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Spectra of complex networks
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We propose a general approach to the description of spectra of complex networks. For the spectra of
networks with uncorrelated verticéand a local treelike structureexact equations are derived. These equa-
tions are generalized to the case of networks with correlations between neighboring vertices. The tail of the
density of eigenvalues(\) at large|\| is related to the behavior of the vertex degree distribufi¢k) at large
k. In particular, asP(k)~k~?, p(A)~|\|1"2”. We propose a simple approximation, which enables us to
calculate spectra of various graphs analytically. We analyze spectra of various complex networks and discuss
the role of vertices of low degree. We show that spectra of locally treelike random graphs may serve as a
starting point in the analysis of spectral properties of real-world networks, e.g., of the Internet.
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I. INTRODUCTION ample, reviewg18]), the glassy relaxatiofil9], and so on.
As the adjacency matrices are random, in the liidit
Many real-world technological, social, and biological — (N is the total number of verticgsthe density of ei-
complex systems have a network structure. Due to their imgenvalues could be expected to converge to the semicircular
portance and influence on our lifeecall, e.g., the Internet, distribution in accordance with the Wigner theorg20].
the WWW, and genetic networkénvestigations of proper- However, Rodgers and Bray have demonstrated that the den-
ties of complex networks are attracting much attenfibr7].  sity of eigenvalues of a sparse random matrix deviates from
Such properties as robustness against random damages ahd Wigner semicircular distribution and has a tail at large
absence of the epidemic threshold in the so called “scaleeigenvalue$21], see also Ref22]. Recent numerical calcu-
free” networks are nontrivial consequences of their topologi-lations of the spectral properties of small-world and scale-
cal structure. Despite undoubted advances in uncovering theee networkg12-14], and the spectral analyses of the In-
main important mechanisms, shaping the topology of comternet [10,11,15,16 have also revealed that the Wigner
plex networks, we are still far from complete understandingtheorem does not hold. The spectra of the Intefdét11]
of all peculiarities of their topological structure. That is why and scale-free networkfl13,14 demonstrate an unusual
it is so important to look for new approaches which can helppower-law tail in the region of large eigenvalues. At the
us to reveal this structure. present time there is a fundamental lack of understanding of
The structure of networks may be completely describedhese anomalies. In order to carry out a complete spectral
by the associated adjacency matrices. The adjacency matanalysis of real networks it is necessary to take into account
ces of undirected graphs are symmetric matrices with matrill features of these complex systems described by a degree
elements, equal to number of edges between the given vertilistribution, degree correlations, the statistics of loops, etc.
ces. The eigenvalues of an adjacency matrix are related tt this time there is no regular approach that allows one to
many basic topological invariants of networks such as, fohandle this problem. Our paper fills this gap.
example, the diameter of a netwdi&9]. Recently, in order Our approach is valid for any network which hasoaal
to characterize networks, it was proposed to study spectra afeelike structure In particular, these are uncorrelated ran-
eigenvalues of the adjacency matrices as a fingerprint of thdom graphs with a given degree distributip23,24], and
networks[10—17. The rich information about the topologi- their straightforward generalization25] allowing pair cor-
cal structure and diffusion processes can be extracted fromelations of the nearest neighbors. These graph ensembles
the spectral analysis of the networks. Studies of spectraiave one common property: almost every finite connected
properties of the complex networks may also have a generalubgraph of the infinite graph is a tree. The tree is a graph,
theoretical interest. The random matrix theory has been suavhich has no loops. A random Bethe lattice is an infinite
cessfully used to model statistical properties of complexandom treelike graph. All vertices on a Bethe lattice are
classical and quantum systems such as complex nucleus, ditatistically equivalenf26]. These featuregsthe absence of
ordered conductors, chaotic quantum systésee, for ex- loops and the statistical equivalence of vertjca® decisive
for our approach. The advantage of Bethe lattices is that they
frequently allow analytical solutions for a number of prob-
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do not vanish even in very large networks. Nevertheless, we The spectrum oA may be calculated by using the method
believe that the Study of graphs with a local treelike StrUCtUrQ)f random walks on a treelike gra@ and generating func-
may serve as a starting point in the description of more comtjons[27]. We define a generating function
plex network architectures.

