' -1 -

Fiqure 1 shows typicr.l speckle images fer astronomical and simulated data. The astro­
nomical data was obtained by S. F. Worden i-f the Sacramento Peak Observatory. Figure 2 con­
tains average images and the magnitudes of their Fourier transforms which illustrate 
the low pass nature of the mean of the opt:cal transfer function S ( j ) . Figure 3 
shows the broadband nature of the variance of the optical transfer function. For the 
binary star, the nulls of the image spectrum give the separation and orientation of the 
stars. Figure 4 contains magnitude and phase pictures of one-step correlations of Fourier 
transforms of images. The magnitude pictures show the broadband nature of these cor­
relations. The phase picture for the point source reveals the coherent nature of the 
differential phase. For extended sources, Figures 3 and 4 show that both the magnitude 
and phase pictures are modified by the souice. For the binary star, the magnitude pictures 
clearly show the modulation due to their separation and the phase picture clearly shows 
the diffraction limit of the telescope. 

Model for the Noise Effects 

Although the effects of noise are not readily apparent in Figures 1 ; 

have considerable impact on the restoration of images. 
2, and 3, they 

While the notation indicates the above image fields are instantaneous functions of time, 
there is some finite exposure (i.e., averaging) time involved in their measurement. We 
assume that these times are short enough to "freeze" the turbulence effects. In the sequel, 
we will refer to these time-averaged images as 

^J'£l >>W'^ 
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i <x,T ! = 1 (x, t)dt. . (5) 
'... -i'" 

Telescopic images are generally recorded us;:ig either photographic film or r-lectrmic 
c i w r j s , often at limited photon flux levels. Who;; u.-rinq photographic filrr., the noise is 
int. rnducod mainly by the non-linear density versus exposure characteristic and film orain 
noise. S'.imi larly most electronic cameras have a non-linear transfer chactoristic between 
the exi.ns i rig light intensity and their output voltage. other sensor noise sources are 
electronic noise, shot noise, uncertainties in the scanner beam profile, etc. 

tinder various hypotheses, the effect cf these noise source? can be modeled using com-
hin.-j'. i-.iit; of i" isson, additive, a:.A :ral t'.p i i c.-i'. : -.'0 ;r. i si; terms J , For additive noise with 
zero mean and variance- cr" , '.he measured ir.aue l .':•:, T / is uiven bv a d - ' -

i ; ( v , T __ , = i f v t-\ s r._ i x , T ̂  ) ' 7 ) 

For Pn isc-'<n (;.h.:tc.".i n o : s o , w o h a v e 

i.(x (Tj -- -l r: t(x,TJ . (8) 

The mi.-an and variance of the Poisso:: \.race -,« arc given by 

Vi'V = T 
and 

where 

(9) 

(ID! 

17x7 = Hii(x.t)l , ill! 

ITxTdx, (12) 

and 

P = total photon flux detected. (13) 

In all cases, the noise is statistically independent of iix.T.), and spatially and 
temporally uncorrelated. 

Sample Image Statistics 

This section gives the relationships between the sample statistics of a set of images 
with sensor noise and the mean and covariar.ee of the point spread response. 

First, consider the first order statistics or simple average of an ensemble of images. 
Taking the expected value cf (1) gives 

„J/(£l 11 &\ 
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This inteqral equation can be solved to: 'he '- J^£ t- >• ' i • >v;-r;v i se luirJ exj .os.j r- • inewe 01 
.I'/fTri'ii1 of many images is used te a;..; IU:-:;;: a':.'- , ixl . !.• * the averaae of I' ir:aa--s a' tines 
t ; i -• 1 , . . . ,'; be e, i r o n bv 

I 

r n r r = ~ / J •' ••• •" < 151 

F o r a n y e'eii'b i n a t i o n of t h e I ' o i s s o n , rjililil i v ^ , ,-i*vJ r ' J l 11 :>1 i ca 11 ye i,o i s c mode): : ' r (' ' , ti) 
on'! (H) , t h e sririp • •• n»-:i:i i r -jribwised , 

