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Abstract

Purpose In the field of medical image analysis, deep learning methods gained huge attention over the last years. This can 

be explained by their often improved performance compared to classic explicit algorithms. In order to work well, they need 

large amounts of annotated data for supervised learning, but these are often not available in the case of medical image data. 

One way to overcome this limitation is to generate synthetic training data, e.g., by performing simulations to artificially 

augment the dataset. However, simulations require domain knowledge and are limited by the complexity of the underlying 

physical model. Another method to perform data augmentation is the generation of images by means of neural networks.

Methods We developed a new algorithm for generation of synthetic medical images exhibiting speckle noise via generative 

adversarial networks (GANs). Key ingredient is a speckle layer, which can be incorporated into a neural network in order to 

add realistic and domain-dependent speckle. We call the resulting GAN architecture SpeckleGAN.

Results We compared our new approach to an equivalent GAN without speckle layer. SpeckleGAN was able to generate 

ultrasound images with very crisp speckle patterns in contrast to the baseline GAN, even for small datasets of 50 images. 

SpeckleGAN outperformed the baseline GAN by up to 165 % with respect to the Fréchet Inception distance. For artery 

layer and lumen segmentation, a performance improvement of up to 4 % was obtained for small datasets, when these were 

augmented with images by SpeckleGAN.

Conclusion SpeckleGAN facilitates the generation of realistic synthetic ultrasound images to augment small training sets 

for deep learning based image processing. Its application is not restricted to ultrasound images but could be used for every 

imaging methodology that produces images with speckle such as optical coherence tomography or radar.

Keywords Deep learning · Synthetic image generation · Theory-guided neural networks · Speckle noise · Small datasets · 

Image segmentation

Introduction

Cardiovascular diseases like atherosclerosis are the leading 

cause of death globally [12]. A common methodology for 

assessing the severity and progress of plaque building in 

coronary arteries is intravascular ultrasound (IVUS) as it 

provides information regarding the vessel wall and the com-

position of plaques.

In recent years, finding diagnoses has been more and 

more supported by algorithms which provide additional 

information to the physician. In particular, powerful deep 

learning methods gained significant importance due to their 

superior performance compared to many explicit algorithms. 

Typical applications are detection and classification of dis-

eases or segmentation of different tissues.

A drawback is the need of large annotated training data-

sets in order to get useful results. Annotations are usually 

made by trained experts to ensure high quality. This natu-

rally leads to a lack of high-quality data. To overcome these 

limitations, data augmentation methods are commonly used 

[18]. In addition to applying random transformations to the 

data samples (which do not alter their labels), the genera-

tion of artificial training data is a possible way to enlarge 

 * Lennart Bargsten 

 lennart.bargsten@tuhh.de

1 Institute of Medical Technology and Intelligent Systems, 

Hamburg University of Technology, Hamburg, Germany

http://orcid.org/0000-0003-0610-0347
http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-020-02203-1&domain=pdf


1428 International Journal of Computer Assisted Radiology and Surgery (2020) 15:1427–1436

1 3

the training set. One way to generate synthetic data is to run 

simulations. These often rely on rather simple models or 

require in-depth domain knowledge leading to results which 

are either of low quality or quite time consuming.

Another promising method to generate artificial data is 

by training generative adversarial networks (GANs) [6]. 

Nevertheless, GANs also need sufficient amounts of train-

ing data to reach satisfactory performances. Often they 

are trained with more than 10,000 images or even 100,000 

images when dealing with rather diverse datasets [15]. To 

reduce the amount of needed data, theory-guided opera-

tions or modules may be integrated into the neural network 

architecture [11]. These arise from theoretical considerations 

or physical models which can replace parts of the network. 

In this way, the amount of model capacity which would be 

used to learn these physical concepts is free to learn other 

features. In addition, theory-based network modules serve to 

regularize the training process and can thus lead to improved 

performance.

