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Spectra of Liouville Operators 

Gerrit ten Brinke and Marinus Winnink 

Institute for Theoretical Physics, University of Groningen, Groningen, The Netherlands 

Abstract. Spectra of the generators of time translations ("Liouville operators") 

on representation spaces determined by thermodynamic equilibrium states 

are compared and their nature is investigated. 

1. Introduction 

For macroscopic systems the density of energy levels is approximately (AE) N 

where AE is the energy above the groundstate and N the number of degrees of 

freedom. Because of this enormous growth of level density in the thermodynamic 

limit one often says that the energy spectrum becomes continuous in that limit. 

It is the purpose of this paper to study spectral properties of relevant objects, 

that govern the dynamics of quantum systems. In the quantum theory of a finite 

number of particles the above mentioned questions are discussed in terms of the 

spectral properties of the Hamiltonian, i.e. the generator of time-translations, 

of the system. In a quantum mechanical treatment of a thermodynamic system, 

i.e. of a system consisting of an infinite number of particles in infinite space with 

a finite density, the generator of time-translations is not unambiguously defined, 

let alone its spectrum. 

We shall assume that we have a C*-algebra 9.1 of quasi-local observables with 

local algebras isomorphic to N(bv), i.e. the local algebras consist of all bounded 

operators on the Hilbert-space tlv that is pertinent to the description of a quantum 

system inside a volume V. The dynamics is assumed to be given by a one-parameter 

group of automorphisms at of 91 that admits of a K.M.S.-state and satisfies some 

regularity conditions to be specified in section 2b. As we shall see in section 2b 

these regularity conditions permit us to construct a separable C*-algebra ~o 

inside 91, that is o-(9.1, N) dense in 91. (Here N is the set of locally normal states 

on 91 and the o-(91, N) topology on 91 is the weak topology defined by N on 91.) 

The construction of 9A o depends on ~ and is such that ~ acts strongly continuous 

on ~I o, i.e. II~t(A)- Att--~0 for Ae91o. 
t~0 
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For a quantum lattice system 9A o coincides with N and the regularity con- 

ditions we impose imply then strong continuity of a t and also that at is obtained 

as a limit of local automorphisms. Hence a t, in the terminology of Powers and 

Sakai [1], is approximately inner. In this case, i.e. the case of a quantum lattice 

system, one might ask whether or not, for a one-parameter automorphism group 

that acts strongly continuous and is approximately inner, the requirement that 

it also admits ofa K.M.S.-state is any further restriction at all on the automorphism 

group. That this is no further restriction follows from the work of Powers and 

Sakai [ 1 ] theorem 3.2. If one accepts their conjecture that every strongly continuous 

one-parameter automorphism group of a U.H.F. algebra is approximately inner 

one can prove the following statement: "A one-parameter group of automorphisms 

on a U.H.F. algebra admits of a K.M.S.-state if and only if it is strongly continuous". 

Indeed the if part follows from the conjecture and [ t ]  theorem 3.2, whereas the 

only if part follows from the conjecture and the fact that every one-parameter 

automorphism group that admits ofa K.M.S.-state on a simple and norm-separable 

C*-algebra like a U.H.F. algebra, acts strongly continuous [2]. 

Let col and co2 be K.M.S.-states with respect to an evolution at of 91 at inverse 

temperatures fil and fi2 (possibly fil =fi2). Since every at K.M.S.-state on 9.1 is 

invariant under the action of a t we have generators Ho) 1 and Ho~ 2 of the unitary 

groups U~" and U~ '~ implementing at on the Gel'fand-Segal representation spaces 

I)o~1 and ~)o~2. The question we are going to investigate in this paper is the relation 

between the spectra of H~.~I and/-/,o2" We will find (theorem A) that, with our 

assumptions, the spectral sets of Ho~l and Ho~ coincide, as sets. Let us apply this 

to the situation where we have a non-primary K.M.S.-state co at an inverse temper- 

ature fi that admits a decomposition into extremal K.M.S.-states, i.e. 

co = S @(~')co~, 

where coy is extremal K.M.S.. 