In the present paper we will derive exact equations which 1 N
determine the spectra of infinite random uncorrelated and R2=§ > 2 p(n7", )
correlated random treelike graphs. For this, we use a method v=tn=0
of random walks. We propose a method of an approximat@vherepv(n) is the number of walks of lengthfrom v to v,
solution of the equations. We shall show that the spectra ofherey is any vertex ofG:
adjacency matrices of random treelike graphs have a tail at
large eigenvalues. In the case of a scale-free degree distribu- po(M)=(A"), , . (6)
tion, the density of eigenvalues has a power-law behavior. ’
We will compare spectra of random treelike graphs and spedn a treelike graph the number of stepss an even number.
tra of real complex networks. The role of weakly connectedin order to return t@ we must go back along all of the edges

vertices will also be discussed. we have gone.
Letq,(n) be the number of walks of lengthstarting at
Il. GENERAL APPROACH and ending ab for the first time. We define

Let A=(auw) be theNX N symmetric adjacency matrix _ i N
of an N-vertex Mayer’s graphG, aﬁwzavw, a,,=0 (the Qv(z)_n:0 9,(MZ". (@)
Mayer graph has either 0 or 1 edges between any pair of
vertices, and has no “tadpoles,” i.e., edges attached at &ne can prove that
single vertex. Degreek, (the number of connection®f a N
vertexv is defined as 1 1
R(z2)=— 2, —
N v=1 1 QU(Z)

Let d(w,u)=m=1 be the distance fromw to v andt{")(n)
be the number of paths of lengttstarting atw and ending at
A random graph, which is, in fact, an ensemble of graphs, i$ for the first time. We define

characterized by a degree distributiB k):

()
k,= 2 A - D

10 T (2)= 2 t{(n)2" ©)
P(k)=<ﬁ §=)1 5(kv—k)>. 2 0
' One can prove

Here,() is the averaging over the ensemble. We suppose that
each graph in the ensemble Hdsertices. Graph ensembles Q. (2=2> TW¥(2), (10)
with a givenuncorrelatedvertex degree distribution may be w
realized, e.g., as follows. Consider all possible graphs with a L L L
sequence of the numbefl(k)} of vertices of degred, k TW(2)=TG (DTG (2)--- T (2), (11)
=1,2,..., ZN(k)=N, assumingN(k)/N—P(k) in the
thermodynamic limitf N(k) —%, N—o]. Suppose that all wherew—g;—g,—---gn-1—v is the shortest path from
these graphs are equiprobable. Then, simple statistical argwto v. There is an important relationship:
ments lead to the conclusion that almost all finite connected
subgraphs of an infinite graph do not contain loops. TW(Z7)= 7+ T(2)
This approach can be easily generalized to networks with w(2)=2 Z% o (2)
correlations between nearest-neighbor vertices, characterized
by the two-vertex degree distribution: =z+z% Téw(Z)T\(va)(Z)- (12)
N
1
Pz(k,k')=<Z 2—1 a,wd(k,—k)d(ky,—k') ). (3) In this sum the vertex is the nearest neighbor of and a
o= second neighbor of the vertex. Solving the recurrence
. . (1)
HereL=(1/2)%, &, is the total number of edges. In the equatlon(lg), \iv(el)can f'nngflz) and Qv(_z)'
case of an uncorrelated graph we have We define T,/ (2)=T,,;(z" 7). Equation (12) may be
written in a form

!

kk
Pa(k,k")=—=P(k)P(k’), (4) 1

(k)? TNz = ——. (13
z— 2, T02)
g

where(k)=2L/N is the mean degree of a vertex.
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We can findQ,(z), from which we getR(z). Let us define = dy _ _
B(2)=z 'R(z1). Then the density of the eigenvaluesf =1- \&f —=J4(2+xy)eytie)
a random graph is determined as follows: 0 \/9

p(N\)=—Im(B(\+ig))/m, (14 sz‘, k<P—l£>k)(exp(—in)>kl, (18

wheree is positive and tends to zero. Note that Eq3—(13) _ _
are valid for both uncorrelated and correlated treelike graphgvhereJ,(x) is the Bessel function ar(dQ.:Ekk P(k). Thus,
In the case of ak-regular connected graph we have we get the exact self-consistent equationFQ(x):

TM(2)=T(2) andQ,(2)=Q(z). Equation(13) gives
=d )
2T(2)— (k—1)T2(2)=1. (15) FrO0=1-x fo J—;h(zM)e'%l(a(y)), (19

Solving this equation, we get the well known result Wheredbl(x)EZlekP(k)xk‘ll(k>. Solving Eq.(19) gives

K VA=) -2 the distribution ofT, and so we can obtai@, from which we

_ etR. Equations(8), (10), and(14) give
pN= 5 P, (169 9 q s(8), (10) 1499
1

This is a continuous spectrum of extended eigenstates with p(N)=~— p Im/ ——
eigenvalueg\|<2k—1. The presence of the denominator N— 2 T
on the right-hand side of E@16) leads to a difference of the =1
spectrum of this graph from Wigner’s semicircular law. In w0
exact terms, Wigner’s law is valid for the eigenvalue spectra = ;Refo dye d(F,(y)), (20

of real symmetric random matrices whose elements are inde-
pendent and identically distributed Gaussian variab?s.
These specific random matrices for Wigner’s law essentiallpvhere®(x)==;_, P(k)x*. From Eq.(19), we find thenth
differ from the adjacency matrices, which we consider in thismoment of the distribution function of, Eq. (17):

paper. So, in our case, the semicircular law may be used only
as a landmark for a contrasting comparison.