We designed such a theory-guided network module to 

add speckle noise to network feature maps and integrated it 

into a GAN architecture, which we called SpeckleGAN. This 

enables us to generate realistic IVUS images with very few 

training examples, while keeping the overall network archi-

tecture simple. Furthermore, the size of resulting speckles 

can vary for a single image and is learned during the training 

process. Finally, we show how we can improve IVUS image 

segmentation performance by means of pre-training a neu-

ral network with synthetic images by SpeckleGAN if only 

very limited data are available. Our method thus enables the 

training of high-capacity neural networks with few data by 

simultaneously prevent overfitting.

Material and methods

Speckle layer

Speckle is an interference phenomenon in imaging systems 

and occurs if the mean distance between scatterers is smaller 

than the resolution cell defined by the imaging methodology 

[2]. The size of the resolution cell is determined mainly by 

the wavelength of the carrier (or excitation) signal. Another 

condition for the developing of speckle is the presence of 

independent random phases of the scattered waves at the 

point of observation, usually generated by surface roughness 

(optics) or inhomogeneous volumes like tissue (ultrasound). 

Interference of these signals leads to characteristic speckle 

patterns.

The algorithm for the speckle layer resembles the one 

found in the appendix of [8] and is based on the principles of 

Fourier optics explained in [7]. In Fourier optics, one takes 

advantage of the fact that under certain simplifications the 

propagation and diffraction of wave signals can be expressed 

as Fourier transformations. Although the process of speckle 

formation differs in ultrasound systems, the resulting effect 

on the gray values is similar and we illustrate the approach 

in the context of a simple optical system.

The algorithm is based on an imaging system comprised 

of an illuminated rough object and a converging lens (see 

Fig. 1b). The propagation and focusing of the wave signal 

emitted by the object can be represented by two consecutive 

Fourier transformations. This is possible if some approxima-

tions are applied to the following general form of the diffrac-

tion integral. It describes how wave signals are diffracted at 

apertures and is defined as

a b

Fig. 1  a: Sketch showing diffraction at an aperture. Variable naming 

corresponds to Eq.  1. b: Sketch of a simple imaging system with a 

rough object and a converging lens. Due to the roughness, the object’s 

signal exhibits a spatial distribution of random phases which leads to 

speckle patterns in the focal plane of the lens
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Here, U(x0, y0) denotes the field amplitude in the plane of 

observation, U(x1, y1) the field amplitude in the aperture 

plane and Σ the aperture. The vector � represents the normal 

of the aperture plane, k is the wave number, �
01

 the vector 

between a point on the aperture plane and another point on 

the plane of observation and r
01

 its norm. See Fig. 1a for a 

corresponding sketch. Further details regarding the deriva-

tion of the formula and its application to the imaging system 

of Fig. 1b can be found in [7].

The speckle layer imitates the optical system of Fig. 1b and 

can be described by the following equation:

where I(x, y) and Isp(x, y) denote the source and speckled 

image, respectively. F  represents the Fourier transforma-

tion and rectd(x, y) the rectangular window function with 

edge length d. For the sake of simplicity we did not use a 

circular window function indicated by the lens in Fig. 1. On 

the one hand, we did not observe any difference in the visual 

appearance of the resulting speckle, on the other hand the 

calculation of a circular mask function is computationally 

more expensive, because the distance between every pixel 

to the image center has to be calculated in every training 

step. Equation 2 can be interpreted as a low-pass filter of the 

source image which is multiplied pixel-wise with random 

phases and is thus equivalent to

Here, ∗ is the convolution operator and sincd(x, y) the sinc-

function with scale d. The edge length d of the rectangu-

lar window function defines the mean size of the resulting 

speckles and can be learned during training of the neural 

network. Smaller windows lead to larger speckle patches. We 

note that the runtime complexity of a convolution operation 

scales with n2 while the fast Fourier transform (FFT) scales 

with n ⋅ log(n) . It is thus computationally more efficient to 

(1)

U(x0, y0) =
1

j� ∬
Σ

exp (jkr01)

r01

cos (�, �01) U(x1, y1) dx1 dy1.

