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irage Model

Twe principal sources of imaege distorti:n ¢ceur when usine a ground-based telescere. The
first is the turbulence of the tervening stncsphere.  The second source is the error or
noise associagted with the p

ysical measurement of the image. Both mechanisms adversely
affect the guality of the imaging and mask many of the important features of the obiect.
While the turbulence effects are the most profound in this reagard, it is the presence of

the noise which has previously made correction ter the turbulence difficult. Models for
both cffects will be described next.

Model for the Turbulence Effects

For simplicity, consider incoherent imajing over an isoplanatic patch, the image can be
expressed as a convolutiorn of the object and a point spread response function:

if(i.t) ={f As(x - A, t)dA 1)

where i.(x,t} is the formed image, o{A) is the object, and six,t}
response .

1s the point spread
The point spread response depenis on the optical system and the phasc delay
and amplitudn disturbance processes caused by turbulence. Let S{z,t)
transfer function corresponding to s{x,t}, that 1is,

*This work was performed under the auspicer of the U.S, Department cf Energy under Contract
Number W-7405-ENG-~48,
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Sz, 1) - !w{”(i't)} = /{ sUy v 2 aip exp TOoe(fe + oz =30 (6]
exp [FU8+ 2z, L) —0@00 + a0+ flo, 0l =300, T di (2}
a (v} 1s the aperture funcoieo:, 2 th

6 (-} is the phase aberratio:n function ol the telescope,

R(-,+) 15 the loy-amplitude disturbance at the aperature
caused by turbulence,

15 the

aporiure
aused <y
. 3
antl v )‘} indrcares ) rotransiornr with orespoect to o x,
%

A)qum\ng the usual Gaussian distributian for £ and @ allows the mean and covariance of
s(z,t) Y be written in tcrms of Lhe wa ucture function, D(-). Using the results of
Fante , the mean and covarianve of S{z,t) arce well ajjroximated by

o
= _ | SR N (o ] Vies v 4 (2
5(z) = i 5 B(z)) aflii + vialv, eup [‘Ua: +o2l - () dy, (3}
—or -
and -
55(31'32)’,),ﬁ(” tzlalypraly,

o Lo

[_ DEy

For mean $(z) the effects of thc atmospher: and the telescope separate into a product ferm,
but for the covariance § {zy.2,0. they do :ot. §(z) is dominated hy the exponential factor
and decays to zero rapidly &as Eho spatial :requency increases in magnitude. Sz ,4j) is
quite complex and it's character is determ:ncd by the arquments of the exponentialst The
character of § ) can be best illustra‘ed by example. By using inverse Fourier
transforms, the éean s(x) and covariance R (xy.%,5) functions of s{x) can be obtained from
5(2) and 5 (z ). ) -

Z1s 'J

Fiqure 1 shows typical speckle images fur astronomical and simulated data. The astro-
nomical data was obtained by S. P. Worden «f the Sacramentc Peak Observatory. Figure 2 con-
tains average images and the magnitudes of their Fourier transforms which illustrate
the low pass nature of the mean of the opt:cal transfer function 5(z). Fiqure 3
shows the broadband nature of the variance of the optical transfer Ffunction. For the
binary star, the nulls of the image spectrum give the separation and orientation of the
stars. Figure 4 contains magnitude and phiase pictures of one-step ccrrelations of Fourier
transforms of images. The magnitude pictures show the broadband nature of these cor-
relations. The phase picture for the point source reveals the coherent nature of the
differential phase. For extended sources, Figures 3 and 4 show that botl the magnitude
and phase pictures are modified by the source. For the binary star, the magnitude pictures
clearly show the modulation due to their separation zrd the phase picture clearly shows
the diffraction limit of the telescope.

Model for the Noise Effects

Although the effects of noise are not readily apparent in Figures . 2, and 3, they
have considerable impact on the restoratior. of images.

While the notation indicates the above image fields are instantaneous functions of time,
there is some finite exposure (i.e., averacing) time involved in their measurement. We

assume that these times are short enough tc "freeze" the turbulence effects. In the sequel,
we will refer to these time~averaged images as

AL nui d
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Telescople images are

s photogravhic film or vlectroonic
Carurrgs

cften at limited phot fluw levels. g1 15 photographic film, the noise is
int roduced mainly by the non-linear density versus osure characteristic and film wrain
noisr. Similarly most electronic cameras have a non~lincay transfer chacteristic beiween
the cxposing lrght intensity and their cutput voltage. Dther sensor noise sources are
clectranic noise, shot neise, uncertainties in the scanner beam profile, etc.

