Survey Article

S. Barik*, D. Kalita, S. Pati, and G. Sahoo

Spectra of graphs resulting from various graph operations and products: a survey

https://doi.org/10.1515/spma-2018-0027
Received March 1, 2018; accepted July 7, 2018

Abstract

Let G be a graph on n vertices and $A(G), L(G)$, and $|L|(G)$ be the adjacency matrix, Laplacian matrix and signless Laplacian matrix of G, respectively. The paper is essentially a survey of known results about the spectra of the adjacency, Laplacian and signless Laplacian matrix of graphs resulting from various graph operations with special emphasis on corona and graph products. In most cases, we have described the eigenvalues of the resulting graphs along with an explicit description of the structure of the corresponding eigenvectors.

Keywords: graph operation; eigenvalue; spectrum; Laplacian spectrum; signless Laplacian spectrum; corona
MSC: 05C50; 05C05; 15A18

1 Introduction

The study of spectral graph theory is concerned with the relationships between the spectra of certain matrices associated with a graph and the structural properties of that graph. In literature, there are a wide variety of matrices associated with graphs from which the spectrum can be extracted. Among these, frequently studied matrices are the adjacency matrix, the Laplacian matrix and the signless Laplacian matrix, see [1, 14$16,18,30,31,45,47]$. Several researchers have studied various spectral properties of these matrices. The study of the spectra has found its applications in several subjects like biology, geography, economics, social sciences, computer science, information and communication technologies, see for example [23,51] and references therein. The study of graph spectra is a vast area. This article aims to survey some specific topics of this area that are described in the next few paragraphs.

All graphs considered in this article are assumed to be simple and connected, unless otherwise mentioned. Let G be a graph on vertices $1,2, \ldots, n$. At times, we use $V(G)$ and $E(G)$ to denote the set of vertices and the set of edges of G, respectively. We use the notation $i \sim j$ to mean the existence of an edge between the vertices i and j of G. The adjacency matrix of G, denoted by $A(G)$, is an $n \times n$ matrix with entries $a_{i j}=1$ or 0 , depending on whether $i \sim j$ or otherwise, respectively. The Laplacian matrix of G, denoted by $L(G)$, is defined as $D(G)-A(G)$, where $D(G)$ is the diagonal matrix with degree of the vertex i as the i-th diagonal entry. It is well known that $L(G)$ is a positive semidefinite matrix with the smallest eigenvalue 0 . There is an extensive literature available on the adjacency and Laplacian matrices of graphs. We refer the reader to a classical book by Cvetković, Doob, and Sachs [15] and two survey articles by Merris [45] and Mohar [47], for more background on these two matrices. Fiedler [25] proved that 0 is a simple eigenvalue of $L(G)$ if and only

[^0]if G is connected, which led Fiedler to coin the term algebraic connectivity of a graph to mean the second smallest eigenvalue of the Laplacian matrix of that graph. Since its introduction to the literature, the algebraic connectivity of a graph has received a good deal of attention (see [3, 19, 24, 25, 29, 45, 48]). The matrix $|L|(G)$ defined as $|L|(G)=D(G)+A(G)$, was first termed as the signless Laplacian matrix of G by Haemers and Spence in [32]. Like the Laplacian matrix of a graph the signless Laplacian matrix is positive semidefinite. Cvetković [18] proved that the least eigenvalue of the signless Laplacian of a connected graph is equal to 0 if and only if the graph is bipartite and the multiplicity of the eigenvalue 0 is equal to the number of bipartite components. Recently, the signless Laplacian matrix of a graph and its spectrum have attracted the attention of researchers (see [10, 13, 18, 20-22, 53, 54]).

One of the interesting question in spectral graph theory is: looking at the structure of a graph, is it possible to predict the spectrum of that graph? One way to deal with this problem is to use various graph operations. Several researchers have introduced many graph operations such as complement, disjoint union, join, graph products (namely the Cartesian product, the direct product, the strong product and the lexicographic product), the corona, the edge corona, the neighbourhood corona, the subdivision-vertex join, the subdivision-edge join, the subdivision-vertex corona, the subdivision-edge corona, the subdivision-vertex neighbourhood corona, the subdivision-edge neighbourhood corona, the R-vertex corona, the R-edge corona, the R-vertex neighbourhood corona, the R-edge neighbourhood corona, see for example [4, 6-9, 15, 26$28,33,34,36,39,40,42,44]$ and the references therein.

It is well known that G^{c}, the complement of G is the graph whose vertex set is same as that of G and two vertices are adjacent in G^{c} if and only if they are not adjacent in G. The union of two graphs G_{1} and G_{2}, denoted by $G_{1} \cup G_{2}$ is the graph whose vertex set is $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and the edge set is $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. The join of G_{1} and G_{2}, denoted by $G_{1} \vee G_{2}$ is the graph obtained from $G_{1} \cup G_{2}$ by adding all possible edges from the vertices of G_{1} to those in G_{2}. Join operation is also known as complete product ([15]).

The graph products are useful in constructing many important classes of graphs. Let G_{1} and G_{2} be two graphs with disjoint vertex sets $\left\{u_{1}, \ldots, u_{m}\right\}$ and $\left\{v_{1} \ldots, v_{n}\right\}$, respectively. A graph product of G_{1} and G_{2} is a new graph whose vertex set is $V\left(G_{1}\right) \times V\left(G_{2}\right)$, the Cartesian product of $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$. The adjacency of two distinct vertices $\left(u_{i}, v_{j}\right)$ and $\left(u_{r}, v_{s}\right)$ in the product graph is determined entirely by the adjacency/equality/non adjacency of u_{i} and u_{r} in G_{1} and that of v_{j} and v_{s} in G_{2}. Thus, one can define 256 different types of graph products. The graphs obtained by taking the products of two graphs are called the product graphs, and the two graphs are called the factors. The four graph products, namely the Cartesian product, the direct product, the strong product and the lexicographic product are known as the standard graph products and have been studied by many researchers. We refer the reader to the book by Imrich and Klavžar [35] for a study of graph products and their structural properties. The Cartesian product of G_{1} and G_{2}, denoted by $G_{1} \square G_{2}$ is the graph, where $\left(u_{i}, v_{j}\right) \sim\left(u_{r}, v_{s}\right)$ if either ($u_{i}=u_{r}$ and $v_{j} \sim v_{s}$ in G_{2}) or ($u_{i} \sim u_{r}$ in G_{1} and $v_{j}=v_{s}$). The Kronecker product or direct product of G_{1} and G_{2}, denoted by $G_{1} \otimes G_{2}$, is the graph where $\left(u_{i}, v_{j}\right) \sim\left(u_{r}, v_{s}\right)$ if $u_{i} \sim u_{r}$ in G_{1} and $v_{j} \sim v_{s}$ in G_{2}. The strong product of G_{1} and G_{2}, denoted by $G_{1} \boxtimes G_{2}$, is the graph where $\left(u_{i}, v_{j}\right) \sim\left(u_{r}, v_{s}\right)$ if either ($u_{i}=u_{r}$ and $v_{j} \sim v_{s}$ in G_{2}) or ($u_{i} \sim u_{r}$ in G_{1} and $v_{j}=v_{s}$) or ($u_{i} \sim u_{r}$ in G_{1} and $v_{j} \sim v_{s}$ in G_{2}). The lexicographic product of G_{1} and G_{2}, denoted by $G_{1}\left[G_{2}\right]$, is the graph where $\left(u_{i}, v_{j}\right) \sim\left(u_{r}, v_{s}\right)$ if either $\left(u_{i} \sim u_{r}\right.$ in G_{1}) or ($u_{i}=u_{r}$ and $v_{j} \sim v_{s}$ in G_{2}). Investigation of the various spectra of product graphs is one interesting topic for researchers. Some results describing the adjacency and the Laplacian spectra of product graphs can be found in $[2,6,15,27,45,50]$ and the references therein.

Like the above mentioned graph operations, the corona is another operation which is used in constructing many important classes of graphs. The corona of two graphs was first introduced by Frucht and Harary [26]. Let G_{1} and G_{2} be two graphs on disjoint sets of n and m vertices, respectively. The corona of G_{1} and G_{2}, denoted by $G_{1} \circ G_{2}$, is defined as the graph obtained by taking one copy of G_{1} and n copies of G_{2}, and then joining the i-th vertex of G_{1} to every vertex in the i-th copy of G_{2}. Recently, two variants of the corona operation, namely the edge corona and the neighbourhood corona were introduced by Hou and Shiu [34] and Gopalapillai [28], respectively. Let G_{1} and G_{2} be two graphs on disjoint sets of n_{1} and n_{2} vertices, m_{1} and m_{2} edges, respectively. The edge corona [34] of G_{1} and G_{2}, denoted by $G_{1} \diamond G_{2}$ is the graph obtained by taking one copy of G_{1} and m_{1} copies of G_{2}, and then joining two end vertices of the i-th edge of G_{1} to every vertex in the i-th copy of G_{2}. The neighbourhood corona [28] of G_{1} and G_{2}, denoted by $G_{1} \bullet G_{2}$ is the graph obtained
by taking one copy of G_{1} and n_{1} copies of G_{2}, and joining every neighbour of the i-th vertex of G_{1} to every vertex of the i-th copy of G_{2} by a new edge. Results on the adjacency, the Laplacian and the signless Laplacian spectra of different coronae of two graphs can be found in [4, 28, 34, 44, 52].

Let G be a connected graph on n vertices and m edges. The subdivision graph $S(G)$ of G is the graph obtained by inserting a new vertex into every edge of G. The Q-graph of G, denoted by $Q(G)$ is the graph obtained from G by inserting a new vertex into every edge of G and by joining by edges those pairs of these new vertices which lie on adjacent edges of G. The total graph of G, denoted by $T(G)$, is the graph whose set of vertices is the union of the set of vertices and set of edges of G, with two vertices of $T(G)$ being adjacent if and only if the corresponding elements of G are adjacent or incident (see [15]). Note that $S(G), Q(G)$ and $T(G)$ have $n+m$ vertices each. In the above three graphs, let us call the n vertices taken from G as the old-vertices and the new inserted m vertices as the new-vertices. In [49], Shinodab has described the characteristic polynomial of the adjacency matrix of a subdivision graph.

Two graph operations based on subdivision graphs, namely the subdivision-vertex join and the subdivision-edge join were introduced by Indulal [37]. The subdivision-vertex join of two graphs G_{1} and G_{2}, denoted by $G_{1} \dot{\vee} G_{2}$, is the graph obtained from $S\left(G_{1}\right)$ and G_{2} by joining each old-vertex of G_{1} with every vertex of G_{2}. The subdivision-edge join of G_{1} and G_{2}, denoted by $G_{1} \bigvee G_{2}$, is the graph obtained from $S\left(G_{1}\right)$ and G_{2} by joining each new-vertex of G_{1} with every vertex of G_{2}. In [37], the author described the adjacency spectra of $G_{1} \dot{\vee} G_{2}$ and $G_{1} \underline{\vee} G_{2}$ in terms of the adjacency spectra of G_{1} and G_{2}, when both G_{1} and G_{2} are regular. In [41], Liu and Zhang described the adjacency, Laplacian, and signless Laplacian spectra of $G_{1} \stackrel{\vee}{ } G_{2}$ and $G_{1} \underline{\vee} G_{2}$, when G_{1} is regular and G_{2} is an arbitrary graph using the adjacency, Laplacian and signless Laplacian spectra of G_{1} and G_{2}, respectively.

In [43], Lu and Miao defined two new operations on subdivision graphs, namely, subdivision-vertex corona and subdivision-edge corona. Let G_{1} and G_{2} be two vertex disjoint graphs. The subdivision-vertex corona of G_{1} and G_{2}, denoted by $G_{1}^{(S)} \odot G_{2}$, is the graph obtained from $S\left(G_{1}\right)$ and $\left|V\left(G_{1}\right)\right|$ copies of G_{2}, all vertex disjoint, and joining the i-th vertex of G_{1} to every vertex in the i-th copy of G_{2}. The subdivision-edge corona of G_{1} and G_{2}, denoted by $G_{1}^{(S)} \ominus G_{2}$, is the graph obtained from $S\left(G_{1}\right)$ and $\left|I\left(G_{1}\right)\right|$ copies of G_{2}, all vertex disjoint, and joining the i-th vertex of $I\left(G_{1}\right)$ to every vertex in the i-th copy of G_{2}, where $I\left(G_{1}\right)$ is the set of inserted new-vertices of $S\left(G_{1}\right)$. Liu and $\mathrm{Lu}[40]$ introduced two new graph operations based on subdivision graphs, namely, the subdivision vertex-neighbourhood corona and the subdivision edge-neighbourhood corona and discussed their adjacency, Laplacian and signless Laplacian spectra. Let G_{1} and G_{2} be two vertex disjoint graphs. The subdivision-vertex neighbourhood corona of G_{1} and G_{2}, denoted by $G_{1}^{(S)} \boxtimes G_{2}$, is the graph obtained from $S\left(G_{1}\right)$ and $\left|V\left(G_{1}\right)\right|$ copies of G_{2}, all vertex disjoint, and joining the neighbours of the i-th vertex of G_{1} to every vertex in the i-th copy of G_{2}. The subdivision-edge neighbourhood corona of G_{1} and G_{2}, denoted by $G_{1}^{(S)} \boxminus G_{2}$, is the graph obtained from $S\left(G_{1}\right)$ and $\left|I\left(G_{1}\right)\right|$ copies of G_{2}, all vertex disjoint, and joining the neighbours of the i-th vertex of $I\left(G_{1}\right)$ to every vertex in the i-th copy of G_{2}.