1 °° )
M=) = s [ dyy e,
Ill. SPECTRA OF UNCORRELATED GRAPHS . (21)

In the case of uncorrelated random treelike graphg,

—1 random parametef,)(z) on the right-hand side of Eq.
(13) are equivalent and statistically independent. They are In a general case it is difficult to solve EGL9) exactly.
also independent of the degrieg. We define the distribution Let us find an approximate solution. We neglect fluctuations

function of T{})(z) atz=\ +ie in the Fourier representation Of T around a mean valud(\)=(T). A self-consistent
as: equation for the functio(\) may be obtained if we insert

IV. EFFECTIVE MEDIUM APPROXIMATION

Fr(x)=(exgd —ixTH (A +ig)]), (17) FL(x)~e XT0 22)

where the bracketé: - -) mean the averaging over the en- INto the right-hand side of Eq21) for n=1. We get
semble of random uncorrelated graphs associated with a de-

gree distributionP(k). The statistical independence of the 1 kP(k)
() TN)=— — . (23
k—1 random parameter3{)(\+ie)=T;, i=1,2,...Kk (k) © Ntie—(k—=1)T(N)
-1, k=k,,, on the right-hand side of E§13) allows us to
use the following identity: Below we will call this approach an “effective medium”
(EM) approximation. At reak, T(\) is a complex function,

F(x) which is to be understood as an analytic continuation from

. the upper half plane ok, T(N\)=T(A+ige). Therefore,

X ImT(A+ie)<O0. In the framework of the EM approach, the

= —ixT))= - T
(exp(=ixT)) B ) ! densityp(\), Eqg.(20), takes an approximate form
Atie— Z Ti
=1
1 KP(K)ImT(\)
PN ===

k=1
N+ie— D, Tim 7% [A—kReT(\)P+K[ImT(\)]*
i=1

=1—&f: %31(2@><exp(iy

(24)
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V. TAIL BEHAVIOR AND FINITE-SIZE EFFECT

Equation(23) may be solved analytically an|>1. We
look for a solution in the region IT(\)<ReT(A)<<1. Itis
convenient to use a continuum approximation in E2B).

The real and imaginary parts of this equation take a form

ReT(\)
B 1
- ®
Keut dk kP(k)
XLO ( ()) ( <)>2'
(25)
- 1
N%K)
kacm dk k(k—1)P(k)
K ( T2 ( ())2’
1-(k—=1)Re——| +| (k—=1)Im—
(26)

wherek, and k;,; are the smallest and largest degrees, re-
k<k, gives a regular contribution

spectively. A regiorky=<
into integrals(25) and(26) while a regionk~k,>1 gives a
singular contribution. Heré&, =\/ReT(\)+ 1. As a result
we obtain

1 mK\P(Ky)
ReT(M)=3¢ 2 ImTN @7
K\ P(k))
2<k>f dk k(k—1)P(k)+ TOmTO) (28)

If P(k) decreases faster th&n? atk>1, i.e.,(k) is finite,
then in the leading order of X/we find
TN =N"=i7|N K P(Kky)/(K). (29)

Within the same approach one can find from &%) that the
densityp(\) also has two additive contributions

_ KIMTN)  kyP(ky)
=T PN %
Inserting Eq.(29) gives the density
Ky
p(\)= 2| |P(k}\) (31

Herek, =\/ReT(\)+1=A%+0(1).

The asymptotic expressiof81) is our main result. The

PHYSICAL REVIEW E 68, 046109 (2003

show that the asymptotic behavior of the real part,TiRe)
=\"14+0O(N"3), in the leading order of 1/is universal and

is valid even for graphs with finite loops. Contrastingly, the
asymptotics of ImT(\) in the leading order of A/ and the
corresponding contribution to the right-hand side of 84)
depend on details of the structure of a network.

The analysis of Eq(23) shows that the main contribution
to an eigenstate with a large eigenvaklués given by verti-
ces with a large degrde~k,>1. As we shall show below,
in the limit A>1, result(31) is asymptotically exact. The
relationship between largest eigenvalues and highest degrees,
A2+ 0(1)=k, for a wide class of graphs was obtained in a
mathematical paper, Ref28]. This contribution of highly
connected vertices may be compared with a simple spectrum
of “stars,” which are graphs consisting of a vertex of a de-
greek, connected tk dead ends. The spectrum consists of
two eigenvalues. = + Jk and a k— 1)-degenerate zero ei-
genvalue. Note that asymptotically, in the limit of larye
Eq. (31) givesp(\)=2|\|P(\?) if the decrease oP (k) is
slower than an exponent function at ladgehat is, if higher
moments of the degree distribution diverge.