Theorem A implies that the spectral sets of H~ and H~o" coincide as sets. These 

results generalize similar statements that could be made on the basis of work by 

Kastler [3] in the case where the automorphism group at acts strongly continuous 

on 9X. More detailed information is obtained from the pointwise comparison 

between these spectral sets. We shall prove (theorem B) that a discrete point, 

different from zero, in the spectrum of H~ appears as a discrete point ("survives 

the decomposition") in the spectra of H~. for 7 in some set with nonzero #-measure. 

The statement is trivially true for the point zero in the spectrum of Ho~; the set 

for which the theorem is true has #-measure one in this case. 

Using results of Stormer [4] we are able to show that for a separating state 

(i.e. a state with the property that its cyclic vector is also separating for the von 

Neumann algebra on the representation space) that is invariant under the action 

of a one-parameter group of automorphisms (not necessarily the dynamical 

automorphism group), extremal invariance of the state and no discrete points 

except zero in the spectrum of the generator of the unitary group implementing 

the automorphism group, imply that the spectrum of the generator equals IR 1. 

Applying the foregoing results to a state co that is a t K.M.S., where at in addition 

to satisfying the regularity criteria also acts asymptotically abelian on 9.1, and 
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where the state co admits a decomposition into extremal cq K.M.S.-states co~, 

we obtain: 

i) Sp H,~ = Sp H,~ =IR ~ ; 

ii) zero is the only discrete point in Sp Ho, with multiplicity determined by 

the centre of rco,(N)". 

These are precisely the spectral properties one encounters in the free Bose gas 

below the critical temperature, as is easily seen by direct verification from the 

results given in [5]. 

2. Definitions and Results 

a) Results Pertaining to the Finite Quantum System 

A K.M.S.-state co at inverse temperature fl with respect to a one-parameter group 

of automorphisms oq of a C*-algebra N is defined by the following: 

i) t--+co(Ac~tB ) is a continuous function of t; A, BeN.  

ii) ~ e)(A~tB)f(t-ifl)dt= ~ co(et(B)A)f(t)dt for f with Fourier-transform in D; 

A,B~N. 
For a while we shall concentrate on a quantum system in a box of volume E 

As usual the algebra of observables is the algebra of all bounded operators on a 

separable, infinite dimensional Hilbert space Dr. This algebra is denoted by 21~(V) 

or sometimes as N(~)v). We consider the usual faithful representation of ~(I)v) 

on the Hilbert space of Hilbert-Schmidt operators [~s, i.e. A~(bv )~n(A)E  N(bs): 

n(A)K = A K, VK ~ ~)s. (We shall also consider n'(A)e ~(l?s) defined by n'(A)K = KA, 
VKs~s and A~N(~lv).) Suppose that the dynamics of the finite system under 

consideration is given by a Hamiltonian H on Dv, giving rise to a one-parameter 

unitary group Ut=ex p iHt which induces the automorphism group ~t of ~(~)v) 

given by cq(A)= UtAU_ t, A~C~(t)v ). On bs the automorphism a t from N(Dv) is 

implemented by WtK=~(Ut)'zc'(g-t)K,K~bs. Indeed n(et(A))=W~n(A)W_t, 

VA~N(1)v ). As one easily shows Wt is a strongly" continuous one-parameter group 

of unitaries on bs (i.e. (K1, WtK2)s = Tr(K* WtK2) is a continuous function of t). 

For every f~LIOR) we define on N(i)v ) the operator nl( f ) :n t ( f )A= 
c~t(A)f(t)dt, where the right-hand side is obtained by the Riesz-theorem as the 

unique operator defined by: S (~b, cq(A)lp)f(t)dt =(c~, ~ c~t(A)f(t)dt~), (o, ~SDv. We 

also define for every fELIOR) an operator n2(f) on bs by nz( f )K= ~ wtgf(t)dt. 
Here the right-hand side exists as a Bochner-integral on t)s due to the strong 

continuity of the group {Wt} on bs. 