Unf o r t u u a t e l y , t h e s e f 1 r s t - o r d e r s : a - i ? : t i - s v e : : t a : r i vr : y i i ' ' l e h i v h - s p a t i a 1-:" rev v»-:. _-y 
i n f o r m a t i o n b ' T a u s o s ( - ) i s a ' / i j ^ EZ-O-: fh f vvvr 1 on v.'ith q j . e ' iy a t t e n u a t e d ll i y: i: s p a i i a l 
f r equ r TK: i e;: ( s e e F i g . 2 ) . T h u s , ' !v s e l u t i o : . ^ t •'!"'; r> ' f . ; !v- in an enhancere?- . ' e : t h e 
m e a s u r e m e n t ncjise a t h i g h s ; i t i n l f re vje.ve i e s . The1 lev: pa s? n a t u r e of s ( ' ) c a u s e s t h e 
i n v e r s i o n of (14) t o be- i 1 1 - c o n d i t i ' T J 'd ( . - : .a ) ! v a r i a t i e n c in i ( x ) r e s u l t in l a r g e v a r i a t i o n s 
o r c > ( x " ) ) . 

Now, c o n s i d e r t h e s e c o n d o r d e r : i t a t : E t i : s <r c o y a r j a r . e e of ar: o n s ^ x b l c of i m a g e s . T a k i n g 
t h e c o v a n a n c e of ( l i e i v e s 

p . ( . v . ] ( x 2 ) - l.j [ i ( x ^ t ) - H ^ T i [[(x.^.l) - i ( x - , ) l i 

r ' >, ! o ! >,., :• p (x , - A , x., • *.,:•::.*,.H-, . ! 1 ~ : 

In this integral cguatioa, the object e ( \) a;: ears as the cartisian product v.'ith itself. 
An unambiguous solution of this non-linear integral egjatior, will require a .non-i ir.ear 
solution method. The method will depend oa the characteristics of the sample lrnavc co-
variance used in the inversion of (18). L • L r . f:-:.,̂ ! be the satiric covarianrv f-inction 
of N .maues at time t.,i = 1, ... ,N, then 

1 
1 sp _ d i _ . A -R.(x ,x ) = r i . i [i,,(x ,T.i - i(x i| ri^(x,,TJ - i(x.,U (18, 

-• i ] = 1 - •-• - j 

The sample covariance is unbiased only if there is no measurement noise. For any 
combination of the Poisson, additive, and multiplicative noise models of (6), (7), and (8) 
the expected value of the sample covariance is given by 

(19) EJR i(x 1,x 2>| = R i(x 1,x 2) + 61^-Xj, ff^ + (̂  (R i(x 1,x 2) + i(Xj) i(x 2H + ^ ilXj) 

Note that the bias depends on the mean and covariance of the image and is zero except 
where x,=x.,. Once these biases are subtracted from the sample covariance, (17) can be 
solved for the object using the two broadband dimensions of R (x.,x 2). 

Principle Value Decomposition 

The kernel of (17) involving the object, o(?Oo(^-,) is a four-dimensional function. A 
general four-dimensional function can be expanded into an infinite sum of two-dimensional 
cartesian products, 

fU,,*,) = X, E g. (x ) g. (x ) . (20) 
- i= 1 1 1 1 1 <! 

.J/v£ I l|Jl- '/ 
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eigenvalues and the g.lx: are the eigenfunctions cT f(x. ,x_l. The E, are 
itude and the g.(x) are orthcncrmalized. If we attempted to solve (18) for 

ur-dimensional kernel, we would have two difficulties. First, the four 
Id imply the square of the number of operations involved in a twc-dimensional 
nd, (17) is ill-conditioned in two of its dimensions (for x =x_ (17) gives the 

t) which is a slowly varying cr narrow band function). I f we decomposed the 
kernel by using (20) and take the principle value (e. , g,(x) ) , wc have (17). 
tion of (17) is given by the largest eigenvalue and its eigenfunction for the 
le covariance of the images. Here the norm used is in the sense of integral 
iance of the point spread function R (x. ,11,1. The typical algorithm used to 
largest eigenvalue and its eigenfunction is the "power method." The 
he next section is an adaptation which uses the special properties of ?(x) 
to reduce the amount of computation required. 

Rfconstruction Algorithm 

For the assumed case of isoplanatic or spatially invariant ir 
of (14) and (17) allows us to use the Fourier transform to rewr: 

acing, the convolution nature 
to (14) and C'i 

I (z) = 11 r ) p (;•! (21) 

and 

P (z) 

T(z) 

S(z) 

:.-,HI'(Z,)S_(z ,z,i (22) 

s the transform of the object, 

s the Tiean of the Fourier transform of the imaae 

S. (z,,z_7) is the cmariance of the Fourier transform of the 
image 

is the mean optical transfer function 

S (z_. , z,) is the ccvariance of the optical transfer function 

a n d 

I ( z ) be the sa7i:;Ie mean of the Four ier t ransforms of 
the images 

A 
S.(z_. ,z_ I be the sample covar iance of the Four i e r t ransforms of 

the images. 

