Spectra of Discrete Symplectic Eigenvalue Problems with Separated Boundary Conditions

Yu. V. Eliseeva^{1*}

(Submitted by A.M. Denisov)

¹Moscow State University of Technology "Stankin", Vadkovskii per. 3a, Moscow, 101472 Russia Received May 24, 2011

Abstract—In this paper we consider a discrete symplectic eigenvalue problem with separated boundary conditions and obtain formulas for the number of eigenvalues on a given interval of the variation of the spectral parameter. In addition, we compare the spectra of two symplectic eigenvalue problems with different separated boundary conditions.

DOI: 10.3103/S1066369X11110107

Keywords and phrases: *discrete symplectic eigenvalue problems, relative oscillation theory, comparative index.*

1. Introduction. Consider the eigenvalue problem for a discrete symplectic system

$$y_{i+1}(\lambda) = W_i(\lambda)y_i, \ i = 0, \dots, N, \ y_i(\lambda) = [x_i(\lambda)u_i(\lambda)]^\top \in \mathbb{R}^{2n}$$
(1)

with separated boundary conditions

$$R_0^* x_0(\lambda) - R_0 u_0(\lambda) = 0, \quad R_{N+1}^* x_{N+1}(\lambda) + R_{N+1} u_{N+1}(\lambda) = 0, \tag{2}$$

where $R_0^* R_0^\top = R_0 R_0^{*\top}$, $R_{N+1}^* R_{N+1}^\top = R_{N+1} R_{N+1}^{*\top}$, and $\operatorname{rang}[R_0^* - R_0] = \operatorname{rang}[R_{N+1}^* R_{N+1}] = n$. In particular, for $R_1 = I$ and $R_2 = 0$ these conditions are the Dirichlet boundary conditions

$$x_0(\lambda) = x_{N+1}(\lambda) = 0. \tag{3}$$

The matrix of system (1) satisfies the conditions

$$W_i(\lambda) = \begin{bmatrix} I & 0 \\ -\lambda W_i & I \end{bmatrix} S_i, \quad S_i^{\top} J S_i = J, \quad J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}, \quad \mathcal{W}_i = \mathcal{W}_i^{\top}, \quad \mathcal{W}_i \ge 0,$$
(4)

where *I* and 0 are, respectively, the identical and null $n \times n$ matrices. It is symplectic for any i = 0, ..., N and $\lambda \in \mathbb{R}$. A special case of systems (1), (4) are Hamiltonian systems of difference equations. These systems are discrete analogs of the following canonical system of differential equations:

$$J^{\top}Y'(t) = \begin{bmatrix} \lambda \mathcal{W}(t) - \mathcal{C}(t) & \mathcal{A}(t)^{\top} \\ \mathcal{A}(t) & \mathcal{B}(t) \end{bmatrix} Y(t), \quad \mathcal{W}(t) = \mathcal{W}(t)^{\top}, \quad \mathcal{W}(t) \ge 0,$$
(5)

where $\mathcal{B}(t) = \mathcal{B}(t)^{\top}$ and $\mathcal{C}(t) = \mathcal{C}(t)^{\top}$. Note that the spectral theory for system (5) with general self-adjoint boundary conditions is studied rather thoroughly in [1] (Chap. VI) and in [2, 3]. The corresponding theory for discrete symplectic eigenvalue problems is being actively developed recently [4–6]. The main tool of these research is the *discrete oscillation theory* for problem (1) [7, 8]. This theory includes (as a special case) the classical oscillation theory for scalar and vector Sturm–Liouville

^{*}E-mail: elyseeva@mtu-net.ru.