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The statistical properties of speckles in paraxial optical systems depend on the system parameters. In
particular, the speckle orientation and the lateral dependence (x and y) of the longitudinal speckle size
can vary significantly. For example, the off-axis longitudinal correlation length remains equal to the on-
axis size for speckles in a Fourier transform system, while it decreases dramatically as the observation
position moves off axis in a Fresnel system. In this paper, we review the speckle correlation function in
general linear canonical transform (LCT) systems, clearly demonstrating that speckle properties can be
controlled by introducing different optical components, i.e., lenses and sections of free space. Using a
series of numerical simulations, we examine how the correlation function changes for some typical
LCT systems. The integrating effect of the camera pixel and the impact this has on the measured
first- and second-order statistics of the speckle intensities is also examined theoretically. A series of
experimental results are then presented to confirm several of these predictions. First, the effect the pixel
size has on the measured first-order speckle statistics is demonstrated, and second, the orientation of
speckles in a Fourier transform system is measured, showing that the speckles lie parallel to the optical
axis. © 2012 Optical Society of America
OCIS codes: 030.6140, 030.6600, 110.6150, 070.7345, 050.1940.

1. Introduction

When an optically rough surface is illuminated with
coherent light, a three-dimensional (3D) speckle field
is generated. The statistical properties of the speckle
field are usually examined in an observation plane
that is perpendicular to the principal optical axis.
Leushacke andKirchner [1] and Li and Chiang [2] ex-
amined the 3D structure of static speckle under plane
wave illumination. Later, the 3D space–time cross-
correlation functionwasderived for free-space geome-
try where a diffuser was illuminated with a Gaussian
beam [3]. The analysis in these papers has been ex-
tended to include other paraxial optical systems
and Gaussian soft apertures by applying the linear

canonical transform (LCT) and associated ABCD
Collins-matrix theory [4,5]. A generalized Yamaguchi
correlation factor was also derived for paraxial
systems with a hard limiting aperture [6,7]. To anal-
yze fully developed speckle fields [8], the following as-
sumptions are often used to describe the scattered
field at the rough surface (the object plane): (i) the
autocorrelation of the field at the object plane is a del-
ta function, (ii) the surface is sufficiently optically
rough to produce phase variations uniformly distrib-
uted over �0 → 2π�, and (iii) the real and the imaginary
parts of the field at the rough surface are uncorre-
lated. With these assumptions speckle fields in the
observation plane obey a complex Gaussian random
process [8], whichmathematically simplifies the deri-
vation of the correlation function.

This correlation function describes the statistical
relationship between intensity values at two specific
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spatial locations. Unfortunately this also makes it
more challenging to directly measure the correlation
function with an experiment. In such a speckle ex-
periment, a diffuser of finite size is illuminated with
monochromatic laser light, and the intensity values
of the speckle field at two different spatial locations
are recorded. It is not possible to determine the sta-
tistical relationship between these spatial locations
with a single measurement. To measure this correla-
tion function, the intensity values at these specific
spatial locations should be measured for a large
number of different diffusers. We note that, while the
diffusers should have similar surface roughness
characteristics, it is assumed that each diffuser gives
rise to a new statistically independent speckle field.
We refer to this averaging as temporal averaging.
This type of experiment is time consuming in prac-
tice, and so we wish to find another more convenient
way to perform this averaging operation. We achieve
this using a spatial averaging method, where we can
approximately measure the correlation function by
allowing recorded intensity values, around the two
spatial locations of interest, contribute to the aver-
aging process. In order for this assumption to be
strictly valid, it requires that the statistical proper-
ties of a speckle field are stationary [9,10], i.e., de-
pend only on the distance between the two spatial
coordinates and not on their actual spatial locations.
In general paraxial systems, this is not true—the cor-
relation function has a spatial dependency for a Fres-
nel system [11,12]; however, as we shall see later, it
does hold for a Fourier transforming system. Despite
this important reservation we have found that the
spatial averaging technique works quite well for
the experimental systems we have looked at. This
implies that the spatial averaging technique is ap-
proximately stationary over the region that contri-
butes to the averaging process. For all of the work
presented here, we have run a series of numerical si-
mulations where we compare the predictions of tem-
poral and spatial averaging processes for a range of
different LCT systems. Good agreement between the
two approaches was found when small subimages
of speckle intensity are used in the correlation calcu-
lation [11,12]. This justifies our interchanging of
temporal and spatial averaging for the systems
discussed here.

Based on the work in [4], in this paper we explore
speckle correlation in general LCT systems. Static
speckles in a free-space configuration are orientated
radially toward the origin of the optical system
[1,3,4], and the longitudinal correlation length is de-
pendent on x and y[11,12]. We note, however, that the
speckle orientation and the speckle size (lateral
width and longitudinal length) can be varied by in-
troducing a lens into the system [13]. More impor-
tantly, in some particular paraxial systems, i.e., a
Fourier transform system, the longitudinal length
of the speckles become independent of x and y [4].
In this paper we review the theoretical work leading

to this conclusion and provide numerical and experi-
mental verification.