A classical random grapf29,30 has the Poisson degree
distribution P(k)=e~K(k)*/k!. The tail of p(\) is given
by Eq.(31) with k,=\?+a>1, wherea is a number of the
order of 1:

p(N)~\ 20+ ey (14 In(k))A2]. (32)
This equation agrees with the previous res(t$,22 ob-
tained by different analytical methods.

For a “scale-free” graph withP (k) ~Pok™ 7 at largek, at
N|>1, we get an asymptotically exact power-law behavior:

p(N)=2|\|P(\?)=2P|\|°, (33
where the eigenvalue exponeft=2y—1.

At a finite N>1, there is a finite-size cutoff of the degree
distributionk~ koNY(*~1) [31]. The cutoff determines the
upper boundary of eigenvalues< kg{ﬁ This result agrees
with an estimation of the largest eigenvalue of sparse random
graphs obtained in Ref32].

Let us analyze the accuracy of the EM approach. One can
use the following criterion. We introduce a quantity,
=M, /T"(\). Here, T"(\) is thenth moment of the approxi-
mate distribution(22). Inserting function(22) into Eq. (21)
givesM,,. The functionF, (x)=e~*T™ would be an exact
solution of Eq.(19) if gq,=1 for all n=1. Note that ain
=1 we haveq; =1, because this equality is the basic equa-
tion in the framework of the EM approximation. A1 and
P(k)=Pok™?, in the leading order of 1/, Eq. (21) gives

right-hand side of this expression originates from two equal,

additive contributions: the contribution from the real part of

T(M\) and the one from the imaginary part Df\). One can

qn=1—Ank\ 2 at y>3 (34)
=1-Ank\ 23n\x at y=3 (35)
=1-Ank] 2\ 2072 at 2<y<3, (36)
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wherek, is the smallest degree (k) andA is a numerical

factor. This estimation allows us to conclude thahatk}' Fa(k,x)=1- &kE P(kq[k)
the EM solution becomes asymptotically exact. !

At small A<kZ?, the EM approximation is less accurate. = dy o
For example, ah=0 for a scale-free network, we obtain XJO 731(2\/X—Y)e'y”|:xl (ky,y), (40)
4,=S,/S], whereS,=(k(k—1)""/(k). Only at largey y
i(lj(?]?d)n<7' the parameten,, is close 10 1, i.e.0n=1  The density of eigenvalues is of the following form:

7).

One can conclude that the EM approach gives a reliable 1 o ,

result close to the exact one in the range p(N)= p ReEk P(k)J dy e'WF)‘f(k,y). (41
0
ki< <kl2=KY2NV20-1), (37)  These equations are a generalization of the equations derived

above for uncorrelated graphs. Indeed, for an uncorrelated

In our derivations we assumed the treelike local structuré;raph’ we haveP (ky|K) =kP(k)/(k) and F, (k,x)=F(x).

of a network, that is, the absence of finite-size loops in arASLa tresult W(ihgeltzl\liqilQ) af.‘d(f@- W lect fluctuai
infinite network. Loosely speaking, this assumption may fail etus use the approximation. Vve negiect fiuctuations

if the second momentk?) of the degree distribution di- around a mean valug(k,A) and use an approximation

verges. This can be seen from the following simple argu- F, (k,x)~e *TkN) 42)
ments. The length of a typical loop is of the order of the M '

average shortest-path length of a network. Since the meaf, o, \ye get a self-consistent equation for the complex func-
number of the second-nearest neighbors in the infinite UNCok;5 T(k\):

related net isk(k—1)) and diverges ifk?) diverges, the Y

average shortest-path length and the length of a typical loop P(kq|K)

are small and may turn out to be finite even in the limit of an T(k,7\)=2 Ntie—(ki= )Tk n) " (43

infinite net if (k?) diverges. In this situation, the result k1 R L

(whether there are loops of finite length in the infinite net- S . . .

work or noy is determined by the size dependence of theAt A>1 this equation has a solution

cutoff of the degree distributiof4]. In its turn, this depen- Tk M) =N~ L—im\P(k Ik 44

dence is determined by the specifics of an ensemble and (k) FmAP(ky k). (44

varies from network to network. This solution givesp(\)=2k,P(k,)/|\|, where k,=\>

+0(1) as before. It agrees with the result presented in Eq.

VI. SPECTRA OF CORRELATED GRAPHS (31) for uncorrelated graphs. One concludes that the short-

range correlations between degrees of neighboring vertices
Many real-world networks are characterized by strongin the scale-free networks do not change the eigenvalue ex-
correlations between degrees of verti¢88—-35. The sim-  ponents=2y—1.
plest ones are correlations between degrees of neighboring
vertices. Let us StUdy the effect of degree correlations on VII. SPECTRUM OF A TRANSITION MATRIX
spectra of random treelike graphs.

