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Abstract

In this paper, we propose a new signal processing
technique, “specmurt anasylis,” that provides piano-roll-
like visual display of multi-tone signals (e.g., polyphonic
music).Specmurtis defined as inverse Fourier transform
of linear spectrum with logarithmic frequency, unlike fa-
miliar cepstrumdefined as inverse Fourier transform of
logarithmic spectrum with linear frequency. We apply
to music signalsfrencyque anasylisusing specmurt fil-
reting instead ofquefrency alanysisusing cepstrum lif-
tering. Suppose that each sound contained in the multi-
pitch signal has exactly the same harmonic structure pat-
tern (i.e., the energy ratio of harmonic components), in
logarithmic frequency domain the overall shape of the
multi-pitch spectrum is a superposition of the common
spectral patterns with different degrees of parallel shift.
The overall shape can be expressed as a convolution of a
fundamental frequency pattern (degrees of parallel shift
and power) and the common harmonic structure pattern.
The fundamental frequency pattern is restored by division
of the inverse Fourier transform of a given log-frequency
spectrum, i.e.,specmurt, by that of the common harmonic
structure pattern. The proposed method was successfully
tested on several pieces of music recordings.

1. Introduction

We rely usually on our ears to listen and understand some
information from sounds. It may be much more con-
venient if the information can be visualized and can be
understood through our eyes. For instance, music tran-
scription, that requires some skill and experiences, may
become easier if the pitch (fundamental frequency) infor-
mation is visually displayed. Furthermore, such visual-
ization technique will be helpful in automatic conversion
of music sounds to MIDI codes and scores.

However, fundamental frequency can not easily be
detected from a multi-pitch audio signal, e.g., poly-
phonic music, due to spectral overlap, poor frequency
resolution and spectral widening in short-time analysis,
etc. Conventionally, various approaches concerning to
the multi-pitch detection/estimation problem have been

attempted[2, 3, 4, 5]. Goto proposed a predominant
fundamental frequency estimation by modeling a multi-
pitch spectrum itself with Gaussian-mixture-harmonic-
structure models. The relative dominance of the funda-
mental frequencies are estimated by the weight parame-
ter estimation of the harmonic structure models using EM
algorithm[6]. Kameoka et al. proposed a robust multi-
pitch estimation derived from fuzzy clustering principle
that ends up being a similar approach to Goto’s method
but essentially different in the respect that the parameters
to be estimated are the means of Gaussians. AIC is ef-
fectively used in this method for estimating the number
of simultaneous sounds and also for taking care of dou-
ble/half pitch errors[7, 8]. These two methods are in com-
mon based on parameter optimization by iterative com-
putation that occasionally brings unpredictable mistakes
depending on initial values.

Our objective is to provide visualization representing
time series of fundamental frequency components (i.e., a
piano-roll-display) by suppressing harmonic components
from a given spectrogram. The motivation of our ap-
proach entirely differs from the standpoint of most of the
conventional methods that uniquely determines the most
likely solutions to the multi-pitch detection/estimation
problem, in which errors/mistakes are necessarily in-
volved. Although no hints are available for users to cor-
rect errors counting only on such unique detection results,
the spectrogram-like visualization may encourage us to
manipulate the output piano-roll-display easily by hands
(eyes), and could be used as an useful support tool for
various audio applications.

2. “Specmurt Anasylis”

2.1. Multi-Pitch Spectrum in Log-Frequency domain

For simplicity of notation, let a single sound, we focus
on, be a harmonic periodic signal.

In linear frequency scale, frequencies of 2nd har-
monic, 3rd harmonic ,· · · , nth harmonic are integral
number multiples of the fundamental frequency. This
means if the fundamental frequency fluctuates by∆ω, the
n-th harmonic frequency fluctuates byn∆ω. In logarith-
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Figure 1:Relative location of fundamental frequency and
harmonic frequencies both in linear and log scale.
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Figure 2:Multi-pitch spectrum generated by convolution
of fundamental frequency pattern and the common har-
monic structure pattern.

mic frequency (log-frequency) scale, on the other hand,
the harmonic frequencies are locatedlog 2, log 3, · · · ,
log n away from the log-fundamental frequency, and the
relative location-relation remains constant no matter how
fundamental frequency fluctuates and is an overall paral-
lel shift depending on the fluctuation degree (see Fig 1).

Let us define here a general spectral pattern of a single
sound that does not depend on fundamental frequency.
This definition suggests an assumption of the general
model of harmonic structure that the relative powers of
harmonic components are permanent and common. We
call this pattern thecommonharmonic structure pattern
and denote it ash(x), wherex indicates log-frequency.
The fundamental frequency position of this pattern is set
to the origin (see Fig 2).

Suppose a functionu(x) is, for example, an impulse
function that represents the fundamental frequency value
and its power as shown in Fig 2, we can explicitly obtain
an imaginary single sound spectrum by convolution of
the fundamental frequency patternu(x) and thecommon
harmonic structure patternh(x). Similarly, if u(x) con-
tains multiple fundamental frequencies and their powers,
an imaginary multi-pitch spectrumv(x) is generated by
convolution ofh(x) andu(x):

v(x) = h(x) ∗ u(x) (1)

2.2. Deconvolution of Log-Frequency Spectrum

The fundamental frequency patternu(x) is definitely
what we concern with. If spectral density function, the
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Figure 3:The overview of specmurt method.

only observation we are given, can be regarded asv(x),
we can simply restore the fundamental frequency pattern
u(x) via the deconvolution of the observed spectrumv(x)
and thecommonharmonic structure patternh(x) (in other
words, inverse filteringv(x) in respect toh(x)):

u(x) = h−1(x) ∗ v(x). (2)

In the (inverse) Fourier domain, this equation can easily
be computed by the division:

U(y) =
V (y)
H(y)

, (3)

whereU(y), H(y) and V (y) are the (inverse) Fourier
transform ofu(x), h(x) andv(x), respectively. The fun-
damental frequency patternu(x) is then restored by

u(x) = F [ U(y) ]. (4)

The illustration of this process is briefly shown in Fig 3.
The process is done over every short-time analysis frame
and thus we finally obtain a piano-roll-like visual repre-
sentation.