When a field is incident on a digital camera, the in-
dividual pixels average the light energy incident upon
them, in effect filtering and sampling the intensity
distribution. This filtering and sampling effect has
been analyzed in the context of digital speckle photo-
graphy [14] and digital holography usingABCD form-
alism [15]. The integrating effect of the finite-size
pixel also needs to be considered for a digital speckle
pattern. Goodmanhas pointed out that the first-order
statistics of an integrated speckle intensity distribu-
tion can be approximated quite well with a gamma
function; seeChapter 4 of [8]. The first-order statistics
of the background intensity andmodulation in phase-
shifting speckle interferometry were examined to
maximize measurement efficiency [16,17]. Here we
extend the derivation of the correlation function fol-
lowing the approach in [8] so that the integrating ef-
fect of the camera pixel on the first and second-order
speckle statistics in general LCT systems can be ex-
amined.This integratingeffect canbemadenegligible
provided that the ratio of the camera pixel size to the
lateral speckle size is properly controlled.Experimen-
tal verification of this result for first-order speckle sta-
tistics is presented. The effect of the camera pixel size
on the second-order statistical properties of a mea-
sured speckle field is also considered. We find that
the pixel averaging effect leads to a reduction in the
correlation coefficient that would be measured with
point detectors, to an extent determined by the ratio
of the pixel size to lateral speckle size.

To summarize, the paper is organized in the follow-
ing manner. In Section 2, we present the results of
our theoretical analysis. In Section 3, we compliment
these analytical results with a series of robust nu-
merical simulations. In Section 4, we present experi-
mental work that confirms the theory and simulation
results from the previous two sections. We then
finish with a brief conclusion section.

2. Theoretical Analysis

A. Speckle Properties and Orientations in LCT Systems

In this section we review the derivation of the 3D
speckle correlation function. The general LCT optical
system where speckles are formed is shown in Fig. 1.
A diffuser is placed in the object plane r � �ξ; η� and
illuminated from behind by a Gaussian beam of
wavelength λ. The diameter of the circular beam spot
on the diffuser surface is 2w, wherew is the radius at
which the beam amplitude drops to 1∕e of the axial
value. The scattered light propagates through an
LCToptical system to the observation plane, denoted
by ρ � �x; y�. According to the Huygens–Fresnel prin-
ciple [18], the field in the observation plane is given by

U�ρ� �
Z

U0�r� exp
�
−
ik
2B

�Ar2 − 2r · ρ�Dρ2�
�
d2r;

(1)

A2 APPLIED OPTICS / Vol. 51, No. 4 / 1 February 2012



where U0�r� is the scattered field in the object plane
and k � 2π∕λ, is the wavenumber. The integration is
carried out over the entire object plane. A, B, and D
are the correspondingCollins-matrix elements,which
represent the optical system. In Eq. (2) we list
the fA;B;C;Dg values for some typical operations:
Eq. (2a), Fresnel transform (FST), i.e., propagation
a distance z � z0 in free space; Eq. (2b), Fourier trans-
form (FT); Eq. (2c), a thin lens with focal length f , i.e.,
chip modulation transform (CMT). The LCT optical
system can be one of these single operations or some
combination of them by a simple concatenation of the
appropriate matrix, i.e., Eq. (2d) is a single lens sys-
tem (SLS) where z1 and z2 represent the free space
before and after a single thin lens of focal length f
[5,15,18].

�
A B
C D

�
FST

�
�
1 z0
0 1

�
; (2a)

�
A B
C D

�
FT

�
�

0 f
−

1
f 0

�
; (2b)

�
A B
C D

�
CMT

�
�

1 0
−

1
f 1

�
; (2c)

�
A B
C D

�
SLS

�
�
1 −

z2
f z2 � z1

�
1 −

z2
f

�
−

1
f 1 −

z1
f

�
. (2d)

Restricting our attention to fully developed
speckle, Goodman’s model [8] can be applied to sim-
plify the mathematical derivation. Based on the
three assumptions listed in Section 1, the normalized
correlation function between the speckle intensities
at point positions ρ1 � �x1; y1� in observation plane 1
and ρ2 � �x2; y2� in plane 2 (see Fig. 1) can be given
by the ensemble average as [1–5,8]

hI�ρ1�I�ρ2�i
hI�ρ1�ihI�ρ2�i

� 1� CI�ρ;Δρ;Δz�; (3)

where (following the detailed derivation process
in [4])

CI�ρ;Δρ;Δz�� 1

1��Δz∕lz�2
exp

�
−
1

ρ20
jΔρ−DΔzρ∕Bj2

�
:

(4)