The R-graph of G, denoted by $R(G)$ is the graph obtained from G by adding a vertex u_{e} and joining u_{e} to the end vertices of e, for each $e \in E(G)[15]$. Observe that $R(G)$ is just the edge corona of G and K_{1}. Lan and Zhou [39] defined four new graph operations based on R-graphs, namely the R-vertex corona, R-edge corona, R-vertex neighbourhood corona and R-edge neighbourhood corona. Let G_{1} and G_{2} be two vertex disjoint graphs. The R-vertex corona of G_{1} and G_{2}, denoted by $G_{1}^{(R)} \odot G_{2}$, is the graph obtained from vertex disjoint $R\left(G_{1}\right)$ and $\left|V\left(G_{1}\right)\right|$ copies of G_{2} by joining the i-th vertex of G_{1} to every vertex in the i-th copy of G_{2}. The R-edge corona of G_{1} and G_{2}, denoted by $G_{1}^{(R)} \ominus G_{2}$, is the graph obtained from vertex disjoint $R\left(G_{1}\right)$ and $\left|I\left(G_{1}\right)\right|$ copies of G_{2} by joining the i-th vertex of $I\left(G_{1}\right)$ to every vertex in the i-th copy of G_{2}, where $I\left(G_{1}\right)=V\left(R\left(G_{1}\right)\right)-V\left(G_{1}\right)$. The R-vertex neighbourhood corona of G_{1} and G_{2}, denoted by $G_{1}^{(R)} \boxtimes G_{2}$, is the graph obtained from vertex disjoint $R\left(G_{1}\right)$ and $\left|V\left(G_{1}\right)\right|$ copies of G_{2} by joining the neighbours of the i-th vertex of G_{1} in $R\left(G_{1}\right)$ to every vertex in the i-th copy of G_{2}. The R-edge neighbourhood corona of G_{1} and G_{2}, denoted by $G_{1}^{(R)} \boxminus G_{2}$, is the graph obtained from vertex disjoint $R\left(G_{1}\right)$ and $\left|I\left(G_{1}\right)\right|$ copies of G_{2} by joining the neighbours of the i-th vertex of $I\left(G_{1}\right)$ in $R_{G_{1}}$ to every vertex in the i-th copy of G_{2}. In [39], the authors discussed the adjacency, Laplacian and signless Laplacian spectra of R-vertex corona, R-edge corona, R-vertex neighbourhood corona and R-edge neighbourhood corona, when G_{1} is regular.

Barik and Sahoo in [5] introduced some more variants of corona graphs such as subdivision double corona, Q-graph double corona, R-graph double corona, total double corona, subdivision double neighbourhood corona, Q-graph double neighbourhood corona, R-graph double neighbourhood corona and total double neighbourhood corona. Let G be a connected graph on n vertices and m edges. Let G_{1} and G_{2} be graphs on n_{1} and n_{2} vertices, respectively. The subdivision double corona of G, G_{1} and G_{2}, denoted by $G^{(S)} \circ\left(G_{1}, G_{2}\right)$, is the graph obtained by taking one copy of $S(G), n$ copies of G_{1} and m copies of G_{2} and then by joining the i-th old-vertex of $S(G)$ to every vertex of the i-th copy of G_{1} and the j-th new-vertex of $S(G)$ to every vertex of the j-th copy of G_{2}. In place of $S(G)$, if we take $Q(G)(R(G), T(G)$), then the resulting graph is called as Q-graph (R-graph, total) double corona and denoted by $G^{(Q)} \circ\left(G_{1}, G_{2}\right)\left(G^{(R)} \circ\left(G_{1}, G_{2}\right), G^{(T)} \circ\left(G_{1}, G_{2}\right)\right.$). The subdivision double neighbourhood corona of G, G_{1} and G_{2}, denoted by $G^{(S)} \bullet\left(G_{1}, G_{2}\right)$, is the graph obtained by taking one copy of $S(G), n$ copies of G_{1} and m copies of G_{2} and then by joining the neighbourhood new vertices of the i-th old-vertex of $S(G)$ to every vertex of the i-th copy of G_{1} and the neighbourhood old vertices of the j-th new-vertex of $S(G)$ to every vertex of the j-th copy of G_{2}. In place of $S(G)$, if we take $Q(G)$ (resp. $R(G), T(G)$), then the resulting graph is called as Q-graph (resp. R-graph, total graph) double neighbourhood corona and denoted by $G^{(Q)} \bullet\left(G_{1}, G_{2}\right)\left(\right.$ resp. $\left.G^{(R)} \bullet\left(G_{1}, G_{2}\right), G^{(T)} \bullet\left(G_{1}, G_{2}\right)\right)$. In [5], the authors have described the spectra of these graphs.

In this article, we have listed together all the results on the adjacency, Laplacian and signless Laplacian spectra of graphs obtained from the above mentioned graph operations and graph products in tables. In most cases, we have provided the structure of eigenvectors. The constants k, k_{1}, k_{2} used in the tables can be obtained easily from the eigen-equations.

Following notations are being used in the rest of the paper. By the A-eigenvalues (resp. L-eigenvalues, $|L|$-eigenvalues) of G we mean the eigenvalues of $A(G)($ resp. $L(G),|L|(G))$. The $n \times 1$ vector with each entry 1 is denoted by $\mathbf{1}_{n}$. The zero matrix of appropriate order is denoted by $\mathbf{0}$. By I_{n}, we denote the identity matrix of size n. The Kronecker product of matrices $R=\left[r_{i j}\right]$ and S is defined to be the partitioned matrix $\left[r_{i j} S\right]$ and is denoted by $R \otimes S$. The vector with i-th entry equal to one and all other entries zero is denoted by e_{i}.

2 Some unary operations on a graph and their eigenvalues

In this section, we consider operations on a single graph and describe the adjacency, Laplacian and signless Laplacian eigenvalues, and the corresponding eigenvectors of the new graphs.

Let G be a connected graph on n vertices and m edges. If the graph is regular, we denote its regularity by r with $r \geq 2$. Let $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}, 0=\lambda_{1}^{L} \leq \lambda_{2}^{L} \leq \ldots \leq \lambda_{n}^{L}$ and $\lambda_{1}^{|L|} \geq \lambda_{2}^{|L|} \geq \ldots \geq \lambda_{n}^{|L|}$ be the eigenvalues of $A(G), L(G)$ and $|L|(G)$, respectively. Let x_{i}, x_{i}^{L} and $x^{|L|}$ be the eigenvectors of $A(G), L(G)$ and $|L|(G)$ corresponding to the eigenvalues $\lambda_{i}, \lambda_{i}^{L}$ and $\lambda_{i}^{|L|}$, respectively, for $i=1,2, \ldots, n$.

Among all the graph operations, the complement of a graph is the simplest one. When G is regular, all the adjacency eigenvalues of G^{c} are obtained by Sachs in 1962. As $L\left(G^{c}\right)=n I-J-L(G)$ and the eigenvectors of $L(G)$ are also eigenvectors of J, the eigenvalues and eigenvectors of $L\left(G^{c}\right)$ can be easily obtained from that of $L(G)$. For a r-regular graph G, the well known relation between $A(G), L(G)$ and $|L|(G)$ is given by $A(G)=$ $r I-L(G)=|L|(G)-r I$. So finding the eigenvalues of $|L|\left(G^{c}\right)$ in terms of eigenvalues of $|L|(G)$ for regular graphs is immediate.

The line graph G_{ℓ} of a graph G is the graph whose vertex set is in one-to-one correspondence with the set of edges of the graph and two vertices of G_{ℓ} are adjacent if and only if the corresponding edges in G have a vertex in common. Line graphs have one special property that their least (adjacency) eigenvalue is always greater than or equal to - 2. This fact is evident from the relations $M(G) M^{T}(G)=A(G)+D(G)$ and $M^{T}(G) M(G)=A\left(G_{\ell}\right)+$ 2I. Besides, the adjacency matrix of a line graph comes into role while expressing matrices related to other graphs like the total graph, Q-graph, etc. For more spectral properties of line graphs the reader is referred to the book by Cvetković, Rowlinson and Simić [17]. The characterization of the characteristic polynomial of $A\left(G_{\ell}\right)$ can be found in the book by Cvetković, Doob, and Sachs [15]. The fact that if ' G is r-regular, then G_{ℓ} is $(2 r-2)$-regular' helps in determining the Laplacian as well as signless Laplacian eigenvalues of these graphs.

The subdivision graph $S(G)$ of a graph G is always a bipartite graph whose adjacency matrix can be written as

$$
\left[\begin{array}{cc}
\mathbf{0}_{n} & M(G) \\
M^{T}(G) & \mathbf{0}_{m}
\end{array}\right]
$$

where $M(G)$ is the 0-1 incidence matrix of G. Now consider the rectangular matrix $M(G)$ of order $n \times m$. Let ξ_{i} and ζ_{i} are singular vector pairs of $M(G)$ corresponding to the singular value s_{i}, for $i=1,2, \ldots, n$. That is, $M(G) \xi_{i}=s_{i} \zeta_{i}$ and $M^{T}(G) \zeta_{i}=s_{i} \xi_{i}$, for $i=1, \ldots, n$. For an r-regular graph, the following relation holds:

$$
s_{i}^{2}=\lambda_{i}+r=2 r-\lambda_{i}^{L}=\lambda_{i}^{|L|}, \text { for } i=1,2, \ldots,|m-n| .
$$

Further, let η_{j} be orthogonal vectors such that $M(G) \eta_{j}=\mathbf{0}_{n}$, for $j=1, \ldots, m-n$. Now it becomes easy to observe that

$$
\binom{ \pm \zeta_{i}}{\xi_{i}} \text { and }\binom{\mathbf{0}_{n}}{\eta_{j}}
$$

are the eigenvectors of $A(S(G))$ corresponding to eigenvalues $\pm s_{i}$ and 0 , respectively. Similar observations can be made for the Q-graph and the R-graph of G whose adjacency matrices are

$$
\left[\begin{array}{cc}
\mathbf{0}_{n} & M(G) \\
M^{T}(G) & A\left(G_{\ell}\right)
\end{array}\right] \text { and }\left[\begin{array}{cc}
A(G) & M(G) \\
M^{T}(G) & \mathbf{0}_{m}
\end{array}\right]
$$

respectively. Cvetković [12] in 1975 first obtained the characteristic polynomials of adjacency matrices of $S(G), Q(G)$ and $R(G)$. In [11], a relationship between the spectra of a regular graph G and its total graph, $T(G)$ has been obtained.

Table 1: Spectral properties under unary operations

Graphs	A-eigenvalues	L-eigenvalues	$\|L\|$-eigenvalues	Multiplicity	Eigenvectors
G	λ_{i}	λ_{i}^{L}	$\lambda_{i}^{\|L\|}$	1	X_{i}
G^{c}	$-\lambda_{t}-1$	$n-\lambda_{t}^{L}$	$n-2-\lambda_{t}^{\|L\|}$	1	X_{t}
	$n-r-1$	0	$2(n-r-1)$	1	$\mathbf{1}_{n}$
G_{ℓ}	$\lambda_{i}+r-2$	$2-\lambda_{i}^{L}$	$\lambda_{i}^{\|L\|}+2 r-4$	1	ζ_{i}
	-2	$r-2$	$2 r-4$	$m-n$	η_{j}
$S(G)$	$\pm \sqrt{\lambda_{i}+r}$	$\frac{r+2 \pm \sqrt{(r+2)^{2}-4 \lambda_{i}^{L}}}{2}$	$\frac{r+2 \pm \sqrt{(r-2)^{2}+4 \lambda_{i}^{\|L\|}}}{2}$	1	$\binom{ \pm k \zeta_{i}}{\xi_{i}}$
	0	2	2	$m-n$	$\binom{\eta_{j}}{\mathbf{0}}$
$Q(G)$	$\frac{\lambda_{i}+r-2 \pm \sqrt{\left(\lambda_{i}+r\right)^{2}+4}}{2}$	$\frac{\lambda_{i}^{L}+r+2 \pm \sqrt{\left(\lambda_{i}^{L}-r\right)^{2}+4(r+1)}}{2}$	$\frac{\lambda_{i}^{\|L\|}+3 r-2 \pm \sqrt{\left(\lambda_{i}^{\|L\|}+r-2\right)^{2}+4 \lambda_{i}^{\|L\|}}}{2}$	1	$\binom{ \pm k \zeta_{i}}{\zeta_{i}}$
	-2	$2 r+2$	$2 r-2$	$m-n$	$\binom{\eta_{j}}{\mathbf{0}}$
$R(G)$	$\frac{\lambda_{i \pm} \pm \sqrt{\lambda_{i}^{2}+4\left(\lambda_{i}+r\right)}}{2}$	$\frac{\lambda_{i}^{L}+r+2 \pm \sqrt{\left(\lambda_{i}^{L}+r+2\right)^{2}-12 \lambda_{i}^{L}}}{2}$	$\frac{\lambda_{i}^{\|L\|}+r+2 \pm \sqrt{\left(\lambda_{i}^{\|L\|}+r-2\right)^{2}+4 \lambda_{i}^{\|L\|}}}{2}$	1	$\binom{ \pm k \zeta_{i}}{\xi_{i}}$
	0	2	2	$m-n$	$\binom{\eta_{j}}{\mathbf{0}}$
$T(G)$	$\frac{2 \lambda_{i}+r-2 \pm \sqrt{4 \lambda_{i}+r^{2}+4}}{2}$	$\frac{2 \lambda_{i}^{L}+r+2 \pm \sqrt{(r+2)^{2}-4 \lambda_{i}^{L}}}{2}$	$\frac{2 \lambda_{i}^{\|L\|}+3 r-2 \pm \sqrt{(r-2)^{2}+4 \lambda_{i}^{\|L\|}}}{2}$	1	$\binom{ \pm k \zeta_{i}}{\zeta_{i}}$
	-2	$2 r+2$	$2 r-2$	$m-n$	$\binom{\eta_{j}}{\mathbf{0}}$

In the above table, $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ are the eigenvalues of $A(G), \lambda_{1}^{L} \leq \lambda_{2}^{L} \leq \ldots \leq \lambda_{n}^{L}$ are the eigenvalues of $L(G)$, $\lambda_{1}^{|L|} \geq \lambda_{2}^{|L|} \geq \ldots \geq \lambda_{n}^{|L|}$ are the eigenvalues of $|L|(G)$. Note that $\lambda_{i}, \lambda_{i}^{L}, \lambda_{i}^{|L|}$ correspond to the same eigenvector X_{i}.

In Table 1, G is considered to be a connected graph on n vertices and with m edges. All the different eigenvalues (adjacency, Laplacian and signless Laplacian) of the graph produced from G by the above stated unary operations are listed in it. Further, the possible form of corresponding eigenvectors are given. The ' k ' appearing in the last column is an arbitrary constant. For a graph operation on G, if ' r ' is used in the list of its A-eigevalues (L-eigevalues, $|L|$-eigevalues), then for that operation to find its A-eigevalues (L-eigevalues, $|L|$ eigevalues), G is assumed r-regular ($r \geq 2$). In the last column of Table 1, $X_{t}=x_{t}$ (resp. $x_{t}^{L}, x_{t}^{|L|}$) for adjacency (resp. Laplacian, signless Laplacian) eigenvector of G while ξ, ζ_{i} and η_{i} are singular vectors of $M(G)$.