Giving La(IR) its usual algebraic structure (i.e. considering La0R) as the con- 

volution group algebra of the additive group of the real numbers) it can be shown 

that the map fELtOR)~ni(f)  is a continuous representation of LI(IR) into the 

bounded linear operators on N(bv) for i=  1 and on bs for i=2.  

Following Arveson [6] one can define a spectrum for the homomorphism 

t ~ l R l ~  denoted by Spe which is defined as Sp c~=hullkern 1, where kern  1 

denotes the kernel of the representation rc~ of L~(IR). Similarly one defines a 

spectrum for the homomorphism t~lR 1 ~ W t denoted by Sp W as Sp W = hull kern 2. 



138 G. ten Brinke and M. Winnink 

It follows from this definition of spectrum that we have 

Sp e = {7 ~ IR1 : f(7) = 0 g f  e ker = 1 } 

and similarly 

Sp W = {7 elR1 : f(7) = 0 g f  E ker zc 2 }. 

A more familiar notion of spectrum, when we talk about the unitary group W t, 

is the spectrum of its generator/~.  There is then the following well known [4] 

lemma: 

Sp W = S p / ~ .  

The proof of this lemma is accomplished by realizing that for the matrix elements 

of tel(f) we have 

(c~, ~l(f)~)= ~ f (2)d(E So, ~) , 

where {Ez} is the spectral resolution o f / t ,  and by realizing that the measure 

(E;.~, ~p) varies on exactly Sp W and is constant on IRI\Sp W. Another lemma that 

holds is the following: 

Sp ~=Sp  W = S p H .  

Clearly this statement is proven as soon as we have established that ker ~1 = ker zc2. 

That this statement is indeed true can be seen as follows: suppose f s k e r  rc 1, 

then ~a(f)A = OVA e ~(Dv); in particular this holds for all Hilbert-Schmidt oper- 

ators and hence ~ 1 (f)K = 0VK ~ I)s. This implies however that fez(f )K--  0VK ~ Ds 

(as vectors in I)s this time). Therefore kerzc 1 _ckerrc 2. Suppose conversely that 

f ~ k e r  re2, i.e. ~z2(f)K=0 as vectors on bs, for all KeI) s. It then follows as a result 

of a simple computation that ~ ~(f)K = 0, considered as an operator on I)v, VKE I) s. 

All we need in order to conclude that ker re1 ~_ ker n2 and hence that ker z~ = ker n~ 

is that zcl(f)K=OVK~bs implies ~z(f)A=OVA~(Dv). The latter fact follows 

from proposition 1A [6] and the fact that the Hilbert-Schmidt operators are 

a(~(I)v), ,~(Dv),) dense in ~(Dv)- 

Let co be a K.M.S.-state on the algebra ~(bv). Then we know that the Ham- 

iltonian H should be such that Tr  ( e - ~ ) <  Go [7]. The cyclic representation one 

considers is the one on bs with cyclic and separating vector e -~/~ [8]. From what 

we have seen above we conclude that the evolution e~ gives rise to a spectrum 

that equals, as a set, the spectrum of the generator of time-translations on the 

representation space for every state that is a K.M.S.-state for the evolution et, 

regardless of ft. From this it follows that Sp Ho~ and Sp H ~  are equal as sets for 

two states that are c~ t K.M.S. (of course at different temperatures). 

From explicit construction of the representation for two c~ t K.M.S.-states co~ 

and o)2 [8] we know that Sp H~o~ is identical with Sp Ho~ ~ because Ho~ ~ =Ho~. 

b) Regularity Conditions on the Thermodynamical Evolution at 

Most of the interesting thermodynamic evolutions are not strongly continuous, 

i.e. for the one-parameter group of automorphisms c~ we do not have 

I]c~t(A)-A]l~---~0 for all A in the quasi-local algebra 9I. Rather than assuming 
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strong continuity of at we shall assume regularity conditions on a t that permit us 

to draw still a good deal of the conclusions concerning spectra, that we could 

have drawn if a t were strongly continuous. Part of the regularity conditions 

resembles, as we shall see, the properties at would have if it were approximately 

inner [1]. 