Under various hyprthae € t e B neise s 2 e modeled using com-
i i : : For additive noise with

inaty.ns of o isson,

zero mean and varilance

o

ShoE b, Toy e Ty (R
For maluag Dioative noise with upity mean 3.4 a’, we have
o= oatE,T o )
For Poiscon {photen . W
.
i (=, T - B no s, (8}
¢ r i
The mean and variance of the Polsson process are aiven by
— F, . —
.“.El )?T-ix“. 9}
and
= i (10}
where
= sfix.edt {11)
I = } {12}
s
o
and
P, = total ploton flux detected. (1

In all cascs, the noise is statistically irdependent of i{i,Tﬁ), and spatially and
temporally uncorrelated. -

Sample lmage Statistics

This section gives the relationships between the sample statistics of a set of images
with sensor noise and the mean and covariarce of the point spread response.

First, consider the first order statistizss or simple average of an ensemble of images.
Taking the expected value cf (1) gives

.,-J/‘.Ll“f:“ 1
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This 1ntegral egquation can be solo o lge tund exrpasare imac or
averaqe of miany images is used to approdan . L bt the gverage of 3 odmages al o times
L.'; o ol, o0 i be given by

[T {19}
=1 h
For any combination of the Poisson, oddative, and rulvirlicative noise models of (60, (7]
and (B), the sample mean e o ane
s
PAT 1y

Unfortunately, these first-ordoer o Tt ain sh-spatial-
infaormation because s(+) 1s 4 wilde funsrion tenuated his
froquencice: (3 R ¢ o o Ut nhan

-
measurement noise at high the

of ()

inversion of (14) to be 11l=-condizinned Toran result n Tarae variations
of olz)).
Now, consider the second nrder stat:sticzs or ceovarjaence of arn ensemble <f imajes.  Taking

the covariance of {1} aives

= ofics

¥y

o o
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—o o

cid dois:
Yytein,

Tn this intugral equation, the ob;

An unambiguous solution of this ron-linear

ct cid) appears as the cart

sran product with 1tself,
egral equat 1

require a non-i

1
ics of the samplec 1ma

solution method. The method will depend o the characterist co~
variance used in the inversicn of (18). L:t ¥, (:-:1,:71 bt the samrle covariance Tunction
of N .mages at time tj,j =1, ... ,N, then ! -
A . L1 Z - ; . i A __’f___] (1e
Ritxyox,) = ooy Tl 1 g len T = 2 ls,)

The sample covariance is unbiased only if +here is no measurement noise. For any
combination of the Poisson, additive, and ultiplicative neise models of (6), (7), and (8},
the expected value of the sample covariance is given by

Al
E{R (x 0x0) = RyMx; x50 + by

1
o IR R ey 4 1R i{x,0] 4 P 1(51)] (19}

Note that the bias depends on the mean and covariance of the image and is zero except
where x =x,. Once these biases are subtracted from the sample covariance, (17} can be
solved l’or the object using the two broadb:nd dimensions of Rs(il._{z) .

Prirciple v'alue Decomposition

The kernel of (17} involving the object, o(A )o(r ) is a four-dimensional function. A

ganeral four—dimensi?ge} function can be expanded iﬁgo an infinite sum of two-dimensional
cartesian products,

o,

fxy,x,) = Z E.

d i gib_(l) q.l(gz) . (20}
1=

,J/qj&ul.éu- 'y
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The 11 are the eivenvalues and the g, (x! are rthe eigenfuncticns ci f(x,,x,1. The E. are
crderdd by magnitude and the g. (x} ate orthcnermalized. If we attemptéd_%o sclve (18) for
the general four-dimensional kdrnel, we would have two difficulties. First, the four
dimensions would imply the square of the number of operatiens involved in a two-dimensional
problem. Second, (17) is ill~conditioned in two of its dimensions (for x =%, (17) gives the
variance of i(x,t) which is a slowly varying or narrow band function). I} wé decomposed the
general (4-D) kernel by using (20) and take the principle value (e., g, (x)), we have (17}
Thus, the solution of (17) is given by the largest eigenvalue and 1ts eigenfunction for the
corrected sample covariance of the images. Herc the norm used is in the sense of integral
aver the covariance of the point spread function R_(X,,x,). The typical a]go¥1f?m used to
sulve for the largest eigenvalue and its eigenfunc%io% 1§ the "power method." The
algorithm in the next section is an adaptation which uses the special properties of S(x)

and Rs(il’EZ) to reduce the amount of computation required. -

Reconstruction Algorithm

For the assumed case of isoplanatic or spatially invariant irmaging,

the corvcl:ticn nature
af (14) and (17) allows us to use the Fourier ‘rans

form to rewrite (14) and (17)

Tiz) = E1)E (= (21)
and
Sz 2,0 = vl (z) 8 (2,2, (22)
whore
6(z) is the rtransform of the object,
T(z) is the mean of the Fourier transform of the image
Si(zl’ij) is the covariance of the Fourier transform of the
“  image
5(3) is the mean optical tra;sfer function
S {z,.2,) is the covariance of the optical transfer functicn
Let
[l
1{z} be the sample mean of the Fourier transforms of
the images
and A

Si(gl,gzl be the sample covariance of the Fourier transforms of
the images.