3 Some binary operations on graphs and their eigenvalues

In this section, we consider two different graphs and some binary operations on them. Let G_{1}, G_{2} be two graphs on n_{1}, n_{2} vertices and m_{1}, m_{2} edges. We assume $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n_{1}}\right\}$ and $V\left(G_{2}\right)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n_{2}}\right\}$. If regularity of G_{1} is required ($o r G_{2}$ is required), then it is assumed r_{1} regular (or r_{2} regular). Let $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n_{1}}, 0=\lambda_{1}^{L} \leq \lambda_{2}^{L} \leq \ldots \leq \lambda_{n_{1}}^{L}$ and $\lambda_{1}^{|L|} \geq \lambda_{2}^{|L|} \geq \ldots \geq \lambda_{n_{1}}^{|L|}$ be the eigenvalues of $A\left(G_{1}\right), L\left(G_{1}\right)$ and $|L|\left(G_{1}\right)$, respectively and let $\mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{n_{2}}, 0=\mu_{1}^{L} \leq \mu_{2}^{L} \leq \ldots \leq \mu_{n_{2}}^{L}$ and $\mu_{1}^{|L|} \geq \mu_{2}^{|L|} \geq \ldots \geq \mu_{n_{2}}^{|L|}$ be the eigenvalues of $A\left(G_{2}\right), L\left(G_{2}\right)$ and $|L|\left(G_{2}\right)$, respectively. Let x_{i} (resp. $x_{i}^{L}, x_{i}^{|L|}$) and $y_{j}\left(\right.$ resp. $y_{j}^{L}, y_{j}^{|L|}$) be the eigenvectors of $A\left(G_{1}\right)\left(\operatorname{resp} . L\left(G_{1}\right),|L|\left(G_{1}\right)\right)$ and $A\left(G_{2}\right)$ (resp. $\left.L\left(G_{2}\right),|L|\left(G_{2}\right)\right)$ corresponding to eigenvalues λ_{i} (resp. $\lambda_{i}^{L}, \lambda_{i}^{|L|}$) and μ_{j} (resp. $\mu_{j}^{L}, \mu_{j}^{|L|}$), respectively, for $i=1, \ldots, n_{1}$ and $j=1, \ldots, n_{2}$.

Table 2: Spectral properties of the graphs obtained by disjoint union and join

Graphs	A-eigenvalues	L-eigenvalues	$\|L\|$-eigenvalues	Eigenvectors
G_{1}	λ_{i}	λ_{i}^{L}	$\lambda_{i}^{\|L\|}$	X_{i}
G_{2}	μ_{j}	μ_{j}^{L}	$\mu_{j}^{\|L\|}$	Y_{j}
$G_{1} \cup G_{2}$	λ_{i}	λ_{i}^{L}	$\lambda_{i}^{\|L\|}$	$\binom{X_{i}}{\mathbf{0}}$
	μ_{j}	μ_{j}^{L}	$\mu_{j}^{\|L\|}$	$\binom{\mathbf{0}}{Y_{j}}$
$G_{1} \vee G_{2}$	λ_{i}	$\lambda_{i}^{L}+n_{2}$	$\lambda_{i}^{\|L\|}+n_{2}$	$\binom{X_{i}}{\mathbf{0}}$
	μ_{j}	$\mu_{j}^{L}+n_{1}$	$\mu_{j}^{\|L\|}+n_{1}$	$\binom{\mathbf{0}}{Y_{j}}$
	$\frac{r_{1}+r_{2} \pm \sqrt{\left(r_{1}-r_{2}\right)^{2}+4 n_{1} n_{2}}}{2}$	$0, n_{1}+n_{2}$	$\begin{gathered} \frac{n_{1}+n_{2}+2\left(r_{1}+r_{2}\right) \pm \sqrt{ } \Delta}{2} \\ \text { where } \Delta=\left(n_{1}+n_{2}\right)^{2} \\ -4\left(r_{1}-r_{2}\right)\left(n_{1}-r_{1}-\left(n_{2}-r_{2}\right)\right) \end{gathered}$	$\binom{k \mathbf{1}_{n_{1}}}{\mathbf{1}_{n_{2}}}$

As the adjacency matrix of $G_{1} \cup G_{2}$ is the direct sum of $A\left(G_{1}\right)$ and $A\left(G_{2}\right)$, its adjacency eigenvalues are all the adjacency eigenvalues of G_{1} and G_{2}. Similar type of relationship holds for Laplacian and signless Laplacian eigenvalues of $G_{1} \cup G_{2}$. The join of G_{1} and G_{2} can be expressed as $G_{1} \vee G_{2}=\left(G_{1}^{c} \cup G_{2}^{c}\right)^{c}$. Thus, when both G_{1} and G_{2} are regular, the adjacency and signless Laplacian eigenvalues of $G_{1} \cup G_{2}$ can be obtained using the operations complement and union. Notice that even if G_{1} and G_{2} are regular, $G_{1} \vee G_{2}$ may not be regular. The complete description of Laplacian eigenvalues of $G_{1} \vee G_{2}$ in terms of the Laplacian eigenvalues of G_{1} and G_{2} is given by Merris in 1998 [46]. Table 2 lists the adjacency, Laplacian and signless Laplacian eigenvalues of $G_{1} \cup G_{2}$ and $G_{1} \vee G_{2}$. In the last column of the table when the adjacency (Laplacian, signless Laplacian) case is considered, then $X_{i}=x_{i}\left(x_{i}^{L}, x_{i}^{|L|}\right)$ and $Y_{j}=y_{j}\left(y_{j}^{L}, y_{j}^{|L|}\right)$.

By finding suitable eigenvectors, Indulal [37] in 2012 obtained the spectrum of $G_{1} \dot{\vee} G_{2}$ and $G_{1} \underline{\vee} G_{2}$ in terms of the spectra of G_{1} and G_{2}, when both G_{1} and G_{2} are regular. Table 3 lists all eigenvalues and eigenvectors of

Table 3: Spectral properties of subdivision-vertex and subdivision-edge join graphs

| Graphs | A-eigenvalues | L-eigenvalues | \|L|-eigenvalues | Multiplicity | Eigenvectors |
| :---: | :---: | :---: | :---: | :---: | :---: |
| G_{1} | λ_{i} | λ_{i}^{L} | $\lambda_{i}^{\|L\|}$ | 1 | X_{i} |
| G_{2} | μ_{j} | μ_{j}^{L} | $\mu_{j}^{\|L\|}$ | 1 | Y_{j} |
| $G_{1} \dot{\vee} G_{2}$ | $\pm \sqrt{\lambda_{i}+r_{1}}$ | zeros of $\begin{aligned} & x^{2}-x\left(n_{2}-r_{1}+2\right)+2 n_{2}- \\ & 4 r_{1}+\lambda_{i}^{L} \end{aligned}$ | zeros of $(x-2)\left(x-n_{2}-r_{1}\right)-\lambda_{i}^{\|L\|}$ | 1 | $\left(\begin{array}{c}k \zeta_{i} \\ \zeta_{i} \\ \mathbf{0}_{n_{2}}\end{array}\right)$ |
| | μ_{j} | $\mu_{j}^{L}+n_{1}$ | $\mu_{j}^{\|L\|}+n_{1}$ | 1 | $\left(\begin{array}{c}\mathbf{0}_{n_{1}} \\ \mathbf{0}_{m_{1}} \\ Y_{j}\end{array}\right)$ |
| | 0 | 2 | 2 | $m_{1}-n_{1}$ | $\left(\begin{array}{c}\mathbf{0}_{n_{1}} \\ \eta_{l} \\ \mathbf{0}_{n_{2}}\end{array}\right)$ |
| | zeros of $\begin{aligned} & x^{3}-r_{2} x^{2}-\left(n_{1} n_{2}+2 r_{1}\right) x+ \\ & 2 r_{1} r_{2} \end{aligned}$ | zeros of $\begin{aligned} & x^{3}-x^{2}\left(n_{1}+n_{2}+r_{1}+2\right)+ \\ & x\left(2\left(n_{1}+n_{2}\right)+n_{1} r_{1}\right) \end{aligned}$ | zeros of $\begin{aligned} & x^{3}-x^{2}\left(n_{1}+2 r_{2}+n_{2}+2+\right. \\ & \left.r_{1}\right)+x\left(2\left(n_{1}+n_{2}\right)+r_{1}\left(n_{1}+\right.\right. \\ & \left.\left.2 r_{2}\right)+2 r_{2}\left(n_{2}+2\right)\right)-4 n_{2} r_{2} \end{aligned}$ | 1 | $\left(\begin{array}{c}k_{1} \mathbf{1}_{n_{1}} \\ k_{2} \mathbf{1}_{m_{1}} \\ \mathbf{1}_{n_{2}}\end{array}\right)$ |
| $G_{1} \underline{\vee} G_{2}$ | $\pm \sqrt{\lambda_{i}+r_{1}}$ | zeros of $\left(x-r_{1}\right)\left(x-n_{2}-2\right)-2 r_{1}+\lambda_{i}^{L}$ | zeros of $\left(x-r_{1}\right)\left(x-n_{2}-2\right)-\lambda_{i}^{L}$ | 1 | $\left(\begin{array}{c}k \zeta_{i} \\ \zeta_{i} \\ \mathbf{0}_{n_{2}}\end{array}\right)$ |
| | μ_{j} | $\mu_{j}^{L}+m_{1}$ | $\mu_{j}^{\|L\|}+m_{1}$ | 1 | $\left(\begin{array}{c}\mathbf{0}_{n_{1}} \\ \mathbf{0}_{m_{1}} \\ Y_{j}\end{array}\right)$ |
| | 0 | $n_{2}+2$ | $n_{2}+2$ | $m_{1}-n_{1}$ | $\left(\begin{array}{c}\mathbf{0}_{n_{1}} \\ \eta_{l} \\ \mathbf{0}_{n_{2}}\end{array}\right)$ |
| | zeros of $\begin{aligned} & x^{3}-r_{2} x^{2}-\left(m_{1} n_{2}+2 r_{1}\right) x+ \\ & 2 r_{1} r_{2} \end{aligned}$ | zeros of $\begin{aligned} & x^{3}-x^{2}\left(m_{1}+n_{2}+r_{1}+2\right)+ \\ & x\left(m_{1}\left(r_{1}+2\right)+n_{2} r_{1}\right) \end{aligned}$ | zeros of $\begin{aligned} & x^{3}-x^{2}\left(m_{1}+n_{2}+r_{1}+2 r_{2}+\right. \\ & 2)+x\left(2 m_{1}\left(n_{2}+1\right)+r_{1}\left(m_{1}+\right.\right. \\ & \left.\left.n_{2}\right)+2 r_{2}\left(n_{2}+r_{1}+2\right)\right)- \\ & 2 n_{2} r_{1}\left(m_{1}+r_{2}\right) \end{aligned}$ | 1 | $\left(\begin{array}{c}k_{1} \mathbf{1}_{n_{1}} \\ k_{2} \mathbf{1}_{m_{1}} \\ \mathbf{1}_{n_{2}}\end{array}\right)$ |

$G_{1} \dot{\vee} G_{2}$ and $G_{1} \underline{\vee} G_{2}$. The notation Y_{j} is used in a similar way as that used in Table 2. ξ_{i}, ζ_{i} and η_{l} are singular vectors of $M\left(G_{1}\right)$ for $i=1, \ldots, n_{1}$ and $l=1, \ldots, m_{1}-n_{1}$.

In the last few decades, graph products have been studied extensively and applied to many problems in structural mechanics, see for example Kaveh and Alinejad [38] and the references therein. Among many graph products, the four standard products are the Cartesian, the direct, the strong and the lexicographic product of graphs. The Kronecker product of matrices play a crucial role while expressing the adjacency (resp. Laplacian, signless Laplacian) matrices of these graph products. Results describing the adjacency matrix and its spectra of the product graphs can be found in Brouwer and Haemers [6] and Cvetković, Doob and Sachs [15]. If $G_{1} \square G_{2}, G_{1} \otimes G_{2}, G_{1} \boxtimes G_{2}$ and $G_{1}\left[G_{2}\right]$ represent the Cartesian product, the direct product, the strong product and the lexicographic product of two graphs G_{1} and G_{2}, then we have

$$
\begin{aligned}
& A\left(G_{1} \square G_{2}\right)=A\left(G_{1}\right) \otimes I_{n_{2}}+I_{n_{1}} \otimes A\left(G_{2}\right), \\
& A\left(G_{1} \otimes G_{2}\right)=A\left(G_{1}\right) \otimes A\left(G_{2}\right), \\
& A\left(G_{1} \boxtimes G_{2}\right)=A\left(G_{1} \square G_{2}\right)+A\left(G_{1} \times G_{2}\right) \text { and } \\
& A\left(G_{1}\left[G_{2}\right]\right)=I_{n_{1}} \otimes A\left(G_{2}\right)+A\left(G_{1}\right) \otimes J_{n_{2}} .
\end{aligned}
$$

Now if $\left\{x_{i}, i=1, \ldots, n_{1}\right\}$ and $\left\{y_{j}, j=1, \ldots, n_{2}\right\}$ are orthogonal sets of eigenvectors of $A\left(G_{1}\right)$ and $A\left(G_{2}\right)$, then $\left\{x_{i} \otimes y_{j}\right.$, for $\left.i=1, \ldots, n_{1}, j=1, \ldots, n_{2}\right\}$, forms a set of orthogonal eigenvectors for $A\left(G_{1} \square G_{2}\right), A\left(G_{1} \otimes G_{2}\right)$ and $A\left(G_{1} \boxtimes G_{2}\right)$. But, as in the case of lexicographic product, the second term of $A\left(G_{1}\left[G_{2}\right]\right)$ involves $J_{n_{2}}$, thus, to
find a set of orthogonal eigenvectors $A\left(G_{1}\left[G_{2}\right]\right), G_{2}$ is chosen regular. The Laplacian spectra of the Cartesian and the lexicographic product of graphs have been described completely using the Laplacian spectra of the factor graphs in Merris[45] and Barik, Bapat and Pati [2]. However, the Laplacian spectra of the direct product and the strong product of graphs are expressed in terms of the Laplacian spectra of its factor graphs only when the factor graphs are regular, see [2]. Table 4 lists all the eigenvalues of the four products along with their corresponding eigenvectors. Notations used in Table 4 are similar to that of Table 2.

