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Spectra of complex networks
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We propose a general approach to the description of spectra of complex networks. For the spectra of
networks with uncorrelated vertices~and a local treelike structure!, exact equations are derived. These equa-
tions are generalized to the case of networks with correlations between neighboring vertices. The tail of the
density of eigenvaluesr(l) at largeulu is related to the behavior of the vertex degree distributionP(k) at large
k. In particular, asP(k);k2g, r(l);ulu122g. We propose a simple approximation, which enables us to
calculate spectra of various graphs analytically. We analyze spectra of various complex networks and discuss
the role of vertices of low degree. We show that spectra of locally treelike random graphs may serve as a
starting point in the analysis of spectral properties of real-world networks, e.g., of the Internet.
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I. INTRODUCTION

Many real-world technological, social, and biologic
complex systems have a network structure. Due to their
portance and influence on our life~recall, e.g., the Internet
the WWW, and genetic networks! investigations of proper-
ties of complex networks are attracting much attention@1–7#.
Such properties as robustness against random damage
absence of the epidemic threshold in the so called ‘‘sc
free’’ networks are nontrivial consequences of their topolo
cal structure. Despite undoubted advances in uncovering
main important mechanisms, shaping the topology of co
plex networks, we are still far from complete understand
of all peculiarities of their topological structure. That is wh
it is so important to look for new approaches which can h
us to reveal this structure.

The structure of networks may be completely describ
by the associated adjacency matrices. The adjacency m
ces of undirected graphs are symmetric matrices with ma
elements, equal to number of edges between the given v
ces. The eigenvalues of an adjacency matrix are relate
many basic topological invariants of networks such as,
example, the diameter of a network@8,9#. Recently, in order
to characterize networks, it was proposed to study spectr
eigenvalues of the adjacency matrices as a fingerprint of
networks@10–17#. The rich information about the topolog
cal structure and diffusion processes can be extracted f
the spectral analysis of the networks. Studies of spec
properties of the complex networks may also have a gen
theoretical interest. The random matrix theory has been
cessfully used to model statistical properties of comp
classical and quantum systems such as complex nucleus
ordered conductors, chaotic quantum systems~see, for ex-
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ample, reviews@18#!, the glassy relaxation@19#, and so on.
As the adjacency matrices are random, in the limitN

→` (N is the total number of vertices!, the density of ei-
genvalues could be expected to converge to the semicirc
distribution in accordance with the Wigner theorem@20#.
However, Rodgers and Bray have demonstrated that the
sity of eigenvalues of a sparse random matrix deviates fr
the Wigner semicircular distribution and has a tail at lar
eigenvalues@21#, see also Ref.@22#. Recent numerical calcu
lations of the spectral properties of small-world and sca
free networks@12–14#, and the spectral analyses of the I
ternet @10,11,15,16#, have also revealed that the Wign
theorem does not hold. The spectra of the Internet@10,11#
and scale-free networks@13,14# demonstrate an unusua
power-law tail in the region of large eigenvalues. At th
present time there is a fundamental lack of understandin
these anomalies. In order to carry out a complete spec
analysis of real networks it is necessary to take into acco
all features of these complex systems described by a de
distribution, degree correlations, the statistics of loops,
At this time there is no regular approach that allows one
handle this problem. Our paper fills this gap.

Our approach is valid for any network which has alocal
treelike structure. In particular, these are uncorrelated ra
dom graphs with a given degree distribution@23,24#, and
their straightforward generalizations@25# allowing pair cor-
relations of the nearest neighbors. These graph ensem
have one common property: almost every finite connec
subgraph of the infinite graph is a tree. The tree is a gra
which has no loops. A random Bethe lattice is an infin
random treelike graph. All vertices on a Bethe lattice a
statistically equivalent@26#. These features~the absence of
loops and the statistical equivalence of vertices! are decisive
for our approach. The advantage of Bethe lattices is that t
frequently allow analytical solutions for a number of pro
lems: random walks, spectral problems, etc.

Real-world networks, however, often contain numero
loops. In particular, this is reflected in a strong ‘‘clustering
which means that the~relative! number of loops of length 3
©2003 The American Physical Society09-1
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do not vanish even in very large networks. Nevertheless,
believe that the study of graphs with a local treelike struct
may serve as a starting point in the description of more co
plex network architectures.

In the present paper we will derive exact equations wh
determine the spectra of infinite random uncorrelated
correlated random treelike graphs. For this, we use a me
of random walks. We propose a method of an approxim
solution of the equations. We shall show that the spectra
adjacency matrices of random treelike graphs have a ta
large eigenvalues. In the case of a scale-free degree dist
tion, the density of eigenvalues has a power-law behav
We will compare spectra of random treelike graphs and sp
tra of real complex networks. The role of weakly connec
vertices will also be discussed.