Using the pair degree distributia®), it is convenientto ~ Let us consider random walks on a graph with the transi-
introduce the conditional distribution that a vertex of degreetion probability 1k, of moving from a vertex to any one of
k is connected to a vertex of degrkg its neighbors. The transition matrX then satisfies
P(ks k) =(K)P (ks K IKP(K). 38) P =l 49

Clearly, for each vertex,
The method used above for the calculation of spectra of un-
correlated graphs may be generalized to correlated graphs. 2 P -1 (46)
For this, one should take into account correlations between el
the degree of a vertex and the generating functioR,)(z)
in Eq. (13). We define the distribution function &f,, inthe P is related to the Laplacian of the graph
Fourier representation as:

1 if v=u (
Lyw= _ . 47)
Fa(kx) =(8(k, —Kex — ixTO +ie)]). (39 3w/ \koky otherwise
as follows:
Averaging Eq.(13) and using identity(18), we obtain an o o
exact equation foF, (k,x): P=DYq1-L)D'?, (48
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where D, ,,= 8, w/k, . Therefore, if we know the density
p(\) of eigenvalues oP, we can find the density of eigen-
values of the Laplaciamp (N\)=p(1—N\).

We denote the eigenvalues of the matBxby A=\,
=...=\y. The eigenfunctionf,=k, corresponds to the
largest eigenvalua;=1.

In order to calculate the spectrum Bfwe use the same
method of random walks described in the Sec. Il. The prob-
ability of one step is given by Eq45). We define the gen-
erating functioQ, () andT{(z"1)=T{))(z) and obtain an
exact equation which is similar to E¢L3):

PHYSICAL REVIEW E 68, 046109 (2003

T(2)=

whereg~w butg#v. At z=\ +ig, we get exact equations
for the functionF,(x)=(exd —ixT(\+ig)]) and the den-

sity of the eigenvaluep(\):

= d ) )
Fr(x)=1—1x JO %Jﬂz@)e‘y*dn(e“ya(y)),

1 % )
p(N)=— ReEk P(k)kfo dy éVEK(y).

1

KwZ— % :I‘—g/a( 2)

(49

(50

(51)

The functionF,(x)=e~ ™ is an exact solution of E¢(50).

This solution corresponds to the eigenvalue=1 and gives
the delta peaks(A—1) in the densityp(\). The second
largest eigenvalua., is related to several important graph
invariants such as the diameterof the graph, see, for ex-

ample, Ref[9]:

D(G)

Here thediameterof a graph is the maximum distance be-
tween any two vertices of a given graph.

In order to find the spectrum at<\, we use the EM
approach. We assunfe, (x)~e *T™ and get an equation

for a complex functionT(\) :

_In(N—-1)
T n(dMy)

(52

1 kP(k)
T=15 2 nFe——nT0) 9
p(\) is given by
1 1
p()\)——;“'n )\_—T()\) (54)

For completeness, we present the spectrum of the transiti

matrix of ak-regular tree:

k V4(k—1)/k>—\?

P()\)ZE

1-2\2

(59

A <k

FIG. 1. Density of eigenvalues of the adjacency matrices of two
networks.(i) The classical random gragthe Erds-Renyi mode)
with the average degregk)=10: the effective mediuntEM) ap-
proach(the solid ling and numerical calculations for the graphs of
20000 verticeg13] (the open circles (ii) The scale-free random
treelike graph withy=3 and the smallest degrég=5: the EM
approachthe dashed ling the improved EM approach, see the text
(the dashed-dotted line The results of the simulations of the
Barabai-Albert model of 7000 verticel3] (the open squargs
The semicircular law is shown by the thin solid line.

which easily follows from Eqgs(53) and (54). The second
eigenvalue is equal th,=2k—1/k.

VIIl. ANALYSIS OF SPECTRA

Let us compare available spectra of classical random
graphs and scale-free networlks3,14], empirical spectra of
the Internet[10,11,18, and spectra of random treelike
graphs.

At first we discuss spectra of adjacency matrices. The
spectra were calculated in the framework of the EM ap-
proach from Eqs(23) and (24) for different degree distribu-
tions P(k). Our results are represented in Figs. 1 and 2.

Classical random graph<Classical random graphs have
the Poisson degree distribution. The density of eigenvalues
of the associated adjacency matrix has been obtained nu-
merically in Ref.[13]. In Fig. 1 we display results of the
numerical calculations and our results obtained within the
EM approach. We found a good agreement in the whole
range of eigenvalues. There are only some small differences
in the region of small eigenvalues which may be explained
by an inaccuracy of the EM approach in this range. In this
region, the densityp(\) has an elevated central part that
differs noticeably from the semicircular distribution. The
spectrum also has a tiny tail given by E1) which
can hardly be seen in Fig. 1, see for detail Sec. V and
Refs.[21,22.