The expected values of these a r e 

E I (z) = K z ) ( 2 3 ) 

and 

E | S i ( z 1 , £ 2 ) [ = S i ( z 1 + z 2 ) + u^ S ( z x - z 2 ) + ^ [ K z ^ - z_ 2)] 

[ K z ^ - £ ) I ( z a - P) + S i ( z _ 1 - P , z 2 £ ) ] d e 
( 2 4 ) 

If the noise model is accurate and the parameters are known, the sample covariance can be 
corrected for the effects of noise. If not, within the constraints of this or another noise 
model, the parameters can be estimated and used to correct the sample covariance. Figure 
5 summarizes the restoration algorithm. The estimation equations are detailed below. 

Given the corrected sample covariance, the "power" method of finding the principle 
eigenvalue and its eigenfunction can be applied. This consists of picking an initial 
estimate and forming the appropriate products of it and the sample covariance in a matrix 
multiplication fashion. Properly normalizing these products gives the next estimate 
of 6(z_) . As this process is repeated, only the eigenfunction corresponding to the principle 
(largest) eigenvalue does not decay from the estimate. 

Let 6 (z) be the 1-th estimate. Then for a particular value of z, equations corresponding 
(21) and (22) are written as 

>J/,«.' ';/»Lti» i- S' 
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e l + 1 ( z 1 ) [ e £ * ( z 2 ) s s ( 2 r z 2 ) ] ,z,> 

o 

[ I ( Z 1 - P ) I * ( Z 2 - P) + S i ( £ i - P ,Z 2 - P ) ] d p (25) 

and 
f + ] - -

8 (ii' s (i> = I ( z ) (26) 

< r . r_ is the correlation distance 
(12? 

where only values of z_ near z_. are used, z, -
in the aperture plane resulting from the turbulence l x i /. Because the sample statistics 
are used, these equations have errors. The equations for z - z> > r are dominated by 
errors and are discarded. The corresponding components of S.(z.,z_) are not computed, 

1 2 4' 
greatly reducing the order of the computation (proportional to N rather,than N for N x 
images). These equations at a particular value o£ z, arc solved for S Iz,) in a least 
square fashion (the "appropriate product") to give 

r 
e I + 1(z,) 

(6 (z2) i^lZj.z,)! [ S J ( Z J , Z 2 ) ] + 0 1 ( ^ ) 5 ( ^ 1 

'£2-^i'' 
e J*(z 2) S s(z 1,z 2) 2 +aS 2(Zj) (27) 

where o is a weighting parameter to control the relative importance of the sample mean and 
sample covariance (a = o for ' z_, ' > r ). Thuse equations are solved for each z. starting at 

toward the diffraction limit in a - ' ~ "• ' the origin proceeding spiraling manner. 

The parameters of the noise model are estimated (if desired) after (27) has been 
applied at all z_, . The estimate is obtained by a least squares solution of 

Si<il'-2> = co e { (-l ) 0'* (-2 ) Ps (-l'-2 ) + cl [ 6 (-l _ V (28) 

+ c 2 BtZj - z_2) + c 3 K z _ 1 - z_2) 

for the coefficients c , c. , c,, and c where B(z_. - z^7) is a precalculated approximation 
to the integral of (257. The coefficients c, , c.,7 c, are used as " , " , and I on the 

1 2 3 a m _o 
P 

f ° 
next iteration. The square root of c is used to scale 8 l ( z ) before the next iteration. 
Restoration Results 
The restoration algorithm has been exercised on both simulated and astronomical data. 
Figures 6 and 7 show the results which reveal a substantial restoration under a variety 
of conditions. Simple analytic models were used for S(z) and S (z,,z_) 

and 

S(z_) =* e x p [ - < ! z l / r o ) ' 

s.^-e-%) 1 -^-^-*(^)*(-^^) 

( 2 9 ) 

( 3 0 ) 