II. GENERAL APPROACH

Let Â5(avw) be theN3N symmetric adjacency matrix
of an N-vertex Mayer’s graphG, avw

2 5avw , avv50 ~the
Mayer graph has either 0 or 1 edges between any pai
vertices, and has no ‘‘tadpoles,’’ i.e., edges attached a
single vertex!. Degreekv ~the number of connections! of a
vertexv is defined as

kv5(
w

avw . ~1!

A random graph, which is, in fact, an ensemble of graphs
characterized by a degree distributionP(k):

P~k!5K 1

N (
v51

N

d~kv2k!L . ~2!

Here,^& is the averaging over the ensemble. We suppose
each graph in the ensemble hasN vertices. Graph ensemble
with a givenuncorrelatedvertex degree distribution may b
realized, e.g., as follows. Consider all possible graphs wi
sequence of the numbers$N(k)% of vertices of degreek, k
51,2, . . . , (kN(k)5N, assumingN(k)/N→P(k) in the
thermodynamic limit@N(k)→`, N→`]. Suppose that all
these graphs are equiprobable. Then, simple statistical a
ments lead to the conclusion that almost all finite connec
subgraphs of an infinite graph do not contain loops.

This approach can be easily generalized to networks w
correlations between nearest-neighbor vertices, characte
by the two-vertex degree distribution:

P2~k,k8!5K 1

2L (
v,w51

N

avwd~kv2k!d~kw2k8!L . ~3!

Here L5(1/2)(v,wavw is the total number of edges. In th
case of an uncorrelated graph we have

P2~k,k8!5
kk8

^k&2
P~k!P~k8!, ~4!

where^k&52L/N is the mean degree of a vertex.
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The spectrum ofÂ may be calculated by using the metho
of random walks on a treelike graphG and generating func-
tions @27#. We define a generating function

R~z!5
1

N (
v51

N

(
n50

`

rv~n!zn, ~5!

whererv(n) is the number of walks of lengthn from v to v,
wherev is any vertex ofG:

rv~n!5~Ân!v,v . ~6!

In a treelike graph the number of stepsn is an even number
In order to return tov we must go back along all of the edge
we have gone.

Let qv(n) be the number of walks of lengthn starting atv
and ending atv for the first time. We define

Qv~z!5 (
n50

`

qv~n!zn. ~7!

One can prove that

R~z!5
1

N (
v51

N
1

12Qv~z!
. ~8!

Let d(w,v)5m>1 be the distance fromw to v and tw,v
(m)(n)

be the number of paths of lengthn starting atw and ending at
v for the first time. We define

Twv
(m)~z!5 (

n50

`

tw,v
(m)~n!zn. ~9!

One can prove

Qv~z!5z(
w

Twv
(1)~z!, ~10!

Twv
(m)~z!5Twg1

(1) ~z!Tg1g2

(1) ~z!•••Tgm21v
(1) ~z!, ~11!

wherew→g1→g2→•••gm21→v is the shortest path from
w to v. There is an important relationship:

Twv
(1)~z!5z1z(

g
Tgv

(2)~z!

5z1z(
g

Tgw
(1)~z!Twv

(1)~z!. ~12!

In this sum the vertexg is the nearest neighbor ofw and a
second neighbor of the vertexv. Solving the recurrence
equation~12!, we can findTwv

(1)(z) andQv(z).

We define T̃wv
(1)(z)[Twv

(1)(z21). Equation ~12! may be
written in a form

T̃wv
(1)~z!5

1

z2(
g

T̃gw
(1)~z!

. ~13!
9-2
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We can findQv(z), from which we getR(z). Let us define
B(z)[z21R(z21). Then the density of the eigenvaluesl of
a random graph is determined as follows:

r~l!52Im^B~l1 i«!&/p, ~14!

where« is positive and tends to zero. Note that Eqs.~7!–~13!
are valid for both uncorrelated and correlated treelike grap

In the case of ak-regular connected graph we hav
T̃wv

(1)(z)[T(z) andQv(z)[Q(z). Equation~13! gives

zT~z!2~k21!T2~z!51. ~15!

Solving this equation, we get the well known result

r~l!5
k

2p

A4~k21!2l2

k22l2
. ~16!

This is a continuous spectrum of extended eigenstates
eigenvaluesulu,2Ak21. The presence of the denominat
on the right-hand side of Eq.~16! leads to a difference of the
spectrum of this graph from Wigner’s semicircular law.
exact terms, Wigner’s law is valid for the eigenvalue spec
of real symmetric random matrices whose elements are in
pendent and identically distributed Gaussian variables@20#.
These specific random matrices for Wigner’s law essenti
differ from the adjacency matrices, which we consider in t
paper. So, in our case, the semicircular law may be used
as a landmark for a contrasting comparison.