Table 4: Spectral properties of product graphs

Graphs	A-eigenvalues	L-eigenvalues	$\|L\|$-eigenvalues	Eigenvectors
G_{1}	λ_{i}	λ_{i}^{L}	$\lambda_{i}^{L \mid}$	X_{i}
G_{2}	μ_{j}	μ_{j}^{L}	$\mu_{j}^{L L}$	Y_{j}
$G_{1} \square G_{2}$	$\lambda_{i}+\mu_{j}$	$\lambda_{i}^{L}+\mu_{j}^{L}$	$\lambda_{i}^{L \mid}+\mu_{j}^{L L}$	$X_{i} \otimes Y_{j}$
$G_{1} \otimes G_{2}$	$\lambda_{i} \mu_{j}$	$r_{1} \mu_{j}^{L}+r_{2} \lambda_{i}^{L}-\lambda_{i}^{L} \mu_{j}^{L}$	$\left.\lambda_{i}^{L L}-r_{1}\right)\left(\mu_{j}^{L L}-r_{2}\right)+r_{1} r_{2}$	$X_{i} \otimes Y_{j}$
$G_{1} \boxtimes G_{2}$	$\lambda_{i}+\mu_{j}+\lambda_{i} \mu_{j}$	$\left(1+r_{1}\right) \mu_{j}^{L}+\left(1+r_{2}\right) \lambda_{i}^{L}$	$\left.\lambda_{i}^{L L}-r_{1}\right)\left(\mu_{j}^{L \mid}-r_{2}\right)+r_{1} r_{2}+\lambda_{i}^{L \mid}+$	$X_{i} \otimes Y_{j}$
		$-\lambda_{i}^{L} \mu_{j}^{L}$	$\mu_{j}^{L \mid}$	$X_{i} \otimes \mathbf{1}_{n_{2}}$
$G_{1}\left[G_{2}\right]$	$\lambda_{i} n_{2}+r_{2}$	$\lambda_{i}^{L} n_{2}$	$\lambda_{i}^{L \mid} n_{2}+2 r_{2}$	$e_{i} \otimes Y_{j}$
	μ_{j}	$\mu_{j}^{L}+n_{2} \operatorname{deg}\left(v_{i}\right)$	$\mu_{j}^{L \mid}+n_{2} \operatorname{deg}\left(v_{i}\right)$	

Like the above mentioned graph operations, the corona of two graphs fascinates many researchers because of its almost symmetrical structure and many more important spectral properties. Subsequently, many variants of corona (like the edge corona, the neighbourhood corona, etc.) are defined and their spectral properties are observed. In 2007, Barik, Pati and Sarma [4] provided complete information about the spectrum of $G_{1} \circ G_{2}$ in terms of the spectrum of G_{1} and G_{2}, when G_{2} is regular. In the same paper, all trees with the property SR (A graph G is said to have property SR if $\frac{1}{\lambda}$ is an eigenvalue $A(G)$ if and only if λ is an eigenvalue of $A(G)$ and $\lambda, \frac{1}{\lambda}$ have the same multiplicity) are characterized and it is shown that such a tree is the corona product of some tree and an isolated vertex. Further, the authors obtained complete information about the Laplacian spectrum of $G_{1} \circ G_{2}$. The adjacency matrix of $G_{1} \circ G_{2}$ can be expressed as

$$
A\left(G_{1} \circ G_{2}\right)=\left[\begin{array}{cc}
A\left(G_{1}\right) & \mathbf{1}_{n_{2}}^{T} \otimes I_{n_{1}} \\
\mathbf{1}_{n_{2}} \otimes I_{n_{1}} & A\left(G_{2}\right) \otimes I_{n_{1}}
\end{array}\right] .
$$

McLeman and McNicholas [44] in 2011, observed the presence of the term $\mathbf{1}_{n_{2}}^{T} A^{-1}\left(G_{2}\right) \mathbf{1}_{n_{2}}$ in the characteristic polynomial of $A\left(G_{1} \circ G_{2}\right)$ and named it as coronal of the graph. They have described the characteristic polynomial of $A\left(G_{1} \circ G_{2}\right)$ using that of $A\left(G_{1}\right), A\left(G_{2}\right)$, and the coronal of G_{2}. But they have obtained simple expressions (of the spectrum) only for the graphs which are regular or complete bipartite.

In 2010, Hou and Shiu [34] defined the edge corona operation on two graphs and described the spectrum (resp. the Laplacian spectrum) of $G_{1} \diamond G_{2}$ in terms of the spectra (resp. Laplacian spectra) of G_{1} and G_{2}, when both G_{1} and G_{2} are regular (resp. when G_{1} is regular). In [28], Gopalapillai described the spectrum (resp. Laplacian spectrum) and eigenvectors of $G_{1} \bullet G_{2}$, when G_{2} is regular (resp. G_{1} is regular). Table 5 describes all the eigenvalues of corona, edge corona and neighbourhood corona. The notations used in the table are similar to those used in the previous tables.

Lu and Miao [43] in 2013 defined subdivision-vertex and subdivision-edge corona of graphs. Using the coronal of the second graph G_{2}, the authors [43] described the characteristic polynomial of the adjacency, the Laplacian and the signless Laplacian matrices of subdivision-vertex and subdivision-edge corona graphs, when G_{1}, G_{2} are regular. In Table 6, all the eigenvalues of $G_{1}^{(S)} \odot G_{2}$ and $G_{1}^{(S)} \ominus G_{2}$ are listed.

In 2013, Liu and Lu [40] used different coronals of G_{2} to express the characteristic polynomials of the adjacency (Laplacian, signless Laplacian) matrices of $G_{1}^{(S)} \boxtimes G_{2}$ (subdivision-vertex neighbourhood corona)

Table 5: Spectral properties of corona, edge corona and neighbourhood corona graphs

Graphs	A-eigenvalues	L-eigenvalues	$\|L\|$-eigenvalues	Multiplicity	Eigenvectors
G_{1}	λ_{i}	λ_{i}^{L}	$\lambda_{i}^{\|L\|}$	1	X_{i}
G_{2}	μ_{j}	μ_{j}^{L}	$\mu_{j}^{\|L\|}$	1	Y_{j}
$G_{1} \circ G_{2}$	$\frac{\lambda_{i}+r_{2} \pm \sqrt{\left(\lambda_{i}-r_{2}\right)^{2}+4 n_{2}}}{2}$	$\frac{\Delta \pm \sqrt{\Delta^{2}-4 \lambda_{i}^{L}}}{2}$, where $\Delta=\lambda_{i}^{L}+n_{2}+1$	$\frac{\Delta_{1 \pm} \sqrt{\Delta_{1}^{2}-4 \Delta_{2}}}{2}$, where $\begin{aligned} & \Delta_{1}=\lambda_{i}^{\|L\|}+n_{2}+2 r_{2}+1, \\ & \Delta_{2}=\lambda_{i}^{\|L\|}\left(2 r_{2}+1\right)+2 n_{2} r_{2} \end{aligned}$	1	$\binom{k X_{i}}{\mathbf{1}_{n_{2}} \otimes X_{i}}$
	μ_{j}	$\mu_{j}^{L}+1$	$\mu_{j}^{\|L\|}+1$	n_{1}	$\binom{\mathbf{0}_{n_{1}}}{Y_{j} \otimes e_{i}}$
$G_{1} \diamond G_{2}$	$\frac{\lambda_{i}+r_{2} \pm \sqrt{\left(\lambda_{i}-r_{2}\right)^{2}+4 \Delta}}{2},$ where $\Delta=n_{2}\left(\lambda_{i}+r_{1}\right)$	$\frac{\Delta \pm \sqrt{\Delta^{2}-4 \lambda_{i}^{L}\left(n_{2}+2\right)}}{2}$, where $\Delta=\lambda_{i}^{L}+n_{2} r_{1}+2$	$\begin{aligned} & \frac{\Delta_{1} \pm \sqrt{\Delta_{2}^{2}+4 n_{2} \lambda_{i}^{\|L\|}}}{2}, \text { where } \\ & \Delta_{1}=n_{2} r_{1}+\lambda_{i}^{\|L\|}+2\left(r_{2}+1\right), \\ & \Delta_{2}=n_{2} r_{1}+\lambda_{i}^{\|L\|}-2\left(r_{2}+1\right) \end{aligned}$	1	$\binom{k X_{i}}{\mathbf{1}_{n_{2}} \otimes X_{i}}$
	μ_{j}	$\mu_{j}^{L}+2$	$\mu_{j}^{\|L\|}+2$	m_{1}	$\binom{\mathbf{0}_{n_{1}}}{Y_{j} \otimes e_{i}}$
	r_{2}	2	$2 r_{2}+2$	$m_{1}-n_{1}$	$\binom{\eta_{j}}{\mathbf{0}}$
$G_{1} \bullet G_{2}$	$\begin{aligned} & \frac{\Delta \pm \sqrt{\Delta^{2}+4 \lambda_{i}\left(\lambda_{i} n_{2}-r_{2}\right)}}{2} \\ & \text { where } \Delta=\lambda_{i}+r_{2} \end{aligned}$	$\begin{aligned} & \frac{\Delta_{1} \pm \sqrt{\Delta_{1}^{2}+4 \lambda_{i}^{L} \Delta_{2}}}{2} \text {, where } \\ & \Delta_{1}=\lambda_{i}^{L}+\left(n_{2}+1\right) r_{1}, \\ & \Delta_{2}=n_{2} \lambda_{i}^{L}-r_{1}\left(2 n_{2}+1\right) \end{aligned}$	$\frac{\Delta_{1 \pm} \sqrt{\Delta_{1}^{2}-4 \Delta_{2}}}{2}$, where $\begin{aligned} & \Delta_{1}=r_{1}\left(n_{2}+1\right)+2 r_{2}+\lambda_{i}^{\|L\|}, \\ & \Delta_{2}=2 n_{2} r_{1} r_{2}+\lambda_{i}^{\|L\|}\left(2 n_{2} r_{1}+2 r_{2}+r_{1}-\right. \\ & \left.n_{2} \lambda_{i}^{\|L\|}\right) \end{aligned}$	1	$\binom{k X_{i}}{\mathbf{1}_{n_{2}} \otimes X_{i}}$
	μ_{j}	$\mu_{j}^{L}+r_{1}$	$\mu_{j}^{\|L\|}+r_{1}$	n_{1}	$\binom{\mathbf{0}_{n_{1}}}{Y_{j} \otimes e_{i}}$

and $G_{1}^{(S)} \boxminus G_{2}$ (subdivision-edge neighbourhood corona). In Table 7, all the eigenvalues of $G_{1}^{(S)} \boxtimes G_{2}$ and $G_{1}^{(S)} \boxminus G_{2}$ are listed, respectively.

Lan and Zhou [39] introduced four new graph operations based on R-graphs, namely the R-vertex corona, R-edge corona, R-vertex neighbourhood corona and R-edge neighbourhood corona. In [39], the authors have provided characterstic polynomials of adjacency, Laplacian and signless Laplacian matrices of R-vertex corona, R-edge corona and R-edge neighbourhood corona, when G_{1} is regular. In Table 8 , we have listed different eigenvalues of $G_{1}^{(R)} \odot G_{2}$ and $G_{1}^{(R)} \ominus G_{2}$ along with their multiplicities and Table 9 contains all the eigenvalues of $G_{1}^{(R)} \boxtimes G_{2}$ and $G_{1}^{(R)} \boxminus G_{2}$.

4 Some ternary operations on graphs and their eigenvalues

In this section, G is considered to be a connected graph on n vertices and with m edges. Furthermore, G_{1} and G_{2} are two graphs on n_{1} and n_{2} vertices, respectively. If regularity of G (resp. G_{1}, G_{2}) is required, then it is assumed to be r (resp. r_{1}, r_{2}) regular. Let $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}, 0=\lambda_{1}^{L} \leq \lambda_{2}^{L} \leq \ldots \leq \lambda_{n}^{L}$ and $\lambda_{1}^{|L|} \geq \lambda_{2}^{|L|} \geq \ldots \geq \lambda_{n}^{|L|}$ be the eigenvalues of $A(G), L(G)$ and $|L|(G)$, respectively. Similarly, let $\mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{n_{1}}, 0=\mu_{1}^{L} \leq \mu_{2}^{L} \leq$ $\ldots \leq \mu_{n_{1}}^{L}$ and $\mu_{1}^{|L|} \geq \mu_{2}^{|L|} \geq \ldots \geq \mu_{n_{1}}^{|L|}$ be the eigenvalues of $A\left(G_{1}\right), L\left(G_{1}\right)$ and $|L|\left(G_{1}\right)$, respectively and let $v_{1} \geq v_{2} \geq \ldots \geq v_{n_{2}}, 0=v_{1}^{L} \leq v_{2}^{L} \leq \ldots \leq v_{n_{2}}^{L}$ and $v_{1}^{|L|} \geq v_{2}^{|L|} \geq \ldots \geq v_{n_{2}}^{|L|}$ be the eigenvalues of $A\left(G_{2}\right), L\left(G_{2}\right)$ and $|L|\left(G_{2}\right)$, respectively. Let $y_{i}\left(y_{i}^{L}, y_{i}^{|L|}\right)$ and $z_{j}\left(z_{j}^{L}, z_{j}^{|L|}\right)$ be the eigenvectors of $A\left(G_{1}\right)\left(L\left(G_{1}\right),|L|\left(G_{1}\right)\right)$ and $A\left(G_{2}\right)\left(L\left(G_{2}\right),|L|\left(G_{2}\right)\right)$ corresponding to eigenvalues $\mu_{i}\left(\mu_{i}^{L}, \mu_{i}^{|L|}\right)$ and $v_{j}\left(v_{j}^{L}, v_{j}^{|L|}\right)$ for $i=1, \ldots, n_{1}$ and $j=$ $1, \ldots, n_{2}$, respectively. Let ξ_{i} and ζ_{i} are singular vector pairs of $M(G)$ corresponding to the singular value s_{i}, for $i=1,2, \ldots, n$. Further, let η_{j}, for $j=1, \ldots, m-n$, be orthogonal vectors such that $M(G) \eta_{j}=\mathbf{0}_{n}$, for $j=1, \ldots, m-n$.