J/'tjCi I r~4 > ^ 
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A variety of conditions were simulated to obtain a feelm: for the sensitivity of the 

restoration technique. Figure 6A shows the ideal diffraction limited image. Figure IP 
show;; a typical speckle image. The average image and its spectrum are in Figures 2C and 
2U. When no measurement errors are introduced, the restoration is very accurate as shown 
in Figure 6D. For photon noise corresponding to a magnitude of 0.5, restorations wi'-hcut 
correcting for the noise bias have an impulsive artifact near the centroid of the image 
(Figures 6B and 6C). This artifact is removed when the proper bias correction is made to 
the covnriance data (Figures 6F and 6F). The remaining rrrors are caused by the small 
number of images used in the sample statistics and the simplified models used to describe 
5(z) and S (Zi.z-,1. Forty images were used in the restorations of Figures 6C and CF, and 
eighty images" were used in all other restorations of Figure 6. Figure 6G shows the degra­
dation of the restoration caused by a factor of four reduction in the photon flux.. Figures 
fill and 61 show the degradation of the restoration caused by estimating the parameters of 
the noise models for photon noise alone and for all three components. The impulsive-
art ifact returns partially and some high spatial frequency artifacts are introduced. 
These r.ev; artifacts are probably caused by the simplified models for the optical transfer 
function statistics and the bias errors i '•• the ccviriar.ee data. 

Figure 7 shows the results of restorations of the binary star. A typical speckle image 
in i :i Figure 1L. The average image and its spectrum for 44 images are in Figures 21 ar,c 
2.J. Figure 7A shows the restoration of the binary star where the noise parameters have been 
estimated. Unfortunately, insufficient information and time were available to independently 
determine the noise model parameters for this data. The very broad speckle images have 
been reduced dramatically to an elongated spot in the center of the image field. The 
magnitude and phase of the Fourier transform of the restoration in Figures 7B and 7C show 
i he coherence of the phase wherever the magnitude is appreciable and that the restoration 
.ippr'iiches the diffraction limit. The impulsive artifact at the centroid of the imauc 
lies between and over the locations of the individual stars. Figure 7D is a factor of 
eight enlargement of the restoration. Because the stars are separated by only slightly 
mor" than the diffraction limited resolution, the artifact precludes directly resolving 
them. Figure 7E shows a restoration whert the artifact has been removed by estimating it 
from the previous restoration and a restoration without a correction for the noise bias 
which has a larger impulsive artifact. 

C onclusions 
The restoration technique has been demonstrated to be effecti%'e with both simulated and 

astronomical data. Bias corrections to the second order statistics were found to be 
necessary. The restoration technique con\2rqes quickly and its required computational 
effort is roughly proportional to the size of the imaaes. 
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Figure 1. Typical speckle images; A) simulated point source (32 x 32 samplesj ; B) sinulated 
extended source (64 x 64); C) 48 Gem, an unresolved star (128 x 128); D) Vesta, 
an asteroid (128 :< 128); F.) Alpha Auriga (Capella), a binary star with ar 
angular separation of - 0.06 arc sec. (256 >; 256); F) Garvna Orio.-.i's (hoi la •_ r: x) , 
an unresolved star (256 x 25 PBf" 

Figure: 2. Sample average images and their Fourier spectra; A and B) simulated point 
source; C and D) simulated extended source; E and F) 48 Gem; G and H) Vesta 
I and J) Capella. 

Figure 3. Sample variance of the Fourier transforms of the images; A) simulated point 
source; B) simulated extended source; C) 48 Gem; D) Vesta; E) Capella. 

Figure 4. Magnitude of sample orie-step correlations of the Fourier transforms of the 
images; A) simulated point source; C) simulated extended source; E) 48 Gem; 
G) Vesta; I) Capella. 

;Jhril;n'i>\ 8> 
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Figure 4. Phase of sample one-step correlations of the Fourier t-r*n = f„r™,- of n, 
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Figure 6. Restorations of simulated data; 
A) image without atmospheric 
turbulence or noise; B) no bias 
correction (80 images); C! no 
bias correction (40 images) • 
D) no measurement noise (SO images) 
E) exact bias correction (80 
images), F) exact bias correction 
(40 images); G) exact bias 
correction with a quarter 
of photon flux (80 images); 
H) estimated bias correction for 
photon noise only (80 images) ; 
I) estimated bias correction for 
all noise components (80 images). 

Figure 5. Restoration algorithm block 
diagram. 

.Figure 7. 

;7E 

Restoration of CapeZla; A) restored image for estimated bias correction; 
B) magnitude of Fourier transform of restored image; C) phase of Fourier 
transform of restored image maqnified (8 times); E) restored image with im­
pulsive artifact reduced. 
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