Scale-free network$Spectra of scale-free graphs with the
degree distributionP(k) =Pk~ differ strongly from the
b micircular law[13,14]. The Barabsi-Albert model has a
treelike structure, the exponemt=3 of the degree distribu-
tion, and negligibly weak correlations between degrees of the
nearest neighborE3]. Therefore, one can assume that the
spectrum of a random treelike graph can mimic well the
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0.5 : . mous systemAS) level revealed a power-law behavior of
: ' eigenvalues of the associated adjacency mafix11]. The
degree distribution of the network has the exponent2.1
[11]. The eigenvalues,; of the Internet graph are propor-
tional to the power of the rankof eigenvaluegstarting with
the largest eigenvaliie\;ei€ with some exponené. This
leads top(\) <= (A —\;)*\ "Y€, TheMulti dataset ana-
lyzed in Ref.[11] gave e~ —0.447 and, hence, the eigen-
value exponent * 1/e~3.2. TheOregondatase{11] gave
e~—0.477, 1-1/e~3.1.

Our results withy=2.1 substituted, give the eigenvalue
L1 exponenté=2y—1~3.2 in agreement with the results ob-
tained from empirical data for this network. There are the
following reasons for the agreement between the theory for
b : treelike graphs and the data for the Internet. At first, although

iy the average clustering coefficient of the Internet at the AS
level is about 0.2, the local clustering coefficient rapidly de-
creases with increasing degree of a verf@g]. In other
words, the closest neighborhood of vertices with large num-
o0 or bers of connections is “treelike.” Recall that vertices with
A large numbers of connections determine the large-eigenvalue
asymptotics of the spectrum. So, we believe that our results
for the asymptotics of the spectra of treelike networks are
also valid for the Internet and other networks with similar
structure of connections. Second, the Internet is character-
ized by strong correlations between degrees of neighboring
A j<k>? vertices[33]. However, as we have shown in Sec. VI, such
short-range degree correlations do not affect the power-law

FIG. 2. Evolution of spectra of a random treelike graph with the hehavior of eigenvalues.

scale-free degree distribution for=5 and the smallest degrég The study of the Internet topologii1] also revealed a

=1, 2,3, and 5. Panel a shows the spectra of the graphskyith ¢ respondence between the large eigenvaluesd the de-
=2, 3, and 5. The dotted line corresponds to the density of eigen- P g 9 v

k= N2 i is i i -
values of an infinite chain. The dashed and thin solid lines presenqr,?e kll ’ kld' );.' : -It-::lst .rte.sutlrt_] Ishl.n rﬁgreemen:[[ Vélth OtF” theqth
the spectrum of th&k=3 and 6 regular Bethe lattices. Panel b retical prediction that 1t 1S the highly connected vertices wi

~)\2 i
shows the spectrum of a random uncorrelated graph having dead degree abouk,~\" that produce the power-law tail

-6
end vertices with the probabiliti?(1)=0.3. The inset shows the p(A)oN "7, . . .
behavior of the density of eigenvalupé\) near the dip aP(1) The calculations of the eigenvalue spectrum of the adja-

=0.1,0.2, and 0.3. The central peak is produced by localized state§€NCY matrix of a pseudofractal graph with=2.58 . ..
[37] have revealed a power-law behavior wifk=4.6. The

spectrum of the model. In Fig. 1 we compare the spectrum oéffective medium approximation gives lower valde=2y
the random treelike graph with=3 and the spectrum of the —1~4.2. The origin of the difference is not clear. One
Barabai-Albert model obtained from simulatiod43]. The  should note that the pseudofractal is a deterministically
density of statep(\) has a triangular-like form and demon- growing graph with a very large clustering coefficieGt
strates a power-law tail. There is only a noticeable deviatior=4/5 and, what is especially important, with long-range cor-
of the EM results from the results of simulatioh$3] at  relations between degrees of vertices.
small eigenvalues. In order to improve the EM results, we ~ Weakly connected nodeket us study the influence of
used, as an ansatz, the distribution functiBR(x)=[1  weakly connected vertices with degreessH<5 on the
+a(\)cx?]e ™™™ instead of the function F\(x)  spectra of random treelike graphs with the degree distribu-
=e TN _|n this case, there are two unknown complextion P(k)=P.k~”. In Figs. 2@ and 2b) we represent the
functions a(\) and T(\) which were determined self- evolution of the spectrum of the network with=5, when
consistently from Eq(19). the smallest degrek, decreases from 5 to 1. The spectra
Power-law tail. The power-law behavior of the density of were calculated in the framework of the EM approximation.
eigenvaluep(N\) <\~ % is an important feature of the spec- Similar results are obtained at differemt For ko<4, two
trum of scale-free networks. The simulatiofk3] of the  peaks at nonzero eigenvalues emerge in the density of states
Barabai-Albert model having the degree exponent3 re-  p(\). In order to understand the origin of the peaks one can
vealed a power-law tail of the spectrum, with the eigenvaluenote that for this degree distribution the average degkge
exponentd~5. Our predictiond=2y—1=5 is in agree- is close tok,. For example, ako,=3 we have(k)=3.49.
ment with the result of these simulations. Therefore, in this network, the probability to find a vertex
The study of the topology of the Internet at the autono-having three links is larger than the probability to find a