Once again ρ � �x; y�, represents one of the ob-
servation point positions, and Δρ � �Δx;Δy� is the
lateral coordinate difference between the two obser-
vation point positions. When Δz � 0, the two obser-
vation points are in the same observation plane, and
CI is the speckle autocorrelation function. The other
parameters appearing in Eq. (4) are defined as
follows:

lz �
4B�B�DΔz�

kw2 ; (5a)

ρ0 � 2�B�DΔz�
kw

�1� �Δz∕lz�2�1∕2: (5b)

The speckle correlation coefficient for a paraxial
LCT optical systems for any two points in the 3D
space can be determined using Eq. (4). The normal-
ized correlation function CI�ρ1;Δρ;Δz� has a maxi-
mum value of unity, which is obtained when a
point in the speckle field is correlated with itself,
and the correlation coefficient decreases as the
separation between the two correlated points in-
creases. The separation value at which the correla-
tion coefficient falls to the first minimum defines
the speckle size [1,2] for this specific direction where
separation takes place; thus the speckle shape in the
3D space can be found. For a Gaussian-type correla-
tion function, of the form exp�−s2∕β2�, as examined
here, we can define the 1∕e speckle size to be 2β.
Generally, speckles are long narrow cigar-shaped
volumes in space [1].

For a given value of Δz, CI�ρ1;Δρ;Δz� takes its
maximum value when Δρ � ρΔz�D∕B� (when
B ≠ 0) [4]. This indicates that speckles in different
LCT systems have different orientations depending
on the choice of B and D. For example, in the free-
space propagation case, i.e., FST configuration,
D ≠ 0, so all the speckle grains are orientated ra-
dially toward the system origin, while in FT config-
uration, D � 0, and the speckles thus lie parallel to
the optical axis [4]. In Fig. 2, we draw some speckle
grains in the x–z plane for these two configurations to
illustrate this speckle orientation property. We can
see the orientation of the speckles have changed to
lie parallel to the optical axis immediately after
the lens, since for any propagation of the field after
the lens, D remains equal to zero; i.e., see Eq. (2d);
D � 0 when z1 � f . Please note that, for the speckle
grains in Fig. 2, only the correlation length in one
specific direction is considered, which is denoted
by the dashed line. As a result, only the correlation
lengths along the dashed lines are comparable for
different speckle grains. The lengths are drawn ac-
cording to the theoretical speckle sizes predicted
by the correlation function Eq. (4). In the FST case,
the speckles lie orientated along lines that pass

Fig. 1. Static speckle formation that propagates through real-
valued ABCD optical system. The illuminating spot in the object
plane is Gaussian soft aperture with diameter 2w.
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through the system origin and always have the same
projection length onto the optical axis; see [1,10] for
detail. As a result, in the directions that pass through
the system origin, the further the observation posi-
tion is away from the optical axis, the larger the
speckle grain lengths are. While in the right half
of this LCT system (after the lens), the longitudinal
speckle correlation is independent of the lateral po-
sitions as well as the longitudinal position of the ob-
servation plane, which can be inferred using Eq. (4).
Thus speckle grains of the same longitudinal length
are drawn in the space after the lens. Detailed dis-
cussions on the lateral and longitudinal speckle
properties in these typical LCT systems will be given
in Section 3.

B. First- and Second-Order Statistics of the Integrated
Speckle Intensity

In this subsection we explore the role of finite-size
camera pixels on the statistical properties of the
recorded speckle intensity pattern. For practical
measurements, the intensity returned by each cam-
era pixel is in effect the spatially integrated intensity
over the finite area of that camera element, and this
differs from the ideal pointlike intensity sampling
assumed in the standard theoretical derivation.
The measured intensity Iα at a single pixel is defined
by [8]

Ia � 1

A2
D

ZZ �∞

−∞

Da�ρ�I�ρ�d2ρ; (6)

where AD denotes pixel size, I�ρ� is the ideal point-
like speckle intensity incident at the camera detect-
ing surface, and Da�ρ� is the pixel aperture function
representing the variation of the camera’s photosen-
sitivity over the pixel area.

The second moment of Iα is given by

hIa1Ia2i �
1

A4
D

ZZ �∞

−∞

ZZ �∞

−∞

Da1�ρ1�Da2�ρ2�

× hI�ρ1�I�ρ2�id2ρ1d2ρ2; (7)

in which the orders of ensemble average and integra-
tion have been interchanged. Using Eq. (3) and as-
suming that hIai � hIi, i.e., that the mean of the
detected intensity is identical with the true mean
of the speckle pattern, Eq. (7) can be rewritten as [8]

M−1 � hIa1Ia2i
hIa1ihIa2i

− 1

� 1

A4
D

ZZ �∞

−∞

ZZ �∞

−∞

Da1�ρ1�Da2�ρ2�

× CI�ρ1;Δρ;Δz�d2ρ1d2ρ2; (8)

where we define M−1 to be the normalized correla-
tion coefficient for the spatially integrated speckle
intensity (second-order statistics) and where
CI�ρ1;Δρ;Δz� is given by Eq. (4). It can be seen from
Eq. (8) thatM−1 is defined by the pixel aperture func-
tion Da�ρ� and CI�ρ1;Δρ;Δz�, and M−1 is calculated
by integrating the correspondingCI over an area that
is limited by Da. Once the two functions have been
found, M−1 can be determined for any two pixels.