Table 6: Spectral properties of subdivision-vertex and subdivision-edge corona graphs

Graphs	A-eigenvalues	L-eigenvalues	$\|L\|$-eigenvalues	Multiplicity	Eigenvector
$G_{1}^{(S)} \odot G_{2}$	zeros of $\begin{aligned} & x^{3}-r_{2} x^{2}-\left(\lambda_{i}+r_{1}+n_{2}\right) x+ \\ & r_{2}\left(\lambda_{i}+r_{1}\right) \end{aligned}$	zeros of $\begin{aligned} & x^{3}-\left(n_{2}+r_{1}+3\right) x^{2}+\left(2 n_{2}+\right. \\ & \left.r_{1}+\lambda_{i}^{L}+2\right) x-\lambda_{i}^{L} \end{aligned}$	zeros of $\begin{aligned} & x^{3}-\left(n_{2}+r_{1}+2 r_{2}+3\right) x^{2}+ \\ & \left(\left(2 r_{2}+3\right)\left(n_{2}+r_{1}\right)+2\left(2 r_{2}+\right.\right. \\ & \left.1)-n_{2}-\lambda_{i}^{\|L\|}\right) x+\left(2 r_{2}+1\right) \lambda_{i}^{\|L\|}- \\ & 2 r_{1}-4 r_{2}\left(n_{2}+r_{1}\right) \end{aligned}$	1	$\left(\begin{array}{c}k_{1} \zeta_{i} \\ k_{2} \xi_{i} \\ \mathbf{1}_{n_{2}} \otimes \zeta_{i}\end{array}\right)$
	μ_{j}	$\mu_{j}^{L}+1$	$\mu_{j}^{\|L\|}+1$	n_{1}	$\left(\begin{array}{c}\mathbf{0}_{n_{1}} \\ \mathbf{0}_{m_{1}} \\ Y_{j} \otimes e_{i}\end{array}\right)$
	0	2	2	$m_{1}-n_{1}$	$\left(\begin{array}{c}\mathbf{0}_{n_{1}} \\ \eta_{p} \\ \mathbf{0}_{n_{2} n_{1}}\end{array}\right)$
$G_{1}^{(S)} \ominus G_{2}$	zeros of $\begin{aligned} & x^{3}-r_{2} x^{2}-\left(\lambda_{i}+r_{1}+n_{2}\right) x+ \\ & r_{2}\left(\lambda_{i}+r_{1}\right) \end{aligned}$	zeros of $\begin{aligned} & x^{3}-\left(n_{2}+r_{1}+3\right) x^{2}+ \\ & \left(r_{1}\left(n_{2}+1\right)+2+\lambda_{i}^{L}\right) x-\lambda_{i}^{L} \end{aligned}$	zeros of $\begin{aligned} & x^{3}-\left(n_{2}+r_{1}+2 r_{2}+3\right) x^{2}+ \\ & \left(3 r_{1}+4 r_{2}+n_{2} r_{1}+2 n_{2} r_{2}+\right. \\ & \left.2 r_{1} r_{2}+2-\lambda_{i}^{\|L\|}\right) x-2 n_{2} r_{1} r_{2}- \\ & 4 r_{1} r_{2}-2 r_{1}+\left(2 r_{2}+1\right) \lambda_{i}^{\|L\|} \end{aligned}$	1	$\left(\begin{array}{c}k_{1} \zeta_{i} \\ k_{2} \xi_{i} \\ \mathbf{1}_{n_{2}} \otimes \xi_{i}\end{array}\right)$
	μ_{j}	$\mu_{j}^{L}+1$	$\mu_{j}^{\|L\|}+1$	m_{1}	$\left(\begin{array}{c}\mathbf{o}_{n_{1}} \\ \mathbf{0}_{m_{1}} \\ Y_{j} \otimes e_{q}\end{array}\right)$
	$\frac{r_{2 \pm} \sqrt{r_{2}^{2}+4 n_{2}}}{2}$	$\frac{\left(n_{2}+3\right) \pm \sqrt{\left(n_{2}+3\right)^{2}-8}}{2}$	zeros of $\begin{aligned} & x^{2}-\left(n_{2}+2 r_{2}+3\right) x+2\left(r_{2} n_{2}+\right. \\ & \left.2 r_{2}+1\right) \end{aligned}$	$m_{1}-n_{1}$	$\left(\begin{array}{c}\mathbf{0}_{n_{1}} \\ k \eta_{p} \\ \mathbf{1}_{n_{2}} \otimes \eta_{p}\end{array}\right)$

Recently, Barik and Sahoo [5], defined some ternary operations which are generalizations of operations like subdivision-vertex neighbourhood corona, subdivision-edge neighbourhood corona etc. These includes subdivision double corona denoted by $G^{(S)} \circ\left(G_{1}, G_{2}\right)$, Q-graph double corona denoted by $G^{(Q)} \circ\left(G_{1}, G_{2}\right), R$ graph double corona denoted by $G^{(R)} \circ\left(G_{1}, G_{2}\right)$ and total graph double corona denoted by $G^{(T)} \circ\left(G_{1}, G_{2}\right)$ of G, G_{1} and G_{2}, respectively. Observe that the adjacency matrix of $G^{(S)} \circ\left(G_{1}, G_{2}\right)$ can be expressed as

$$
A\left(G^{(S)} \circ\left(G_{1}, G_{2}\right)\right)=\left(\begin{array}{cccc}
\mathbf{0}_{n} & M(G) & \mathbf{1}_{n_{1}}^{T} \otimes I_{n} & \mathbf{0} \\
M^{T}(G) & \mathbf{0}_{m} & \mathbf{0} & \mathbf{1}_{n_{2}}^{T} \otimes I_{m} \\
\mathbf{1} \otimes I_{n} & \mathbf{0} & A\left(G_{1}\right) \otimes I_{n} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} \otimes I_{m} & \mathbf{0} & A\left(G_{2}\right) \otimes I_{m}
\end{array}\right)
$$

The adjacency matrices of $G^{(Q)} \circ\left(G_{1}, G_{2}\right), G^{(R)} \circ\left(G_{1}, G_{2}\right)$ and $G^{(T)} \circ\left(G_{1}, G_{2}\right)$ are given by

$$
\begin{aligned}
& A\left(G^{(Q)} \circ\left(G_{1}, G_{2}\right)\right)=A\left(G^{(S)} \circ\left(G_{1}, G_{2}\right)\right)+\operatorname{diag}\left(\mathbf{0}_{n}, A\left(G_{\ell}\right), \mathbf{0}_{n n_{1}}, \mathbf{0}_{m n_{2}}\right), \\
& A\left(G^{(R)} \circ\left(G_{1}, G_{2}\right)\right)=A\left(G^{(S)} \circ\left(G_{1}, G_{2}\right)\right)+\operatorname{diag}\left(A(G), \mathbf{0}_{m}, \mathbf{0}_{n n_{1}}, \mathbf{0}_{m n_{2}}\right) \text { and } \\
& A\left(G^{(T)} \circ\left(G_{1}, G_{2}\right)\right)=A\left(G^{(S)} \circ\left(G_{1}, G_{2}\right)\right)+\operatorname{diag}\left(A(G), A\left(G_{\ell}\right), \mathbf{0}_{n n_{1}}, \mathbf{0}_{m n_{2}}\right) .
\end{aligned}
$$

Furthermore, the degree diagonal matrix of these graphs are given by

$$
\begin{aligned}
& D\left(G^{(S)} \circ\left(G_{1}, G_{2}\right)\right)=\operatorname{diag}\left(\left(n_{1}+r\right) I_{n},\left(n_{2}+2\right) I_{m}, I_{n n_{1}}, I_{m n_{2}}\right), \\
& D\left(G^{(Q)} \circ\left(G_{1}, G_{2}\right)\right)=\operatorname{diag}\left(\left(n_{1}+r\right) I_{n}, D\left(G_{\ell}\right)+\left(n_{2}+2\right) I_{m}, I_{n n_{1}}, I_{m n_{2}}\right), \\
& D\left(G^{(R)} \circ\left(G_{1}, G_{2}\right)\right)=\operatorname{diag}\left(D(G)+\left(n_{1}+r\right) I_{n},\left(n_{2}+2\right) I_{m}, I_{n n_{1}}, I_{m n_{2}}\right) \text { and } \\
& D\left(G^{(T)} \circ\left(G_{1}, G_{2}\right)\right)=\operatorname{diag}\left(D(G)+\left(n_{1}+r\right) I_{n}, D\left(G_{\ell}\right)+\left(n_{2}+2\right) I_{m}, I_{m n_{1}}, I_{m n_{2}}\right) .
\end{aligned}
$$

Now the expressions for the Laplacian and signless Laplacian matrices can be easily obtained.

Table 7: Spectral properties of subdivision-vertex neighbourhood and subdivision-edge neighbourhood corona graphs

| Graphs | A-eigenvalues | L-eigenvalues | \|L|-eigenvalues | Multiplicity | Eigenvector |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $G_{1}^{(S)} \boxtimes G_{2}$ | zeros of $\begin{aligned} & x^{3}-r_{2} x^{2}-\left(n_{2}+1\right)\left(\lambda_{i}+\right. \\ & \left.r_{1}\right) x+r_{2}\left(\lambda_{i}+r_{1}\right) \end{aligned}$ | zeros of $\begin{aligned} & \left(x-r_{1}\right)\left(x^{2}-\left(2 n_{2}+r_{1}+\right.\right. \\ & \left.2) x+\left(n_{2}+1\right) \lambda_{i}^{L}\right) \end{aligned}$ | zeros of $\begin{aligned} & \left(x-r_{1}-2 r_{2}\right)\left(x-r_{1}\right)(x-2- \\ & \left.2 n_{2}\right)-\lambda_{i}^{\|L\|}\left(\left(n_{2}+1\right) x-2 r_{2}-\right. \\ & \left.r_{1} n_{2}-r_{1}\right) \end{aligned}$ | 1 | $\left(\begin{array}{c}k_{1} \zeta_{i} \\ k_{2} \zeta_{i} \\ \mathbf{1}_{n_{2}} \otimes \zeta_{i}\end{array}\right)$ |
| | μ_{j} | $\mu_{j}^{L}+r_{1}$ | $\mu_{j}^{\|L\|}+r_{1}$ | n_{1} | $\left(\begin{array}{c}\mathbf{0}_{n_{1}} \\ \mathbf{0}_{m_{1}} \\ Y_{j} \otimes e_{i}\end{array}\right)$ |
| | 0 | $2 n_{2}+2$ | $2 n_{2}+2$ | $m_{1}-n_{1}$ | $\left(\begin{array}{c}\mathbf{0}_{n_{1}} \\ \eta_{p} \\ \mathbf{0}_{n_{2} n_{1}}\end{array}\right)$ |
| $G_{1}^{(S)} \boxminus G_{2}$ | zeros of $\begin{aligned} & x^{3}-r_{2} x^{2}-\left(n_{2}+1\right)\left(\lambda_{i}+\right. \\ & \left.r_{1}\right) x+r_{2}\left(\lambda_{i}+r_{1}\right) \end{aligned}$ | zeros of $\begin{aligned} & (x-2)\left(x^{2}-\left(r_{1} n_{2}+r_{1}+\right.\right. \\ & \left.2) x+\left(n_{2}+1\right) \lambda_{i}^{L}\right) \end{aligned}$ | zeros of $\begin{aligned} & \left(x-r_{1}-r_{1} n_{2}\right)(x-2)(x-2- \\ & \left.2 r_{2}\right)-\lambda_{i}^{\|L\|}\left(\left(n_{2}+1\right) x-2 r_{2}-\right. \\ & \left.2 n_{2}-2\right) \end{aligned}$ | 1 | $\left(\begin{array}{c}k_{1} \zeta_{i} \\ k_{2} \xi_{i} \\ \mathbf{1}_{n_{2}} \otimes \xi_{i}\end{array}\right)$ |
| | μ_{j} | $\mu_{j}^{L}+2$ | $\mu_{j}^{\|L\|}+2$ | m_{1} | $\left(\begin{array}{c}\mathbf{0}_{n_{1}} \\ \mathbf{0}_{m_{1}} \\ Y_{j} \otimes e_{q}\end{array}\right)$ |
| | 0 | 2 | 2 | $m_{1}-n_{1}$ | $\left(\begin{array}{c}\mathbf{0}_{n_{1}} \\ \eta_{p} \\ \mathbf{0}_{n_{2} m_{1}}\end{array}\right)$ |
| | r_{2} | 2 | $2 r_{2}+2$ | $m_{1}-n_{1}$ | $\left(\begin{array}{c}\mathbf{0}_{n_{1}} \\ \mathbf{0}_{m_{1}} \\ \mathbf{1}_{n_{2}} \otimes \eta_{p}\end{array}\right)$ |

Table 10 , lists the A, L and $|L|$-eigenvalues of all the above described double corona graphs. The ' $*$ ' appearing in the first column of Table 10 stands for S, Q, R or T. Further in the table, ξ_{i}, ζ_{i} and η_{p} are the singular vectors of $M(G)$ for $i=1, \ldots, n$ and $j=1, \ldots, m-n$ and $Y_{q}=y_{q}\left(y_{q}^{L}, y_{q}^{|L|}\right)$ for $q=2, \ldots, n_{1}$ and $Z_{l}=z_{l}\left(z_{l}^{L}\right.$, $z_{l}^{|L|}$) for $l=2, \ldots, n_{2}$ if we are determining the adjacency (Laplacian, signless Laplacian) eigenvalues. The coefficients of the polynomials appearing in Table 10 are given below (outside the table).

