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Abstract: Let G be a graph on n vertices and A(G), L(G), and |L|(G) be the adjacencymatrix, Laplacianmatrix
and signless Laplacian matrix of G, respectively. The paper is essentially a survey of known results about
the spectra of the adjacency, Laplacian and signless Laplacianmatrix of graphs resulting from various graph
operations with special emphasis on corona and graph products. Inmost cases, we have described the eigen-
values of the resulting graphs along with an explicit description of the structure of the corresponding eigen-
vectors.
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1 Introduction
The study of spectral graph theory is concerned with the relationships between the spectra of certain matri-
ces associated with a graph and the structural properties of that graph. In literature, there are a wide variety
of matrices associated with graphs fromwhich the spectrum can be extracted. Among these, frequently stud-
ied matrices are the adjacency matrix, the Laplacian matrix and the signless Laplacian matrix, see [1, 14–
16, 18, 30, 31, 45, 47]. Several researchers have studied various spectral properties of these matrices. The
study of the spectra has found its applications in several subjects like biology, geography, economics, social
sciences, computer science, information and communication technologies, see for example [23, 51] and ref-
erences therein. The study of graph spectra is a vast area. This article aims to survey some speci�c topics of
this area that are described in the next few paragraphs.

All graphs considered in this article are assumed to be simple and connected, unless otherwise men-
tioned. Let G be a graph on vertices 1, 2, . . . , n. At times, we use V(G) and E(G) to denote the set of vertices
and the set of edges of G, respectively. We use the notation i ∼ j to mean the existence of an edge between
the vertices i and j of G. The adjacency matrix of G, denoted by A(G), is an n × n matrix with entries aij = 1
or 0, depending on whether i ∼ j or otherwise, respectively. The Laplacian matrix of G, denoted by L(G), is
de�ned as D(G) − A(G), where D(G) is the diagonal matrix with degree of the vertex i as the i-th diagonal
entry. It is well known that L(G) is a positive semide�nite matrix with the smallest eigenvalue 0. There is an
extensive literature available on the adjacency and Laplacian matrices of graphs. We refer the reader to a
classical book by Cvetković, Doob, and Sachs [15] and two survey articles by Merris [45] and Mohar [47], for
more background on these two matrices. Fiedler [25] proved that 0 is a simple eigenvalue of L(G) if and only
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if G is connected, which led Fiedler to coin the term algebraic connectivity of a graph to mean the second
smallest eigenvalue of the Laplacian matrix of that graph. Since its introduction to the literature, the alge-
braic connectivity of a graph has received a good deal of attention (see [3, 19, 24, 25, 29, 45, 48]). The matrix
|L|(G) de�ned as |L|(G) = D(G) + A(G), was �rst termed as the signless Laplacian matrix of G by Haemers and
Spence in [32]. Like the Laplacian matrix of a graph the signless Laplacian matrix is positive semide�nite.
Cvetković [18] proved that the least eigenvalue of the signless Laplacian of a connected graph is equal to 0 if
and only if the graph is bipartite and the multiplicity of the eigenvalue 0 is equal to the number of bipartite
components. Recently, the signless Laplacianmatrix of a graph and its spectrum have attracted the attention
of researchers (see [10, 13, 18, 20–22, 53, 54]).

One of the interesting question in spectral graph theory is: looking at the structure of a graph, is it pos-
sible to predict the spectrum of that graph? One way to deal with this problem is to use various graph op-
erations. Several researchers have introduced many graph operations such as complement, disjoint union,
join, graph products (namely the Cartesian product, the direct product, the strong product and the lexico-
graphic product), the corona, the edge corona, the neighbourhood corona, the subdivision-vertex join, the
subdivision-edge join, the subdivision-vertex corona, the subdivision-edge corona, the subdivision-vertex
neighbourhood corona, the subdivision-edgeneighbourhood corona, theR-vertex corona, theR-edge corona,
the R-vertex neighbourhood corona, the R-edge neighbourhood corona, see for example [4, 6–9, 15, 26–
28, 33, 34, 36, 39, 40, 42, 44] and the references therein.

It is well known that Gc, the complement of G is the graph whose vertex set is same as that of G and
two vertices are adjacent in Gc if and only if they are not adjacent in G. The union of two graphs G1 and G2,
denoted by G1 ∪ G2 is the graph whose vertex set is V(G1)∪ V(G2) and the edge set is E(G1)∪ E(G2). The join
of G1 and G2, denoted by G1 ∨ G2 is the graph obtained from G1 ∪ G2 by adding all possible edges from the
vertices of G1 to those in G2. Join operation is also known as complete product ([15]).

The graph products are useful in constructing many important classes of graphs. Let G1 and G2 be two
graphs with disjoint vertex sets {u1, . . . , um} and {v1 . . . , vn}, respectively. A graph product of G1 and G2 is a
new graphwhose vertex set is V(G1)×V(G2), the Cartesian product of V(G1) and V(G2). The adjacency of two
distinct vertices (ui , vj) and (ur , vs) in the product graph is determined entirely by the adjacency/equality/non
adjacency of ui and ur in G1 and that of vj and vs in G2. Thus, one can de�ne 256 di�erent types of graph
products. The graphs obtained by taking the products of two graphs are called the product graphs, and the
two graphs are called the factors. The four graph products, namely the Cartesian product, the direct product,
the strong product and the lexicographic product are known as the standard graph products and have been
studied by many researchers. We refer the reader to the book by Imrich and Klavžar [35] for a study of graph
products and their structural properties. The Cartesian product of G1 and G2, denoted by G1�G2 is the graph,
where (ui , vj) ∼ (ur , vs) if either (ui = ur and vj ∼ vs in G2) or (ui ∼ ur in G1 and vj = vs). The Kronecker
productordirect productofG1 andG2, denotedbyG1⊗G2, is the graphwhere (ui , vj) ∼ (ur , vs) if ui ∼ ur inG1
and vj ∼ vs in G2. The strong product of G1 and G2, denoted by G1�G2, is the graph where (ui , vj) ∼ (ur , vs)
if either (ui = ur and vj ∼ vs in G2) or (ui ∼ ur in G1 and vj = vs) or (ui ∼ ur in G1 and vj ∼ vs in G2). The
lexicographic product of G1 and G2, denoted by G1[G2], is the graph where (ui , vj) ∼ (ur , vs) if either (ui ∼ ur
in G1) or (ui = ur and vj ∼ vs in G2). Investigation of the various spectra of product graphs is one interesting
topic for researchers. Some results describing the adjacency and the Laplacian spectra of product graphs can
be found in [2, 6, 15, 27, 45, 50] and the references therein.

Like the above mentioned graph operations, the corona is another operation which is used in construct-
ing many important classes of graphs. The corona of two graphs was �rst introduced by Frucht and Harary
[26]. Let G1 and G2 be two graphs on disjoint sets of n and m vertices, respectively. The corona of G1 and
G2, denoted by G1 ◦ G2, is de�ned as the graph obtained by taking one copy of G1 and n copies of G2, and
then joining the i-th vertex of G1 to every vertex in the i-th copy of G2. Recently, two variants of the corona
operation, namely the edge corona and the neighbourhood coronawere introduced byHou and Shiu [34] and
Gopalapillai [28], respectively. Let G1 and G2 be two graphs on disjoint sets of n1 and n2 vertices,m1 andm2
edges, respectively. The edge corona [34] of G1 and G2, denoted by G1♦G2 is the graph obtained by taking
one copy of G1 and m1 copies of G2, and then joining two end vertices of the i-th edge of G1 to every vertex
in the i-th copy of G2. The neighbourhood corona [28] of G1 and G2, denoted by G1 •G2 is the graph obtained
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by taking one copy of G1 and n1 copies of G2, and joining every neighbour of the i-th vertex of G1 to every
vertex of the i-th copy of G2 by a new edge. Results on the adjacency, the Laplacian and the signless Laplacian
spectra of di�erent coronae of two graphs can be found in [4, 28, 34, 44, 52].

Let G be a connected graph on n vertices and m edges. The subdivision graph S(G) of G is the graph
obtained by inserting a new vertex into every edge of G. The Q-graph of G, denoted by Q(G) is the graph
obtained from G by inserting a new vertex into every edge of G and by joining by edges those pairs of these
new vertices which lie on adjacent edges of G. The total graph of G, denoted by T(G), is the graphwhose set of
vertices is the union of the set of vertices and set of edges of G, with two vertices of T(G) being adjacent if and
only if the corresponding elements of G are adjacent or incident (see [15]). Note that S(G), Q(G) and T(G) have
n+m vertices each. In the above three graphs, let us call the n vertices taken from G as the old-vertices and the
new inserted m vertices as the new-vertices. In [49], Shinodab has described the characteristic polynomial of
the adjacency matrix of a subdivision graph.