0

01/02/03

w—
N
W
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pd)

FIG. 3. Local configurations which produce localized states with
zero eigenvalugthe central pegkin the spectrum of a random
graph(see the text

vertex with a degre&=4. There are large parts of the net-

work which havg a Iocqlk=3 regular stru_ctgrg. In Fig.(8) by Eq.(45). (i) The Internet daté&he solid circlesand the results of
we show a density of eigenvalues of an infirite 3 regular  gimyjations of a random scale-free netwétike open squarggrom
Bethe lattice[see Eq.(16) at k=3]. At small eigenvalues, Ref.[15]. (ii) The spectrum of the Internet extracted from R&8]
the density of the regular tree fits well the density of the(the stars (iii) Our calculations(the solid ling with the degree
random network. At largg, the density of eigenvalues dem- distribution P(k)=Ak 2! for k=4, P(1)=0.358, P(2)=0.4,
onstrates a power-law behavior with the exponért2y  P(3)=0.12. These parameters are taken from F&8]. The height
—-1. of the central peak was estimated from Hdf)]. The inset shows

In the caseko=2 we have(k)=2.23. This network con- the spectra of the transition matrix of a random treelike graph with
tains long chains which connect vertices with degr&es excluded dead-end verticeéi) a random treelike graph with a
=3. In Fig. 2a) we display the density of eigenvalues of an scale-free degree distribution;=3, the smallest degrég =5, and
infinite chain[see Eq.(16) at k=2]. At small eigenvalues (k)=9.06(the dashed link (ii) a classical random graph witfk)
this density of eigenvalues fits well the density of eigenval-=9-06(the dotted ling (iii) ak-regular Bethe lattice witk=9 (the
ues of the random network. Therefore, it is the vertices withS0lid line).
small degrees that are responsible for the formation of de
sity p(N) of networks at small eigenvalues.

Dead-end verticed.et us investigate the effect of dead-
end vertices on the spectra of random treelike graphs wit
different degree distributions. Figurél2 shows a spectrum
of a scale-free network withy=5 and the probability of
dead-end vertice?(1)=0.3. The EM approximation is
used. The spectrum has a flat part and two peaks at moder

FIG. 4. Density of eigenvalues of the transition matrixefined

nf§(a), produce eigenstates witk=0. The corresponding
eigenvectors have nonzero components only at the dead-end
I){ertices [16,39. Figure 3b) shows another configuration
which produces an eigenstate with the eigenvalee0. A
corresponding eigenvector is localized at vertices 0, 1, and 2.
Finite-size effectsIn the present paper we studied the
stBectraI properties of infinite random treelike graphs. Nu-
ate ! -
. iy . merical studies of large but finite random trees demonstrate
eigenvalues. As we have shown above, thitermediaty that the spectrum of a finite tree consists, speaking in general
part of the spectrum is formed mainly by the vertices with P . » Speaking in g
terms, of a continuous component and an infinitypqfeaks.

degreek=2 and 3. The emergence of a dip at zero is an, .

. . . The components correspond to extended and localized states,
important feature of the spectrum. In fact, there is a gap N s ectiveh[17]. There is a hole around eadhpeak in the
the spectrum obtained in the framework of the EM approaché eF():trum A fiﬁite regular tree has a s ectFr)aI distribution
The width of the gap increases with increasiA@l). One P ) 9 P

can see this in the inset of Fig(l. The dead-end vertices function which looks like a smgu_la_r Cantor funct|c_ﬁf39].
B These results demonstrate that finite-size effects in spectra
also produce @& peak at\ =0. The central peak corresponds