(2)Isp(x, y) =
|
|
|
F

−1
{
F
{

I(x, y) ⋅ ej�(x,y)
}
⋅ rectd(x, y)

}|
|
|
,

(3)Isp(x, y) =
|
|
|
I(x, y) ⋅ e

j�(x,y) ∗ F
−1
{

rectd(x, y)
}|
|
|

(4)Isp(x, y) =
|
|
|
I(x, y) ⋅ ej�(x,y) ∗ sincd(x, y)

|
|
|
.

implement Eq. 2. In order to generate the typical speckle 

patterns for centric IVUS views, coordinate transforms from 

polar to Cartesian coordinates and vice-versa were added to 

the pipeline. An exemplary speckle transformation process 

is depicted in Fig. 2.

SpeckleGAN architecture

To generate IVUS images with defined geometry regarding 

the artery lumen and the intima/media layers, a segmenta-

tion mask has to be used as a conditional input. A promising 

way to process the segmentation masks is by using spatially-

adaptive normalization (SPADE) for semantic image syn-

thesis [15]. SPADE layers transform segmentation masks 

(here, encoded as images with integer pixel values from {0, 

1, 2}, where each value corresponds to a tissue class) into 

feature maps � and � by feeding them through two convo-

lutional layers, respectively. The segmentation masks are 

resized before feeding them into SPADE in order to have the 

same size as the feature maps which should be normalized. 

Pixel values xin

n,c,h,w
 of input feature maps to be normalized 

are transformed as follows:

where the multi-index (n, c, h, w) refers to (sample in batch, 

channel, height, width). The parameters �
c
 and �

c
 denote the 

channel-wise mean and standard deviation of xin

∶,c,∶,∶
 , respec-

tively. A colon indexes the whole tensor dimension.

Figure 3 gives an overview of the overall GAN archi-

tecture. Generator and discriminator consist of multiple 

residual blocks [9]. In the generator, SPADE [15] layers are 

used to condition the generated image to a given segmenta-

tion mask. The first convolutions in all SPADE layers have 

64 output channels. Batch normalization precedes the affine 

transformation by SPADE and is also used in the discrimi-

nator. Upscaling in the generator is performed by nearest 

neighbor interpolation, while downscaling in the discrimi-

nator is performed by convolutions with a stride of 2. The 

generator is seeded with a 128-dimensional random vector 

sampled from a standard multivariate Gaussian distribution. 

Spectral normalization [14] was applied to the generator and 

the discriminator.

x
out

n,c,h,w
= �

c,h,w

x
in

n,c,h,w
− �

c

�
c

+ �
c,h,w

,

Fig. 2  Exemplary speckle 

transformation of a test image 

with subsequent coordinate 

transformation in order to get 

warped speckles typical for 

IVUS images
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The speckle layer follows the penultimate residual layer 

of the generator. Here, the feature maps already reached 

the output image size. Inserting the speckle layer into a 

deeper part of the network led to poor results. One rea-

son could be that the feature maps in deeper layers have 

not yet reached the original image size. The speckle layer 

adds speckle noise with 4 different speckle sizes to all 

input feature maps, respectively. This means that 8 input 

feature maps are transformed to 32 output feature maps, 

whereby 4 feature maps each exhibit the same morphology 

but with different speckle sizes. These hyperparameters 

were found by grid-search and stayed the same for all 

experiments. The input feature maps of the speckle layer 

are also used to compute channel attention coefficients by 

applying global sum pooling and two linear layers. The 

output feature maps of the speckle layer are weighted with 

these coefficients to filter out unimportant combinations of 

input feature maps and speckle sizes. A spatial attention 

approach led to massive checkerboard artifacts and was 

therefore discarded. The resulting synthetic IVUS images 

have a size of 256 × 256 pixels.