The expected values of these are

2 -
E{T(z)} = T(z) (23)

and

BiSi(zpezy)h = 8502) + 25) v 05 8(z) = zp) + 5 [1lzy - 2))
4o
2 _ _»
+ U"‘,{‘ (T(z, - BT (z, - By + S;(z) - B, 25 - B dE (24)

If the noise model is accurate and the parameters are known, the sample covariance can be
corrected for the effects of noise. If not, within the constraints of this or another noisec
model, the parameters can be estimated and used to correct the sample covariance. Figure

5 summarizes the restoration algorithm. The estimation eguations are detailed below.

. Given the corrected sample covariance, the "power" method of finding the principle
eigenvalue and its eigenfunction can be applied. This consists of picking an initial
estimate and forming the appropriate products of it and the sample covariance in a matrix
multiplication fashion. Properly normalizing these products gives the next estimate

of ®(z). As this process is repeated, only the eigenfunction corresponding to the principle
(largest) eigenvalue does nct decay from the estimate.

Let Gl(z) be the f-th estimate.

z Then for a particular value of z, eguations corresponding
(21) and (22) are written as . -

»Jla:ioTLa"b
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1+l [Ad ne
5] (z)) e (52)55(51.52)1 = SO(EI'EJ
1
-2 2 -
= 5;(z .25) —a [6(z) - z2,)] - 5; (I(z) - z,)
o
2. (f = oy T ) ,
-a [I(_z_l - P)I (:2 - f) + Si(ii - Bz, - E)]df (25}
‘o
and
A
¥ — A
o' 1z §() = Tta) (26)
where only values of z, near z, are used, 2] T gy I Ty is the correlation distance
in the aperture plane resulting from the turbulence(lz?. Because the sample statistics
are used, these equations have errors. The equations for izy - 52':’ro are dominated by
errors and are discarded. The corresponding components of Si(gl,gz) are not computed,
greatly reducing the order of the computation (proportional to N rathiilthan N4 for ¥ x N
images). These equations at a particular value of z, are solved for ® (El) in a least
square fashion (the "appropriate product”) to give
z o' (2,) u & T(z,)5(z,)
- I 25) B lzy,za) ] (85(zy,2,)] +al(z;)S(z,
£+1 2272 T
e (z,) =

= 2 2 =2

| 6" (2z5) S_(zy,2,) +a5%(z)) (27)
Z,-2.'4 T
=2 =1 o

where @ is a weighting parameter to control the relative importance of the sample mean and
sample covariance (a=o for 'z, > r ). These equations are solved for each z, starting at
the origin proceeding toward %he diffraction limit in a spiraling manner.

The parameters of the noise model are estimated (if desired) after (27) has been
applied at all 2,. The estimate is obtained by a least squares solution of

2, - : | L
Silz),2,) = ¢ 0%2)0" (2,)8_(2),2,) + ¢ [6(z; - z,)] (28)

A
+ ¢, Blzy - z,) + cqyllzy =~ z,)

2

for the coefficients c_,

¢y, C,, and c, where B(z, - 2,) is a preca}culited approximation
to the integral of (25?. %he goe

ici a a
fflClgnts Cyr CyF Cq dare used as ar Tor and £2 on the

P
o

next iteration. The square root of Co is used to scale 9!(51) before the next iteration.

Restoration Results

The restoration algorithm has been exercised on both simulated and astronomical data.
Figures.ﬁ and 7 sbow the results which reveal a substantial restoration under a variety
of conditions. Simple analytic models were used for 5(z) and 55(51.52)

§(z) ~ exp [-(iZ1/r )Y (29)