Two graph operations based on subdivision graphs, namely the subdivision-vertex join and the
subdivision-edge join were introduced by Indulal [37]. The subdivision-vertex join of two graphs G1 and G2,
denoted by G1∨̇G2, is the graph obtained from S(G1) and G2 by joining each old-vertex of G1 with every vertex
of G2. The subdivision-edge join of G1 and G2, denoted by G1YG2, is the graph obtained from S(G1) and G2 by
joining each new-vertex of G1 with every vertex of G2. In [37], the author described the adjacency spectra of
G1∨̇G2 and G1 YG2 in terms of the adjacency spectra of G1 and G2, when both G1 and G2 are regular. In [41],
Liu and Zhang described the adjacency, Laplacian, and signless Laplacian spectra of G1∨̇G2 and G1 Y G2,
whenG1 is regular andG2 is an arbitrary graphusing the adjacency, Laplacian and signless Laplacian spectra
of G1 and G2, respectively.

In [43], Lu and Miao de�ned two new operations on subdivision graphs, namely, subdivision-vertex
corona and subdivision-edge corona. Let G1 and G2 be two vertex disjoint graphs. The subdivision-vertex
corona of G1 and G2, denoted by G(S)

1 � G2, is the graph obtained from S(G1) and |V(G1)| copies of G2, all
vertex disjoint, and joining the i-th vertex of G1 to every vertex in the i-th copy of G2. The subdivision-edge
corona of G1 and G2, denoted by G(S)

1 	 G2, is the graph obtained from S(G1) and |I(G1)| copies of G2, all
vertex disjoint, and joining the i-th vertex of I(G1) to every vertex in the i-th copy of G2, where I(G1) is the
set of inserted new-vertices of S(G1). Liu and Lu [40] introduced two new graph operations based on subdivi-
sion graphs, namely, the subdivision vertex-neighbourhood corona and the subdivision edge-neighbourhood
corona and discussed their adjacency, Laplacian and signless Laplacian spectra . Let G1 and G2 be two vertex
disjoint graphs. The subdivision-vertex neighbourhood corona of G1 and G2, denoted by G(S)

1 �G2, is the graph
obtained from S(G1) and |V(G1)| copies of G2, all vertex disjoint, and joining the neighbours of the i-th vertex
of G1 to every vertex in the i-th copy of G2. The subdivision-edge neighbourhood corona of G1 and G2, denoted
by G(S)

1 � G2, is the graph obtained from S(G1) and |I(G1)| copies of G2, all vertex disjoint, and joining the
neighbours of the i-th vertex of I(G1) to every vertex in the i-th copy of G2.

The R-graph of G, denoted by R(G) is the graph obtained from G by adding a vertex ue and joining ue to
the end vertices of e, for each e ∈ E(G) [15]. Observe that R(G) is just the edge corona of G and K1. Lan and
Zhou [39] de�ned four new graph operations based on R-graphs, namely the R-vertex corona, R-edge corona,
R-vertex neighbourhood corona and R-edge neighbourhood corona. Let G1 and G2 be two vertex disjoint
graphs. The R-vertex corona of G1 and G2, denoted by G(R)

1 � G2, is the graph obtained from vertex disjoint
R(G1) and |V(G1)| copies of G2 by joining the i-th vertex of G1 to every vertex in the i-th copy of G2. The R-edge
corona of G1 and G2, denoted by G(R)

1 	G2, is the graph obtained from vertex disjoint R(G1) and |I(G1)| copies
of G2 by joining the i-th vertex of I(G1) to every vertex in the i-th copy of G2, where I(G1) = V(R(G1))−V(G1).
The R-vertex neighbourhood corona of G1 and G2, denoted by G(R)

1 � G2, is the graph obtained from vertex
disjoint R(G1) and |V(G1)| copies of G2 by joining the neighbours of the i-th vertex of G1 in R(G1) to every
vertex in the i-th copyofG2. The R-edge neighbourhood coronaofG1 andG2, denotedbyG(R)

1 �G2, is the graph
obtained from vertex disjoint R(G1) and |I(G1)| copies of G2 by joining the neighbours of the i-th vertex of
I(G1) in RG1 to every vertex in the i-th copy of G2. In [39], the authors discussed the adjacency, Laplacian and
signless Laplacian spectra of R-vertex corona, R-edge corona, R-vertex neighbourhood corona and R-edge
neighbourhood corona, when G1 is regular.
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Barik and Sahoo in [5] introduced some more variants of corona graphs such as subdivision double
corona, Q-graph double corona, R-graph double corona, total double corona, subdivision double neighbour-
hood corona, Q-graph double neighbourhood corona, R-graph double neighbourhood corona and total dou-
ble neighbourhood corona. Let G be a connected graph on n vertices and m edges. Let G1 and G2 be graphs
on n1 and n2 vertices, respectively. The subdivision double corona of G, G1 and G2, denoted by G(S) ◦ (G1, G2),
is the graph obtained by taking one copy of S(G), n copies of G1 and m copies of G2 and then by joining the
i-th old-vertex of S(G) to every vertex of the i-th copy of G1 and the j-th new-vertex of S(G) to every vertex of
the j-th copy of G2. In place of S(G), if we take Q(G) (R(G), T(G)), then the resulting graph is called as Q-graph
(R-graph, total) double corona and denoted by G(Q) ◦ (G1, G2) (G(R) ◦ (G1, G2), G(T) ◦ (G1, G2)). The subdivision
double neighbourhood corona of G, G1 and G2, denoted by G(S) • (G1, G2), is the graph obtained by taking
one copy of S(G), n copies of G1 and m copies of G2 and then by joining the neighbourhood new vertices of
the i-th old-vertex of S(G) to every vertex of the i-th copy of G1 and the neighbourhood old vertices of the j-th
new-vertex of S(G) to every vertex of the j-th copy of G2. In place of S(G), if we take Q(G) (resp. R(G), T(G)),
then the resulting graph is called as Q-graph (resp. R-graph, total graph) double neighbourhood corona and
denoted by G(Q) • (G1, G2) (resp. G(R) • (G1, G2), G(T) • (G1, G2)). In [5], the authors have described the spectra
of these graphs.

In this article, we have listed together all the results on the adjacency, Laplacian and signless Laplacian
spectra of graphs obtained from the above mentioned graph operations and graph products in tables. In
most cases, we have provided the structure of eigenvectors. The constants k, k1, k2 used in the tables can be
obtained easily from the eigen-equations.

Following notations are being used in the rest of the paper. By the A-eigenvalues (resp. L-eigenvalues,
|L|-eigenvalues) of G we mean the eigenvalues of A(G) (resp. L(G), |L|(G)). The n × 1 vector with each entry 1
is denoted by 1n. The zero matrix of appropriate order is denoted by 0. By In, we denote the identity matrix
of size n. The Kronecker product of matrices R = [rij] and S is de�ned to be the partitioned matrix [rijS] and is
denoted by R ⊗ S. The vector with i-th entry equal to one and all other entries zero is denoted by ei .

2 Some unary operations on a graph and their eigenvalues
In this section, we consider operations on a single graph and describe the adjacency, Laplacian and signless
Laplacian eigenvalues, and the corresponding eigenvectors of the new graphs.

Let G be a connected graph on n vertices and m edges. If the graph is regular, we denote its regularity
by r with r ≥ 2. Let λ1 ≥ λ2 ≥ . . . ≥ λn , 0 = λL1 ≤ λL2 ≤ . . . ≤ λLn and λ|L|1 ≥ λ|L|2 ≥ . . . ≥ λ|L|n be the eigen-
values of A(G), L(G) and |L|(G), respectively. Let xi , xLi and x|L| be the eigenvectors of A(G), L(G) and |L|(G)
corresponding to the eigenvalues λi , λLi and λ

|L|
i , respectively, for i = 1, 2, . . . , n.

Among all the graph operations, the complement of a graph is the simplest one. When G is regular, all
the adjacency eigenvalues of Gc are obtained by Sachs in 1962. As L(Gc) = nI − J − L(G) and the eigenvectors
of L(G) are also eigenvectors of J, the eigenvalues and eigenvectors of L(Gc) can be easily obtained from that
of L(G). For a r-regular graph G, the well known relation between A(G), L(G) and |L|(G) is given by A(G) =
rI−L(G) = |L|(G)− rI. So �nding the eigenvalues of |L|(Gc) in terms of eigenvalues of |L|(G) for regular graphs
is immediate.

