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Abstract—This paper introduces a new music signal processing
method to extract multiple fundamental frequencies, which we
call specmurt analysis. In contrast with cepstrum which is the in-
verse Fourier transform of log-scaled power spectrum with linear
frequency, specmurt is defined as the inverse Fourier transform
of linear power spectrum with log-scaled frequency. Assuming
that all tones in a polyphonic sound have a common harmonic
pattern, the sound spectrum can be regarded as a sum of linearly
stretched common harmonic structures along frequency. In the
log-frequency domain, it is formulated as the convolution of a
common harmonic structure and the distribution density of the
fundamental frequencies of multiple tones. The fundamental
frequency distribution can be found by deconvolving the observed
spectrum with the assumed common harmonic structure, where
the common harmonic structure is given heuristically or quasi-op-
timized with an iterative algorithm. The efficiency of specmurt
analysis is experimentally demonstrated through generation of a
piano-roll-like display from a polyphonic music signal and auto-
matic sound-to-MIDI conversion. Multipitch estimation accuracy
is evaluated over several polyphonic music signals and compared
with manually annotated MIDI data.

Index Terms—Inverse filtering, iteration algorithm, multipitch
analysis, pitch visualization, polyphonic music signals.

I. INTRODUCTION

I
N 1963, Bogert, Healy, and Tukey introduced the concept
of “cepstrum” in a paper entitled “The quefrency alanysis of

time series for echoes: cepstrum, pseudoautocovariance, cross-

cepstrum, and saphe-cracking” [1] where they defined cepstrum
as the inverse Fourier transform of logarithmically scaled power
spectrum. Their humorous terminologies such as “quefrency”
and “lifter” which are anagrams of “frequency” and “filter,” re-
spectively, have been since widely used in the speech recogni-
tion area.
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Since Noll [2] used cepstrum in pitch detection in 1964, it be-
came a standard technique for detection and extraction of funda-
mental frequency of periodic signals. Later, cepstrum became a
major feature parameter for speech recognition in the late 1970s
together with delta-cepstrum [3] and “Mel-frequency cepstrum
coefficients” (MFCCs) [4]. Cepstrum was also used as filter co-
efficients in speech synthesis digital filter [5] and plays a central
role in HMM-based speech synthesis.

In these applications, cepstrum is advantageous as it converts
the speech spectrum into the sum of spectral fine structure (pitch
information) and spectral envelope components in the cepstrum
domain. It is usually assumed, however, that the target is a single
pitch (or, one speaker’s voice) signal, and multipitch signals
cannot be well handled by the cepstrum due to the nonlinearity
of the logarithm.

Multipitch analysis has been one of the major concerns in
music signal processing. It has a wide range of potential applica-
tions including automatic music transcription, score following,
melody extraction, automatic accompaniment, music indexing
for music information retrieval, etc. However, fundamental fre-
quency cannot be easily detected from a multipitch audio signal,
i.e., polyphonic music, due to spectral overlap of overtones, poor
frequency resolution, spectral widening in short-time analysis,
etc. Various approaches concerning the multipitch detection/es-
timation problem have been attempted since the 1970s as exten-
sively described in [6]. In the mid 1990s, approaches combining
artificial intelligence and computational auditory scene analysis
with signal processing were considered (see, for example, [7]).
In recent years, more analytical approaches have been investi-
gated, aiming at a higher accuracy. In one of the earliest attempts
in this direction, Brown [8] considered harmonic pattern on the
logarithmic frequency axis and used convolution to calculate
the cross correlation with a reference pattern, expecting a major
peak at the fundamental frequency. This idea is essentially a
“matched filter” in the log-frequency domain, and it can be put
in contrast with the method presented in this paper as explained
in Section III-F. Other approaches include the combination of
a probabilistic approach with multiagent systems for predom-
inant-F0 estimation [9]–[11], nonnegative matrix factorization
[12], [13], sparse coding in frequency domain [14] or time do-
main [15], Gaussian harmonic models [16], linear models for
the overtone series [17], harmonicity and spectral smoothness
[18], harmonic clustering [19], and use of information criterion
for the estimation of the number of sound sources [20].

As for spectral analysis, wavelet transform using the Gabor
function is one of the popular approaches to derive short-time
power spectrum of music signals along the logarithmically
scaled frequency axis, which appropriately suits the music
pitch scaling. Spectrogram, i.e., the 2-D time–frequency dis-
play of the sequence of short-time spectra, however, can look
very intricate because of the existence of many overtones (i.e.,
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the harmonic components of multiple fundamental frequen-

cies), that often prevents us from discovering music notes.