We begin by examining the simplest case where
the speckle intensity at a single pixel in the z � z0
plane is correlated with itself, yielding the autocorre-
lation coefficient of the integrated speckle intensity.
Thus, for Eq. (8) we have Da1�ρ1� � Da�ρ1�,
Da2�ρ2� � Da�ρ2�, and Δz � 0. The autocorrelation
of the integrated speckle intensity is given by

M−1
auto �

1

A4
D

ZZ �∞

−∞

KD�Δρ�CI�ρ1;Δρ; 0�d2Δρ; (9)

where

KD�Δρ� �
ZZ �∞

−∞

Da�ρ1�Da�ρ1 �Δρ�d2ρ1: (10)

We note from Eq. (4) thatCI�ρ1;Δρ; 0� in the z � z0
plane is equal to

CI�ρ1;Δρ; 0� � exp
�
−

jΔρj2
�2B∕kw�2

�
; (11)

which is independent of the position coordinates
ρ1 � �x1; y1� but is a function of the coordinate differ-
enceΔρ � �Δx;Δy�. Consider a specific case in which
the camera pixel aperture function is square in shape
and has uniform response (also fill factor � 100%),
represented by a rectangle function

Da�x; y� �
�
1 −

AD
2 ≤ x; y ≤

AD
2

0; otherwise
; (12)

Fig. 2. Schematic demonstration of the orientation of speckle
grains (ellipses) in FST configuration and in FT configuration
(x–z plane). The dashed lines inside the ellipses denote the corre-
lation lengths of the speckle grain in the corresponding directions.
In the right half of this LCT system, the speckle grains all lie par-
allel to the optical axis and have the same longitudinal correlation
lengths.
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and identify AC � 2�2B∕�kw��, two times the Gaus-
sian 1∕e radius in Eq. (11), to be the lateral correla-
tion extent of the speckle pattern incident on the
camera; i.e., it quantifies the average lateral speckle
size in this specific plane. Substituting Eqs. (11) and
(12) into Eq. (9), M−1

auto becomes

M−1
auto �

A2
C

16A4
D

exp
�
−
8A2

D

A2
C

��
AC − exp

�
4A2

D

A2
C

��
AC − 2AD

			
π

p
erf

�
2AD

AC

���2
; (13)

where erf �x� is the standard error function [19].
The autocorrelation coefficient of the integrated

speckle intensity M−1
auto is a function of the ratio

AD∕AC and is independent of the spatial coordinates
where the pixel is located, indicating the integrated
intensity at each camera pixel is governed by the
same probability density function (PDF). An approx-
imate form of this PDF is the gamma distribution
given by (see Subsection 4.6 in [8] and [20])

P�Ia� �
1

Γ�Mauto�

�
Mauto

hIai

�
Mauto

I�Mauto−1�
a exp

�
−
MautoIa
hIai

�
;

(14)

where Mauto is the inverse of M−1
auto and Γ�Mauto� is a

gamma function with argument Mauto [19].
Equation (14) describes the first-order intensity

statistics of the integrated speckle pattern, which de-
pends on M−1

auto. As a result, the form of the PDF de-
pends on the ratio of the camera pixel size, which is
normally assumed to be fixed, and the speckle size,
which is dependent on the system parameterB. A plot
of M−1

auto as a function of AD∕AC is presented in
the inset of Fig. 3. We identify three separate regions.
The first is (i) the ideal casewherewe haveAD∕AC→0,
i.e., pointlike detection;M−1

auto equals 1. In this region
the PDF in Eq. (14) reduces to a negative exponential
distribution, which is the standard PDF for fully de-
veloped speckle [i.e., see Eq. (14) when M−1

auto � 1].
The second is (ii) the extreme case when
AD∕AC ≫ 1, M−1

auto decreases to a very low (close to
zero) constant value for a large range of AD∕AC, indi-
cating that, in this case, the change of the statistics of
the speckle intensity, i.e., the correlation extent,AC, is
not detected because the pixel sizeAD is too large com-
pared to the average speckle size. The third is (iii) the
“Nyquist” range, which lies between 0≤AD∕AC ≤ π∕8.
This value of π∕8 approximately corresponds to two
pixels per speckle [14]. To arrive at this value of
π∕8, we follow the same approach as that outlined
inSection2of [14]; however, ourmaximumspatial fre-
quency is 4∕�πAC�), not D∕λz as in [14], due to the
Gaussiannature of the correlation functionusedhere.
In practical measurements, we can control and de-
crease the ratio of AD∕AC, and as we shall see later

on, in our experimental results once AD∕AC < π∕8,
the PDF effectively becomes a negative exponential
distribution. As the ratioAD∕AC exceeds π∕8, combin-
ing Eqs. (13) and (14) we see that the PDFof the mea-
sured intensity begins to change into a gamma
distribution with the argument Mauto.