The line graphG` of a graphG is the graphwhose vertex set is in one-to-one correspondencewith the set of
edges of the graph and two vertices of G` are adjacent if and only if the corresponding edges in G have a vertex
in common. Line graphs have one special property that their least (adjacency) eigenvalue is always greater
thanor equal to−2. This fact is evident from the relationsM(G)MT(G) = A(G)+D(G) andMT(G)M(G) = A(G`)+
2I. Besides, the adjacency matrix of a line graph comes into role while expressing matrices related to other
graphs like the total graph, Q-graph, etc. For more spectral properties of line graphs the reader is referred
to the book by Cvetković, Rowlinson and Simić [17]. The characterization of the characteristic polynomial of
A(G`) can be found in the book by Cvetković, Doob, and Sachs [15]. The fact that if ‘G is r-regular, then G` is
(2r−2)-regular’ helps in determining the Laplacian aswell as signless Laplacian eigenvalues of these graphs.
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The subdivision graph S(G) of a graph G is always a bipartite graph whose adjacency matrix can be writ-
ten as [

0n M(G)
MT(G) 0m

]
,

where M(G) is the 0-1 incidence matrix of G. Now consider the rectangular matrix M(G) of order n × m. Let
ξi and ζi are singular vector pairs of M(G) corresponding to the singular value si, for i = 1, 2, . . . , n. That is,
M(G)ξi = siζi and MT(G)ζi = siξi, for i = 1, . . . , n. For an r-regular graph, the following relation holds:

s2
i = λi + r = 2r − λLi = λ|L|i , for i = 1, 2, . . . , |m − n|.

Further, let ηj be orthogonal vectors such that M(G)ηj = 0n, for j = 1, . . . ,m − n. Now it becomes easy to
observe that (

±ζi
ξi

)
and

(
0n
ηj

)
are the eigenvectors of A(S(G)) corresponding to eigenvalues ±si and 0, respectively. Similar observations can
be made for the Q-graph and the R-graph of G whose adjacency matrices are[

0n M(G)
MT(G) A(G`)

]
and

[
A(G) M(G)
MT(G) 0m

]
,

respectively. Cvetković [12] in 1975 �rst obtained the characteristic polynomials of adjacency matrices of
S(G), Q(G) and R(G). In [11], a relationship between the spectra of a regular graph G and its total graph,
T(G) has been obtained.

Table 1: Spectral properties under unary operations

Graphs A-eigenvalues L-eigenvalues |L|-eigenvalues Multiplicity Eigenvectors
G λi λLi λ|L|i 1 Xi

Gc
−λt − 1 n − λLt n − 2 − λ|L|t 1 Xt
n − r − 1 0 2(n − r − 1) 1 1n

G`
λi + r − 2 2 − λLi λ|L|i + 2r − 4 1 ζi

−2 r − 2 2r − 4 m − n ηj

S(G) ±
√
λi + r

r+2±
√

(r+2)2−4λLi
2

r+2±
√

(r−2)2+4λ|L|i
2 1

(
±kζi
ξi

)

0 2 2 m − n
(

ηj
0

)

Q(G)
λi+r−2±

√
(λi+r)2+4

2
λLi +r+2±

√
(λLi −r)

2+4(r+1)
2

λ|L|i +3r−2±
√

(λ|L|i +r−2)2+4λ|L|i
2 1

(
±kζi
ξi

)

−2 2r + 2 2r − 2 m − n
(

ηj
0

)

R(G)
λi±

√
λ2
i +4(λi+r)
2

λLi +r+2±
√

(λLi +r+2)2−12λLi
2

λ|L|i +r+2±
√

(λ|L|i +r−2)2+4λ|L|i
2 1

(
±kζi
ξi

)

0 2 2 m − n
(

ηj
0

)

T(G)
2λi+r−2±

√
4λi+r2+4

2
2λLi +r+2±

√
(r+2)2−4λLi

2
2λ|L|i +3r−2±

√
(r−2)2+4λ|L|i

2 1
(

±kζi
ξi

)

−2 2r + 2 2r − 2 m − n
(

ηj
0

)
t = 2, . . . , n; i = 1, 2, . . . , n; j = 1, 2, . . . ,m − n

In the above table, λ1 ≥ λ2 ≥ . . . ≥ λn are the eigenvalues of A(G), λL1 ≤ λL2 ≤ . . . ≤ λLn are the eigenvalues of L(G),
λ|L|1 ≥ λ|L|2 ≥ . . . ≥ λ|L|n are the eigenvalues of |L|(G). Note that λi , λLi , λ

|L|
i correspond to the same eigenvector Xi .
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In Table 1, G is considered to be a connected graph on n vertices and with m edges. All the di�erent
eigenvalues (adjacency, Laplacian and signless Laplacian) of the graph produced from G by the above stated
unary operations are listed in it. Further, the possible form of corresponding eigenvectors are given. The ‘k’
appearing in the last column is an arbitrary constant. For a graph operation on G, if ‘r’ is used in the list of its
A-eigevalues (L-eigevalues, |L|-eigevalues), then for that operation to �nd its A-eigevalues (L-eigevalues, |L|-
eigevalues), G is assumed r-regular (r ≥ 2). In the last column of Table 1, Xt = xt (resp. xLt , x

|L|
t ) for adjacency

(resp. Laplacian, signless Laplacian) eigenvector of G while ξ , ζi and ηi are singular vectors of M(G).

3 Some binary operations on graphs and their eigenvalues
In this section, we consider two di�erent graphs and some binary operations on them. Let G1, G2 be
two graphs on n1, n2 vertices and m1,m2 edges. We assume V(G1) = {u1, u2, . . . , un1} and V(G2) =
{v1, v2, . . . , vn2}. If regularity ofG1 is required (orG2 is required), then it is assumed r1 regular (or r2 regular).
Let λ1 ≥ λ2 ≥ . . . ≥ λn1 , 0 = λL1 ≤ λL2 ≤ . . . ≤ λLn1 and λ|L|1 ≥ λ|L|2 ≥ . . . ≥ λ|L|n1 be the eigenvalues of A(G1), L(G1)
and |L|(G1), respectively and let µ1 ≥ µ2 ≥ . . . ≥ µn2 , 0 = µL1 ≤ µL2 ≤ . . . ≤ µLn2 and µ|L|1 ≥ µ|L|2 ≥ . . . ≥ µ|L|n2

be the eigenvalues of A(G2), L(G2) and |L|(G2), respectively. Let xi (resp. xLi , x
|L|
i ) and yj (resp. yLj , y

|L|
j ) be the

eigenvectors of A(G1) (resp. L(G1), |L|(G1)) and A(G2) (resp. L(G2), |L|(G2)) corresponding to eigenvalues λi
(resp. λLi , λ

|L|
i ) and µj (resp. µLj , µ

|L|
j ), respectively, for i = 1, . . . , n1 and j = 1, . . . , n2.

Table 2: Spectral properties of the graphs obtained by disjoint union and join

Graphs A-eigenvalues L-eigenvalues |L|-eigenvalues Eigenvectors
G1 λi λLi λ|L|i Xi
G2 µj µLj µ|L|j Yj

G1 ∪ G2
λi λLi λ|L|i

(
Xi
0

)

µj µLj µ|L|j

(
0
Yj

)

G1 ∨ G2

λi λLi + n2 λ|L|i + n2

(
Xi
0

)

µj µLj + n1 µ|L|j + n1

(
0
Yj

)

r1+r2±
√

(r1−r2)2+4n1n2
2 0, n1 + n2

n1+n2+2(r1+r2)±
√
∆

2
where∆ = (n1 + n2)2

−4(r1 − r2)(n1 − r1 − (n2 − r2))
(

k1n1

1n2

)
i = 2, . . . , n1; j = 2, . . . , n2

As the adjacency matrix of G1 ∪ G2 is the direct sum of A(G1) and A(G2), its adjacency eigenvalues are
all the adjacency eigenvalues of G1 and G2. Similar type of relationship holds for Laplacian and signless
Laplacian eigenvalues of G1 ∪ G2. The join of G1 and G2 can be expressed as G1 ∨ G2 = (Gc1 ∪ Gc2)c. Thus,
whenbothG1 andG2 are regular, the adjacency and signless Laplacian eigenvalues ofG1∪G2 canbe obtained
using the operations complement and union. Notice that even if G1 and G2 are regular, G1 ∨ G2 may not be
regular. The complete description of Laplacian eigenvalues of G1 ∨ G2 in terms of the Laplacian eigenvalues
of G1 and G2 is given by Merris in 1998 [46]. Table 2 lists the adjacency, Laplacian and signless Laplacian
eigenvalues of G1 ∪ G2 and G1 ∨ G2. In the last column of the table when the adjacency (Laplacian, signless
Laplacian) case is considered, then Xi = xi (xLi , x

|L|
i ) and Yj = yj (yLj , y

|L|
j ).