Table 8: Spectral properties of R-vertex and R-edge corona graphs

Graphs	A-eigenvalues	L-eigenvalues	$\|L\|$-eigenvalues	Multiplicity	Eigenvector
$G_{1}^{(R)} \odot G_{2}$	zeros of $\begin{aligned} & x^{3}-\left(r_{2}+\lambda_{i}\right) x^{2}-\left(n_{2}+r_{1}-\right. \\ & \left.\lambda_{i}\left(r_{2}-1\right)\right) x+r_{2}\left(r_{1}+\lambda_{i}\right) \end{aligned}$	zeros of $\begin{aligned} & x^{3}-\left(n_{2}+r_{1}+\lambda_{i}^{L}+3\right) x^{2}+ \\ & \left(2 n_{2}+r_{1}+4 \lambda_{i}^{L}+2\right) x-3 \lambda_{i}^{L} \end{aligned}$	zeros of $\begin{aligned} & x^{3}-\left(n_{2}+r_{1}+2 r_{2}+\lambda_{i}^{\|L\|}+\right. \\ & 3) x^{2}+\left(2\left(r_{2}+1\right)\left(n_{2}+\lambda_{i}^{\|L\|}\right)+\right. \\ & \left.2\left(r_{1} r_{2}+1\right)+3 r_{1}+4 r_{2}\right) x-\left(2 r_{1}+\right. \\ & \left.\lambda_{i}^{\|L\|}\right)\left(2 r_{2}+1\right)-4 n_{2} r_{2} \\ & \hline \end{aligned}$	1	$\left(\begin{array}{c}k_{1} \zeta_{i} \\ k_{2} \zeta_{i} \\ \mathbf{1}_{n_{2}} \otimes \zeta_{i}\end{array}\right)$
	μ_{j}	$\mu_{j}^{L}+1$	$\mu_{j}^{\|L\|}+1$	n_{1}	$\left(\begin{array}{c}\mathbf{0}_{n_{1}} \\ \mathbf{0}_{m_{1}} \\ Y_{j} \otimes e_{i}\end{array}\right)$
	0	2	2	$m_{1}-n_{1}$	$\left(\begin{array}{c}\mathbf{o}_{n_{1}} \\ \eta_{p} \\ \mathbf{0}_{n_{2} n_{1}}\end{array}\right)$
$G_{1}^{(R)} \ominus G_{2}$	zeros of $\begin{aligned} & x^{3}-\left(r_{2}+\lambda_{i}\right) x^{2}-\left(n_{2}+\right. \\ & \left.r_{1}-\lambda_{i}\left(r_{2}-1\right)\right) x+r_{1} r_{2}+ \\ & \lambda_{i}\left(n_{2}+r_{2}\right) \end{aligned}$	zeros of $\begin{aligned} & x^{3}-\left(n_{2}+r_{1}+\lambda_{i}^{L}+3\right) x^{2}+ \\ & \left(r_{1}\left(n_{2}+1\right)+\lambda_{i}^{L}\left(n_{2}+4\right)+\right. \end{aligned}$ 2) $x-3 \lambda_{i}^{L}$	$\begin{aligned} & \text { zeros of } \\ & x^{3}-\left(n_{2}+r_{1}+2 r_{2}+\lambda_{i}^{\|L\|}+\right. \\ & 3) x^{2}+\left(\left(n_{2}+2\right)\left(2 r_{2}+\lambda_{i}^{\|L\|}\right)+\right. \\ & 2 r_{2}\left(r_{1}+\lambda_{i}^{\|L\|}\right)+r\left(n_{2}+3\right)+ \\ & \text { 2) } x-2 r_{1}\left(r_{2}\left(n_{2}+2\right)+1\right)- \\ & \lambda_{i}^{\|L\|}\left(2 r_{2}\left(n_{2}+1\right)+1\right) \end{aligned}$	1	$\left(\begin{array}{c}k_{1} \zeta_{i} \\ k_{2} \zeta_{i} \\ \mathbf{1}_{n_{2}} \otimes \zeta_{i}\end{array}\right)$
	μ_{j}	$\mu_{j}^{L}+1$	$\mu_{j}^{\|L\|}+1$	m_{1}	$\left(\begin{array}{c}\mathbf{0}_{n_{1}} \\ \mathbf{0}_{m_{1}} \\ Y_{j} \otimes e_{i}\end{array}\right)$
	$\frac{r_{2} \pm \sqrt{r_{2}^{2}+4 n_{2}}}{2}$	$\frac{n_{2}+3 \pm \sqrt{\left(n_{2}+3\right)^{2}-8}}{2}$	$\begin{aligned} & \text { zeros of } \\ & x^{2}-\left(n_{2}+2 r_{2}+3\right) x+2\left(2 r_{2}+\right. \\ & \left.n_{2} r_{2}+1\right) \end{aligned}$	$m_{1}-n_{1}$	$\left(\begin{array}{c}\mathbf{0}_{n_{1}} \\ k \eta_{p} \\ \mathbf{1}_{n_{2}} \otimes \eta_{p}\end{array}\right)$
$i=1,2, \ldots, n_{1} ; j=2, \ldots, n_{2} ; p=1,2, \ldots, m_{1}-n_{1} ; q=1,2, \ldots, m_{1}$					
$\begin{aligned} & \stackrel{\circ}{A}_{2}=n_{1}+n_{2}+r+\stackrel{\circ}{a}_{2}+\stackrel{\circ}{b}_{2}+4, \\ & \stackrel{\circ}{B}_{2}=\left(n_{1}+1\right)\left(n_{2}+3\right)+2(r+1)+n_{2} r+\stackrel{\circ}{a}_{2}\left(n_{2}+4\right)+\stackrel{\circ}{b}_{2}\left(n_{1}+r+2\right)+\stackrel{\circ}{a}_{2} \stackrel{\circ}{b}_{2}+\lambda_{i}^{L}, \\ & \stackrel{\circ}{C}_{2}=\stackrel{\circ}{a}_{2}\left(n_{2}+5\right)+\stackrel{\circ}{b}_{2}\left(n_{1}+2 r+1\right)+\stackrel{\circ}{a}_{2} \stackrel{\circ}{b}_{2}+2\left(n_{1}+\lambda_{i}^{L}+1\right)+r\left(n_{2}+1\right), \\ & \stackrel{\circ}{D}_{2}=2 \stackrel{\circ}{a}_{2}+\stackrel{\circ}{b}_{2} r+\stackrel{\circ}{a}_{2} \stackrel{b}{2}_{2}+\lambda_{i}^{L} ; \end{aligned}$					
$\AA_{3}=n_{1}+n_{2}+r+2\left(r_{1}+r_{2}\right)+\circ_{3}+\circ_{3}+4$					
	$\begin{aligned} \stackrel{\circ}{C}_{3} & =2\left(r_{1}+r_{2}\right)\left(n_{1} n_{2}+\right. \\ & +4 r_{1} r_{2}\left(n_{1}+n_{2}+r\right. \\ & +\left(r+\stackrel{\circ}{a}_{3}\right)\left(2 \stackrel{\circ}{b}_{3}+5\right) \end{aligned}$	$\begin{aligned} & \left(r+\stackrel{\circ}{a}_{3}\right)\left(n_{2}+3\right)+\stackrel{\circ}{b}_{3}(n \\ & \left.+\stackrel{\circ}{a}_{3}+\stackrel{\circ}{b}_{3}+2\right)+n_{1}(2(3 \\ & 2\left(1-\lambda_{i}^{\|L\|}\right)+\stackrel{\circ}{b}_{3}, \end{aligned}$	$\begin{aligned} & \left.\left.+r+\stackrel{\circ}{a}_{3}+1\right)+2-\lambda_{i}^{\|L\|}\right) \\ & \left.\left.+2 r_{2}+1\right)+\stackrel{\circ}{b}_{3}\right)+n_{2}(r+2 \end{aligned}$	$\left(2+\stackrel{\circ}{a}_{3}\right)$	
$\stackrel{\circ}{D}_{3}=4 r_{1} r_{2}\left(n_{1} n_{2}+n_{2}\left(r+\stackrel{\circ}{a}_{3}\right)+\left(n_{1}+r+\stackrel{\circ}{a}_{3}\right)\left(\stackrel{\circ}{b}_{3}+2\right)-\lambda_{i}^{\|L\|}\right)$					

Table 9: Spectral properties of R-vertex neighbourhood and R-edge neighbourhood corona graphs

Graphs	A-eigenvalues	L-eigenvalues	$\|L\|$-eigenvalues	Multiplicity	Eigenvector
$G_{1}^{(R)} \boxtimes G_{2}$	zeros of $\begin{aligned} & x^{3}-\left(r_{2}+\lambda_{i}\right) x^{2}-\left(\left(n_{2}+\right.\right. \\ & 1)\left(\lambda_{i}+r_{1}\right)+\lambda_{i}\left(n_{2} \lambda_{i}-\right. \\ & \left.\left.r_{2}\right)\right) x+\left(\lambda_{i}+r_{1}\right)\left(r_{2}-n_{2} \lambda_{i}\right) \end{aligned}$	$\begin{aligned} & \text { zeros of } \\ & x^{3}-\left(2 n_{2}+n_{2} r_{1}+3 r_{1}+\right. \\ & \left.\lambda_{i}^{L}+2\right) x^{2}+\left(2 n_{2} r_{1}\left(n_{2}+\lambda_{i}^{L}\right)+\right. \\ & r_{1}^{2}\left(n_{2}+2\right)+\lambda_{i}^{L} n_{2}\left(3-\lambda_{i}^{L}\right)+ \\ & \left.\lambda_{i}^{L}\left(2 r_{1}+3\right)+2 r_{1}\left(3 n_{2}+2\right)\right) x- \\ & 6 \lambda_{i}^{L} r_{1}-\lambda_{i}^{L} n_{2}\left(5 n_{2} r_{1}+13 r_{1}-\right. \\ & \left.3 \lambda_{i}^{L}-2 \lambda_{i}^{L} n_{2}\right) \\ & \hline \end{aligned}$	zeros of $\begin{aligned} & \left(x+n_{2}\left(\lambda_{i}^{\|L\|}-r_{1}\right)-2\left(r_{1}+\right.\right. \\ & \left.\left.r_{2}\right)\right)\left(\left(\lambda_{i}^{\|L\|}-r_{1}\right)\left(x-2 n_{2}-2\right)+\right. \\ & \left.\lambda_{i}^{\|L\|}\right)+\left(x-r_{1}\left(n_{2}+2\right)\right)\left(n_{2} \lambda_{i}^{\|L\|}-\right. \\ & \left.\left(x-2 r_{1}-2 r_{2}\right)\left(x-2 n_{2}-2\right)\right) \end{aligned}$	1	$\left(\begin{array}{c}k_{1} \zeta_{i} \\ k_{2} \zeta_{i} \\ \mathbf{1}_{n_{2}} \otimes \zeta_{i}\end{array}\right)$
	μ_{j}	$\mu_{j}^{L}+2 r_{1}$	$\mu_{j}^{\|L\|}+2 r_{1}$	n_{1}	$\left(\begin{array}{c}\mathbf{0}_{n_{1}} \\ \mathbf{0}_{m_{1}} \\ Y_{j} \otimes e_{i}\end{array}\right)$
	0	$2\left(n_{2}+1\right)$	$2\left(n_{2}+1\right)$	$m_{1}-n_{1}$	$\left(\begin{array}{c}\mathbf{0}_{n_{1}} \\ \eta_{p} \\ \mathbf{o}_{n_{2} n_{1}}\end{array}\right)$
$G_{1}^{(R)} \boxminus G_{2}$	zeros of $\begin{aligned} & x^{3}-\left(r_{2}+\lambda_{i}\right) x^{2}-\left(\lambda _ { i } \left(n_{2}-\right.\right. \\ & \left.\left.r_{2}+1\right)+r_{1}\left(n_{2}+1\right)\right) x+ \\ & r_{2}\left(\lambda_{i}+r_{1}\right) \end{aligned}$	zeros of $\begin{aligned} & (x-2)\left(x^{2}-\left(r_{1}\left(n_{2}+1\right)+\lambda_{i}^{L}\right) x+\right. \\ & \left.\left(n_{2}+3\right) \lambda_{i}^{L}\right) \end{aligned}$	zeros of $\begin{aligned} & x^{3}-\left(r_{1}\left(n_{2}+1\right)+2\left(r_{2}+2\right)+\right. \\ & \left.\lambda_{i}^{\|L\|}\right) x^{2}+\left(2 r_{1}\left(n_{2}+1\right)\left(r_{2}+2\right)+\right. \\ & \left.4\left(r_{2}+1\right)+\lambda^{\|L\|}\left(2 r_{2}-n_{2}+3\right)\right) x- \\ & 2\left(r_{2}+1\right)\left(2 r_{1}\left(n_{2}+1\right)+\lambda_{i}^{\|L\|}\right)+ \\ & 2 n_{2} \lambda^{\|L\|} \end{aligned}$	1	$\left(\begin{array}{c}k_{1} \zeta_{i} \\ k_{2} \zeta_{i} \\ \mathbf{1}_{n_{2}} \otimes \zeta_{i}\end{array}\right)$
	μ_{j}	$\mu_{j}^{L}+2$	$\mu_{j}^{\|L\|}+2$	m_{1}	$\left(\begin{array}{c}\mathbf{0}_{n_{1}} \\ \mathbf{0}_{m_{1}} \\ Y_{j} \otimes e_{q}\end{array}\right)$
	0	2	2	$m_{1}-n_{1}$	$\left(\begin{array}{c}\mathbf{0}_{n_{1}} \\ \eta_{p} \\ \mathbf{0}_{n_{2} m_{1}}\end{array}\right)$
	r_{2}	2	$2 r_{2}+2$	$m_{1}-n_{1}$	$\left(\begin{array}{c}\mathbf{0}_{n_{1}} \\ \mathbf{0}_{m_{1}} \\ \mathbf{1}_{n_{2}} \otimes \eta_{p}\end{array}\right)$

$i=1,2, \ldots, n_{1} ; j=2, \ldots, n_{2} ; p=1,2, \ldots, m_{1}-n_{1} ; q=1,2, \ldots, m_{1}$

Table 10: Spectral properties of double corona graphs

Graphs	A-eigenvalues	L-eigenvalues	$\|L\|$-eigenvalues	Multiplicity	Eigenvectors
$G^{(*)} \circ\left(G_{1}, G_{2}\right)$	zeros of $\begin{aligned} & x^{4}-\AA_{1} x^{3}+\grave{B}_{1} x^{2}- \\ & \grave{C}_{1} x+\stackrel{D}{D}_{1} \end{aligned}$	zeros of $\begin{aligned} & x^{4}-\AA_{2} x^{3}+\stackrel{\circ}{B}_{2} x^{2}- \\ & \stackrel{C}{C}_{2} x+\stackrel{\circ}{D}_{2} \end{aligned}$	$\begin{aligned} & \text { zeros of } \\ & x^{4}-\stackrel{\circ}{A}_{3} x^{3}+\stackrel{\circ}{B}_{3} x^{2}-\stackrel{\circ}{C}_{3} x+ \\ & \stackrel{\circ}{D}_{3} \end{aligned}$	1	$\left(\begin{array}{c}k_{1} \zeta_{i} \\ k_{2} \xi_{i} \\ k_{3} \mathbf{1}_{n_{1}} \otimes \zeta_{i} \\ \mathbf{1}_{n_{2}} \otimes \zeta_{i}\end{array}\right)$
	$\frac{r_{2} \pm \sqrt{r_{2}^{2}+4\left(n_{2}+\dot{c}_{1}\right)}}{2}$	$\frac{\Delta \pm \sqrt{\Delta^{2}-4\left(\mathfrak{c}_{2}+2\right)}}{2}$ where $\Delta=n_{2}+\stackrel{\circ}{c}_{2}+3$	$\frac{\Delta \pm \sqrt{\Delta^{2}+4\left(2 r_{2}-\AA_{3}-2\right)}}{2}$ where $\Delta=n_{2}-2 r_{2}+\stackrel{\circ}{c}_{3}+3$	$m-n$	$\left(\begin{array}{c}\mathbf{0}_{n} \\ k \eta_{p} \\ \mathbf{0}_{n_{1} n} \\ \mathbf{1}_{n_{2}} \otimes \eta_{p}\end{array}\right)$
	μ_{j}	$\mu_{j}^{L}+1$	$\mu_{j}^{\|L\|}+1$	n	$\left(\begin{array}{c}\mathbf{0}_{n+m} \\ Y_{q} \otimes e_{i} \\ \mathbf{0}_{n 2}\end{array}\right)$
	v_{l}	$v_{l}^{L}+1$	$v_{l}^{\|L\|}$	m	$\binom{\mathbf{0}_{n+m+n_{1} n}}{Z_{l} \otimes e_{j}}$