Residual Block (Generator)

SPADE / ReLU

4x4-Conv

SPADE / ReLU

4x4-Conv

1x1-Conv

+

SPADE / ReLU

Segmentation Map

Input Feature MapsInput Feature Maps

Output Feature Maps
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BN / LReLU

4x4-Conv

BN / LReLU

4x4-Conv

1x1-Conv

+

BN / LReLU

Input Feature MapsInput Feature Maps

Output Feature Maps

4x4-Conv(8)

BatchNorm / ReLU

Concatenate

ResBlock(8) with   2-Conv

ResBlock(32) with   2-Conv

ResBlock(16) with   2-Conv

ResBlock(64) with   2-Conv

ResBlock(128) with   2-Conv

ResBlock(256) with   2-Conv

ResBlock(256)

Glob. Sum Pooling

Linear(1)

Output

Segmentation MapInput Image

Discriminator

Sigmoid
SPADE

ResBlock(8)

4x4-Conv(1)
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Upsample(2), ResBlock(16)
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Glob. Sum Pooling

Linear(512)
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Speckle

Layer(32)

Generator
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Fig. 3  Sketch of the architecture of SpeckleGAN. Numbers in round brackets depict the respective numbers of output channels. Exceptions are 

Upsample (number depicts the scaling factor) and Reshape (number depicts the output’s channel and spatial dimensions)
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Dataset

The underlying IVUS dataset was provided by Balocco 

et al. [1] and consists of 435 IVUS images captured with 

a 20 MHz phased array transducer together with corre-

sponding annotated contours marking the lumen border 

and the media–adventicia interface. The dataset com-

prises images with calcified and non-calcified plaque as 

well as bifurcations, side branches and shadow artifacts. 

The annotated contours were transformed into segmen-

tation masks containing three different classes (lumen, 

intima/media and adventicia/background). Figure 4 shows 

an example image with the corresponding segmentation 

mask.

Fréchet Inception distance

The Fréchet Inception distance (FID) [10] measures the 

distance between the generated image data distribution 

and the real image data distribution by combining mean 

values and covariance matrices of network activations 

arising from feeding both image sets into an Inception-v3 

model [19], which was pre-trained on the ImageNet data-

set [4]. Typically, activations of the penultimate network 

layer are used to calculate the FID score:

Here, �
1
 and �

2
 are the mean vectors and C

1
 and C

2
 the cor-

responding covariance matrices. Small FID scores and thus 

small distances between the image data distributions indi-

cate visual similarity of the image sets as well as diversity 

of the generated image set meaning that mode collapse was 

prevented. It has not been proven so far that low FID scores 

induce high image quality when applied to medical images. 

However, recent works indicate correlation between FID 

score and realism of generated medical images [13, 21]

(5)FID = ‖�
1
− �

2
‖2

2
+ Tr(C

1
+ C

2
− 2(C

1
C

2
)1∕2).

Training

We used the non-saturating GAN loss functions proposed 

in [6]:

where L
D
 and L

G
 denote the loss functions for discrimina-

tor and generator, respectively. Furthermore, � denotes a 

real image drawn from the data distribution p
data

 , whereas � 

denotes a condition. In this work, � is a segmentation mask. 

The random number � is the input of the generator and is 

drawn from a standard multivariate Gaussian distribution 

p
�
 . Finally, D and G are the discriminator and generator 

function, respectively.

For defining a baseline GAN, the speckle layer was 

replaced with an identity mapping (cyan-colored box in the 

generator sketch of Fig. 3). Everything else remained the 

same. SpeckleGAN and the baseline GAN were trained with 

435, 200, 100 and 50 training examples, respectively. The 

validation during training was done by means of calculating 

the FID score between 435 generated images and the whole 

dataset of 435 real images to make all cases comparable 

(see “Segmentation evaluation” section for notes regarding 

overfitting). The GANs were conditioned with the segmenta-

tion masks of the dataset to generate synthetic images. This 

ensures that validation is not affected by artery morpholo-

gies, but focuses on textures.