III. SPECTRA OF UNCORRELATED GRAPHS

In the case of uncorrelated random treelike graphs,kw

21 random parametersT̃gw
(1)(z) on the right-hand side of Eq

~13! are equivalent and statistically independent. They
also independent of the degreekw . We define the distribution
function of T̃wv

(1)(z) at z5l1 i« in the Fourier representatio
as:

Fl~x!5^exp@2 ixT̃wv
(1)~l1 i«!#&, ~17!

where the bracketŝ•••& mean the averaging over the e
semble of random uncorrelated graphs associated with a
gree distributionP(k). The statistical independence of th
k21 random parametersT̃gw

(1)(l1 i«)[Ti , i 51,2, . . . ,k
21, k[kw , on the right-hand side of Eq.~13! allows us to
use the following identity:

Fl~x!

[^exp~2 ixT!&5K expS 2
ix

l1 i«2 (
i 51

k21

Ti
D L

512AxE
0

` dy

Ay
J1~2Axy!K expS iyFl1 i«2 (

i 51

k21

Ti G D L

04610
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512AxE
0

` dy

Ay
J1~2Axy!eiy(l1 i«)

3(
k

kP~k!

^k&
^exp~2 iyT!&k21, ~18!

whereJ1(x) is the Bessel function and̂k&5(kkP(k). Thus,
we get the exact self-consistent equation forFl(x):

Fl~x!512AxE
0

` dy

Ay
J1~2Axy!eiylF1„Fl~y!…, ~19!

whereF1(x)[(k51
` kP(k)xk21/^k&. Solving Eq.~19! gives

the distribution ofT, and so we can obtainQ, from which we
get R. Equations~8!, ~10!, and~14! give

r~l!52
1

p
ImK 1

l2(
i 51

k

Ti
L

5
1

p
ReE

0

`

dyeiylF„Fl~y!…, ~20!

whereF(x)[(k51
` P(k)xk. From Eq.~19!, we find thenth

moment of the distribution function ofT, Eq. ~17!:

Mn[^Tn&5
1

~n21!! i nE0

`

dy yn21eiylF1„Fl~y!….

~21!

IV. EFFECTIVE MEDIUM APPROXIMATION

In a general case it is difficult to solve Eq.~19! exactly.
Let us find an approximate solution. We neglect fluctuatio
of T around a mean valueT(l)[^T&. A self-consistent
equation for the functionT(l) may be obtained if we inser

Fl~x!'e2 ixT(l) ~22!

into the right-hand side of Eq.~21! for n51. We get

T~l!5
1

^k& (
k

kP~k!

l1 i«2~k21!T~l!
. ~23!

Below we will call this approach an ‘‘effective medium
~EM! approximation. At reall, T(l) is a complex function,
which is to be understood as an analytic continuation fr
the upper half plane ofl, T(l)[T(l1 i«). Therefore,
Im T(l1 i«),0. In the framework of the EM approach, th
densityr(l), Eq. ~20!, takes an approximate form

r~l!52
1

p (
k

kP~k!Im T~l!

@l2k ReT~l!#21k2@ Im T~l!#2
.

~24!
9-3
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V. TAIL BEHAVIOR AND FINITE-SIZE EFFECT

Equation~23! may be solved analytically atulu@1. We
look for a solution in the region ImT(l)!ReT(l)!1. It is
convenient to use a continuum approximation in Eq.~23!.
The real and imaginary parts of this equation take a form

ReT~l!

5
1

2l^k&

3E
k0

kcut dk kP~k!

S 12~k21!Re
T~l!

l D 2

1S ~k21!Im
T~l!

l D 2 ,

~25!

15
1

l2^k&

3E
k0

kcut dk k~k21!P~k!

S 12~k21!Re
T~l!

l D 2

1S ~k21!Im
T~l!

l D 2 ,

~26!

wherek0 and kcut are the smallest and largest degrees,
spectively. A regionk0<k!kl gives a regular contribution
into integrals~25! and~26! while a regionk;kl@1 gives a
singular contribution. Herekl[l/Re T(l)11. As a result
we obtain

ReT~l!>
1

2l
1

pklP~kl!

2^k&Im T~l!
, ~27!

1>
1

l2^k&
E

k0

kl
dk k~k21!P~k!1

plklP~kl!

^k&Im T~l!
. ~28!

If P(k) decreases faster thank22 at k@1, i.e., ^k& is finite,
then in the leading order of 1/l we find

T~l!>l212 ipuluklP~kl!/^k&. ~29!

Within the same approach one can find from Eq.~24! that the
densityr(l) also has two additive contributions

r~l!>2
^k&Im T~l!

pl2
1

klP~kl!

ulu
. ~30!

Inserting Eq.~29! gives the density

r~l!>2
kl

ulu
P~kl!. ~31!

Herekl5l/ReT(l)115l21O(1).
The asymptotic expression~31! is our main result. The

right-hand side of this expression originates from two equ
additive contributions: the contribution from the real part
T(l) and the one from the imaginary part ofT(l). One can
04610
-

l,
f

show that the asymptotic behavior of the real part, ReT(l)
5l211O(l23), in the leading order of 1/l is universal and
is valid even for graphs with finite loops. Contrastingly, t
asymptotics of ImT(l) in the leading order of 1/l and the
corresponding contribution to the right-hand side of Eq.~31!
depend on details of the structure of a network.