Following the same procedure as that in the deri-
vation of M−1

auto, the correlation coefficient of the inte-
grated speckle intensity between two different pixels
can be obtained from Eq. (8). Although a closed-form
expression for M−1 exists (and can be found using a
program such as Mathematica [21]), we do not pre-
sent the result here because of its complexity. How-
ever in Fig. 3, we plot the calculated value for M−1

when one pixel is correlated with other pixels in
the same plane. In effect we are plotting the lateral
decorrelation function of the integrated speckle. In
Fig. 3, we fix AC � 2�2B∕�kw�� and vary AD to obtain
the different AD∕AC ratios. Again depending on the
ratio of AD∕AC, we see a difference between M−1

and CI, apart from Region (i) identified earlier, i.e.,
when AD∕AC � 0. As expected, the difference be-
tweenM−1 and CI reduces as AD∕AC decreases. From
Fig. 3, it appears that the difference between M−1

and CI is more pronounced for smaller values of se-
paration between the two pixels that are being cor-
related. For example, at the Nyquist rate when
AD∕AC < π∕8, the difference between M−1 and CI

Fig. 3. (Color online) Correlation coefficient of integrated speckle
intensity as the ratio of pixel size (AD) to lateral speckle size (AC) is
varied. Circular and square dots, correlation coefficients calcu-
lated whenAD∕AC � 0.202 andAD∕AC � π∕8, respectively; dashed
curves: Gaussian fitting of the corresponding dots. Solid curve, cor-
relation coefficient calculated when AD∕AC � 0, which corre-
sponds to the ideal pointlike detection. (Inset) Autocorrelation
coefficient of integrated speckle intensity as a function of AD∕AC.
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has a maximum value of 0.17 for the autocorrelation
point. From Fig. 3 we see the absolute difference
between M−1 and CI; jM−1

− CIj < 0.17, once
AD∕AC ≤ π∕8, i.e., within Region (iii).

3. Numerical Analysis

In this section, simulations of the theoretical correla-
tion function are presented for three typical LCT
systems: (I) FST configuration, Fig. 4(a); (II) FT con-
figuration, Fig. 4(b), where z1 � z2 � f ; and (III) SLS,
again in Fig. 4(b); however, z1 ≠ f . The speckle prop-
erties of these different LCT systems are compared.

Before proceeding, we briefly introduce the numer-
ical simulation method used in this paper. For our
numerical simulation, the speckle intensities are
generated as follows. A square array of dimensions
N ×N is used to describe the input field immediately
in front of the diffuser, i.e., at the object plane in
Fig. 1. Within this square array, Gaussian modulated
amplitude values are generated for each array ele-
ment. A pseudorandom number generator is used
to generate uniformly distributed phase values over
the interval �0 − 2π�, which simulates the action of a
random phase screen. (Strictly speaking, this vio-
lates Goodman’s third condition since the real and
imaginary parts are not independent; however, it
does not appear to change the fundamental statisti-
cal properties of the numerically simulated speckle
field; see Chapter 2 of [8].) The diameter of the Gaus-
sian amplitude is modeled by a circular shaped sub-
array containing C samples, which represents the
finite extent of the illuminating field on the object
surface. This sample number C is defined to be
C � 2w∕Δξ, where Δξ is the sampling period in
the object plane. The wave propagation, Eq. (1), is nu-
merically realized using the direct method; see
[11,22–24] for details. Speckle intensity images are
thus numerically generated in the two observation
planes, and the corresponding intensities are found

at the points P1 � �ρ1; z0� and P2 � �ρ1 �Δρ; z0�
Δz�. Running the pseudorandom number generator
again, we repeat this process until a large number
of intensity values at the same positions P1 and P2
are obtained. The two sets of values at P1 and P2
make up two vectors, and these are correlated using
the built-in Matlab function “normxcorr2” [11,25] to
calculate the desired correlation coefficient between
the two points.

A. FST Configuration

The simulation results in this configuration have
been provided in [11] (see Figs. 3 and 4 in [11]). To
save space, we do not repeat them here. A major re-
sult is that the speckles in the FST are orientated ra-
dially toward the optical system origin [1, 3,4,11,12],
as illustrated in Fig. 2, and the longitudinal speckle
length decreases dramatically as the observation
positions move to off axis.