For every combination of model and number of train-

ing examples, the best learning rate and learning rate decay 

scheme was grid searched individually. In summary, the 

initial learning rates ranged between 1e−3 and 3e−4 and 

were decreased to 1e−4 or 3e−5 in two steps every few 

hundred epochs. For optimization we used Adam with 

�
1
= 0.5 , �

2
= 0.999 and � = 1e−8 . During training, data 

augmentation was performed by random rotations as well as 

(6)

LD(�, �, �) = −�
�∼pdata

[
log(D(�|�))

]
− �

�∼p
�

[
log(1 − D(G(�|�)))

]
,

(7)LG(�, �) = −�
�∼p

�

[
log(D(G(�|�)))

]
,

Fig. 4  Example image and corresponding mask from the clinical dataset. The image on the right-hand side shows an overlay of image and mask
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horizontal and vertical flips. The edge lengths of the square 

filter windows defining the speckle sizes in the speckle layer 

were initialized with values ranging from 28 to 48 pixels.

GAN evaluation

The final evaluation was done by means of calculating the 

FID score between 1000 generated images and all 435 real 

images. For generating the synthetic images, the generators 

were conditioned with artificial segmentation masks pro-

duced by superimposing randomly rotated and disturbed 

ellipses imitating artery lumen and intima/media layers. 

This approach simulates the way how GANs would be used 

in practice, namely to augment the dataset they were trained 

with. As explained in “Fréchet Inception distance” section, 

the FID-score does not completely ensure reliability when 

used to evaluate realism of medical image sets. In order to 

further assess the quality of the synthetic images, we calcu-

lated two more metrics: The Jensen–Shannon divergence 

between gray value distributions of different segmenta-

tion classes in ground-truth and synthetic images and the 

structural similarity (SSIM) index between corresponding 

ground-truth and synthetic images.

Segmentation evaluation

The generated IVUS images were used to improve seg-

mentation performances of neural networks with U-Net 

architecture [16]. The networks consisted of residual blocks 

[9] in the down- and upsampling path. In each of the three 

downsampling blocks, the spatial sizes of the feature maps 

were halved while the numbers of feature maps were dou-

bled up to 256. The upsampling blocks operated vice versa. 

The input image dimensions were 256×256 and the batch 

size was 10.

To show that the use of synthetic IVUS data by Speck-

leGAN improves segmentation performance when dealing 

with small datasets, we went through two scenarios: 

1. 50 examples available for training a segmentation net-

work,

2. 100 examples available for training a segmentation net-

work.

To get representative performance statistics for the segmen-

tation, we used the remaining examples from the whole data-

set (385 for scenario 1 and 335 for scenario 2) as a test set. 

We used the training sets to train SpeckleGANs and baseline 

GANs for data augmentation (we did not use the GANs from 

“GAN evaluation” section). Because of the small datasets 

in both scenarios, we used the whole training set as a refer-

ence set for monitoring the FID score during training and 

for finally choosing the model which is used to generate the 

synthetic images for segmentation pre-training. This means 

that the GANs will tend to overfit on the training set. How-

ever, when dealing with extremely small datasets, another 

split would reduce the amount of data too much in order to 

get useful results. Furthermore, it is not well studied so far 

how overfitting via FID scores quantitatively affects GAN 

performance. In the paper which introduces the FID score 

[10], the authors also use the training set as a reference set 

for calculating the FID score.

The best performing GANs each generated 1000 IVUS 

images by using synthetic segmentation masks as condi-

tional inputs (compare “GAN evaluation” section). The 

segmentation networks were then pre-trained with the syn-

thetic IVUS data and fine-tuned with the real training data. 