Given a thermodynamical evolution at of the quasi-local algebra 9/ that 

satisfies the regularity conditions (to be specified later) we are able to construct 

a separable c@nvariant sub C*-algebra 9.I 0 of 9/, that depends on at, with the 

properties that it is a(9/, N) dense in 9/ and at acts strongly continuous on it. 

N denotes here the set of locally normal states on 9/. 

Suppose we subdivide IR 3 into disjoint finite volumes {V n, n~N}. Suppose V 1 

and V2 are two such volumes. The algebra of observables for the finite system 

in V, is ~(l)v~). Then we have ~(bv)~-~(I?vl®bv~), where V=  V1uV 2. ~(t)v,) is 

considered as the sub-algebra ~([)vl)®ll of N(bv~®[~v;) whereas N(Dv~) is con- 

sidered as the sub-algebra ll®N(I?v2) of ~(~v,®I?v2). Due to isotony, the quasi- 

local algebra ~I is given by 

9/= U ° 
VC IR 3 

where every V is the union of a finite number of V[s and every finite subvolume 

oflR 3 is contained in some V 

Definition 2.1. (¢([) denotes the C*-algebra generated by the compacts and the 

scalars on the Hilbert space b- In short 
..... n 

cg([ )-= {C+2~; C compact, 2 complex}. 

For a given partition of 1113 into disjoint finite volumes {E,, n~N} consider, for 

a finite subset I of N with p members {n 1 . . . .  , n;} say, the C*-algebra cg~ which is 

defined as the following C*-tensor product 

4 ' =  . . .  • 

We shall denote by cgo the C*-inductive limit defined as 
n 

c¢0= U c# 
ICN 

Clearly cg 0 is a separable sub C*-algebra of 9/. 

Remark. If we would specialize to a quantum lattice algebra then every operator 

on Dv, is compact (including the unit operator) and then 4o coincides with 9/ 

(which is a separable C*-algebra for a quantum lattice). In the case of a continuous 

system 9 / i s  not separable in the norm topology because none of the algebras 

~(Dv) is and therefore off' o C 9/. 

Lemma 2.2. N is the set of all states of 9~ that can be obtained as projective limits 

of normal states on the elements N(bv) that make up the quasi-local algebra 9.1. 

Proof. See Z. Takeda 1-9]. 

Lemma 2.3. cgo is a(9/, N) dense in 9.1. 
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Proof Let A be arbitrary in ~l, then we can find for every e>0  A.s~(bv~) for 

some V. with IIA-A.tl  <~. Denote by UQ,,~;i= 1 .... r(A) a o-(9.1, N) neighbourhood 

of A, i.e. 

BEU~,,~,;i=I .... r(A)~loi(A)-~oi(B)l<ei, i=1  . . . .  K, o i~N.  

Because ~f(bv~) is ~r(N(Dv. ), N(Dv~),) dense in N(bv~) we can find C, such that 

]oi(A~)-Qi(C~)l<e]2, i=1  . . . .  K, o l i N  

with C ~ ( D v . ) .  Putting everything together we have 

[~i(A)- 0i(C~)l =< I~,(A) - ~(A,)I + Iq,(A,)- o,(C,)l < e + e j 2 .  

If we choose e=½ inf e i we find I~,(A)-~i(C.)[ <e,, i--1 . . . .  K and hence 

U o,,~;i= 1 .... K(A)~C-go 4: 0. Q.E.D. 

Let (~2o,, t)~, rc~) be the cyclic vector, the Hilbert space and the representation 

of 91 on [)~ respectively as obtained from the Gel'fand-Segal construction from 

a state co. 

Lemma 2.4. f~o, is cyclic for rc~(Cgo) for ¢oe N [7]. 

Proof Suppose (Z, rc,~(~o)f2~,)= 0. Because coEN we have that ~z~o[~v. ) is normal, 

hence coz,~ o%~ is a(~l, N) continuous on ~I, therefore (oz,aorco~)(A)=OVA~gI 

because of lemma 2.3. Q.E.D. 