This paper introduces specmurt analysis, a technique based

on the Fourier transform of logarithmically transformed

power spectrum, which is effective for multipitch analysis

of polyphonic music signals. Our objective is to emphasize

the fundamental frequency components by suppressing the

harmonic components on the spectrogram. The obtained spec-

trogram then becomes more similar to a piano-roll display

from which multiple fundamental frequencies can be easily

identified. The approach of the proposed method entirely dif-

fers from that of the standard multipitch analysis methods that

determine uniquely the most likely solutions to the multipitch

detection/estimation problem. In many of these methods, the

number of sources needs to be decided before the methods are

applied, but specmurt analysis does not require such a decision,

and the output result contains information about the number of

sources. Specmurt analysis provides a display which is visually

similar to the original piano-roll image and shall hopefully be

a useful feature, for example, for retrieval purposes (one could,

for instance, imagine a simple image template matching).

The overview of this paper is as follows: in Section II, we

discuss the relationship between cepstrum and specmurt. In

Section III, we introduce a multipitch analysis algorithm using

specmurt. Furthermore, we describe an algorithm for iterative

estimation of the common harmonic structure in Section IV and

in the Appendix , and finally we show experimental results of

multipitch estimation, followed by discussion and conclusion.

II. “CEPSTRUM” VERSUS “SPECMURT”

A. Cepstrum

According to the Wiener–Khinchin theorem, the inverse

Fourier transform of the linear power spectrum with linear

frequency is the autocorrelation as a function of time delay

(1)

where denotes the power spectrum of the signal. If the

power spectrum is scaled logarithmically, the resulting inverse

Fourier transform is not the autocorrelation any more and has

been named ’cepstrum’ [1], humorously reversing the first four

letters of ’spectrum’. It is defined as follows:

(2)

where is called “quefrency.” This transform has become an

important tool in speech recognition.

Cepstrum is one of the standard methods for finding a

single fundamental frequency. However, multiple fundamental

frequencies cannot be handled appropriately since, after the

nonlinear scaling procedure, the spectrum is no longer a linear

combination of sources, even in the expectation sense.

B. Specmurt

Instead of inverse Fourier transform of log-scaled power

spectrum with linear frequency , we can alternatively con-

Fig. 1. Comparison between cepstrum and specmurt: specmurt is defined as the
inverse Fourier transform of the linear spectrum with log-frequency, whereas
cepstrum is the inverse Fourier transform of the log spectrum with linear fre-
quency.

sider inverse Fourier transform of linear power spectrum with

log-scaled frequency as follows:

(3)

or, denoting and :

(4)

which we call specmurt by reversing the last four letters in the

spelling of “spectrum,” by analogy with the terminology of cep-

strum where the first four letters of “spectrum” are reversed (see

Fig. 1).

In the following section, we will show that specmurt is effec-

tive in multipitch signal analysis, while cepstrum can be used

for the single-pitch case.

It should be noted that the above definition can be rewritten

as a special case of the Mellin transform on the imaginary axis

(5)

However, we still use the terminology “specmurt” to empha-

size its relationship with cepstrum and to avoid confusion with

the Mellin transform on the real axis, which is widely used to

derive scale-invariant features [21]. Obviously, specmurt pre-

serves the scale, and is thus useful in finding multiple funda-

mental frequencies as we shall show in later sections. In addi-

tion, we will need to make use of the convolution theorem of

the Fourier transform to deconvolve the harmonic structure, but

this theorem is missing from the basic properties of the Mellin

transform.

It should be emphasized again that specmurt uses a linear

scale for the power of the spectrum, in comparison with MFCCs

which are very often used in feature analysis in speech recogni-

tion. Moreover, when logarithmically scaled both in frequency

and magnitude, the spectrum is called Bode diagram, which is

often used in automatic control theory, and the Mel-generalized

cepstral analysis as proposed in [22].

Practically, spectrum analysis with logarithmic scale is per-

formed using (continuous) wavelet transform

(6)
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Fig. 2. Relative location of fundamental frequency and harmonic frequencies
both in linear and log scale.

where

(7)

denotes the target signal, is the mother wavelet, and

is the complex conjugate of . In this paper, Gabor function

is used as the mother wavelet

(8)

so as to obtain a short-time power spectrum with a constant res-

olution along the log-frequency axis. It can be understood as

constant- filter bank analysis along the log-scaled frequency

axis and is well suited for the musical pitch scale.

III. SPECMURT ANALYSIS OF MULTIPITCH SPECTRUM

A. Modeling Single-Pitch Spectrum in Log-Frequency Domain

Assuming that a single sound component is a harmonic

signal, the frequencies of the second, third, etc. harmonics

are integer multiples of the fundamental frequency in linear

frequency scale. This means that if the fundamental frequency

changes by , the th harmonic frequency changes by

. In the logarithmic frequency (log-frequency) scale,

on the other hand, the harmonic frequencies are located at

, where

is the fundamental log-frequency. The relative location thus

remains constant no matter how the fundamental frequency

changes and undergoes an overall parallel shift depending on

the change (see Fig. 2).