The analysis of Eq.~23! shows that the main contributio
to an eigenstate with a large eigenvaluel is given by verti-
ces with a large degreek;kl@1. As we shall show below
in the limit l@1, result ~31! is asymptotically exact. The
relationship between largest eigenvalues and highest deg
l21O(1)5k, for a wide class of graphs was obtained in
mathematical paper, Ref.@28#. This contribution of highly
connected vertices may be compared with a simple spect
of ‘‘stars,’’ which are graphs consisting of a vertex of a d
greek, connected tok dead ends. The spectrum consists
two eigenvaluesl56Ak and a (k21)-degenerate zero ei
genvalue. Note that asymptotically, in the limit of largel,
Eq. ~31! gives r(l)>2uluP(l2) if the decrease ofP(k) is
slower than an exponent function at largek, that is, if higher
moments of the degree distribution diverge.

A classical random graph@29,30# has the Poisson degre
distribution P(k)5e2^k&^k&k/k!. The tail of r(l) is given
by Eq. ~31! with kl5l21a@1, wherea is a number of the
order of 1:

r~l!;l22(l21a)exp@~11 ln^k&!l2#. ~32!

This equation agrees with the previous results@21,22# ob-
tained by different analytical methods.

For a ‘‘scale-free’’ graph withP(k)'P0k2g at largek, at
ulu@1, we get an asymptotically exact power-law behavi

r~l!>2uluP~l2!52P0ulu2d, ~33!

where the eigenvalue exponentd52g21.
At a finite N@1, there is a finite-size cutoff of the degre

distributionkcut;k0N1/(g21) @31#. The cutoff determines the
upper boundary of eigenvalues:l,kcut

1/2 . This result agrees
with an estimation of the largest eigenvalue of sparse rand
graphs obtained in Ref.@32#.

Let us analyze the accuracy of the EM approach. One
use the following criterion. We introduce a quantityqn
[Mn /Tn(l). Here,Tn(l) is thenth moment of the approxi-
mate distribution~22!. Inserting function~22! into Eq. ~21!
givesMn . The functionFl(x)5e2 ixT(l) would be an exact
solution of Eq.~19! if qn51 for all n>1. Note that atn
51 we haveq151, because this equality is the basic equ
tion in the framework of the EM approximation. Atl@1 and
P(k)5P0k2g, in the leading order of 1/l, Eq. ~21! gives

qn>12Ank0l22 at g.3 ~34!

>12Ank0l22ln l at g53 ~35!

>12Ank0
g22l22(g22) at 2,g,3, ~36!
9-4
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wherek0 is the smallest degree inP(k) andA is a numerical
factor. This estimation allows us to conclude that atl@k0

1/2

the EM solution becomes asymptotically exact.
At small l&k0

1/2, the EM approximation is less accurat
For example, atl50 for a scale-free network, we obtai
qn5Sn /S1

n , where Sn5^k(k21)2n&/^k&. Only at largeg
@1 and n,g, the parameterqn is close to 1, i.e.,qn51
1O(n/g).

One can conclude that the EM approach gives a relia
result close to the exact one in the range

k0
1/2!l!kcut

1/25k0
1/2N1/2(g21). ~37!

In our derivations we assumed the treelike local struct
of a network, that is, the absence of finite-size loops in
infinite network. Loosely speaking, this assumption may
if the second moment̂k2& of the degree distribution di
verges. This can be seen from the following simple ar
ments. The length of a typical loop is of the order of t
average shortest-path length of a network. Since the m
number of the second-nearest neighbors in the infinite un
related net iŝ k(k21)& and diverges if̂ k2& diverges, the
average shortest-path length and the length of a typical l
are small and may turn out to be finite even in the limit of
infinite net if ^k2& diverges. In this situation, the resu
~whether there are loops of finite length in the infinite n
work or not! is determined by the size dependence of
cutoff of the degree distribution@24#. In its turn, this depen-
dence is determined by the specifics of an ensemble
varies from network to network.

VI. SPECTRA OF CORRELATED GRAPHS

Many real-world networks are characterized by stro
correlations between degrees of vertices@33–35#. The sim-
plest ones are correlations between degrees of neighbo
vertices. Let us study the effect of degree correlations
spectra of random treelike graphs.

Using the pair degree distribution~3!, it is convenient to
introduce the conditional distribution that a vertex of deg
k is connected to a vertex of degreek1:

P~k1uk!5^k&P~k1 ,k!/kP~k!. ~38!

The method used above for the calculation of spectra of
correlated graphs may be generalized to correlated gra
For this, one should take into account correlations betw
the degree of a vertexv and the generating functionT̃wv

(1)(z)

in Eq. ~13!. We define the distribution function ofT̃wv in the
Fourier representation as:

Fl~k,x!5^d~kv2k!exp@2 ixT̃wv
(1)~l1 i«!#&. ~39!