By �nding suitable eigenvectors, Indulal [37] in 2012 obtained the spectrumofG1∨̇G2 andG1YG2 in terms
of the spectra of G1 and G2, when both G1 and G2 are regular. Table 3 lists all eigenvalues and eigenvectors of
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Table 3: Spectral properties of subdivision-vertex and subdivision-edge join graphs

Graphs A-eigenvalues L-eigenvalues |L|-eigenvalues
Multi-
plicity

Eigenvectors

G1 λi λLi λ|L|i 1 Xi
G2 µj µLj µ|L|j 1 Yj

G1∨̇G2

±
√
λi + r1

zeros of
x2 − x(n2 − r1 + 2) + 2n2 −
4r1 + λLi

zeros of
(x − 2)(x − n2 − r1) − λ|L|i

1

 kζi
ξi
0n2


µj µLj + n1 µ|L|j + n1 1

 0n1

0m1

Yj


0 2 2 m1 − n1

 0n1

ηl
0n2


zeros of
x3 − r2x2 − (n1n2 + 2r1)x +
2r1r2

zeros of
x3 − x2(n1 + n2 + r1 + 2) +
x
(

2(n1 + n2) + n1r1
)

zeros of
x3 − x2(n1 + 2r2 + n2 + 2 +
r1) + x

(
2(n1 + n2) + r1(n1 +

2r2) + 2r2(n2 + 2)
)
−4n2r2

1

 k11n1

k21m1

1n2



G1 Y G2

±
√
λi + r1

zeros of
(x− r1)(x−n2−2)−2r1 +λLi

zeros of
(x − r1)(x − n2 − 2) − λLi

1

 kζi
ξi
0n2


µj µLj + m1 µ|L|j + m1 1

 0n1

0m1

Yj


0 n2 + 2 n2 + 2 m1 − n1

 0n1

ηl
0n2


zeros of
x3 − r2x2 − (m1n2 + 2r1)x+
2r1r2

zeros of
x3 − x2(m1 + n2 + r1 + 2) +
x
(
m1(r1 + 2) + n2r1

)
zeros of
x3 − x2(m1 + n2 + r1 + 2r2 +
2)+x

(
2m1(n2 +1)+r1(m1 +

n2) + 2r2(n2 + r1 + 2)
)
−

2n2r1(m1 + r2)

1

 k11n1

k21m1

1n2


i = 2, . . . , n1; j = 2, . . . , n2; l = 1, . . . ,m1 − n1

G1∨̇G2 and G1 Y G2. The notation Yj is used in a similar way as that used in Table 2. ξi , ζi and ηl are singular
vectors of M(G1) for i = 1, . . . , n1 and l = 1, . . . ,m1 − n1.

In the last few decades, graph products have been studied extensively and applied to many problems
in structural mechanics, see for example Kaveh and Alinejad [38] and the references therein. Among many
graph products, the four standard products are the Cartesian, the direct, the strong and the lexicographic
product of graphs. TheKronecker product ofmatrices play a crucial rolewhile expressing the adjacency (resp.
Laplacian, signless Laplacian)matrices of these graph products. Results describing the adjacencymatrix and
its spectra of the product graphs can be found in Brouwer and Haemers [6] and Cvetković, Doob and Sachs
[15]. If G1�G2, G1 ⊗ G2, G1 � G2 and G1[G2] represent the Cartesian product, the direct product, the strong
product and the lexicographic product of two graphs G1 and G2, then we have

A(G1�G2) = A(G1)⊗ In2 + In1 ⊗ A(G2),
A(G1 ⊗ G2) = A(G1)⊗ A(G2),
A(G1 � G2) = A(G1�G2) + A(G1 × G2) and
A(G1[G2]) = In1 ⊗ A(G2) + A(G1)⊗ Jn2 .

Now if {xi , i = 1, . . . , n1} and {yj , j = 1, . . . , n2} are orthogonal sets of eigenvectors ofA(G1) andA(G2), then
{xi⊗yj, for i = 1, . . . , n1, j = 1, . . . , n2}, forms a set of orthogonal eigenvectors forA(G1�G2), A(G1⊗G2) and
A(G1 � G2). But, as in the case of lexicographic product, the second term of A(G1[G2]) involves Jn2 , thus, to
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�nd a set of orthogonal eigenvectors A(G1[G2]), G2 is chosen regular. The Laplacian spectra of the Cartesian
and the lexicographic product of graphs have been described completely using the Laplacian spectra of the
factor graphs inMerris[45] and Barik, Bapat and Pati [2]. However, the Laplacian spectra of the direct product
and the strong product of graphs are expressed in terms of the Laplacian spectra of its factor graphs only
when the factor graphs are regular, see [2]. Table 4 lists all the eigenvalues of the four products along with
their corresponding eigenvectors. Notations used in Table 4 are similar to that of Table 2.

Table 4: Spectral properties of product graphs

Graphs A-eigenvalues L-eigenvalues |L|-eigenvalues Eigenvectors
G1 λi λLi λ|L|i Xi
G2 µj µLj µ|L|j Yj
G1�G2 λi + µj λLi + µLj λ|L|i + µ|L|j Xi ⊗ Yj
G1 ⊗ G2 λiµj r1µLj + r2λLi − λ

L
i µ

L
j (λ|L|i − r1)(µ|L|j − r2) + r1r2 Xi ⊗ Yj

G1 � G2 λi + µj + λiµj
(1 + r1)µLj + (1 + r2)λLi
− λLi µ

L
j

(λ|L|i − r1)(µ|L|j − r2) + r1r2 + λ|L|i +

µ|L|j
Xi ⊗ Yj

G1[G2] λin2 + r2 λLi n2 λ|L|i n2 + 2r2 Xi ⊗ 1n2

µj µLj + n2 deg(vi) µ|L|j + n2 deg(vi) ei ⊗ Yj
i = 1, 2, . . . , n1; j = 1, 2, . . . , n2

Like the above mentioned graph operations, the corona of two graphs fascinates many researchers be-
cause of its almost symmetrical structure andmanymore important spectral properties. Subsequently, many
variants of corona (like the edge corona, the neighbourhood corona, etc.) are de�ned and their spectral prop-
erties are observed. In 2007, Barik, Pati and Sarma [4] provided complete information about the spectrum
of G1 ◦ G2 in terms of the spectrum of G1 and G2, when G2 is regular. In the same paper, all trees with the
property SR (A graph G is said to have property SR if 1

λ is an eigenvalue A(G) if and only if λ is an eigenvalue
of A(G) and λ, 1

λ have the same multiplicity) are characterized and it is shown that such a tree is the corona
product of some tree and an isolated vertex. Further, the authors obtained complete information about the
Laplacian spectrum of G1 ◦ G2. The adjacency matrix of G1 ◦ G2 can be expressed as

A(G1 ◦ G2) =
[

A(G1) 1Tn2 ⊗ In1

1n2 ⊗ In1 A(G2)⊗ In1

]
.

McLeman and McNicholas [44] in 2011, observed the presence of the term 1Tn2A−1(G2)1n2 in the charac-
teristic polynomial of A(G1 ◦G2) and named it as coronal of the graph. They have described the characteristic
polynomial of A(G1 ◦ G2) using that of A(G1), A(G2), and the coronal of G2. But they have obtained simple
expressions (of the spectrum) only for the graphs which are regular or complete bipartite.

In 2010, Hou and Shiu [34] de�ned the edge corona operation on two graphs and described the spectrum
(resp. the Laplacian spectrum) of G1♦G2 in terms of the spectra (resp. Laplacian spectra) of G1 and G2, when
both G1 and G2 are regular (resp. when G1 is regular). In [28], Gopalapillai described the spectrum (resp.
Laplacian spectrum) and eigenvectors of G1 • G2, when G2 is regular (resp. G1 is regular). Table 5 describes
all the eigenvalues of corona, edge corona and neighbourhood corona. The notations used in the table are
similar to those used in the previous tables.

Lu and Miao [43] in 2013 de�ned subdivision-vertex and subdivision-edge corona of graphs. Using the
coronal of the second graph G2, the authors [43] described the characteristic polynomial of the adjacency,
the Laplacian and the signless Laplacianmatrices of subdivision-vertex and subdivision-edge corona graphs,
when G1, G2 are regular. In Table 6, all the eigenvalues of G(S)

1 � G2 and G(S)
1 	 G2 are listed.