Nothing is new in the above discussion: music pitch interval

can be described using semitones, which is equivalent to log-

frequency. This relation has been explicitly or implicitly used

for multipitch analysis, for example in [8] and [9].

B. Common Harmonic Structure

Let us define here a general spectral pattern for a single har-

monic sound. The assumption that the relative powers of its har-

monic components are common and do not depend on its funda-

mental frequency suggests a general model of harmonic struc-

ture. We call this pattern the common harmonic structure and

denote it as , where indicates log-frequency. The funda-

mental frequency position of this pattern is set to the origin (see

Fig. 3. Multipitch spectrum generated by convolution of a fundamental fre-
quency pattern and a common harmonic structure pattern.

Fig. 3). Under this definition, we can explicitly obtain the spec-

trum of a single harmonic sound by convolving an impulse func-

tion (Dirac’s delta-function) and the common harmonic

structure . Here the position of the impulse represents the

fundamental frequency of the single sound on the -axis and the

height represents the energy.

In reality, the harmonic structure varies with the fundamental

frequency even for a given musical instrument. However, the

purpose of this assumption is not to model the spectrum of music

signals strictly, and the result includes the modeling error by

definition. Nevertheless, this strong assumption enables us to

reach a simple, quick, and acceptably accurate solution.

C. Modeling Multipitch Spectrum in Log-Frequency Domain

If contains power at multiple fundamental frequencies

as shown in Fig. 3, the multipitch spectrum is generated by

convolution of and

(9)

if the power spectrum can be assumed additive ( denotes con-

volution). Actually, when summing up multiple sinusoids at the

same frequency, the power of the signal may deviate from the

sum of each sinusoidal powers due to their relative phase re-

lationship. However, this assumption holds in the expectation

sense.

Note that (9) still holds if consists not of multiple delta

functions but of a continuous function representing the distribu-

tion of fundamental frequencies.

D. Deconvolution of Log-Frequency Spectrum

The main objective here is to estimate the fundamental fre-

quency pattern from the observed spectrum . If the

common harmonic structure is known, we can recover

by applying the inverse filter to . It corre-

sponds to the deconvolution of the observed spectrum by

the common harmonic structure pattern

(10)

In the Fourier domain, this equation can be easily computed by

division of the inverse Fourier transform of the log-frequency

linear-amplitude power spectrum by the inverse Fourier trans-

form of the common harmonic structure

(11)
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Fig. 4. Outline of multiple fundamental frequency estimation through spec-
murt analysis. Fundamental frequency distribution u(x) is calculated through
the division V (y)=H(y).

where , , and are the inverse Fourier transform

of , , and , respectively. The fundamental fre-

quency pattern is then restored by

(12)

The domain has been defined as the inverse Fourier trans-

form of linear spectrum magnitude with logarithmic frequency

and it is equivalent to specmurt domain, as mentioned in

Section II-B. We call this procedure specmurt analysis. In

practical use, it is indifferent whether the definition of the

domain is inverse Fourier transform or Fourier transform of the

domain, and here we choose the former definition in contrast

with cepstrum definition.

E. Computational Procedure of Specmurt Analysis

The whole procedure of specmurt analysis consists of four

steps as shown below.

1) Apply wavelet transform with Gabor function to the input

signal and take the squared absolute values (power-spec-

trogram magnitudes) for each frame.

2) Apply inverse Fourier transform to to obtain .

3) Divide by , the inverse Fourier transform of the

assumed common harmonic pattern .

4) Fourier transform the division to estimate the

multipitch distribution along the log-frequency .

The term “frame” in this paper means a certain discrete time

shift parameter, denoted by in (6), not the short time interval

of the signals. Wavelet transform does not utilize the short time

frame, but the obtained spectra for each time shift parameter

can be treated almost the same as the spectra obtained by the

short time Fourier transform. For this reason, we call the discrete

time shift in wavelet transform “frame” in this paper.

This process is briefly illustrated in Fig. 4. The process is

done over every short-time analysis frame and thus we finally

have a time series of fundamental frequency components, i.e.,

a piano-roll-like visual representation with a small amount of

computation.

The discussion has been conducted so far under the assump-

tion that the common harmonic structure pattern is common

over all constituent tones and also known a priori. Even in ac-

tual situations where this assumption may not strictly hold, this

approach is still expected to play an effective role as a funda-

mental frequency component emphasis (or, in other words, over-

tone suppression).

Fig. 5. Wavelet transform of two mixed violin sounds (C4 and E4).