We used the Dice coefficient and the modified Hausdorff 

distance [5] to measure the segmentation performances via 

fivefold cross-validation. The modified Hausdorff distance 

allows meaningful evaluation of edge alignment for pixel 

mask-based segmentation results, because it is less sensitive 

to outliers. The final results were calculated by means of the 

remaining test sets.

Results

Generation of synthetic IVUS images

The chart in Fig. 5 shows the FID scores of image sets gen-

erated by SpeckleGAN and the baseline GAN for different 

numbers of training samples. The image sets generated by 

SpeckleGAN result in FID scores ranging from 134.0 for 50 

training images to 113.4 for 435 training images. The base-

line GAN on the other hand reaches values from just 354.9 

to 166.6. The performance improvements of SpeckleGAN 

by means of FID scores for the different numbers of training 

examples are as follows:

– 50 GAN training examples: 165%

– 100 GAN training examples: 58%

– 200 GAN training examples: 30%

– 435 GAN training examples: 47%

Table  1 shows the GAN performances by means of 

Jensen–Shannon divergence and SSIM calculated between 

synthetic and real images. The results are broken down into 

the number of GAN training examples.

Figure 6 gives an overview of generated IVUS images for 

varying numbers of training examples. In all cases, Speck-

leGAN generates visually more appealing images than the 

baseline GAN. The quality of SpeckleGAN images only 

decreases slightly with fewer training examples, whereas the 

quality of images generated by the baseline GAN decreases 

strongly.
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IVUS segmentation

Table 2 shows the segmentation results of both scenarios 

described in “Segmentation evaluation” section with and 

without pre-training by means of synthetic images gener-

ated by SpeckleGAN and the baseline GAN. The upper 

table presents the Dice coefficients, whereas the lower table 

presents the modified Hausdorff distances. We performed t 

tests in a pairwise fashion to check if the means differ sig-

nificantly. We note that p value correction for multi-hypoth-

esis tests must not be applied in this setting, because we 

do not perform multiple tests on the same dataset nor do 

we test one and the same hypothesis on several datasets. 

The corresponding p values are depicted in the four right-

most columns. A low value (typically p < 0.05 ) indicates a 

significant difference in the calculated mean values of the 

underlying segmentation metrics.

Discussion

Generation of synthetic IVUS images

Keeping in mind that the FID score measures the structural 

similarity of two image sets and their respective diversity, 

Fig. 5 clearly shows that the baseline GAN fails to generate 

IVUS image sets with sufficient quality and diversity, if the 

number of training examples decreases. SpeckleGAN on the 

other hand hardly suffers from a reduced number of train-

ing samples. The images in Fig. 6 show that SpeckleGAN 

outperforms the baseline GAN for all different numbers of 

training examples. The visual appearance suffers just slightly 

from the reduced number of training examples. The baseline 

GAN generates IVUS images with very blurry and wavy pat-

terns which do not resemble real speckle. For 100 training 

images, these are smeared out completely and checkerboard 

Fig. 5  Comparison of Speckle-

GAN and the baseline GAN by 

means of resulting FID scores 

for different numbers of GAN 

training examples. A lower 

values indicates better GAN 

performance

134 132.7 134.1
113.4

354.9

210.1

174.3 166.6

0

50

100

150

200

250

300

350

400

50 100 200 435

Number of GAN training examples

FID score

Speckle GAN

Baseline GAN

Table 1  Jensen–Shannon 

divergences and structural 

similarity (SSIM) indices 

comparing synthetic and 

ground-truth (g-t) image sets

Low Jensen–Shannon divergence indicates similar gray value distributions, whereas high SSIM values 