In 2013, Liu and Lu [40] used di�erent coronals of G2 to express the characteristic polynomials of the
adjacency (Laplacian, signless Laplacian) matrices of G(S)

1 � G2 (subdivision-vertex neighbourhood corona)
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Table 5: Spectral properties of corona, edge corona and neighbourhood corona graphs

Graphs A-eigenvalues L-eigenvalues |L|-eigenvalues
Multi-
plicity

Eigenvectors

G1 λi λLi λ|L|i 1 Xi
G2 µj µLj µ|L|j 1 Yj

G1 ◦ G2
λi+r2±

√
(λi−r2)2+4n2

2

∆±
√
∆2−4λLi
2 , where

∆ = λLi + n2 + 1

∆1±
√
∆2

1−4∆2
2 , where

∆1 = λ|L|i + n2 + 2r2 + 1,
∆2 = λ|L|i (2r2 + 1) + 2n2 r2

1

(
kXi

1n2 ⊗ Xi

)

µj µLj + 1 µ|L|j + 1 n1

(
0n1

Yj ⊗ ei

)

G1 � G2

λi+r2±
√

(λi−r2)2+4∆
2 ,

where
∆ = n2 (λi + r1 )

∆±
√
∆2−4λLi (n2+2)

2 , where
∆ = λLi + n2 r1 + 2

∆1±
√
∆2

2+4n2λ
|L|
i

2 , where
∆1 = n2 r1 + λ|L|i + 2(r2 + 1),

∆2 = n2 r1 + λ|L|i − 2(r2 + 1)

1

(
kXi

1n2 ⊗ Xi

)

µj µLj + 2 µ|L|j + 2 m1

(
0n1

Yj ⊗ ei

)

r2 2 2r2 + 2 m1 − n1

(
ηj
0

)

G1 • G2

∆±
√
∆2+4λi (λin2−r2)

2 ,
where∆ = λi + r2

∆1±
√
∆2

1+4λLi ∆2
2 , where

∆1 = λLi + (n2 + 1)r1 ,

∆2 = n2λLi − r1 (2n2 + 1)

∆1±
√
∆2

1−4∆2
2 , where

∆1 = r1 (n2 + 1) + 2r2 + λ|L|i ,

∆2 = 2n2 r1 r2 + λ|L|i (2n2 r1 + 2r2 + r1 −

n2λ
|L|
i )

1
(

kXi
1n2 ⊗ Xi

)

µj µLj + r1 µ|L|j + r1 n1

(
0n1

Yj ⊗ ei

)
i = 1, 2, . . . , n1; j = 2, . . . , n2

and G(S)
1 � G2 (subdivision-edge neighbourhood corona). In Table 7, all the eigenvalues of G(S)

1 � G2 and
G(S)

1 � G2 are listed, respectively.
Lan and Zhou [39] introduced four newgraph operations based on R-graphs, namely the R-vertex corona,

R-edge corona, R-vertex neighbourhood corona and R-edge neighbourhood corona. In [39], the authors
have provided characterstic polynomials of adjacency, Laplacian and signless Laplacianmatrices of R-vertex
corona, R-edge corona and R-edge neighbourhood corona, when G1 is regular. In Table 8, we have listed
di�erent eigenvalues of G(R)

1 � G2 and G(R)
1 	 G2 along with their multiplicities and Table 9 contains all the

eigenvalues of G(R)
1 � G2 and G(R)

1 � G2.

4 Some ternary operations on graphs and their eigenvalues
In this section, G is considered to be a connected graph on n vertices and withm edges. Furthermore, G1 and
G2 are two graphs on n1 and n2 vertices, respectively. If regularity of G (resp. G1, G2) is required, then it is
assumed to be r (resp. r1, r2) regular. Let λ1 ≥ λ2 ≥ . . . ≥ λn , 0 = λL1 ≤ λL2 ≤ . . . ≤ λLn and λ|L|1 ≥ λ|L|2 ≥ . . . ≥ λ|L|n
be the eigenvalues of A(G), L(G) and |L|(G), respectively. Similarly, let µ1 ≥ µ2 ≥ . . . ≥ µn1 , 0 = µL1 ≤ µL2 ≤
. . . ≤ µLn1 and µ|L|1 ≥ µ|L|2 ≥ . . . ≥ µ|L|n1 be the eigenvalues of A(G1), L(G1) and |L|(G1), respectively and let
ν1 ≥ ν2 ≥ . . . ≥ νn2 , 0 = νL1 ≤ νL2 ≤ . . . ≤ νLn2 and ν|L|1 ≥ ν|L|2 ≥ . . . ≥ ν|L|n2 be the eigenvalues of A(G2), L(G2)
and |L|(G2), respectively. Let yi (yLi , y

|L|
i ) and zj (zLj , z

|L|
j ) be the eigenvectors of A(G1) (L(G1), |L|(G1)) and

A(G2) (L(G2), |L|(G2)) corresponding to eigenvalues µi (µLi , µ
|L|
i ) and νj (νLj , ν

|L|
j ) for i = 1, . . . , n1 and j =

1, . . . , n2, respectively. Let ξi and ζi are singular vector pairs of M(G) corresponding to the singular value si,
for i = 1, 2, . . . , n. Further, let ηj, for j = 1, . . . ,m − n, be orthogonal vectors such that M(G)ηj = 0n, for
j = 1, . . . ,m − n.
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Table 6: Spectral properties of subdivision-vertex and subdivision-edge corona graphs

Graphs A-eigenvalues L-eigenvalues |L|-eigenvalues
Multi-
plicity

Eigenvector

G(S)
1 � G2

zeros of
x3− r2x2−(λi+ r1 +n2)x+
r2(λi + r1)

zeros of
x3−(n2 +r1 +3)x2 +(2n2 +
r1 + λLi + 2)x − λLi

zeros of
x3 − (n2 + r1 + 2r2 + 3)x2 +
((2r2 + 3)(n2 + r1) + 2(2r2 +
1)−n2−λ|L|i )x+(2r2 +1)λ|L|i −
2r1 − 4r2(n2 + r1)

1

 k1ζi
k2ξi

1n2 ⊗ ζi



µj µLj + 1 µ|L|j + 1 n1

 0n1

0m1

Yj ⊗ ei


0 2 2 m1 − n1

 0n1

ηp
0n2n1



G(S)
1 	 G2

zeros of
x3− r2x2−(λi+ r1 +n2)x+
r2(λi + r1)

zeros of
x3 − (n2 + r1 + 3)x2 +
(r1(n2 + 1) + 2 + λLi )x − λLi

zeros of
x3 − (n2 + r1 + 2r2 + 3)x2 +
(3r1 + 4r2 + n2r1 + 2n2r2 +
2r1r2 + 2 − λ|L|i )x − 2n2r1r2 −
4r1r2 − 2r1 + (2r2 + 1)λ|L|i

1

 k1ζi
k2ξi

1n2 ⊗ ξi



µj µLj + 1 µ|L|j + 1 m1

 0n1

0m1

Yj ⊗ eq


r2±

√
r22+4n2
2

(n2+3)±
√

(n2+3)2−8
2

zeros of
x2 − (n2 + 2r2 + 3)x+ 2(r2n2 +
2r2 + 1)

m1 − n1

 0n1

kηp
1n2 ⊗ ηp


i = 1, 2, . . . , n1; j = 2, . . . , n2; p = 1, 2, . . . ,m1 − n1; q = 1, 2, . . . ,m1

Recently, Barik and Sahoo [5], de�ned some ternary operations which are generalizations of operations
like subdivision-vertex neighbourhood corona, subdivision-edge neighbourhood corona etc. These includes
subdivision double corona denoted by G(S) ◦ (G1, G2), Q-graph double corona denoted by G(Q) ◦ (G1, G2), R-
graph double corona denoted by G(R) ◦ (G1, G2) and total graph double corona denoted by G(T) ◦ (G1, G2) of
G, G1 and G2, respectively. Observe that the adjacency matrix of G(S) ◦ (G1, G2) can be expressed as

A(G(S) ◦ (G1, G2)) =


0n M(G) 1Tn1 ⊗ In 0

MT(G) 0m 0 1Tn2 ⊗ Im
1⊗ In 0 A(G1)⊗ In 0
0 1⊗ Im 0 A(G2)⊗ Im

 .

The adjacency matrices of G(Q) ◦ (G1, G2), G(R) ◦ (G1, G2) and G(T) ◦ (G1, G2) are given by

A(G(Q) ◦ (G1, G2)) = A(G(S) ◦ (G1, G2)) + diag(0n , A(G`), 0nn1 , 0mn2 ),

A(G(R) ◦ (G1, G2)) = A(G(S) ◦ (G1, G2)) + diag(A(G), 0m , 0nn1 , 0mn2 ) and

A(G(T) ◦ (G1, G2)) = A(G(S) ◦ (G1, G2)) + diag(A(G), A(G`), 0nn1 , 0mn2 ).