B. FT Configuration

The schematic representation of the FT configura-
tion is given in Fig. 4(b), with z1 � z2 � f , and the
corresponding ABCD matrix is Eq. 2(b). Because
the parameter D � 0 after the lens in this configura-
tion, unlike in the FST case, the speckles are orien-
tated parallel to optical axis, and the longitudinal
correlation length is independent of the lateral coor-
dinates at the observation positions; see Fig. 2. We
provide the theoretical predictions for the speckle
correlation coefficients in the x–z plane and the cor-
responding numerical simulation; see Figs. 5 and 6.
Because of the symmetry between the x and y vari-
ables in Eq. (4), it is reasonable to set y � 0 andΔy �
0 when examining speckle correlation properties,
thus simplifying the analysis. As a result, the theo-
retical correlation function CI�ρ1;Δρ;Δz� is exam-
ined in the simpler form CI�x; 0;Δx; 0;Δz�.

The plots in Fig. 5 represent the correlation be-
tween speckle fields at P1 � �x1; 0; z0� and P2 � �x1 �
Δx; 0; z0 �Δz� as a function of Δx, and the following
parameter values are used: w � 1.5 mm, x1 �
0.888 mm, and B � f � 100 mm. The maximum
lateral correlation value for various Δz all appear
at the position where the two observation points

Fig. 4. Schematic representation of (a) an FST configuration,
(b) an FT configuration when z1 � z2 � f , and an SLS, when z1 ≠ f .
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Fig. 5. (Color online) Lateral decorrelation between the off-axis
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configuration. Δz in units of millimeters.
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have no lateral difference (i.e., Δx � 0), which indi-
cates that the speckles in this system are orientated
parallel to the optical axis z. Otherwise, we would ob-
serve that the position in Δx of the peak correlation
coefficient would change as a function of Δz as
in Fig. 7.

Nextwe examine the longitudinal correlation of the
speckles in this configuration, that is the correlation
coefficient between the fields at P1 � �x; 0; z0� and
P2 � �x; 0; z0 �Δz� as a function of Δz. To study the
longitudinal correlation length of the speckles, plots
and simulation results for three lateral observation
positions, x � 0 (on-axis), x � 0.444 mm, and x �
0.888 mm (off-axis), are provided, as shown in Fig. 6,
with w � 1.5 mm and B � f � 100 mm. The curves
for these observations overlap, indicating that the re-
sults do not depend on the lateral position, i.e., the va-
lue of Δx. As a result, the longitudinal correlation
length in theFTconfigurationdoesnot decreasewhen
the observation position moves off axis, which signif-
icantly differs from the corresponding results for the
FST [11,12].

C. SLS

The schematic representation of the SLS is pre-
sented in Fig. 4(b), where z1 ≠ f . The corresponding
ABCD matrix is Eq. 2(d). In this configuration, simi-
lar speckle correlation properties as in the FST case
are observed. The speckles in the SLS have nonzero
slopes, and the longitudinal correlation length is de-
pendent on the lateral coordinates of the observation
positions; see Figs. 7 and 8, respectively.

The plots inFig. 7 are generated using the following
parameter values: w � 1.5 mm, x1 � 2 mm, z1 �
80 mm, z2 � 120 mm, and f � 100 mm. The maxi-
mum lateral correlation values for various Δz all
appear at the position where the two observation
points (for example, x1 and x2) have a particular lat-
eral difference, Δx � x1 − x2 � x1Δz�D∕B�, which in-
dicates that the speckles in the system have slopes
Δx∕Δz, given by

Δx
Δz

� x1

�
D
B

�
. (15)

In the FST system, D � 1 and B � z0; for a fixed ob-
servation point in z � z0 plane, the slope of orienta-
tion is fixed. However, in the SLS case, simply by
choosing different z1 and z2, the speckle orientation
for a fixed observation point in z � z0 plane can be
controlled.

For the longitudinal correlation of the speckles
in this configuration, the correlation coefficient be-
tween the fields at P1 � �x; 0; z0� and P2 � �x; 0; z0 �
Δz� is obtained. The longitudinal correlation of the
speckles for three lateral observation positions x �
0 (on-axis), x � 2 mm, and x � 4 mm (off-axis) are
shown in Fig. 8. The other parameter values used
are w � 1.5 mm, z1 � 80 mm, z2 � 120 mm, and
f � 200 mm. Figure 8 shows that, similar to the
FST case, the longitudinal correlation length in
the SLS case decreases as the observation position
moves off axis.

Comparing the simulation results presented in the
paper to the corresponding analytic predictions, only
small differences are observed, indicating the accept-
ability of the simulations.

4. Experiments

In this section we provide two sets of experimental
results. The first set is related to the first-order sta-
tistical properties of integrated speckle that are
described theoretically in Subsection 2.B. With the
second set of experimental results, we demonstrate
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Fig. 6. (Color online) Longitudinal decorrelation of the speckles
in the FT configuration. Note that the three plots, for various
observation positions x � 0 (on-axis), x � 0.444 mm, and x �
0.888 mm (off-axis), overlap on top of one another.
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that speckles in FT systems are orientated parallel to
the optical axis. This latter result in conjunction with
[12] demonstrates that the orientation of speckle in
paraxial systems can be controlled with a judicious
choice of ABCD parameters. In both experiments,
a spatially filtered and collimated Gaussian beam
from a helium–neon laser of wavelength λ � 633 nm
is used as the light source.