indicate similar image appearance

# Train samples Datasets Jensen–Shannon divergence [ 10
−3] SSIM

Lumen Intima/media Adventitia

50 samples SpeckleGAN/g-t 33.2 25.8 7.2 0.431 ±  0.028

Baseline GAN/g-t 289.9 21.1 55.1 0.240 ± 0.029

100 samples SpeckleGAN/ -t 7.1 8.1 8.4 0.434 ± 0.030

Baseline GAN/g-t 28.6 12.0 4.1 0.445 ± 0.027

200 samples SpeckleGAN/g-t 4.5 8.7 9.3 0.440 ± 0.029

Baseline GAN/g-t 172.2 11.4 14.5 0.301 ± 0.027

435 samples SpeckleGAN/g-t 3.3 3.7 6.2 0.443 ± 0.027

Baseline GAN/g-t 186.0 10.5 11.7 0.324 ± 0.025
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artifacts are visible. The baseline GAN completely fails 

when trained with 50 training samples.

The evaluations by means of the Jensen–Shannon 

divergence and the SSIM depicted in Table 1 also show 

the superiority of SpeckleGAN apart from minor excep-

tions. It is interesting to see, that these exceptions occur 

in cases, where visual appearance clearly favors the Speck-

leGAN results (compare Fig. 6). This can be explained by 

S
p
e
c
k
le

 G
A
N

B
a
s
e
li
n
e
 G

A
N

435 200 100 50

Number of GAN training examples

Fig. 6  Comparison of IVUS images generated by SpeckleGAN and the baseline GAN for different numbers of GAN training examples. All 

images were acquired with the same conditional segmentation mask

Table 2  Comparison of Dice coefficients (upper table) and modified Hausdorff distances (lower table) as a function of the number of training 

examples

The four columns on the right show p-values calculated by pairwise t-tests. If p-values are smaller than 0.05, they are printed boldly

# Samples Model Dice coefficient (%) p-values

Baseline GAN No pre-train

Intima/media Lumen In/Me Lum In/Me Lum

50 SpeckleGAN 83.18 ± 0.23 93.44 ± 0.42 < 0.001 0.122 < 0.001 < 0.001

Baseline GAN 81.51 ± 92.87 92.87 ± 1.18 ∗ ∗ < 0.001 < 0.001

No pre-train 80.02 ± 0.67 91.74 ± 1.50 ∗ ∗ ∗ ∗

100 SpeckleGAN 86.02 ± 0.44 95.70 ± 0.15 0.002 < 0.001 < 0.001 < 0.001

Baseline GAN 85.18 ± 0.46 94.95 ± 0.21 ∗ ∗ 0.07 0.495

No pre-train 84.79 ± 0.22 94.83 ± 0.19 ∗ ∗ ∗ ∗

# Samples Model Mod. Hausdorff dist. [p] p-values

Baseline GAN No pre-train

Intima/media Lumen In/Me Lum In/Me Lum

50 SpeckleGAN 1.88 ± 0.14 3.07 ± 0.40 0.058 1.000 < 0.001 0.011

Baseline GAN 2.07 ± 0.30 3.04 ± 1.45 ∗ ∗ < 0.001 0.008

No pre-train 2.54 ± 0.51 3.79 ± 2.09 ∗ ∗ ∗ ∗

100 SpeckleGAN 0.79 ± 0.06 0.37 ± 0.11 0.020 < 0.001 0.001 < 0.001

Baseline GAN 0.90 ± 0.09 0.92 ± 0.36 ∗ ∗ 0.292 0.071

No pre-train 0.95 ± 0.06 1.13 ± 0.39 ∗ ∗ ∗ ∗
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considering that both metrics do not take into account all 

image characteristics which are important for IVUS images. 

For example, a low Jensen–Shannon divergence can be 

achieved even if the synthetic images do not show speckle 

at all, because the two-dimensional arrangement of the grey 

values does not affect gray value histograms. SSIM on the 

other hand compares luminance, contrast and structure (i.e., 

the correlation) of two images. In the case of IVUS images 

luminance and contrast are reliable measures, whereas cor-

relation does not necessarily imply similarity, because of 

speckle noise. Two almost identical images except from a 

slight shift of speckle patches can have zero (or even nega-

tive) correlation. This also holds for other classic similarity 

measures such as peak signal to noise ratio (PSNR) or mean 

squared error (MSE), so these have not been used here.