Furthermore, the degree diagonal matrix of these graphs are given by

D(G(S) ◦ (G1, G2)) = diag
(

(n1 + r)In , (n2 + 2)Im , Inn1 , Imn2

)
,

D(G(Q) ◦ (G1, G2)) = diag
(

(n1 + r)In , D(G`) + (n2 + 2)Im , Inn1 , Imn2

)
,

D(G(R) ◦ (G1, G2)) = diag
(
D(G) + (n1 + r)In , (n2 + 2)Im , Inn1 , Imn2

)
and

D(G(T) ◦ (G1, G2)) = diag
(
D(G) + (n1 + r)In , D(G`) + (n2 + 2)Im , Inn1 , Imn2

)
.

Now the expressions for the Laplacian and signless Laplacian matrices can be easily obtained.
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Table 7: Spectral properties of subdivision-vertex neighbourhood and subdivision-edge neighbourhood corona graphs

Graphs A-eigenvalues L-eigenvalues |L|-eigenvalues
Multi-
plicity

Eigenvector

G(S)
1 � G2

zeros of
x3 − r2x2 − (n2 + 1)(λi +
r1)x + r2(λi + r1)

zeros of
(x − r1)

(
x2 − (2n2 + r1 +

2)x + (n2 + 1)λLi
)

zeros of
(x − r1 − 2r2)(x − r1)(x − 2 −
2n2) − λ|L|i

(
(n2 + 1)x − 2r2 −

r1n2 − r1
) 1

 k1ζi
k2ξi

1n2 ⊗ ζi



µj µLj + r1 µ|L|j + r1 n1

 0n1

0m1

Yj ⊗ ei


0 2n2 + 2 2n2 + 2 m1 − n1

 0n1

ηp
0n2n1



G(S)
1 � G2

zeros of
x3 − r2x2 − (n2 + 1)(λi +
r1)x + r2(λi + r1)

zeros of
(x − 2)

(
x2 − (r1n2 + r1 +

2)x + (n2 + 1)λLi
)

zeros of
(x − r1 − r1n2)(x − 2)(x − 2 −
2r2) − λ|L|i

(
(n2 + 1)x − 2r2 −

2n2 − 2
) 1

 k1ζi
k2ξi

1n2 ⊗ ξi



µj µLj + 2 µ|L|j + 2 m1

 0n1

0m1

Yj ⊗ eq


0 2 2 m1 − n1

 0n1

ηp
0n2m1


r2 2 2r2 + 2 m1 − n1

 0n1

0m1

1n2 ⊗ ηp


i = 1, 2, . . . , n1; j = 2, . . . , n2; p = 1, 2, . . . ,m1 − n1; q = 1, 2, . . . ,m1

Table 10, lists the A, L and |L|-eigenvalues of all the above described double corona graphs. The ‘∗’ ap-
pearing in the �rst columnof Table 10 stands for S, Q, R or T. Further in the table, ξi , ζi and ηp are the singular
vectors of M(G) for i = 1, . . . , n and j = 1, . . . ,m − n and Yq = yq (yLq, y|L|q ) for q = 2, . . . , n1 and Zl = zl (zLl ,
z|L|l ) for l = 2, . . . , n2 if we are determining the adjacency (Laplacian, signless Laplacian) eigenvalues. The
coe�cients of the polynomials appearing in Table 10 are given below (outside the table).
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Table 8: Spectral properties of R-vertex and R-edge corona graphs

Graphs A-eigenvalues L-eigenvalues |L|-eigenvalues
Multi-
plicity

Eigenvector

G(R)
1 � G2

zeros of
x3−(r2 +λi)x2−

(
n2 + r1−

λi(r2 − 1)
)
x + r2(r1 + λi)

zeros of
x3 − (n2 + r1 + λLi + 3)x2 +
(2n2 + r1 +4λLi +2)x−3λLi

zeros of
x3 − (n2 + r1 + 2r2 + λ|L|i +
3)x2 +

(
2(r2 + 1)(n2 + λ|L|i ) +

2(r1r2+1)+3r1+4r2
)
x−(2r1+

λ|L|i )(2r2 + 1) − 4n2r2

1

 k1ζi
k2ξi

1n2 ⊗ ζi



µj µLj + 1 µ|L|j + 1 n1

 0n1

0m1

Yj ⊗ ei


0 2 2 m1 − n1

 0n1

ηp
0n2n1



G(R)
1 	 G2

zeros of
x3 − (r2 + λi)x2 −

(
n2 +

r1 − λi(r2 − 1)
)
x + r1r2 +

λi(n2 + r2)

zeros of
x3 − (n2 + r1 + λLi + 3)x2 +(
r1(n2 + 1) + λLi (n2 + 4) +

2
)
x − 3λLi

zeros of
x3 − (n2 + r1 + 2r2 + λ|L|i +
3)x2 +

(
(n2 + 2)(2r2 + λ|L|i ) +

2r2(r1 + λ|L|i ) + r(n2 + 3) +
2
)
x − 2r1(r2(n2 + 2) + 1) −

λ|L|i (2r2(n2 + 1) + 1)

1

 k1ζi
k2ξi

1n2 ⊗ ζi



µj µLj + 1 µ|L|j + 1 m1

 0n1

0m1

Yj ⊗ ei


r2±

√
r22+4n2
2

n2+3±
√

(n2+3)2−8
2

zeros of
x2 − (n2 + 2r2 + 3)x + 2(2r2 +
n2r2 + 1)

m1 − n1

 0n1

kηp
1n2 ⊗ ηp


i = 1, 2, . . . , n1; j = 2, . . . , n2; p = 1, 2, . . . ,m1 − n1; q = 1, 2, . . . ,m1

Å1 = r1 + r2 + å1 + b̊1,

B̊1 = (r1 + r2)(å1 + b̊1) + r1r2 + å1b̊1 − (n1 + n2 + r + λi),

C̊1 = (r1 + r2)(å1b̊1 − λi − r) + r1r2(å1 + b̊1) − n1(r2 + b̊1) − n2(r1 + å1),

D̊1 = n1n2 − å1n2r1 − b̊1n1r2 − r1r2(λi + r − å1b̊1);

Å2 = n1 + n2 + r + å2 + b̊2 + 4,

B̊2 = (n1 + 1)(n2 + 3) + 2(r + 1) + n2r + å2(n2 + 4) + b̊2(n1 + r + 2) + å2b̊2 + λLi ,

C̊2 = å2(n2 + 5) + b̊2(n1 + 2r + 1) + å2b̊2 + 2(n1 + λLi + 1) + r(n2 + 1),

D̊2 = 2å2 + b̊2r + å2b̊2 + λLi ;

Å3 = n1 + n2 + r + 2(r1 + r2) + å3 + b̊3 + 4,

B̊3 = 2(r1 + r2)(n1 + n2 + r + å3 + b̊3 + 3) + 4r1r2 + n1n2 + å3b̊3 + r(n2 + b̊3 + 4)

+ n1(b̊3 + 3) + n2(å3 + 1) + 4å3 + 2b̊3 − λ|L|i + 5,

C̊3 = 2(r1 + r2)
(
n1n2 + (r + å3)(n2 + 3) + b̊3(n1 + r + å3 + 1) + 2 − λ|L|i

)
+ 4r1r2(n1 + n2 + r + å3 + b̊3 + 2) + n1(2(3r1 + 2r2 + 1) + b̊3) + n2(r + 2r2 + å3)

+ (r + å3)(2b̊3 + 5) + 2(1 − λ|L|i ) + b̊3,

D̊3 = 4r1r2
(
n1n2 + n2(r + å3) + (n1 + r + å3)(b̊3 + 2) − λ|L|i

)
+ 2(r1 + r2)

(
(r + å3)(b̊3 + 2) − λ|L|i

)
+ (2n1r1 + r + å3)(b̊3 + 2) + 2n2r2(r + å3) − λ|L|i ,
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Table 9: Spectral properties of R-vertex neighbourhood and R-edge neighbourhood corona graphs

Graphs A-eigenvalues L-eigenvalues |L|-eigenvalues
Multi-
plicity

Eigenvector

G(R)
1 � G2

zeros of
x3 − (r2 + λi)x2 −

(
(n2 +

1)(λi + r1) + λi(n2λi −
r2)
)
x+ (λi + r1)(r2 −n2λi)

zeros of
x3 −

(
2n2 + n2r1 + 3r1 +

λLi + 2
)
x2 +

(
2n2r1(n2 + λLi ) +

r2
1(n2 + 2) + λLi n2(3 − λLi ) +
λLi (2r1 + 3) + 2r1(3n2 + 2)