F. Inverse Filter Versus Matched Filter

Using logarithmic frequency is a common idea in music

where pitch is perceived logarithmically. Brown [8] actually

attempted to emphasize the fundamental frequency by con-

volution of the spectrum with a reference harmonic pattern

on the log-frequency axis to calculate the cross-correlation,

whereas we aim at emphasizing the fundamental frequency by

deconvolution of the spectrum by a common harmonic pattern.

The former is a “matched filter” approach while the latter is an

“inverse filter” approach from the filter theory.

In single pitch estimation of speech, autocorrelation of the

prediction residuals obtained by inverse filtering of speech sig-

nals with linear predictive coefficients (LPCs) [23], [24] is more

effective to estimate precisely the pitch frequency than simple

autocorrelation of the signals.

IV. QUASI-OPTIMIZATION OF THE COMMON

HARMONIC STRUCTURE

In the procedure described above to perform specmurt anal-

ysis, we assumed that all constituent sounds have a common har-

monic structure. It is, however, generally not true in real poly-

phonic music sounds as the harmonic structures are generally

different from each other, and often change over time. The vari-

ation of the harmonic structure between sounds inside a frame is

not considered in specmurt, as it is modeled as a linear system,

but concerning the variation in time, there is still room to adapt

the harmonic structure to the quasi-optimal pattern frame by

frame (the term “quasi-optimal” means that the result converges

after iteration of the algorithm but the effective function of the

whole algorithm measuring the optimality is not defined). The

best we can do is to estimate such that it minimizes the

amplitudes of overtones in after deconvolution.

Fig. 5 shows as an example the linear-scaled spectrum of

a mixture of two audio violin sounds (C4 and E4, excerpted

from RWC Musical Instrument Sound Database [25]) along log-

scaled frequency axis , where the multiple peaks represent the

two fundamental frequencies as well as the overtones. If we use

as the frequency characteristic of , where denotes

frequency (shown in Fig. 6(I-a)), the overtones are attenuated



SAITO et al.: SPECMURT ANALYSIS OF POLYPHONIC MUSIC SIGNALS 643

Fig. 6. Overtone suppression results for the spectrum of Fig. 5 with three different initial harmonic structures (a,b,c). (I) Initial value of the common harmonic
structure (from left to right, the harmonic structure envelope is 1=

p
f , 1=f , 1=f , respectively). (II) Fundamental frequency distribution before performing

any iteration. (III) Estimated common harmonic structure after five iterations. (IV) Improved fundamental frequency distribution after five iterations. The three
estimations with different initial value converge to almost the same result.

but the power is strongly fluctuating and many unwanted com-

ponents in the entire range of frequency appear as the result of

deconvolution (Fig. 6(II-a)). On the other hand, if we use

or (Fig. 6(I-b) and (I-c), respectively), overtone suppres-

sion is insufficient (Fig. 6(II-b) and (II-c)). In this case the result

of Fig. 6(II-b) seems to be the best of the three, but in general

it is unrealistic to find out manually an appropriate harmonic

structure at every analysis frame.

Hence, it is desirable to estimate automatically the quasi-op-

timal that gives maximum suppression of overtone com-

ponents. However, specmurt analysis is an “inverse filtering”
process and it is an ill-posed problem when both the funda-

mental frequency distribution and the common harmonic

structure are completely unknown. In other words, we need

to impose some constraints on the solution set in order to se-

lect an appropriate solution from an infinitely large number of

choices. The following describes an iterative estimation algo-

rithm that utilizes two constraints on and and calcu-

lates a quasi-optimal solution.

A. Nonlinear Mapping of the Fundamental Frequency

Distribution

Here, we introduce the first constraint: the fundamental fre-

quency distribution is nearly zero almost everywhere, except for

some predominant peaks. In other words, the fundamental fre-

quency distribution is sparse. This means that the minor peaks

of are not the real fundamental frequency components but

errors in the specmurt analysis. It is difficult, however, to dis-

tinguish with certainty between the real fundamental frequency

components and the unwanted ones, because of the variety of

relationships between the peak amplitudes of both types.

In consideration of this problem, we introduce a nonlinear

mapping function to update the fundamental frequency distribu-
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Fig. 7. Nonlinear mapping function provides fuzziness and does not suppress
completely the lower value than �. Solid line: nonlinear mapping function to
suppress minor peaks and negative values of u(x); dashed line: hard thresh-
olding function.

tion, which avoids having to make a hard decision and provides

fuzziness. It is defined as follows:

(13)

where stands for . It is shown in Fig. 7.

This mapping uses a sigmoid function and has a fuzziness pa-

rameter and a threshold magnitude parameter . corre-

sponds to the value under which frequency components are as-

sumed to be unwanted, and represents the degree of fuzziness

of the boundary ( ).