to localized eigenstates may be very strong. In particular, the finite size of a network
N : . ._determines the largest eigenvalue in its spectrum. As was
ote that the appearance of the central peak and a dip is &_,. . . .
. ; gstimated in the Sec. V, the largest eigenvalue of the adja-
general phenomenon in random networks with dead-end Ve{:'ency matrix associated with a scale-free graph is of the
tices. We also observed this effect in the classical random d FIU2 — U2\ L2(r-1)
graphs. Spectral analysis of the Internet topology on the ASIOET OTKeyi= Ko . .
level revealed a central peak with a high multiplicfti6]. Spectrum of the transition rrlatrnkn Fig. 4 we present a
Thus the conjecture that localized and extended states af@ectrum of the transition matrix defined by Eq(45) for a
separated in energy may well hold in complex networks. Atreelike graph with the scale-free degree distributi(k)
similar spectrum was observed in many random systems, fofk ™ ” at large degreek=5. The spectrum was calculated
example, in a binary alloy38]. In order to estimate the from Egs.(53) and(54) with the degree exponent=2.1 and
height of thed peak it is necessary to take into account allthe probabilities?(1),P(2),P(3), andP(4) taken from em-
localized states. Unfortunately, so far this is an unsolved angpirical degree distribution of the Internet at the AS Ie\&8].
lytical problem[16]. In Fig. 3 we show local parts of a net-  The spectrum lies in the rangk|<\,<1. In Fig. 4 we
work, which produce localized states. One can prove thagompare our results with the spectrum of the transition ma-

configurations with two and more dead-end vertices, see Figrix P of the Internet obtained in Ref$15,16. Unfortu-
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nately, the dat§15,16 are too scattered to make a detailed eigenvalue exponert §=2y—1. We have shown that cor-
comparison with our results. Nevertheless, one can see theglations between degrees of neighboring vertices do not af-

the spectrum of of the treelike graph reproduces satisfac-fect the power-law behavior of eigenvalues. Comparison
tory the general peculiarities of the real spectrum. Namely‘,’V'th the available results of the simulations of the Bastba
the spectra have a wide dip at zero eigenvalue and a central ; . o ;
5-peak|16]. The multiplicity of the zero eigenvalue has been M0US system level shows that this relationship is valid for
estimated in Ref[16]. For a detailed comparison between these networks._ We found that Iarge_ elgenyalwesl are
the spectra, correlations in the Internet must also be takeﬁriguced by highly connected vertices with a deglee

into account. Mén real-world scale-free networks demonstrate short
In order to reveal an effect of dead-end vertices we cal- y

A , i range correlations between verti¢@%,4(0 and a decrease of
culated spectra oP on a random treelike graph with the 5 |5cq| clustering coefficient with increasing degree of a ver-
Poisson and the scale-free degree distributiprs3 in the oy Therefore, the relationship=2y—1 between the
case when dead-end vertices are excluded, th(19=0,  gegree-distribution exponentand the eigenvalue exponent
and (k)=9.06. These spectra are displayed in the inset of; 3y 3150 be valid for these networks. We can conclude that
Fig. 4. In the whole range of eigenvalues these spectra arg power-law behaviop(\)=\~? is a general property of
very close to the spectrum oflaregular Bethe lattice with 05| scale-free networks.
the degre&=29. These calculations confirm the fact that it is Weakly connected vertices form the spectrum at small
the dead-end vertices that produce the dip in the spectrum Qfigenyalues. Dead-end vertices play a very special role. They
the Internet. produce localized eigenstates with=0 (the central peak

They also produce a dip in the spectrum around the central

IX. CONCLUSIONS peak. In conclusion, we believe that our general results for
nttl}e spectra of treelike random graphs are also valid for many
transition matrices of random uncorrelated and correlatef€2l-World networks with a treelike local structure and short-

treelike complex networks. We have derived exact equation&"9€ degree correlations. "
P q r Note addedAfter we have finished our work we have

In this paper we have studied spectra of the adjacency a

which describe the spectrum of random treelike graphs, an .
P grap earned about a recent mathematical paper, Rdfl, where

proposed a simple approximate solution in the framework o .
arge eigenvalues of spectra of complex random graphs were

the effective medium approach. Our study confirms tha Iulated. Th ictical ble of h hich
spectra of scale-free networks as well as the spectra of cla§?'°Y ated. The statistical ensemble of graphs, which was

sical random graphs do not satisfy the Wigner law. considered in that paper, essentially differs from that of our

We have demonstrated that the appearance of a tail of th%aper and ha_s a different cutoff of Fhe degree distribution, but
density of the eigenvalues of sparse random matrices is W€ @Symptotics of spectra agree in many cases.

general phenomenon. The spectra of classical random graphs
(the Erds-Renyi mode) have a rapidly decreasing tail.
Scale-free networks demonstrate a power-law behavior of S.N.D, A.N.S., and J.F.F.M. were partially supported by
the density of eigenvalugs(\)=|\| ° . We have found a the project POCTI/99/FIS/33141. A.V.G. acknowledges the
simple relationship between the degree exponeland the  support of the NATO program OUTREACH.
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