where for

$$
\begin{aligned}
& S_{G}: \stackrel{\circ}{a}_{1}=\stackrel{\circ}{b}_{1}=\stackrel{\circ}{c}_{1}=0 ; \quad \stackrel{\circ}{a}_{2}=\circ_{b}=\stackrel{\circ}{c}_{2}=0 ; \quad \stackrel{\circ}{a}_{3}=\stackrel{\circ}{b}_{3}=\stackrel{\circ}{c}_{3}=0 ; \\
& Q_{G}: \stackrel{\circ}{a}_{1}=0, \stackrel{\circ}{b}_{1}=\lambda_{i}+r-2, \stackrel{\circ}{c}_{1}=-2 ; \quad \stackrel{\circ}{a}_{2}=0, \stackrel{\circ}{b}_{2}=\lambda_{i}^{L}, \stackrel{\circ}{c}_{2}=2 r ; \quad \stackrel{\circ}{a}_{3}=0, \stackrel{\circ}{b}_{3}=\lambda_{i}^{|L|}+2 r-4, \circ_{3}=2 r-4 ; \\
& R_{G}: \stackrel{\circ}{a}_{1}=\lambda_{i}, \stackrel{\circ}{b}_{1}=\stackrel{\circ}{c}_{1}=0 ; \quad \stackrel{\circ}{a}_{2}=\lambda_{i}^{L}, \stackrel{\circ}{b}_{2}=\stackrel{\circ}{c}_{2}=0 ; \quad \stackrel{\circ}{a}_{3}=\lambda^{|L|}, \stackrel{\circ}{b}_{3}=\stackrel{\circ}{c}_{3}=0 ; \\
& T_{G}: \stackrel{\circ}{a}_{1}=\lambda_{i}, \stackrel{\circ}{b}_{1}=\lambda_{i}+r-2, \stackrel{\circ}{c}_{1}=-2 ; \stackrel{\circ}{a}_{2}=\stackrel{\circ}{b}_{2}=\lambda_{i}^{L}, \stackrel{\circ}{c}_{2}=2 r ; \stackrel{\circ}{a}_{3}=\lambda_{i}^{|L|}, \stackrel{\circ}{b}_{3}=\lambda_{i}^{|L|}+2 r-4, \stackrel{\circ}{c}_{3}=2 r-4 .
\end{aligned}
$$

Likewise, Barik and Sahoo [5] defined another four variants of subdivision double corona, namely the subdivision double neighbourhood corona of G, G_{1} and G_{2}, denoted by $G^{(S)} \bullet\left(G_{1}, G_{2}\right), Q$-graph double neighbourhood corona of G, G_{1} and G_{2}, denoted by $G^{(Q)} \bullet\left(G_{1}, G_{2}\right)$, the R-graph double neighbourhood corona of G, G_{1} and G_{2}, denoted by $G^{(R)} \bullet\left(G_{1}, G_{2}\right)$, and the total double neighbourhood corona of G, G_{1} and G_{2}, denoted by $G^{(T)} \bullet\left(G_{1}, G_{2}\right)$.

Observe that, the adjacency matrix of $G^{(S)} \bullet\left(G_{1}, G_{2}\right)$ can be expressed as

$$
A\left(G^{(S)} \bullet\left(G_{1}, G_{2}\right)\right)=\left(\begin{array}{cccc}
\mathbf{0}_{n} & M(G) & \mathbf{0} & \mathbf{1}_{n_{2}}^{T} \otimes M(G) \\
M^{T}(G) & \mathbf{0}_{m} & \mathbf{1}_{n_{1}}^{T} \otimes M^{T}(G) & \mathbf{0} \\
\mathbf{0} & \mathbf{1} \otimes M(G) & A\left(G_{1}\right) \otimes I_{n} & \mathbf{0} \\
\mathbf{1} \otimes M^{T}(G) & \mathbf{0} & \mathbf{0} & A\left(G_{2}\right) \otimes I_{m}
\end{array}\right)
$$

Then the adjacency matrices of $G^{(Q)} \bullet\left(G_{1}, G_{2}\right), G^{(R)} \bullet\left(G_{1}, G_{2}\right)$ and $G^{(T)} \bullet\left(G_{1}, G_{2}\right)$ are given by

$$
\begin{aligned}
& A\left(G^{(Q)} \bullet\left(G_{1}, G_{2}\right)\right)=A\left(G^{(S)} \bullet\left(G_{1}, G_{2}\right)\right)+\operatorname{diag}\left(\mathbf{0}_{n}, A\left(G_{\ell}\right), \mathbf{0}_{m n_{1}}, \mathbf{0}_{m n_{2}}\right), \\
& A\left(G^{(R)} \bullet\left(G_{1}, G_{2}\right)\right)=A\left(G^{(S)} \bullet\left(G_{1}, G_{2}\right)\right)+\operatorname{diag}\left(A(G), \mathbf{0}_{m}, \mathbf{0}_{n n_{1}}, \mathbf{o}_{m n_{2}}\right) \text { and } \\
& A\left(G^{(T)} \bullet\left(G_{1}, G_{2}\right)\right)=A\left(G^{(S)} \bullet\left(G_{1}, G_{2}\right)\right)+\operatorname{diag}\left(A(G), A\left(G_{\ell}\right), \mathbf{o}_{n n_{1}}, \mathbf{0}_{m n_{2}}\right)
\end{aligned}
$$

The degree diagonal matrix of these graphs are given by

$$
\begin{aligned}
& D\left(G^{(S)} \bullet\left(G_{1}, G_{2}\right)\right)=\operatorname{diag}\left(r\left(n_{2}+1\right) I_{n}, 2\left(n_{1}+1\right) I_{m}, r I_{n n_{1}}, 2 I_{m n_{2}}\right), \\
& D\left(G^{(Q)} \bullet\left(G_{1}, G_{2}\right)\right)=\operatorname{diag}\left(r\left(n_{2}+1\right) I_{n}, 2\left(n_{1}+1\right) I_{m}, D\left(G_{\ell}\right)+r I_{n n_{1}}, 2 I_{m n_{2}}\right), \\
& D\left(G^{(R)} \bullet\left(G_{1}, G_{2}\right)\right)=\operatorname{diag}\left(D(G)+r\left(n_{2}+1\right) I_{n}, 2\left(n_{1}+1\right) I_{m}, r I_{n n_{1}}, 2 I_{m n_{2}}\right) \text { and } \\
& D\left(G^{(T)} \bullet\left(G_{1}, G_{2}\right)\right)=\operatorname{diag}\left(D(G)+r\left(n_{2}+1\right) I_{n}, D\left(G_{\ell}\right)+2\left(n_{1}+1\right) I_{m}, r I_{n n_{1}}, 2 I_{m n_{2}}\right) .
\end{aligned}
$$

Similar expressions for the Laplacian and signless Laplacian matrices can be easily obtained.
The A, L and $|L|$-eigenvalues eigenvalues of the above described double neighbourhood corona operations are listed in Table 11. The notations used in this table are similar to that in Table 10.

Table 11: Spectral properties of double neighbourhood corona graphs

| Graphs | A-eigenvalues | L-eigenvalues | \|L|-eigenvalues | Multiplicity | Eigenvectors |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $G^{(*)} \bullet\left(G_{1}, G_{2}\right)$ | zeros of $\begin{aligned} & x^{4}-\dot{A}_{1} x^{3}+\dot{B}_{1} x^{2}- \\ & \dot{C}_{1} x+\dot{D}_{1} \end{aligned}$ | zeros of $\begin{aligned} & x^{4}-\dot{A}_{2} x^{3}+\dot{B}_{2} x^{2}- \\ & \dot{C}_{2} x+\dot{D}_{2} \end{aligned}$ | zeros of $\begin{aligned} & x^{4}-\dot{A}_{3} x^{3}+\dot{B}_{3} x^{2}-\dot{C}_{3} x+ \\ & \dot{D}_{3} \end{aligned}$ | 1 | $\left(\begin{array}{c}k_{1} \zeta_{i} \\ k_{2} \xi_{i} \\ k_{3} \mathbf{1}_{n_{1}} \otimes \zeta_{i} \\ \mathbf{1}_{n_{2}} \otimes \zeta_{i}\end{array}\right)$ |
| | -2 | $2\left(n_{1}+1\right)+\dot{c}_{2}$ | $2\left(n_{1}+1\right)+\dot{c}_{3}$ | $m-n$ | $\left(\begin{array}{c}\mathbf{0}_{n} \\ \eta_{p} \\ \mathbf{0}_{n_{1} n+n_{2} m}\end{array}\right)$ |
| | r_{2} | 2 | $2 r_{2}+2$ | $m-n$ | $\binom{\mathbf{0}_{n+m+n_{1} n}}{\mathbf{1}_{n_{2}} \otimes \eta_{p}}$ |
| | μ_{q} | $\mu_{q}^{L}+r$ | $\mu_{q}^{\|L\|}+r$ | n | $\left(\begin{array}{c}\mathbf{0}_{n+m} \\ Y_{q} \otimes e_{i} \\ \mathbf{0}_{n_{2} m}\end{array}\right)$ |
| | v_{l} | $v_{l}^{L}+2$ | $v_{l}^{\|L\|}+2$ | m | $\binom{\mathbf{0}_{n+m+n_{1} n}}{Z_{l} \otimes e_{j}}$ |

In Table 11,

$$
\begin{aligned}
\dot{A}_{1} & =r_{1}+r_{2}+\dot{a}_{1}+\dot{b}_{1}, \\
\dot{B}_{1} & =\left(r_{1}+r_{2}\right)\left(\dot{a}_{1}+\dot{b}_{1}\right)+r_{1} r_{2}+\dot{a}_{1} \dot{b}_{1}-n_{1}\left(r+\lambda_{i}\right)-n_{2}-1, \\
\dot{C}_{1} & =\left(r_{1}+r_{2}\right)\left(\dot{a}_{1} \dot{b}_{1}+1\right)-r_{1} r_{2}\left(\dot{a}_{1}+\dot{b}_{1}\right)+n_{1}\left(r+\lambda_{i}\right)\left(r_{2}+\dot{a}_{1}\right)+n_{2}\left(r_{1}+\dot{b}_{1}\right), \\
\dot{D}_{1} & =n_{1}\left(r+\lambda_{i}\right)\left(n_{2}-r_{2} \dot{a}_{1}\right)+r_{1} r_{2}\left(\dot{a}_{1} \dot{b}_{1}-1\right)-n_{2} r_{1} \dot{a}_{1} ; \\
\dot{A}_{2} & =2\left(n_{1}+2\right)+r\left(n_{2}+2\right)+\dot{a}_{2}+\dot{b}_{2}, \\
\dot{B}_{2} & =\left(n_{1}+n_{2}\right)\left(2 r+\lambda_{i}^{L}\right)+\dot{a}_{2}\left(2\left(n_{1}+2\right)+r\right)+\dot{b}_{2}\left(r\left(n_{2}+2\right)+2\right)+\left(2 n_{1}+r\right)\left(r n_{2}+2\right)+(r+2)^{2}+\dot{a}_{2} \dot{b}_{2}+\lambda_{i}^{L}, \\
\dot{C}_{2} & =\lambda_{i}^{L}(r+2)\left(n_{1}+n_{1} n_{2}+n_{2}\right)+(r+2)\left(\lambda_{i}^{L}+\dot{a}_{2} \dot{b}_{2}\right)+4 r\left(\dot{a}_{2}+\dot{b}_{2}\right)+\dot{b}_{2} n_{2}\left(\lambda_{i}^{L}+r^{2}\right)+\dot{a}_{2} n_{1}\left(\lambda_{i}^{L}+4\right) \\
& +2 r\left(2\left(n_{1}+1\right)+r\left(n_{2}+1\right)\right)+4 \dot{a}_{2}+\dot{b}_{2} r^{2}, \\
\dot{D}_{2} & =\lambda_{i}^{L}\left(\lambda_{i}^{L} n_{1} n_{2}+2 r+2 \dot{a}_{2} n_{1}+r \dot{b}_{2} n_{2}\right)+2 r\left(\lambda_{i}^{L}\left(n_{1}+n_{2}\right)+\dot{a}_{2} \dot{b}_{2}+2 \dot{a}_{2}+r \dot{b}_{2}\right) ; \\
\dot{A}_{3} & =2\left(n_{1}+r_{2}\right)+r_{1}\left(n_{2}+3\right)+r+4+\dot{a}_{3}+\dot{b}_{3}, \\
\dot{B}_{3} & =r\left(\dot{a}_{3}+\dot{b}_{3}\right)+\dot{a}_{3} \dot{b}_{3}+2 \dot{a}_{3}\left(n_{1}+r_{1}+r_{2}+2\right)+\dot{b}_{3}\left(r_{1}\left(n_{2}+3\right)+2\left(r_{2}+1\right)\right)+2\left(n_{1}+r_{2}\right)\left(r+r_{1}\left(n_{2}+3\right)\right) \\
& +r_{1}\left(2 r_{1}+r\right)\left(n_{2}+1\right)+4\left(n_{1}\left(r_{2}+1\right)+r_{1}\left(n_{2}+3\right)+r+r_{2}+1\right)-\lambda_{i}^{|L|}\left(n_{1}+n_{2}+1\right), \\
\dot{C}_{C} & =\left(2\left(n_{1}+r_{1}+1\right)+r+\dot{b}_{3}\right)\left(2\left(r_{2}+1\right)\left(r_{1}\left(n_{2}+1\right)+\dot{a}_{3}\right)-n_{2} \lambda_{i}^{|L|}\right) \\
& +\left(2\left(r_{2}+1\right)+r_{1}\left(n_{2}+1\right)+\dot{a}_{3}\right)\left(\left(2 r_{1}+r\right)\left(2\left(n_{1}+1\right)+\dot{b}_{3}\right)-n_{1} \lambda_{i}^{|L|}\right)-\lambda_{i}^{|L|}\left(2\left(r_{1}+r_{2}+1\right)+r\right), \\
\dot{D}_{3} & =\left(\left(2 r_{1}+r\right)\left(2\left(n_{1}+1\right)+\dot{b}_{3}\right)-n_{1} \lambda_{i}^{|L|}\right)\left(2\left(r_{2}+1\right)\left(r_{1}\left(n_{2}+1\right)+\dot{a}_{3}\right)-n_{2} \lambda_{i}^{|L|}\right)-2\left(2 r_{1}+r\right)\left(r_{2}+1\right) \lambda_{i}^{|L|}
\end{aligned}
$$

where for

$$
\begin{aligned}
& S_{G}: \dot{a}_{1}=\dot{b}_{1}=\dot{c}_{1}=0 ; \quad \dot{a}_{2}=\dot{b}_{2}=\dot{c}_{2}=0 ; \quad \dot{a}_{3}=\dot{b}_{3}=\dot{c}_{3}=0 ; \\
& Q_{G}: \dot{a}_{1}=0, \dot{b}_{1}=\lambda_{i}+r-2, \dot{c}_{1}=-2 ; \quad \dot{a}_{2}=0, \dot{b}_{2}=\lambda_{i}^{L}, \dot{c}_{2}=2 r ; \quad \dot{a}_{3}=0, \dot{b}_{3}=\lambda_{i}^{|L|}+2 r-4, \dot{c}_{3}=2 r-4 ; \\
& R_{G}: \dot{a}_{1}=\lambda_{i}, \dot{b}_{1}=\dot{c}_{1}=0 ; \quad \dot{a}_{2}=\lambda_{i}^{L}, \dot{b}_{2}=\dot{c}_{2}=0 ; \quad \dot{a}_{3}=\lambda^{|L|}, \dot{b}_{3}=\dot{c}_{3}=0 ; \\
& T_{G}: \dot{a}_{1}=\lambda_{i}, \dot{b}_{1}=\lambda_{i}+r-2, \dot{c}_{1}=-2 ; \quad \dot{a}_{2}=\dot{b}_{2}=\lambda_{i}^{L}, \dot{c}_{2}=2 r ; \dot{a}_{3}=\lambda_{i}^{|L|}, \dot{b}_{3}=\lambda_{i}^{|L|}+2 r-4, \dot{c}_{3}=2 r-4 .
\end{aligned}
$$