This nonlinear mapping does not change the values which

are significantly larger than , and attenuates both the slightly

larger and the smaller values. The degree of attenuation becomes

stronger as the value concerned is small. The hard thresholding

function is also shown in Fig. 7 as a dashed line. Compared with

the nonlinear mapping, it does not change the values which are

larger than , and sets the smaller values to zero

(14)

The nonlinear mapping function depends less arbitrarily on :

when the hard thresholding function is applied to values around

, can result in a totally different value for a small change

of . In contrast, the nonlinear mapping does not have a abrupt

threshold under which the values are set to zero, instead, the

change occurs more gradually. Therefore, it does not suffer from

this problem, and a small change in parameter does not in-

fluence drastically the value of . Consequently, we do not

have to make a strict decision on the threshold of the amplitude

between the fundamental frequency components and the other

ones. In fact, the nonlinear mapping is a broader concept than

thresholding, as the nonlinear mapping with actually

corresponds to the hard thresholding.

Although the nonlinear mapping does not change

widely, after a few iterations becomes sparse enough.

This mapping decreases the value of for all , but if

has a certain amount of amplitude and does not correspond

to a harmonics frequency, can increase back from the

Fig. 8. Illustration of the parameterized common harmonic structure �h(x;�).

 is the location of the nth harmonic component in log-frequency scale, and
� is the nth relative amplitude. � ;� ; . . . ;� are variable and should be
estimated (� = 1).

attenuated value at the deconvolution step (an example is shown

in Section IV-C ).

As a result of the mapping, the components of with small

or negative power are brought close to zero, while middle power

components remain as slightly smaller peaks. This means that

should be closer to the ideal fundamental frequency dis-

tribution than , as the small nonlikely peaks have been re-

duced.

B. Common Harmonic Structure Estimation

In the previous section, we introduced as a more

preferable distribution than , and we can now calculate the

most suitable common harmonic structure from and the

observed spectrum . We shall consider here a second con-

straint about the common harmonic structure : a common

harmonic structure is composed of a certain number of im-

pulse components located at the positions of the harmonics in

log-scale. More precisely

(15)

where and are, respectively, the -coordinate and the rel-

ative amplitude of the th harmonic overtone in log-frequency

scale, is the number of harmonics to consider ( and

), and (the overview of is

illustrated in Fig. 8). is the (log-)frequency resolu-

tion of the wavelet transform. Under this constraint, we calculate

the common harmonic structure by estimating the parameter ,

which is done through minimization of the square error

(16)

This objective function is quadratic in the parameters and

the quasi-optimal solution can be obtained by considering

partial differential equations

(17)
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or, in detail

...
...

...

...
...

...

...

...

...

...

(18)

where

(19)

(20)

The optimal parameter can then be obtained by solving (18),

which can be done because the non-singularity of the matrix

involved is guaranteed, as proved in the Appendix .

We can now use again the specmurt analysis procedure to ob-

tain a yet improved using the improved common harmonic

structure .

C. Iterative Estimation Algorithm

Practically, the quasi-optimal harmonic structure is obtained

by iterating the above procedures. Summarizing the above, the

iterative algorithm goes as follows.

Step 1) Obtain from with initial by inverse

filtering.

Step 2) Obtain by applying a nonlinear mapping.

Step 3) Find at discrete points

by calculating .

Step 4) Replace with and go back to Step 1).

In Step 2), all the spectral components are attenuated ac-

cording to their amplitudes, but fundamental frequency compo-

nents get back their original amplitude in the next Step 1) (see

the experiment in Section IV-D). Although the convergence of

this procedure for optimizing the common harmonic structure

is not mathematically guaranteed, we have not experienced any

serious problem in this matter. In addition, we also considered

a probabilistic model and applied it to specmurt analysis in an-

other paper [26]. In that algorithm, the convergence is guaran-

teed but at the expense of a slightly more complicated formula-

tion.

D. Implementation and Examples

In order to implement this algorithm, we need to translate the

above discussion from continuous analysis to discrete analysis

to enable the computational calculation. The integral calculation

is approximated by summation at finite range, and log-scaled

location of harmonics component is rounded to nearest fre-

quency bin.

An example illustrating the iterative quasi-optimization is

shown in Fig. 6(III)–(IV). The above procedure is performed

starting from three types of initial in Fig. 6(I-a)–(I-c).

The quasi-optimized common harmonic structures after five

iterations are shown in Fig. 6(III-a)–(III-c) and the corre-

sponding fundamental frequency distributions are shown in

Fig. 6(IV-a)–(IV-c). In this experiment, the parameters of the

nonlinear mapping were set to and . It is

Fig. 9. Relationship between iteration times and update amountD.

remarkable that the three sets of results converge almost to the

same distributions. This result is not a proof that the iteration

process always converges to a single solution, and in fact the

iteration has at least another trivial solution, for

and . However, this result shows to some extent

the small dependency of this algorithm on the initial value.