2
Sglzyizy)s (r—g) [1 - 1312; 2l (% ; 52)] [5 (& ; EZ)] (30)

and

N AT
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A varietry of conditions were simulated to obtain a feel:n: for the sensitivity of the
restoration technigue. Figure 6A shows the ideal diffracticr limited image. Figure 1P
shows o typical speckle image. The average image and its spectrum are in Figures 2C and
20. Whrn no measurement errors are introduced, the restoraftaion is very accurate as shown
in Fiqure AD. For photon noise correspondins to a magnitude of 0.5, restoratiens wivhaout
correcting for the noise bias have an impulsive artifact near the centroid of the imace
(Figures 6B and 6C). This artifact is removed when the er bias correction is made to
the covariance data (Figures 6F and 6F). The remailring errors are caused by the small
number of images used 1n the sample statistics and the simplified models used to descrite
G{(z) and S_(z,,2,). Forty images were used in the restorations ¢of Figures 6C and €F, and
cighty ima%es wete used in all other restorations of Figure €. Yigure 6G shows the degra-
dation of the restoration caused by a factar of four reduction in the photon flux. Figures
6 and 61 show the degradation of the restoration causcd by estimating the parameters of
the nnisc models for photon noise alone and for all three components. The impulsive
artifact returns partially and some high spatial frequency artifacts are introduced.

These new artifacts are probably caused for the optical transfer
function statistics and the bias errors

Figure 7 shuws the results of restcrations ¢f the binary star. A typical speckle image
15 in Figure YE.  The averazve image and its spectrum for 44 images are in Figures 21 and
2J. Fliqure 7A shows the restoration of the hinary star where the noise parameters have been
rstimated, Unfortunately, insufficient information and time were available to independently
detormine the noise model parameters for this data. The very broad speckle images Lave
Leen reduced dramatically to an elongated spot in the center of the image field. The
magnitude and vhase of the Fourier transform of the restoration in Figures 7B and 7C show
the coherence of the phase wherever the nitude is appreciable and that the restoraticn
approaches the diffraction limit., T i lgive artifact at the centroid of the imauc
11ies bretween and over the locaticns of ¢ idual stars. Figure 7D is a factor of
«ight enlargement of the restoration. Hecause the stars are separated by only slightly
morss than the diffraction limited resclut:cn, the artifact precludes directly reselving
them. TFigure 78 shows a restoration where the artifact has been remcved by estimating it
from the previous restoration and a resteration without a correction for the noise bias
which has a larger impulsive artifact.

inrdiv

Coanclusions

Thr: restoration technigue has been demcnstrated to be effective with both simulated and
astronomical data., Elas corrections to thre sscond order statistics were found to be
necassary . The restoration technigque contzrues guickly and i1ts reguired computaticnal
wffort is roughly proporticnal to the size of the images.
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Figure 1.

Figure 2

Figure 3.

Figure 4.

AA

Typical speckle images: A) simulated point source (32 x 32 samples); B) simulated
extended source (64 x 64); C) 48 Gem, an unresolved star (128 x 128): D) Vesta,
an asteroid (128 x 128); F) Alpha Auriga {(Capella), a binary star with an

angular scparaticn of -~ 0.06 arc sec. (256 x 256); F) Garma Orioni's (Bellavr:m),
an unresolved star (256 x 2356

Y ———

: 4 TR .
Sample average images and their Fourier spectra; A and B) simulated point

source; C and D) simulated extended source; E and F) 48 Gem; G and H) Vesta:
I and J) Capella.

Sample variance of the Fourier transforms of the images; A) simulated poin+
source; B} simulated extended source; C) 48 Gem; D) Vesta; E) Capella.

Magnitude of sample orie-step correlations of the Fourier transforms of

i . - the
images; A) simulated point source; C) simulated extended source: E) 48 Gem;
G) Vesta; I) Capella.
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i Figure 4.
(cont.)
J) Capella.

rDIC ITIZATION AND

* FNOURIER TRANSFORM

Phase of sample one-step correlations of the Fourler transform
B) simulated point source; D} simulated extended source; F) 48 Gem; H) Vesta:
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.
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125)
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OBJECT
TRANSFORM

INVERSE
DISCRETE

FOURIER
TRANSFORM

Figure 5. Restoration algorithm block

4 diagraw.

.Figure 7.

Restoration of Capella; A) restored image for estimated bias correctioun;
B) magnitude of Fourier transform of restored image; C)} phase of Fourier

of the images:

Restorations of simulated data:
A) image without atmospheric
turbulence or noise; B) no bias
correction (80 images); C! no
bias correction {40 images):

D) no measurement noise (80 images):

E} exact bias correction (80
images), F} exact bias correctiaon
(40 images); G) exact bias
correction with a quarter

of photon flux (80 images);

H) estimated bias ccrrection for
photon noise only (80 images);

I} estimated bias correction for
all noise com onents (80 1maqes).

transform of restored image magnified (8 times); E) restored image with im-
pulsive artifact reduced.
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