We have assumed that thecommonharmonic struc-
ture pattern is permanent, common and also knowna pri-
ori. Even in actual situations where this assumption does
not strictly hold, this method is expected to play an effec-
tive role as a fundamental frequency component empha-
sis (or, say, overtone elimination).

2.3. “Specmurt” Domain

We have defined they domain as the inverse Fourier
transform of linear spectrum magnitude with logarithmic
frequencyx. We call itspecmurt, imitating the anagramic
naming ofcepstrum, that is the inverse Fourier transform
of logarithmic spectrum with linear frequency (see Table
1). In a similar way with cepstrum, we define a special
terminology for this new domain as shown in Table 2.

Incidentally, the cepsmurt domain relates log-
spectrum magnitude to log-frequency and already widely
known as Bode diagram in automatic control theory.

2.4. Specmurt Anasylis Procedure

The specific procedure of the specmurt anasylis is shown
in Fig 5. As shown in this figure, we calculate the log-
frequency spectrum as the constant-Q filter bank outputs
using a wavelet transform of the input music signal.



Table 1:Anagrams of Spectrum; cepsmurt already being
known as Bode diagram

spectrum scaling
linear logarithmic

frequency linear spectrum cepstrum
scaling logarithmic specmurt cepsmurt

Table 2:Terminology in spectrum, cepstrum[1] and spec-
murt domains

original Fourier Transform of / with
domain log spec / lin freq lin spec / log freq

spectrum cepstrum specmurt
analysis alanysis anasylis

frequency quefrency frencyque
magnitude gamnitude magniedut
convolution novcolution convolunoit

phase saphe phesa
filter lifter filret

input audio signal

spectrum

log-power

in order to separate
formant and pitch

components

log-frequency

in order to separate
multi-pitch spectrum

inverse Fourier transform

cepstrum specmurt

Figure 4:conception of cepstrum and specmurt.

One of the most interesting point is thatspecmurt
anasylis is a wavelet transform followed by inverse
Fourier transform. As wavelet transform is usually fol-
lowed by inverse wavelet transform, and as well Fourier
transform is usually followed by inverse Fourier trans-
form, this formulation implies yet another class of signal
transform.

3. Experiments

Specmurt anasyliswas experimentally applied to 16kHz-
sampled monaural music signals from the RWC music
database[9]. The analysis conditions are shown in Table
3. Thecommonharmonic structureh(x) was decided so
that then-th harmonic component has a energy ratio of
1/n relative to the fundamental frequency component af-
ter some preliminary experiments and utilizing an a priori
knowledge that natural sound tend to have1/f spectra.

Typical results are shown in Figs. 6 and 7 in which
we can see emphasized fundamental frequency compo-
nents though overtones were not completely removed. As
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Figure 5:Diagram of the specific procedure.

Table 3:Experimental conditions for specmurt anasylis.

analysis sample rate 16(kHz)
frame length 64(msec)
frame shift 32(msec)

filter type Gabor function
variance 6.03% [≈100(cent)]
Q-value 8.35% [≈140(cent)]

resolution 12.5(cent)
h(x) type line spectrum pattern

envelope 1/f
# of harmonics 14

shown in Figs. 6(b) and 7(b), the time series of fun-
damental frequency components appear like piano-roll-
displays that are very much like to the manually prepared
references shown in Figs. 6(c) and 7(c).

4. Conclusions

We proposed a new signal processing technique that pro-
vides piano-roll-like display of given polyphonic music
signal with a simple transform in specmurt domain (a
new conception that enables us a harmonic component
suppression of multi-tone signals). We tested our pro-
posed method on several pieces of polyphonic music ex-
cerpted from the RWC music database[9]. 2 examples of
the anasylis results are shown in this paper to show how
our method is effective. From the experimental results,
we were able to confirm that harmonic components were
mostly suppressed and the fundamental frequency com-
ponents were successfully enhanced.

Our future work includes automatic conversion of
music sound into the MIDI format, interactive music edit-
ing tools, and combination with other multi-pitch analysis
techniques [7, 8]. In the technical side, automatic learn-
ing algorithms of thecommonharmonic structure pattern
will be investigated for the further improvement.



(a)The given spectrogram of the music sound

(b) Specmurt Anasylis showing fundamental frequencies

(c) Manually prepared piano-roll-display as the reference

Figure 6:A result of the specmurt anasylis on the real or-
chestral music performance of “J. S. Bach: Ricercareà 6
aus Musikalisches Opfer, BWV 1079,” excerpted from the
RWC music database[9].

(a)The given spectrogram of the music sound

(b) Specmurt Anasylis showing fundamental frequencies

(c) Manually prepared piano-roll-display as the reference

Figure 7:A result of the specmurt anasylis on the real pi-
ano music performance of “W. A. Mozart: Rondo in D-dur,
K. 485,” excerpted from the RWC music database[9].
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