As a measure of convergence of this algorithm, we define the

update amount :

(21)

where is the fundamental frequency distribution ob-

tained at the th iteration. The relationship between the itera-

tion times and the update amount for the cases of Fig. 6 is

shown in Fig. 9. For all of three different initial , the up-

date amount decreases rapidly and at fifth iteration it becomes

vanishingly small. This phenomenon is observed for almost all

the other frames. The convergence of this algorithm is not guar-

anteed, but the convergence performance seems satisfying.

The nonlinear mapping function seems to attenuate not only

the overtone components but also the fundamental frequency

components with small amplitudes. The experiment result of

two mixed sounds with significantly different amplitudes is

shown in Fig. 10. The amplitude of the fundamental frequency

component of G4 is quite smaller than that of C4, which is

equal to , and therefore the nonlinear mapping function

attenuates the smaller fundamental frequency component.

However, after the deconvolution step the amplitude of the

fundamental frequency component of G4 increase back to

almost as large a value as it had in the original spectrum,

and the nonlinear mapping function does not affect the small

fundamental frequency component through the iteration as a

whole. However, we learned from some experiments that the

small fundamental frequency component is regarded as an

harmonic component and suppressed when it is mixed with the

large harmonic component of another fundamental frequency.

E. Multipitch Visualization

In addition to this framewise results, we can display the

fundamental frequency distribution as a time-frequency
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Fig. 10. Experimental result for two mixed sounds with significantly different
amplitudes. (a) Wavelet transform of two mixed piano sounds (C4 and G4, ex-
cerpted from RWC Musical Instrument Sound Database [25]). (b) Result of
specmurt analysis on (a).

plane. An example of pitch frequency visualization through

specmurt analysis is shown in Fig. 11 (experimental conditions

are the same to the evaluation in later section). We can see that

the overlapping overtones in (a) are significantly suppressed by

specmurt analysis in (b), which looks very close to the manually

prepared piano-roll references in (c). Methods in which the

pitch frequencies are parametrized can visualize the results as

planes too, but the planes are reconstructed on the estimated

frequency parameters, and the information about the number of

sound sources is lost. In other words, these methods require the

additional information to generate the planes, but the proposed

method does not. Unlike these approaches, specmurt analysis

generates a continuous fundamental frequency distribution and

can enhance the spectrogram so that multiple fundamental fre-

quencies become more visible without decision on the number

of sound sources.

V. EXPERIMENTAL EVALUATIONS

A. Conditions

Through iterative optimization of the common harmonic

structure, improved performance is expected for automatic mul-

tipitch estimation. To experimentally evaluate the effectiveness

of specmurt analysis for this purpose, we used 16-kHz sampled

monaural audio signals excerpted from the RWC Music Data-

base [27]. The estimation accuracy was evaluated by matching

the analysis results with a reference MIDI data, which was

manually prepared using the spectrogram as a basis, frame by

frame. We chose this scheme because the duration accuracy of

each note is also important. With note-wise matching, the du-

ration cannot be evaluated and the evaluation result is affected

more severely by instantaneous errors (for example one note

can be divided into two notes by only one “OFF” error).

The RWC database also includes MIDI-format data, but they

are unsuitable for matching: they contain timing inaccuracies

from which the relevance of the computation of the accuracy

from a frame-by-frame matching would strongly suffer. Further-

more, the durations of the MIDI reference are based on the mu-

sical notation in the score, and they do not reflect the real length

of each sound signal, especially in the case of keyboard instru-

ments, for which damping makes the offset harder to determine.

Fig. 11. Multipitch visualization of data 4, “For Two” (guitar solo) from
the RWC Music Database, using specmurt analysis with quasi-optimized
harmonic structure. (a) Log-frequency spectrum obtained through wavelet
transform (input). (b) Estimated fundamental frequency distribution (output).
(c) Piano-roll display of manually prepared MIDI data (reference). Overtones
in (b) are fewer and thinner than in (a), and as a whole (b) is more similar to (c).

We chose HTC [28] and1 PreFEst [11] for comparison. These

methods are based on parametric models using the EM algo-

rithm, in which power spectrum is fitted by weighted Gaussian

mixture models. The common problem of the three methods is

that the estimation result is not a “binary” data, i.e., the “ac-

tive” or “silent” information, but some set of frequency, time,

and amplitude. Moreover, the result of specmurt analysis has a

continuous distribution with respect to frequency. In order to

compare the reference MIDI data to the estimation results, we

need to introduce some sort of thresholding process. This thresh-

olding can have a large effect on the estimation accuracy, and

the three methods produce three different types of output distri-

bution. Therefore, we chose the highest accuracy among all the

thresholds for each method.