Averaging Eq.~13! and using identity~18!, we obtain an
exact equation forFl(k,x):
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Fl~k,x!512Ax(
k1

P~k1uk!

3E
0

` dy

Ay
J1~2Axy!eiylFl

k121
~k1 ,y!, ~40!

The density of eigenvalues is of the following form:

r~l!5
1

p
Re(

k
P~k!E

0

`

dy eiylFl
k~k,y!. ~41!

These equations are a generalization of the equations de
above for uncorrelated graphs. Indeed, for an uncorrela
graph, we haveP(k1uk)5kP(k)/^k& and Fl(k,x)5Fl(x).
As a result we get Eqs.~19! and ~20!.

Let us use the EM approximation. We neglect fluctuatio
around a mean valueT(k,l) and use an approximation

Fl~k,x!'e2 ixT(k,l). ~42!

Then we get a self-consistent equation for the complex fu
tion T(k,l):

T~k,l!5(
k1

P~k1uk!

l1 i«2~k121!T~k1 ,l!
. ~43!

At l@1 this equation has a solution

T~k,l!5l212 iplP~kluk!. ~44!

This solution givesr(l)52klP(kl)/ulu, where kl5l2

1O(1) as before. It agrees with the result presented in
~31! for uncorrelated graphs. One concludes that the sh
range correlations between degrees of neighboring vert
in the scale-free networks do not change the eigenvalue
ponentd52g21.

VII. SPECTRUM OF A TRANSITION MATRIX

Let us consider random walks on a graph with the tran
tion probability 1/kv of moving from a vertexv to any one of
its neighbors. The transition matrixP̂ then satisfies

Pw,v5aw,v /kv . ~45!

Clearly, for each vertexv,

(
w

Pw,v51. ~46!

P̂ is related to the Laplacian of the graph

Lv,w5H 1 if v5u

2av,w /Akvkw otherwise
~47!

as follows:

P̂5D̂1/2~12L̂ !D̂21/2, ~48!
9-5
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where Dv,w5dv,w /kv . Therefore, if we know the densit
r(l) of eigenvalues ofP̂, we can find the density of eigen
values of the Laplacian:rL(l)5r(12l).

We denote the eigenvalues of the matrixP̂ by l1>l2
>•••>lN . The eigenfunctionf v5kv corresponds to the
largest eigenvaluel151.

In order to calculate the spectrum ofP̂ we use the same
method of random walks described in the Sec. II. The pr
ability of one step is given by Eq.~45!. We define the gen-
erating functionQv(z) andT̃wv

(1)(z21)[Twv
(1)(z) and obtain an

exact equation which is similar to Eq.~13!:

T̃wv
(1)~z!5

1

kwz2(
g

T̃gw
(1)~z!

, ~49!

whereg;w but gÞv. At z5l1 i«, we get exact equation
for the functionFl(x)5^exp@2ixT̃wv

(1)(l1i«)#& and the den-
sity of the eigenvaluesr(l):

Fl~x!512AxE
0

` dy

Ay
J1~2Axy!eiylF1„e

ilyFl~y!…,

~50!

r~l!5
1

p
Re(

k
P~k!kE

0

`

dy eiklyFl
k~y!. ~51!

The functionFl(x)5e2 ix is an exact solution of Eq.~50!.
This solution corresponds to the eigenvaluel151 and gives
the delta peakd(l21) in the densityr(l). The second
largest eigenvaluel2 is related to several important grap
invariants such as the diameterD of the graph, see, for ex
ample, Ref.@9#:

D~G!<
ln~N21!

ln~1/l2!
. ~52!

Here thediameterof a graph is the maximum distance b
tween any two vertices of a given graph.

In order to find the spectrum atl<l2 we use the EM
approach. We assumeFl(x)'e2 ixT(l) and get an equation
for a complex functionT(l) :

T~l!5
1

^k& (
k

kP~k!

kl1 i«2~k21!T~l!
. ~53!

r(l) is given by

r~l!52
1

p
Im

1

l2T~l!
. ~54!

For completeness, we present the spectrum of the trans
matrix of ak-regular tree:

r~l!5
k

2p

A4~k21!/k22l2

12l2
, ~55!
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which easily follows from Eqs.~53! and ~54!. The second
eigenvalue is equal tol252Ak21/k.

VIII. ANALYSIS OF SPECTRA

Let us compare available spectra of classical rand
graphs and scale-free networks@13,14#, empirical spectra of
the Internet @10,11,16#, and spectra of random treelik
graphs.

At first we discuss spectra of adjacency matrices. T
spectra were calculated in the framework of the EM a
proach from Eqs.~23! and~24! for different degree distribu-
tions P(k). Our results are represented in Figs. 1 and 2.