A. First-Order Statistics for Integrated Speckle

In this section we first provide experimental results
to verify Eq. (14), demonstrating that the first-order
statistics of the digitally recorded speckle intensities
varies, when the ratio of the pixel size to lateral
speckle size changes. The FST configuration is used
and schematically represented in Fig. 4(a). Since the
theoretical analysis indicates that the effect of the
camera pixels should be the same for different
LCT systems, this experimental demonstration for
the FST case in fact applies more broadly.

Three speckle intensity patterns are captured in
planes z0 � 80, 250, and 400 mm. The camera used
here was an eight bit four megapxiel IMPERX IPX-
4M15-G, which has 2048 × 2048 pixels each of size
7.4 μm. The Gaussian beam diameter was 2w �
8.8 mm. The intensity values of the central two col-
umns in each image were extracted and used to gen-
erate a histogram in order to examine the statistics
of the speckle intensities. The height of the histo-
gram is presented in terms of probability density
so that it can be compared to the theoretical predic-
tion of Eq. (14), as shown in Fig. 9. In Fig. 9, the blue
dashed curves are the theoretical PDFs of the speckle
patterns plotted by inserting the appropriate system
parameter values into Eq. (14).

From Fig. 9, it can be seen that, for different AD∕AC
ratios, the PDF of the captured intensities varies,
and it can be well approximated using the gamma
function described in Eq. (14). The integration effect
of the pixel transforms the ideal fully developed
speckle, for which the PDF follows a negative expo-
nential distribution, into a modified PDF having
a gamma distribution. Importantly, as shown in
Figs. 9(b) and 9(c), the effect on the experimental re-
sults can be minimized by controlling AD∕AC. In this
way, the PDF of the captured speckle intensity re-
duces to the negative exponential distribution of
fully developed speckle and thus made to behave
as if it were captured by an ideal pointlike detecting
camera. From these experimental results we note
that the point at which the PDF can be assumed
to be effectively a negative exponential occurs in
Fig. 9(b) for a value of AD∕AC � 0.323, which lies
within Region (iii), in keeping with the analysis from
[14] and the guidelines identified in Subsection 2.B.

We note that, for each of the experimental results
presented in Fig. 9, a significant peak appears in the
last histogram “bin.” We attribute this effect as aris-
ing due to a slight saturation of the camera. Thus,
there is a slight and artificial increase in the number
of pixels over the maximum intensity value, corre-

sponding to a gray level of 255, due to the limited
dynamic range of the eight bit camera.

B. Speckle Orientation in FT systems

The setup used in this experiment is depicted in
Fig. 4(b), with z1 � z2 � f . An optical diffuser
(1500 grit ground glass diffuser) is placed at the ob-
ject plane, and the spot diameter is set having
2w � 10 mm. The speckle image is recorded using
a CCD camera positioned in the observation plane

Fig. 9. (Color online) First-order statistics of the captured speckle
intensities. The histograms are generated using 4096 intensity va-
lues. Dashed blue curves, PDFs of the intensity values predicted
using Eq. (14). (a) For speckle pattern captured at z0 � 80 mm; in
this case, AD∕AC � 1.01 and Mauto � 2.4975. (b) For speckle pat-
tern captured at z0 � 250 mm; in this case, AD∕AC � 0.323 and
Mauto � 1.1420. (c) For speckle pattern captured at z0 �
400 mm; in this case, AD∕AC � 0.202 and Mauto � 1.0548.
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that is perpendicular to the optical axis. The CCD is
mounted on a manual linear translation stage, hav-
ing a positional accuracy of�20 μm, so that the long-
itudinal position of the CCD can be controlled. The
CCD used for this experiment is an eight bit KAPPA
Dx 2N, which has 1024 × 1300 square pixels each of
size 4.65 μm.

In the experiment the FT system is produced using
a thin lens of focal length f � 120 mm. Then 11
speckle patterns are captured over the range ofΔz �
1 mm with step size of 0.1 mm. As in Section 3, we
examine the lateral speckle decorrelation by measur-
ing the correlation coefficients between an off-
axis point P1 � �x1; 0; z0� and points P2 � �x1�
Δx; 0; z0 �Δz� as a function of Δx, as shown in
Fig. 10. In the figure x1 � 2 mm. The position where
the maximum coefficient appears reflects the speckle
orientation in this configuration. In the FT system,
we see that this maximum coefficient occurs when
Δx � 0. As a result, the orientation of the speckles
in the FT system have been made parallel to the
optical axis by the thin lens.