We implemented a GUI editor to create a ground truth data

set of pitch sequences as a MIDI reference (a screen-shot of

1Note that we implemented for the evaluation only the module called
“PreFEst-core,” a frame-wise pitch likelihood estimation, and not included the
one called “PreFEst-back-end,” a multiagent-based pitch tracking algorithm.
Refer to [11] for their details.
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Fig. 12. GUI for creating ground truth data of pitch sequences and calculating
the best accuracy with three different algorithms (specmurt, HTC, and PreFEst)
by changing the threshold value.

TABLE I
ANALYSIS CONDITIONS FOR THE LOG-FREQUENCY SPECTROGRAM

the GUI editor can be seen in Fig. 12). In this GUI, the music

spectrogram is shown in the background and the user can gen-

erate a spectrogram-based reference with reliable duration. This

system can also calculate the pitch estimation accuracy of the

three methods for any threshold. The reference data made by

this GUI are based on the bundled MIDI data and modified by

hearing the audio and comparing to the spectrogram.

In our experiments, we set and used a frequency char-

acteristic of as the initial common harmonic structure.

As is generally understood as the most common frequency

characteristic of natural sounds, is a slightly “conserva-

tive” choice to avoid excess inverse filtering applied to the input

wavelet spectrum. We empirically set and repeat the it-

erative steps five times throughout all data regardless of the fact

that convergence is reached or not. Two values of the threshold

magnitude parameter , 0.2, and 0.5, were tested, as it seemed to

have a significant effect on the estimation accuracy. Other anal-

ysis conditions for the log-frequency spectrogram are shown in

Table I.

Table II shows the entire list of data, where approximately

the first 20 s of each piece were used in our evaluation. Selec-

tion was made so as to cover some variety of timbre, solo/duet,

instrument/voice, classic/jazz, but to exclude percussions.

The accuracy is calculated by frame-by-frame matching

of the output and reference data. We define as the

(threshold-processed) output data, where denotes the note

number and the time. is 1 When the note number

is active at time and 0 when it is not active. In the same way,

can be defined as the reference data, and the accuracy

is calculated as follows:

Accuracy (22)

(23)

(24)

(25)

(26)

denotes the number of deletion error, for which the output

data is not active but the reference is active, and denotes

the number of insertion error, for which the output data is ac-

tive but the reference is not active. However, both errors in-

clude the substitution errors, for which the output data is ac-

tive at but the reference is active at (for example, a

half-pitch error). Therefore, in order to avoid the double-count

of substitution errors, we defined as and the

total error at as . This accuracy can be neg-

ative, and no compensation was given to unisono (i.e., several

instruments play the same note simultaneously) and timbre. Of

course, frame-by-frame matching produces a lower accuracy

than note-by-note matching, and the result is hardly expected to

reach 100% (e.g., even for a perfect note estimation accuracy,

if all of the estimated note durations are half of the original, the

calculated accuracy will be 50%).

B. Results

The experimental results are shown in Table III. First, when

, for which overtone suppression is successfully done in

Fig. 9, the accuracy results are averagely 2%–3% lower than for

. One possible cause for that is the balance between the

amplitudes of each note in a single frame. The nonlinear map-

ping with has a larger attenuation effect, and therefore

the estimation succeeds quickly in frames where the notes have

about the same amplitude, otherwise notes with quite smaller

amplitude are regarded as “noise” and suppressed.

For single-instrument data, the accuracy tends to be higher

than for multiple-instrument data. Specmurt analysis assumes

a common harmonic structure and this assumption is more jus-

tified for the spectrum of single-instrument music. Compared

with previous works, the accuracy of the proposed method

seems to be slightly lower than that of HTC, while it is almost

equal to that of PreFEst.2 However, the remarkable aspect

of specmurt analysis is pitch visualization as a continuous

distribution, and its advantage over the other algorithms is

simplicity and quickness (it took 1.7 s with no iteration and 9.5

s with five iterations for 23.0-s length music data, including 1.2

s for wavelet transform). Hence, it is a very satisfying result

that specmurt analysis earns a comparable score to previous

state-of-the-art work.

2Note that multiple instrument data is also tested with a single prior distribu-
tion.
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TABLE II
EXPERIMENTAL DATA FROM THE RWC MUSIC DATABASE [27]

TABLE III
ACCURACY RESULTS OF THE PROPOSED METHOD, HTC [28] AND PREFEST [11]

Some MIDI sounds are available at http://hil.t.u-tokyo.ac.jp/

~lab/topics/SpecmurtSamples/.