)
x−

6λLi r1 − λLi n2(5n2r1 + 13r1 −
3λLi − 2λLi n2)

zeros of(
x + n2(λ|L|i − r1) − 2(r1 +
r2)
)(

(λ|L|i − r1)(x − 2n2 − 2) +
λ|L|i
)

+
(
x−r1(n2+2)

)(
n2λ|L|i −

(x − 2r1 − 2r2)(x − 2n2 − 2)
)

1

 k1ζi
k2ξi

1n2 ⊗ ζi



µj µLj + 2r1 µ|L|j + 2r1 n1

 0n1

0m1

Yj ⊗ ei


0 2(n2 + 1) 2(n2 + 1) m1 − n1

 0n1

ηp
0n2n1



G(R)
1 � G2

zeros of
x3 − (r2 + λi)x2 −

(
λi(n2 −

r2 + 1) + r1(n2 + 1)
)
x +

r2(λi + r1)

zeros of
(x−2)

(
x2−
(
r1(n2 +1)+λLi

)
x+

(n2 + 3)λLi
)

zeros of
x3 −

(
r1(n2 + 1) + 2(r2 + 2) +

λ|L|i
)
x2 +

(
2r1(n2 +1)(r2 +2)+

4(r2 +1)+λ|L|(2r2−n2 +3)
)
x−

2(r2 + 1)(2r1(n2 + 1) + λ|L|i ) +
2n2λ|L|

1

 k1ζi
k2ξi

1n2 ⊗ ζi



µj µLj + 2 µ|L|j + 2 m1

 0n1

0m1

Yj ⊗ eq


0 2 2 m1 − n1

 0n1

ηp
0n2m1


r2 2 2r2 + 2 m1 − n1

 0n1

0m1

1n2 ⊗ ηp


i = 1, 2, . . . , n1; j = 2, . . . , n2; p = 1, 2, . . . ,m1 − n1; q = 1, 2, . . . ,m1

Table 10: Spectral properties of double corona graphs

Graphs A-eigenvalues L-eigenvalues |L|-eigenvalues
Multi-
plicity

Eigenvectors

G(∗) ◦ (G1 , G2)
zeros of
x4 − Å1x3 + B̊1x2 −
C̊1x + D̊1

zeros of
x4 − Å2x3 + B̊2x2 −
C̊2x + D̊2

zeros of
x4 − Å3x3 + B̊3x2 − C̊3x+
D̊3

1


k1ζi
k2ξi

k31n1 ⊗ ζi
1n2 ⊗ ξi


r2±

√
r22+4(n2+c̊1)

2

∆±
√
∆2−4(c̊2+2)

2 ,
where
∆ = n2 + c̊2 + 3

∆±
√
∆2+4(2r2−c̊3−2)

2 ,
where
∆ = n2 − 2r2 + c̊3 + 3

m − n


0n
kηp
0n1n

1n2 ⊗ ηp


µj µLj + 1 µ|L|j + 1 n

 0n+m
Yq ⊗ ei
0n2m


νl νLl + 1 ν|L|l m

(
0n+m+n1n
Zl ⊗ ej

)
i = 1, 2, . . . , n; j = 1, . . . ,m; p = 1, . . . ,m − n; q = 2, . . . , n1; l = 2, . . . , n2

where for

SG : å1 = b̊1 = c̊1 = 0; å2 = b̊2 = c̊2 = 0; å3 = b̊3 = c̊3 = 0;

QG : å1 = 0, b̊1 = λi + r − 2, c̊1 = −2; å2 = 0, b̊2 = λLi , c̊2 = 2r; å3 = 0, b̊3 = λ|L|i + 2r − 4, c̊3 = 2r − 4;

RG : å1 = λi , b̊1 = c̊1 = 0; å2 = λLi , b̊2 = c̊2 = 0; å3 = λ|L|, b̊3 = c̊3 = 0;

TG : å1 = λi , b̊1 = λi + r − 2, c̊1 = −2; å2 = b̊2 = λLi , c̊2 = 2r; å3 = λ|L|i , b̊3 = λ|L|i + 2r − 4, c̊3 = 2r − 4.
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Likewise, Barik and Sahoo [5] de�ned another four variants of subdivision double corona, namely the
subdivision double neighbourhood corona of G, G1 and G2, denoted by G(S) • (G1, G2), Q-graph double neigh-
bourhood corona of G, G1 and G2, denoted by G(Q) • (G1, G2), the R-graph double neighbourhood corona of
G, G1 and G2, denoted by G(R)•(G1, G2), and the total double neighbourhood corona of G, G1 and G2, denoted
by G(T) • (G1, G2).

Observe that, the adjacency matrix of G(S) • (G1, G2) can be expressed as

A(G(S) • (G1, G2)) =


0n M(G) 0 1Tn2 ⊗M(G)

MT(G) 0m 1Tn1 ⊗MT(G) 0
0 1⊗M(G) A(G1)⊗ In 0

1⊗MT(G) 0 0 A(G2)⊗ Im

 .

Then the adjacency matrices of G(Q) • (G1, G2), G(R) • (G1, G2) and G(T) • (G1, G2) are given by

A(G(Q) • (G1, G2)) = A(G(S) • (G1, G2)) + diag(0n , A(G`), 0nn1 , 0mn2 ),

A(G(R) • (G1, G2)) = A(G(S) • (G1, G2)) + diag(A(G), 0m , 0nn1 , 0mn2 ) and

A(G(T) • (G1, G2)) = A(G(S) • (G1, G2)) + diag(A(G), A(G`), 0nn1 , 0mn2 ).

The degree diagonal matrix of these graphs are given by

D(G(S) • (G1, G2)) = diag
(
r(n2 + 1)In , 2(n1 + 1)Im , rInn1 , 2Imn2

)
,

D(G(Q) • (G1, G2)) = diag
(
r(n2 + 1)In , 2(n1 + 1)Im , D(G`) + rInn1 , 2Imn2

)
,

D(G(R) • (G1, G2)) = diag
(
D(G) + r(n2 + 1)In , 2(n1 + 1)Im , rInn1 , 2Imn2

)
and

D(G(T) • (G1, G2)) = diag
(
D(G) + r(n2 + 1)In , D(G`) + 2(n1 + 1)Im , rInn1 , 2Imn2

)
.

Similar expressions for the Laplacian and signless Laplacian matrices can be easily obtained.
The A, L and |L|-eigenvalues eigenvalues of the above described double neighbourhood corona opera-

tions are listed in Table 11. The notations used in this table are similar to that in Table 10.

Table 11: Spectral properties of double neighbourhood corona graphs

Graphs A-eigenvalues L-eigenvalues |L|-eigenvalues
Multi-
plicity

Eigenvectors

G(∗) • (G1 , G2)

zeros of
x4 − Ȧ1x3 + Ḃ1x2 −
Ċ1x + Ḋ1

zeros of
x4 − Ȧ2x3 + Ḃ2x2 −
Ċ2x + Ḋ2

zeros of
x4− Ȧ3x3 + Ḃ3x2− Ċ3x+
Ḋ3

1


k1ζi
k2ξi

k31n1 ⊗ ζi
1n2 ⊗ ξi


−2 2(n1 + 1) + ċ2 2(n1 + 1) + ċ3 m − n

 0n
ηp

0n1n+n2m


r2 2 2r2 + 2 m − n

(
0n+m+n1n
1n2 ⊗ ηp

)

µq µLq + r µ|L|q + r n

 0n+m
Yq ⊗ ei
0n2m


νl νLl + 2 ν|L|l + 2 m

(
0n+m+n1n
Zl ⊗ ej

)
i = 1, 2, . . . , n; j = 1, . . . ,m; p = 1, . . . ,m − n; q = 2, . . . , n1; l = 2, . . . , n2
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In Table 11,

Ȧ1 = r1 + r2 + ȧ1 + ḃ1,
Ḃ1 = (r1 + r2)(ȧ1 + ḃ1) + r1r2 + ȧ1ḃ1 − n1(r + λi) − n2 − 1,
Ċ1 = (r1 + r2)(ȧ1ḃ1 + 1) − r1r2(ȧ1 + ḃ1) + n1(r + λi)(r2 + ȧ1) + n2(r1 + ḃ1),
Ḋ1 = n1(r + λi)(n2 − r2ȧ1) + r1r2(ȧ1ḃ1 − 1) − n2r1ȧ1;

Ȧ2 = 2(n1 + 2) + r(n2 + 2) + ȧ2 + ḃ2,

Ḃ2 = (n1 + n2)(2r + λLi ) + ȧ2(2(n1 + 2) + r) + ḃ2(r(n2 + 2) + 2) + (2n1 + r)(rn2 + 2) + (r + 2)2 + ȧ2ḃ2 + λLi ,