For the longitudinal decorrelation, correlation
coefficients between a point P1 � �x; 0; z0� and points
P2 � �x; 0; z0 �Δz� as a function ofΔz are measured,
as shown in Fig. 11. Results for on-axis observation

point x � 0 and off-axis points x � 3 mm and x �
6 mm in this FT configuration are provided. Here
we see that the longitudinal correlation is indepen-
dent of the lateral position, since the correlation
values for the three observation positions overlap
with each other.

This latter result may have important applications
in speckle metrology. In a 4f imaging system, if the
speckle size in the Fourier plane is much smaller
than the limiting aperture, then wemay assume that
the Fourier plane speckle field is effectively delta cor-
related; see [6,26]. In this instance the Fourier plane
aperture dominates the speckle properties [26]. If we
then consider this Fourier plane aperture to be the
input plane of our LCT system, then the speckles
in the output image plane will be aligned parallel
to the optical axis; see [4,26]. Hence, speckle decorr-
elation effects should remain approximately invar-
iant over the lateral extent of the image plane
unlike the speckles in the image plane of an SLS;
see the value of D in Eq. (2d) when z1 ≠ f .

5. Conclusions

In this paper we have examined several important
and practical issues related to speckle fields in gen-
eralized paraxial optical systems. These general op-
tical systems may consist of a sequence of lenses and
sections of free space. These optical systems are de-
scribed with the matrix parameters ABCD, and the
input and output planes can then be related through
an integral relationship known as an LCT. Using this
transform, a speckle correlation function that de-
scribes the statistical relationship between the in-
tensity values of a speckle field over 3D volume is
derived. In our treatment we have assumed that
such optical elements are effectively infinite in ex-
tent; however, we note that the results presented
here can be extended to include Gaussian apertures.
Although in this case the ABCD parameters can take
on complex values, making the correlation function
more cumbersome to evaluate. We demonstrated
that, by changing the optical elements of the LCT
system, the size of the resulting speckles could be
controlled. We also specifically examined the orienta-
tion of the speckles as a function of these system
parameters. Several example systems were dis-
cussed and examined in Section 3, with a series of
robust numerical simulations, namely (1) Fresnel,
(2) Fourier, and (3) single lens systems. For systems
(1) and (3), the speckles were shown to have nonzero
slope;D is not zero in Eq. 15 in orientation. The angle
of orientation the speckles make in a Fresnel system
depends on the spatial coordinates ρ and z; however,
for (3) the user hasmore control over this orientation.
This arises because the system parameters B and D
can be controlled in (3) by varying the lens focal
length, f , as well as z1 and z2; see Section 3. Because
of the nonzero slope, the effective longitudinal
speckle size in these systems [(1) and (3)] decreases
as the observation point moves away from the optical
axis, i.e., as x1 increades; see Eq. 15. However, in the

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1.0
FT Lateralz = 0

C
I
(x

1,
0,

x,
0,

z)
z = 0.2

Analytic

Experiment
z = 0.4 

x ( m)

Fig. 10. (Color online) Experimental measurements of the lateral
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case of (2), it was shown that, since the system para-
meter D � 0, the speckles lie parallel to the optical
axis, and hence the longitudinal speckle size does
not change as a function of x and y. It was shown that
the speckle properties in (2) also exist in different
LCT domains such as immediately after the lens
in Fig. 2. In Section 4 of this paper, we presented ex-
perimental results that directly measured the orien-
tation of speckles in a Fourier transforming system,
confirming that they lie parallel to the optical axis in
keeping with our theoretical predictions,Δx∕Δz � 0,
since D � 0; see Eq. 15.

Another significant topic discussed here was the
first- and second-order statistics of integrated
speckle fields. This is an important practical consid-
eration since modern detection devices such as CCD
cameras average the light energy incident upon them
over a finite light-sensitive pixel area. Hence, it is im-
portant to understand the difference between the
statistical properties of a speckle field in space and
those returned by the camera. Following the anal-
ysis by Goodman [8], we derived an expression for
the first- and second-order statistics of integrated
speckle for general LCT systems. By comparing the
PDFs for fully developed and integrated speckle, we
defined three distinct regions that depend on the ra-
tio of the speckle size AC and the pixel size AD. The
important practical result from this analysis is that,
when 0 ≤ AD∕AC ≤ π∕8, we lie within what we term
the Nyquist range or Region (iii) as identified in
Subsection 2.B. Within this region the first-order
PDFof the integrated speckle approximately reduces
to a negative exponential distribution, like that for
fully developed speckle. Once AD∕AC > π∕8, the
PDF for integrated speckle begins to change into a
gamma-type distribution. These first-order theoreti-
cal results were demonstrated experimentally in
Section 4. Finally we theoretically compared the dif-
ferences that arise between the second-order statis-
tics for integrated and point detected speckle fields.
We have shown to a good approximation that, once
one operates within Region (iii), the effects of pixel
integration can be neglected.
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