VI. DISCUSSION

A. Comparison With Sparse Coding and Shifted NMF

Specmurt analysis utilizes the assumption that the harmonic

structure is common among all the notes. In other words, spec-

murt analysis has a degree of freedom in the time direction but

not in the frequency direction. In contrast, sparse coding in the

frequency domain [14] expresses each note with one or more

note-like representations, called dictionary. Assuming that any

single sound spectrum can be represented using a single dictio-

nary, sparse coding has a degree of freedom in the frequency

direction but not in the time direction. Although a single note is

in fact almost always expressed by multiple dictionaries, there is

a similarity between specmurt analysis and sparse coding. Fur-

thermore, the nonlinear mapping function in Section IV-A can

be considered as a “sparseness” controller, in which the param-

eters and select the components which will “survive.” In

sparse coding, the objective function to optimize is expressed as

a sum of a log-likelihood term (error between observation and

model) and a log-prior term (sparseness constraints). In spec-

murt analysis, each step cannot be regarded as the optimization

of the whole objective, but as the optimization of either term

(Step 1 and Step 3 optimizing the likelihood term and Step 2

optimizing the sparseness term). It is no longer an “optimiza-

tion,” but at the expense of this, specmurt analysis accomplishes

a simple and fast estimation.

Additionally, we will mention another method, shifted non-

negative matrix factorization [13]. In this method, a transla-

tion tensor is utilized, and any single sound is represented as

a shifted-version of the frequency basis functions. Shifted non-

negative matrix factorization is very similar approach to spec-

murt analysis in terms of shift-invariant assumption, and this

method can separate the sound sources performed by different

musical instruments. However, the result is sensitive to the pa-

rameter of the number of allowable translations and the factor-

ization does not utilize the harmonic structure constraint. As a

result, the basis functions often include other than a single sound

component or only a part of it, which can be also said of other

NMF methods.

B. Practical Use of Specmurt Analysis

Specmurt analysis is based on a frame-by-frame estimation,

and it is suitable for real-time applications. This method utilizes

the assumption that the spectrum has a common harmonic struc-

ture, and therefore it cannot handle well nonharmonic sounds

and the missing fundamental.

One problem concerning the iterative estimation in specmurt

analysis is the stability of the harmonic structure as an inverse

filter. Even if the harmonic structure is properly estimated, there

is a possibility that the Fourier transform of the harmonic struc-

ture has zero (or near zero) values. An example is shown

in Fig. 13. The wavelet spectrum Fig. 13(a) is excerpted from the

spectrogram of data 2 in Table II. The estimated common har-

monic structure is Fig. 13(b) and seems to be estimated properly,

but the estimated fundamental frequency distribution fluctuates

heavily. This is because has a near zero value at a certain

point in the domain, and the inverse filter response

(shown in Fig. 13(d) ) has a large sinusoid component. The re-

lationship between the harmonic structure coefficients and the

stability of the inverse filter is not completely clear yet, but it

seems to occur when a new sound starts. These errors occur at

very few frames so that they do not affect so much the estima-

tion result as a whole, and they could be detected through the

heuristic approach, such as watching the absolute value of the

inverse filter, for example. However, as a future work we will
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Fig. 13. Example of division by zero in (11) and its influence on u(x). (a)
Wavelet spectrum v(x). (b) Estimated common harmonic structure pattern
h(x). (c) Estimated fundamental frequency distribution u(x). (d) Inverse filter
response h (x).

need to investigate the behavior of the inverse filter generated

from the common harmonic structure.

VII. CONCLUSION

We presented a novel nonlinear signal processing technique

called specmurt analysis which is parallel to cepstrum analysis.

In this method, multiple fundamental frequencies of a poly-

phonic music signal are detected by inverse filtering in the log-

frequency domain and represented in a piano-roll-like display.

Iterative optimization of the common harmonic structure was

also introduced and used in sound-to-MIDI conversion of poly-

phonic music signals.

Future work includes the extension of specmurt analysis to

a 2-D approach, the use of specmurt analysis to provide ini-

tial values for precise multipitch analysis based on harmoni-

cally constrained Gaussian mixture models [28], application to

automatic transcription of music (sound-to-score conversion)

through combination with rhythm transcription techniques [29],

music performance analysis tools, and interactive music editing/

manipulation tools.

APPENDIX

To prove the nonsingularity of the matrix in (18), which we

denote by , we need to show that there is no nonzero vector

satisfying

(27)

or

(28)

where . If one could find such a vector, it

would of course also satisfy . Then, from (18) and

the special form of the coefficients in (19), we get

(29)

(30)

Thus, if , then

(31)

We assume that has a limited support (which is obvi-

ously justified for a fundamental frequency distribution) and

that and

can thus be defined. Then, the supports of the shifted versions

are . Moreover, for all , we have

(32)

(33)

By definition of , there exists such

that .

If we consider , we see that

is nonzero for and zero for . Thus, . By

then considering consecutively ,

we show similarly that . Therefore, (27)

holds if and only if is a zero vector and the proof is complete.

In computational calculation, the same can be said as long as

the frequency resolution is high enough for to exist.
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