Classical random graphs.Classical random graphs hav
the Poisson degree distribution. The density of eigenval
of the associated adjacency matrix has been obtained
merically in Ref. @13#. In Fig. 1 we display results of the
numerical calculations and our results obtained within
EM approach. We found a good agreement in the wh
range of eigenvalues. There are only some small differen
in the region of small eigenvalues which may be explain
by an inaccuracy of the EM approach in this range. In t
region, the densityr(l) has an elevated central part th
differs noticeably from the semicircular distribution. Th
spectrum also has a tiny tail given by Eq.~31! which
can hardly be seen in Fig. 1, see for detail Sec. V a
Refs.@21,22#.

Scale-free networks.Spectra of scale-free graphs with th
degree distributionP(k)5P0k2g differ strongly from the
semicircular law@13,14#. The Baraba´si-Albert model has a
treelike structure, the exponentg53 of the degree distribu-
tion, and negligibly weak correlations between degrees of
nearest neighbors@3#. Therefore, one can assume that t
spectrum of a random treelike graph can mimic well t

FIG. 1. Density of eigenvalues of the adjacency matrices of t
networks.~i! The classical random graph~the Erdős-Rényi model!
with the average degreêk&510: the effective medium~EM! ap-
proach~the solid line! and numerical calculations for the graphs
20 000 vertices@13# ~the open circles!. ~ii ! The scale-free random
treelike graph withg53 and the smallest degreek055: the EM
approach~the dashed line!, the improved EM approach, see the te
~the dashed-dotted line!. The results of the simulations of th
Barabási-Albert model of 7000 vertices@13# ~the open squares!.
The semicircular law is shown by the thin solid line.
9-6
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spectrum of the model. In Fig. 1 we compare the spectrum
the random treelike graph withg53 and the spectrum of th
Barabási-Albert model obtained from simulations@13#. The
density of statesr(l) has a triangular-like form and demon
strates a power-law tail. There is only a noticeable deviat
of the EM results from the results of simulations@13# at
small eigenvaluesl. In order to improve the EM results, w
used, as an ansatz, the distribution functionFl(x)5@1
1a(l)}x2#e2 ixT(l) instead of the function Fl(x)
5e2 ixT(l). In this case, there are two unknown compl
functions a(l) and T(l) which were determined self
consistently from Eq.~19!.

Power-law tail.The power-law behavior of the density o
eigenvaluesr(l)}l2d is an important feature of the spe
trum of scale-free networks. The simulations@13# of the
Barabási-Albert model having the degree exponentg53 re-
vealed a power-law tail of the spectrum, with the eigenva
exponentd'5. Our predictiond52g2155 is in agree-
ment with the result of these simulations.

The study of the topology of the Internet at the auton

FIG. 2. Evolution of spectra of a random treelike graph with t
scale-free degree distribution forg55 and the smallest degreek0

51, 2, 3, and 5. Panel a shows the spectra of the graphs witk0

52, 3, and 5. The dotted line corresponds to the density of eig
values of an infinite chain. The dashed and thin solid lines pre
the spectrum of thek53 and 6 regular Bethe lattices. Panel
shows the spectrum of a random uncorrelated graph having d
end vertices with the probabilityP(1)50.3. The inset shows the
behavior of the density of eigenvaluesr(l) near the dip atP(1)
50.1,0.2, and 0.3. The central peak is produced by localized st
04610
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mous system~AS! level revealed a power-law behavior o
eigenvalues of the associated adjacency matrix@10,11#. The
degree distribution of the network has the exponentg'2.1
@11#. The eigenvaluesl i of the Internet graph are propor
tional to the power of the ranki of eigenvalues~starting with
the largest eigenvalue!: l i} i e with some exponente. This
leads tor(l)}( id(l2l i)}l2111/e. TheMulti dataset ana-
lyzed in Ref. @11# gave e'20.447 and, hence, the eigen
value exponent 121/e'3.2. TheOregondataset@11# gave
e'20.477, 121/e'3.1.

Our results withg52.1 substituted, give the eigenvalu
exponentd52g21'3.2 in agreement with the results ob
tained from empirical data for this network. There are t
following reasons for the agreement between the theory
treelike graphs and the data for the Internet. At first, althou
the average clustering coefficient of the Internet at the
level is about 0.2, the local clustering coefficient rapidly d
creases with increasing degree of a vertex@36#. In other
words, the closest neighborhood of vertices with large nu
bers of connections is ‘‘treelike.’’ Recall that vertices wi
large numbers of connections determine the large-eigenv
asymptotics of the spectrum. So, we believe that our res
for the asymptotics of the spectra of treelike networks
also valid for the Internet and other networks with simil
structure of connections. Second, the Internet is charac
ized by strong correlations between degrees of neighbo
vertices@33#. However, as we have shown in Sec. VI, su
short-range degree correlations do not affect the power-
behavior of eigenvalues.

The study of the Internet topology@11# also revealed a
correspondence between the large eigenvaluesl i and the de-
greeki : ki5l i

2 . This result is in agreement with our theo
retical prediction that it is the highly connected vertices w
a degree aboutkl'l2 that produce the power-law ta
r(l)}l2d.