The authors of [20] used 2075 images of the same clinical 

IVUS dataset (without segmentation masks) for training a 

two-stage GAN in order to generate synthetic images. Our 

approach results in Jensen–Shannon divergences which are 

one order of magnitude below the values achieved in [20], 

even for only 100 training examples. In particular, the val-

ues obtained for the adventitia layer are far superior, which 

shows that our approach results in speckle patches leading 

to gray value distributions resembling the real ones very 

closely. This could be due to the ability of our algorithm to 

produce speckles with various sizes over a single image. But 

also the baseline GAN performs better than the approach 

in [20] regarding intima/media and adventitia layers when 

trained with 100 or more samples.

GANs often suffer from mode collapse [17]. This means 

that only a few or even only a single mode of the data dis-

tribution can be generated, which reduces the variety of the 

samples drastically. SpeckleGAN has the advantage that 

mode collapse can only affect the morphology (or back-

ground) of the image and not the speckle patterns, because 

these are randomly generated by the speckle layer.

IVUS segmentation

It has been demonstrated (see Table 2) that pre-training 

improves the mean Dice coefficient and the mean modified 

Hausdorff distance regardless of using synthetic images 

generated by SpeckleGAN or by the baseline GAN. But the 

improvements due to the baseline GAN are only statistically 

significant for 50 training examples, not for 100 training 

examples. In nearly all cases, pre-training with synthetic 

images of SpeckleGAN leads to better mean segmentation 

performances than pre-training with images from the base-

line GAN. However, the improvement is not statistically 

significant in three cases of 50 training examples: for the 

Dice coefficient of the lumen as well as for the modified 

Hausdorff distance for both intima/media and lumen. It can 

be seen that pre-training with low quality images from the 

baseline GAN also improves the resulting Dice coefficients. 

This indicates that valuable information is even present in 

the morphology of blurred images.

The evaluation of the Jensen–Shannon divergence in 

Table 1 and the comparison with [20] shows that the struc-

ture of the adventitia in particular benefits from Speckle-

GAN. However, its appearance is only of minor importance 

for the segmentation of lumen and intima/media. The base-

line GAN achieves much worse Jensen–Shannon diver-

gences for the lumen. Nevertheless, for 50 training examples 

the lumen segmentation performance is equivalent or even 

better by pre-training with images of the Baseline GAN. 

This leads to the conclusion that realistic speckle does not 

play an important role for segmentation of the lumen when 

dealing with 20 MHz IVUS images. Comparing [1, 3, 22] 

and the results of scenario 2, it can be seen that our approach 

nearly reached state-of-the-art performance, although our 

training set was smaller and no special care was taken about 

optimization of the segmentation network used in this work 

(see “Segmentation evaluation” section).

Conclusion

SpeckleGAN improves quality and diversity of generated 

IVUS images compared to a baseline GAN model with-

out a speckle layer. It generates visually appealing images 

with defined morphology (conditioned by segmentation 

masks) even when trained with extremely small datasets 

of 50 images. SpeckleGAN offers a wide range of possible 

applications. First of all, it is not limited to generate IVUS 

images. It could be applied to ultrasound images in general 

and to other imaging modalities that produce images with 

speckle such as optical coherence tomography or radar. As 

seen in the previous section, realistic speckle patterns have 

only minor impact on the performance when it comes to 

segmentation of lumen and intima/media layers in IVUS. 

Classification, detection or tracking tasks which heavily rely 

on speckle patterns could benefit much more from realistic 

speckles generated with SpeckleGAN when tackled with 

data driven algorithms.
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