Remark 4.1. Observe that when $n_{2}=0$, then $A\left(G^{(S)} \circ\left(G_{1}, G_{2}\right)\right)$ reduces to $A\left(G^{(S)} \odot G_{1}\right)$. Similarly, when $n_{1}=0$, then $A\left(G^{(S)} \circ\left(G_{1}, G_{2}\right)\right)$ reduces to $A\left(G^{(S)} \ominus G_{2}\right)$. Therefore, the subdivision double corona operation is a more general operation than the subdivision-vertex corona and the subdivision-edge corona operations. In a similar manner it can be observed that $G^{(R)} \odot G_{1}$ and $G^{(R)} \ominus G_{2}$ are subcases of $G^{(R)} \circ\left(G_{1}, G_{2}\right)$.

Remark 4.2. When $n_{2}=0$, then $A\left(G^{(S)} \bullet\left(G_{1}, G_{2}\right)\right)$ reduces to $A\left(G^{(S)} \boxtimes G_{1}\right)$. Similarly, when $n_{1}=0$, then $A\left(G^{(S)} \bullet\left(G_{1}, G_{2}\right)\right)$ get reduced to $A\left(G^{(S)} \boxminus G_{2}\right)$. Therefore, the subdivision double corona operation is the more general operation than the subdivision-vertex neighbourhood corona and the subdivision-edge neighbourhood corona operations. Also, $G^{(R)} \boxminus G_{2}$ is a special case of $G^{(R)} \circ\left(G_{1}, G_{2}\right)$, when we choose $n_{1}=0$. But $G^{(R)} \boxminus G_{2}$ is not a special case of $G^{(R)} \circ\left(G_{1}, G_{2}\right)$. The reason for this lies in the way both the operations are defined. In the definition for R-vertex neighbourhood corona (defined by Lan and Zhou in [39]) of G_{1} and G_{2} (denoted by $G_{1}^{(R)} \boxtimes G_{2}$), each neighbour of the i-th old-vertex of $R\left(G_{1}\right)$ are joined to every vertex in the i-th copy of G_{2}. But in case of R-graph double neighbourhood corona (as defined in [5]) of G, G_{1} and G_{2} (denoted by $G^{(R)} \bullet\left(G_{1}, G_{2}\right)$), only the new-vertex neighbours of the i-th old-vertex of $R(G)$ are joined to every vertex in the i-th copy of G_{1}.

5 Notations

Appendix

Figure 1: Graphs resulting from unary operations on $G=C_{4}$

Figure 2: Union, Join, subdivision-vertex join and subdivision-edge join of graphs C_{4} and P_{3}

Figure 3: Cartesian, direct, strong and lexicographic product of graphs P_{2} and P_{3}

Figure 4: Corona, edge corona and neighbourhood corona of C_{4} and P_{3}

$C_{4}^{(S)} \odot P_{3}$

$C_{4}^{(S)} \ominus P_{3}$

$C_{4}^{(S)} \bullet P_{3}$

$C_{4}^{(S)} \boxminus P_{3}$

Figure 5: Subdivision-vertex corona, Subdivision-edge corona, subdivision-vertex neighbourhood corona and subdivision-edge neighbourhood corona of graphs C_{4} and P_{3}

$C_{4}^{(R)} \odot P_{3}$

$C_{4}^{(R)} \ominus P_{3}$

$C_{4}^{(R)} \boxtimes P_{3}$

$C_{4}^{(R)} \boxminus P_{3}$

Figure 6: R-vertex corona, R-edge corona, R-vertex neighbourhood corona, R-edge neighbourhood corona of graphs C_{4} and P_{3}

Figure 7: Double coronas of C_{4} with P_{3} and P_{2}

Figure 8: Double neighbourhood coronas of C_{4} with P_{3} and P_{2}

Acknowledgement: The authors are thankful to the editors and the referee for careful reading of the article and the encouraging comments made in the report.

References

[1] R. B. Bapat, Graphs and matrices, Springer, 2010.
[2] S. Barik, R. B. Bapat and S. Pati, On the Laplacian spectra of product graphs, Applicable Analysis and Discrete Mathematics, 9 (2015), pp. 39-58.
[3] S. Barik and S. Pati, On algebraic connectivity and spectral integral variations of graphs, Linear algebra and its applications, 397 (2005), pp. 209-222.
[4] S. Barik, S. Pati and B. K. Sarma, The spectrum of the corona of two graphs, SIAM Journal on Discrete Mathematics, 21 (2007), pp. 47-56.
[5] S. Barik and G. Sahoo, On the Laplacian spectra of some variants of corona, Linear Algebra Appl. 512 (2017), pp. 32-47.
[6] A. E. Brouwer and W. H. Haemers, Spectra of graphs, Springer, 2011.
[7] R. A. Brualdi and H. J. Ryser, Combinatorial matrix theory, vol. 39, Cambridge University Press, 1991.
[8] D. M. Cardoso, M. A. A. de Freitas, E. A. Martins and M. Robbiano, Spectra of graphs obtained by a generalization of the join graph operation, Discrete Mathematics, 313 (2013), pp. 733-741.
[9] D. M. Cardoso, E. A. Martins, M. Robbiano and O. Rojo, Eigenvalues of a H-generalized join graph operation constrained by vertex subsets, Linear Algebra and its Applications, 438 (2013), pp. 3278-3290.
[10] S.-Y. Cui and G.-X. Tian, The spectrum and the signless Laplacian spectrum of coronae, Linear Algebra and its Applications, 437 (2012), pp. 1692-1703.
[11] D. M. Cvetković, Spectrum of the total graph of a graph, Publ. Inst. Math.(Beograd), 16 (1973), pp. 49-52.
[12] D. Cvetković, Spectra of graphs formed by some unary operations, Publ. Inst. Math.(Beograd), 19 (1975), pp. 37-41.
[13] D. Cvetković, Spectral theory of graphs based on the signless Laplacian, tech. report, Research report. Availiable at www. mi. sanu. ac. rs/projects/signless L report Jan28. pdf, 2010.
[14] D. M. Cvetković, M. Doob, I. Gutman and A. Torgašev, Recent results in the theory of graph spectra, Annals of Discrete Mathematics, vol. 36, North-Holland Publishing Co., 1988.
[15] D. M. Cvetković, M. Doob and H. Sachs, Spectra of graphs: Theory and application, vol. 413, Academic press New York, 1980.
[16] D. Cvetković, P. Rowlinson and S. Simić, An introduction to the theory of graph spectra, Cambridge University Press, 2010.
[17] D. Cvetković, P. Rowlinson and S. Simić, Spectral generalizations of line graphs: On graphs with least eigenvalue -2, vol. 314, Cambridge University Press, 2004.
[18] D. Cvetković, P. Rowlinson and S. K. Simić, Signless Laplacians of finite graphs, Linear Algebra and its applications, 423 (2007), pp. 155-171.
[19] D. Cvetković, P. Rowlinson and S. Simić, Eigenspaces of graphs, vol. 66, Cambridge University Press, 1997.
[20] D. Cvetković and S. K. Simić, Towards a spectral theory of graphs based on the signless Laplacian, I, Publ. Inst. Math.(Beograd), 85 (2009), pp. 19-33.
[21] D. Cvetković and S. K. Simić, Towards a spectral theory of graphs based on the signless Laplacian, II, Linear Algebra and its Applications, 432 (2010), pp. 2257-2272.
[22] D. Cvetković and S. K. Simić, Towards a spectral theory of graphs based on the signless Laplacian, III, Applicable Analysis and Discrete Mathematics, 4 (2010), pp. 156-166.
[23] D. Cvetković and S. Simić, Graph spectra in Computer Science, Linear Algebra and its Applications, 434 (2011), 1545-1562.
[24] N. M. M. de Abreu, Old and new results on algebraic connectivity of graphs, Linear algebra and its applications, 423 (2007), pp. 53-73.
[25] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Mathematical Journal, 23 (1973), pp. 298-305.
[26] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Mathematicae, 4 (1970), pp. 322-325.
[27] C. Godsil and B. McKay, Products of graphs and their spectra, Springer, 1976.
[28] I. Gopalapillai, The spectrum of neighborhood corona of graphs, Kragujevac J. Math, 35 (2011), pp. 493-500.
[29] R. Grone and R. Merris, Algebraic connectivity of trees, Czechoslovak Mathematical Journal, 37 (1987), pp. 660-670.
[30] R. Grone and R. Merris, The Laplacian spectrum of a graph II, SIAM Journal on Discrete Mathematics, 7 (1994), pp. $221-229$.
[31] R. Grone, R. Merris and V. S. Sunder, The Laplacian spectrum of a graph, SIAM Journal on Matrix Analysis and Applications, 11 (1990), pp. 218-238.
[32] W. H. Haemers, E. Spence, Enumeration of cospectral graphs, Europ. J. Comb. 25 (2004), pp 199-211.
[33] F. Harary, Graph theory, Addision-Wesley, Reading, MA, 1969.
[34] Y. Hou and W.-C. Shiu, The spectrum of the edge corona of two graphs, Electronic Journal of Linear Algebra, 20 (2010), pp. 586-594.
[35] W. Imrich and S. Klavžar, Product graphs structure and recognition, Wiley-Interscience, 2000.
[36] W. Imrich, S. Klavžar and D. F. Rall, Topics in graph theory: Graphs and their Cartesian product, AK Peters Ltd, 2008.
[37] G. Indulal, Spectrum of two new joins of graphs and infinite families of integral graphs, Kragujevac J. Math, 36 (2012), pp. 133-139.
[38] A. Kaveh and B. Alinejad, Laplacian matrices of product graphs: applications in structural mechanics, Acta mechanica, 222 (2011), pp. 331-350.
[39] J. Lan and B. Zhou, Spectra of graph operations based on R-graph, Linear and Multilinear Algebra, 63 (2014), pp. 1401-1422.
[40] X. Liu and P. Lu, Spectra of subdivision-vertex and subdivision-edge neighbourhood coronae, Linear Algebra and its Applications, 438 (2013), pp. 3547-3559.
[41] X.-G. Liu and Z.-H. Zhang, Spectra of subdivision-vertex and subdivision-edge joins of graphs, arXiv:1212.0619.
[42] X. Liu and S. Zhou, Spectra of the neighbourhood corona of two graphs, Linear and Multilinear Algebra, 62 (2014), pp. 12051219.
[43] P. Lu and Y. Miao, Spectra of the subdivision-vertex and subdivision-edge coronae, arXiv preprint arXiv:1302.0457 (2013).
[44] C. McLeman and E. McNicholas, Spectra of coronae, Linear Algebra and its Applications, 435 (2011), pp. 998-1007.
[45] R. Merris, Laplacian matrices of graphs: a survey, Linear algebra and its applications, 197 (1994), pp. 143-176.
[46] R. Merris, Laplacian graph eigenvectors, Linear algebra and its applications, 278 (1998), pp. 221-236.
[47] B. Mohar, Laplacian eigenvalues of graphs - a survey, Discrete Mathematics, 109 (1992), pp. 171-183.
[48] B. Mohar, The Laplacian spectrum of graphs, Graph theory, combinatorics, and applications, 2 (1991), pp. $871-898$.
[49] S. Shinoda, On the characteristic polynomial of the adjacency matrix of the subdivision graph of a graph, Discrete Applied Mathematics, 2 (1980), pp. 349-351.
[50] M. Tavakoli, F. Rahbarnia and A. R. Ashrafi, Note on strong product of graphs, Kragujevac Journal of Mathematics, 37 (2013), pp. 187-193.
[51] P. Van Mieghem, Graph spectra for complex networks, Cambridge University Press, 2010.
[52] S. Wang and B. Zhou, The signless Laplacian spectra of the corona and edge corona of two graphs, Linear and Multilinear Algebra, 61 (2013), pp. 197-204.
[53] B.-F. Wu, Y.-Y. Lou and C.-X. He, Signless Laplacian and normalized Laplacian on the H-join operation of graphs, Discrete Mathematics, Algorithms and Applications, 6 (2014), pp. 1450046-1-1450046-13.
[54] L. Xu and C. He, On the signless Laplacian spectral determination of the join of regular graphs, Discrete Mathematics, Algorithms and Applications, 6 (2014), pp. 1450050-1-1450050-8.

[^0]: *Corresponding Author: S. Barik: School of Basic Sciences, IIT Bhubaneswar, Bhubaneswar, India,
 E-mail: sasmita@iitbbs.ac.in
 D. Kalita: Department of Mathematical Sciences, Tezpur University, Tezpur, India, E-mail: k.debajit@gmail.com
 S. Pati: Department of Mathematics, IIT Guwahati, Guwahati, India, E-mail: pati@iitg.ernet.in
 G. Sahoo: School of Basic Sciences, IIT Bhubaneswar, Bhubaneswar, India, E-mail: sahoo.gopi@gmail.com