Ċ2 = λLi (r + 2)(n1 + n1n2 + n2) + (r + 2)(λLi + ȧ2ḃ2) + 4r(ȧ2 + ḃ2) + ḃ2n2(λLi + r2) + ȧ2n1(λLi + 4)
+ 2r(2(n1 + 1) + r(n2 + 1)) + 4ȧ2 + ḃ2r2,

Ḋ2 = λLi (λLi n1n2 + 2r + 2ȧ2n1 + rḃ2n2) + 2r(λLi (n1 + n2) + ȧ2ḃ2 + 2ȧ2 + rḃ2);

Ȧ3 = 2(n1 + r2) + r1(n2 + 3) + r + 4 + ȧ3 + ḃ3,
Ḃ3 = r(ȧ3 + ḃ3) + ȧ3ḃ3 + 2ȧ3(n1 + r1 + r2 + 2) + ḃ3(r1(n2 + 3) + 2(r2 + 1)) + 2(n1 + r2)(r + r1(n2 + 3))

+ r1(2r1 + r)(n2 + 1) + 4(n1(r2 + 1) + r1(n2 + 3) + r + r2 + 1) − λ|L|i (n1 + n2 + 1),

Ċ =
(

2(n1 + r1 + 1) + r + ḃ3

)(
2(r2 + 1)

(
r1(n2 + 1) + ȧ3

)
− n2λ|L|i

)
+
(

2(r2 + 1) + r1(n2 + 1) + ȧ3

)(
(2r1 + r)

(
2(n1 + 1) + ḃ3

)
− n1λ|L|i

)
− λ|L|i

(
2(r1 + r2 + 1) + r

)
,

Ḋ3 =
(

(2r1 + r)
(

2(n1 + 1) + ḃ3
)
− n1λ|L|i

)(
2(r2 + 1)

(
r1(n2 + 1) + ȧ3

)
− n2λ|L|i

)
− 2(2r1 + r)(r2 + 1)λ|L|i

where for
SG : ȧ1 = ḃ1 = ċ1 = 0; ȧ2 = ḃ2 = ċ2 = 0; ȧ3 = ḃ3 = ċ3 = 0;

QG : ȧ1 = 0, ḃ1 = λi + r − 2, ċ1 = −2; ȧ2 = 0, ḃ2 = λLi , ċ2 = 2r; ȧ3 = 0, ḃ3 = λ|L|i + 2r − 4, ċ3 = 2r − 4;

RG : ȧ1 = λi , ḃ1 = ċ1 = 0; ȧ2 = λLi , ḃ2 = ċ2 = 0; ȧ3 = λ|L|, ḃ3 = ċ3 = 0;

TG : ȧ1 = λi , ḃ1 = λi + r − 2, ċ1 = −2; ȧ2 = ḃ2 = λLi , ċ2 = 2r; ȧ3 = λ|L|i , ḃ3 = λ|L|i + 2r − 4, ċ3 = 2r − 4.

Remark 4.1. Observe that when n2 = 0, then A(G(S) ◦ (G1, G2)) reduces to A(G(S)�G1). Similarly, when n1 = 0,
then A(G(S) ◦ (G1, G2)) reduces to A(G(S) 	 G2). Therefore, the subdivision double corona operation is a more
general operation than the subdivision-vertex corona and the subdivision-edge corona operations. In a similar
manner it can be observed that G(R) � G1 and G(R) 	 G2 are subcases of G(R) ◦ (G1, G2).

Remark 4.2. When n2 = 0, then A(G(S) • (G1, G2)) reduces to A(G(S) � G1). Similarly, when n1 = 0, then
A(G(S) • (G1, G2)) get reduced to A(G(S) � G2). Therefore, the subdivision double corona operation is the more
general operation than the subdivision-vertex neighbourhood corona and the subdivision-edge neighbourhood
corona operations. Also, G(R) � G2 is a special case of G(R) ◦ (G1, G2), when we choose n1 = 0. But G(R) � G2
is not a special case of G(R) ◦ (G1, G2). The reason for this lies in the way both the operations are de�ned. In
the de�nition for R-vertex neighbourhood corona (de�ned by Lan and Zhou in [39]) of G1 and G2 (denoted by
G(R)

1 �G2 ), each neighbour of the i-th old-vertex of R(G1) are joined to every vertex in the i-th copy of G2. But in
case of R-graph double neighbourhood corona (as de�ned in [5]) of G, G1 and G2 (denoted by G(R) • (G1, G2)),
only the new-vertex neighbours of the i-th old-vertex of R(G) are joined to every vertex in the i-th copy of G1.
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5 Notations

u ∼ v : vertex u is adjacent to vertex v
deg(v) : the degree of a vertex v in a graph
ei : the vector whose i-th component is one and all the other components are zeros
0n : a vector of length n and whose each component is zero
1n : a vector of length n and whose each component is one
In : the identity matrix of order n × n
Jn : the matrix of order n × n whose each entry is one
A ⊗ B : the Kronecker product of a matrix A with another matrix B
A(G) : the adjacency matrix of a graph G
M(G) : the vertex-edge incidence matrix of a graph G
L(G) : the Laplacian matrix of a graph G
|L|(G) : the signless Laplacian matrix of a graph G
Gc : complement of a graph G
G` : line graph of a graph G
S(G) : subdivision of a graph G
Q(G) : Q-graph of a graph G
R(G) : R-graph of a graph G
T(G) : total graph of a graph G
G1 ∪ G2 : disjoint union of two graphs G1 and G2
G1 ∨ G2 : join of two graphs G1 and G2
G1∨̇G2 : subdivision-vertex join of two graphs G1 and G2
G1∨G2 : subdivision-edge join of two graphs G1 and G2
G1�G2 : Cartesian product of two graphs G1 and G2
G1 ⊗ G2 : direct product of two graphs G1 and G2
G1 � G2 : strong product of two graphs G1 and G2
G1[G2] : lexicographic product of two graphs G1 and G2
G1 ◦ G2 : corona of two graphs G1 and G2
G1 � G2 : edge corona of two graphs G1 and G2
G1 • G2 : neighbourhood corona of two graphs G1 and G2

G(S)
1 � G2 : subdivision-vertex neighbourhood corona of two graphs G1 and G2

G(S)
1 � G2 : subdivision-edge neighbourhood corona of two graphs G1 and G2

G(R)
1 � G2 : R-vertex corona of two graphs G1 and G2

G(R)
1 	 G2 : R-edge corona of two graphs G1 and G2

G(R)
1 � G2 : R-edge neighbourhood corona of two graphs G1 and G2
G(∗) ◦ (G1 , G2) : double corona of three graphs G, G1 and G2 where (∗) stands for S/Q/R/T
G(∗) • (G1 , G2) : double neighbourhood corona of three graphs G, G1 and G2 where (∗) stands for S/Q/R/T

Appendix

G = C4 Gc Gl S(G) Q(G) R(G) T(G)

Figure 1: Graphs resulting from unary operations on G = C4
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C4 ∨ P3 C4∨̇P3 C4 Y P3C4 ∪ P3

Figure 2: Union, Join, subdivision-vertex join and subdivision-edge join of graphs C4 and P3

P2�P3 P2 ⊗ P3 P2 � P3 P2[P3]P2 P3

Figure 3: Cartesian, direct, strong and lexicographic product of graphs P2 and P3

C4 ◦ P3 C4 � P3 C4 • P3

Figure 4: Corona, edge corona and neighbourhood corona of C4 and P3
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C(S)
4 � P3 C(S)

4 � P3C(S)
4 	 P3C(S)

4 � P3

Figure 5: Subdivision-vertex corona, Subdivision-edge corona, subdivision-vertex neighbourhood corona and subdivision-edge
neighbourhood corona of graphs C4 and P3

C(R)
4 � P3 C(R)

4 	 P3 C(R)
4 � P3 C(R)

4 � P3

Figure 6: R-vertex corona, R-edge corona, R-vertex neighbourhood corona, R-edge neighbourhood corona of graphs C4 and P3

C(S)
4 ◦ {P3, P2} C(Q)

4 ◦ {P3, P2} C(R)
4 ◦ {P3, P2} C(T)

4 ◦ {P3, P2}

Figure 7: Double coronas of C4 with P3 and P2

C(S)
4 • {P3, P2} C(Q)

4 • {P3, P2} C(R)
4 • {P3, P2} C(T)

4 • {P3, P2}

Figure 8: Double neighbourhood coronas of C4 with P3 and P2
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