The calculations of the eigenvalue spectrum of the ad
cency matrix of a pseudofractal graph withg52.585 . . .
@37# have revealed a power-law behavior withd'4.6. The
effective medium approximation gives lower valued52g
21'4.2. The origin of the difference is not clear. On
should note that the pseudofractal is a deterministica
growing graph with a very large clustering coefficientC
54/5 and, what is especially important, with long-range c
relations between degrees of vertices.

Weakly connected nodes.Let us study the influence o
weakly connected vertices with degrees 1<k<5 on the
spectra of random treelike graphs with the degree distri
tion P(k)5P0k2g. In Figs. 2~a! and 2~b! we represent the
evolution of the spectrum of the network withg55, when
the smallest degreek0 decreases from 5 to 1. The spect
were calculated in the framework of the EM approximatio
Similar results are obtained at differentg. For k0<4, two
peaks at nonzero eigenvalues emerge in the density of s
r(l). In order to understand the origin of the peaks one c
note that for this degree distribution the average degree^k&
is close tok0. For example, atk053 we have^k&53.49.
Therefore, in this network, the probability to find a verte
having three links is larger than the probability to find

n-
nt

d-

s.
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vertex with a degreek>4. There are large parts of the ne
work which have a localk53 regular structure. In Fig. 2~a!
we show a density of eigenvalues of an infinitek53 regular
Bethe lattice@see Eq.~16! at k53]. At small eigenvalues
the density of the regular tree fits well the density of t
random network. At largel, the density of eigenvalues dem
onstrates a power-law behavior with the exponentd52g
21.

In the casek052 we havê k&52.23. This network con-
tains long chains which connect vertices with degreek
>3. In Fig. 2~a! we display the density of eigenvalues of a
infinite chain @see Eq.~16! at k52]. At small eigenvalues
this density of eigenvalues fits well the density of eigenv
ues of the random network. Therefore, it is the vertices w
small degrees that are responsible for the formation of d
sity r(l) of networks at small eigenvalues.

Dead-end vertices.Let us investigate the effect of dead
end vertices on the spectra of random treelike graphs w
different degree distributions. Figure 2~b! shows a spectrum
of a scale-free network withg55 and the probability of
dead-end verticesP(1)50.3. The EM approximation is
used. The spectrum has a flat part and two peaks at mod
eigenvalues. As we have shown above, this~intermediate!
part of the spectrum is formed mainly by the vertices w
degreek52 and 3. The emergence of a dip at zero is
important feature of the spectrum. In fact, there is a gap
the spectrum obtained in the framework of the EM approa
The width of the gap increases with increasingP(1). One
can see this in the inset of Fig. 2~b!. The dead-end vertice
also produce ad peak atl50. The central peak correspond
to localized eigenstates.

Note that the appearance of the central peak and a dip
general phenomenon in random networks with dead-end
tices. We also observed this effect in the classical rand
graphs. Spectral analysis of the Internet topology on the
level revealed a central peak with a high multiplicity@16#.
Thus the conjecture that localized and extended states
separated in energy may well hold in complex networks
similar spectrum was observed in many random systems
example, in a binary alloy@38#. In order to estimate the
height of thed peak it is necessary to take into account
localized states. Unfortunately, so far this is an unsolved a
lytical problem@16#. In Fig. 3 we show local parts of a ne
work, which produce localized states. One can prove
configurations with two and more dead-end vertices, see

FIG. 3. Local configurations which produce localized states w
zero eigenvalue~the central peak! in the spectrum of a random
graph~see the text!.
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3~a!, produce eigenstates withl50. The corresponding
eigenvectors have nonzero components only at the dead
vertices @16,39#. Figure 3~b! shows another configuratio
which produces an eigenstate with the eigenvaluel50. A
corresponding eigenvector is localized at vertices 0, 1, an

Finite-size effects.In the present paper we studied th
spectral properties of infinite random treelike graphs. N
merical studies of large but finite random trees demonst
that the spectrum of a finite tree consists, speaking in gen
terms, of a continuous component and an infinity ofd peaks.
The components correspond to extended and localized st
respectively@17#. There is a hole around eachd peak in the
spectrum. A finite regular tree has a spectral distribut
function which looks like a singular Cantor function@39#.
These results demonstrate that finite-size effects in spe
may be very strong. In particular, the finite size of a netwo
determines the largest eigenvalue in its spectrum. As
estimated in the Sec. V, the largest eigenvalue of the a
cency matrix associated with a scale-free graph is of
order ofkcut

1/25k0
1/2N1/2(g21).

Spectrum of the transition matrix.In Fig. 4 we present a
spectrum of the transition matrixP̂ defined by Eq.~45! for a
treelike graph with the scale-free degree distributionP(k)
}k2g at large degreesk>5. The spectrum was calculate
from Eqs.~53! and~54! with the degree exponentg52.1 and
the probabilitiesP(1),P(2),P(3), andP(4) taken from em-
pirical degree distribution of the Internet at the AS level@36#.

The spectrum lies in the rangeulu<l2,1. In Fig. 4 we
compare our results with the spectrum of the transition m
trix P̂ of the Internet obtained in Refs.@15,16#. Unfortu-

h

FIG. 4. Density of eigenvalues of the transition matrixP̂ defined
by Eq.~45!. ~i! The Internet data~the solid circles! and the results of
simulations of a random scale-free network~the open squares! from
Ref. @15#. ~ii ! The spectrum of the Internet extracted from Ref.@16#
~the stars!. ~iii ! Our calculations~the solid line! with the degree
distribution P(k)5Ak22.1 for k>4, P(1)50.358, P(2)50.4,
P(3)50.12. These parameters are taken from Ref.@36#. The height
of the central peak was estimated from Ref.@16#. The inset shows
the spectra of the transition matrix of a random treelike graph w
excluded dead-end vertices:~i! a random treelike graph with a
scale-free degree distribution,g53, the smallest degreek055, and
^k&59.06 ~the dashed line!; ~ii ! a classical random graph witĥk&
59.06~the dotted line!; ~iii ! a k-regular Bethe lattice withk59 ~the
solid line!.
9-8



ed
th
c
el
nt
en
n
k

a
e

t o
a

is
m

a
te
on
an
o

ha
la

f t
is
ap
l.
r

-
t af-
on

no-
for

ort-
f
er-

t
that
f

all
hey

tral
for

any
rt-

e

ere
as
ur

but

by
the

SPECTRA OF COMPLEX NETWORKS PHYSICAL REVIEW E68, 046109 ~2003!
nately, the data@15,16# are too scattered to make a detail
comparison with our results. Nevertheless, one can see
the spectrum ofP̂ of the treelike graph reproduces satisfa
tory the general peculiarities of the real spectrum. Nam
the spectra have a wide dip at zero eigenvalue and a ce
d-peak@16#. The multiplicity of the zero eigenvalue has be
estimated in Ref.@16#. For a detailed comparison betwee
the spectra, correlations in the Internet must also be ta
into account.

In order to reveal an effect of dead-end vertices we c
culated spectra ofP̂ on a random treelike graph with th
Poisson and the scale-free degree distributionsg53 in the
case when dead-end vertices are excluded, that isP(1)50,
and ^k&59.06. These spectra are displayed in the inse
Fig. 4. In the whole range of eigenvalues these spectra
very close to the spectrum of ak-regular Bethe lattice with
the degreek59. These calculations confirm the fact that it
the dead-end vertices that produce the dip in the spectru
the Internet.

IX. CONCLUSIONS

In this paper we have studied spectra of the adjacency
transition matrices of random uncorrelated and correla
treelike complex networks. We have derived exact equati
which describe the spectrum of random treelike graphs,
proposed a simple approximate solution in the framework
the effective medium approach. Our study confirms t
spectra of scale-free networks as well as the spectra of c
sical random graphs do not satisfy the Wigner law.

We have demonstrated that the appearance of a tail o
density of the eigenvalues of sparse random matrices
general phenomenon. The spectra of classical random gr
~the Erdös-Rényi model! have a rapidly decreasing tai
Scale-free networks demonstrate a power-law behavio
the density of eigenvaluesr(l)}ulu2d . We have found a
simple relationship between the degree exponentg and the
en
n,

l-

-
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eigenvalue exponentd: d52g21. We have shown that cor
relations between degrees of neighboring vertices do no
fect the power-law behavior of eigenvalues. Comparis
with the available results of the simulations of the Baraba´si-
Albert model and the analysis of the Internet at the auto
mous system level shows that this relationship is valid
these networks. We found that large eigenvaluesl@1 are
produced by highly connected vertices with a degreek
'l2.

Many real-world scale-free networks demonstrate sh
range correlations between vertices@35,40# and a decrease o
a local clustering coefficient with increasing degree of a v
tex. Therefore, the relationshipd52g21 between the
degree-distribution exponentg and the eigenvalue exponen
d may also be valid for these networks. We can conclude
the power-law behaviorr(l)}l2d is a general property o
real scale-free networks.

Weakly connected vertices form the spectrum at sm
eigenvalues. Dead-end vertices play a very special role. T
produce localized eigenstates withl50 ~the central peak!.
They also produce a dip in the spectrum around the cen
peak. In conclusion, we believe that our general results
the spectra of treelike random graphs are also valid for m
real-world networks with a treelike local structure and sho
range degree correlations.

Note added. After we have finished our work we hav
learned about a recent mathematical paper, Ref.@41#, where
large eigenvalues of spectra of complex random graphs w
calculated. The statistical ensemble of graphs, which w
considered in that paper, essentially differs from that of o
paper and has a different cutoff of the degree distribution,
the asymptotics of spectra agree in many cases.
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