Let us now formulate thefirst regularity condition on % For every given parti- 

tion of IR 3 into disjoint finite volumes {V,, ne N} there exists a sequence of local 

Hamiltonians H,  on by. inducing automorphisms ~ on N(bv.) given by 

~(A) = exp iH, tA exp - iH, t, A ~ N([)v.), 

Consider the sequence of volumes {VN} whose elements have the properties 

i) Every V N is a union of a finite number of volumes V,,; 

ii) VNC VN,, N_<N'; 

iii) Every V, is contained in some V~ for N sufficiently large. 

In N([~v~) there exists a local Hamiltonian H N inducing automorphisms 

atS(A) = exp iHstA exp - iHNt 

with the properties that 

lira ~(A) = ~,(A), A ~ ~ cg~, 
N ~  oo IC N 

where the limit is i) in the norm topology on cg 0 and ii) uniformly in t on a neigh- 

bourhood of zero. 

This regularity condition implies that a t acts strongly continuous on cgo pro- 

vided we can show that et u acts strongly continuous on every ~r with I such that 

V~D U Vk' Kallman [10] has shown that ~ acts strongly continuous on ~(I)v.). 
k e I  

The goal of the second regularity condition will be to make ~ act continuously 

on cgo. The problem with the latter is that it contains for instance elements of the 

form ~([~v.)®cg(bvo,) which do not necessarily belong to cg([~) for some suitable [. 
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(Take C®llv.,, for instance with C compact on [?v..) These problems do not exist 

for a quantum lattice system; there we have that the first regularity condition 

implies that cq acts strongly continuous on 9.1. 

Let us now prepare the ground for the formulation of the second regularity 

condition. Let Yt be a one-parameter automorphism group of some ~ )  with the 

property that ~o(yt(A)) is a continuous function of t for all Ae~(I)) and d)e~(§),. 

It follows from Robinson and Bratteli [11] that there exists an unbounded deriva- 

tion 3 of ~(b) with domain D(6) that is a strongly dense sub-*algebra of ~(D). 

D(c~) is defined as follows 

D(6)= IAe~([?):3Se~(I?) with d?(S)=lim~(%(A)-A)t-~o t , ~be~(t)),}. 

Lemma 2.5. Let As  D(3), then it follows that Jlyt(A)- All ~o 0 (cf [12]). 

Proof Since AeD(3) we have that 

lim q~(';~(A)- A) 
t-~O t 

exists for all ~be~(D),. Hence for q ~ ( b ) ,  we have 

sup ~(7t(At)-A! <oo .  
t 

Because N(t?), is a determining manifold we have [13] 

sup ~t(A)-- A < oo 
t t 

implying 

117t(A)-A{l ~00 .  Q.E.D. 

Consider two finite disjoint volumes belonging to the partition {V,, n~N} 

of lR 3, V 1 and V2 say. Consider on [?vl®Ikv2 the unitary group U°= U}I)®U} 2) 

where U}I)= exp iHjt and U}2)= exp iHzt. Consider U, = exp iHt with H the local 

Hamiltonian on [?vl®[~v2. Clearly U ° and U t give both rise to automorphisms, 

fit ° and fit say, which in turn give rise to derivations on N(bv1®I?v2) denoted by 

6 ° and 6. 

Suppose now that 

D(6)c~D(6°)c~cg(Dvi)®cg([?v2) is uniformly dense in D(6°)c~cg(I?v~)®~(Dv2), 

then we have the following 

Theorem 2.6. I J fi,(B) - Nil ~ 0 VB ~ cg(D v l) ® cg(l~ v~). 

Proof From Kallman [10] we know that g~(A 3 = U~g)A~U!!!t is strongly continuous 

for A~eCg(Dv,), i=1,2, rio implemented by U ° acts strongly continuous on 

cg(bv)®Cg(bv2). Therefore since flo leaves cg(bv)®Cg(bv) invariant, we have that 

D(cS°)c~cg(bv,)®cg(bv~) is uniformly dense in ~(bv)®cg(bv). A fortiori 
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D(5)~cd(I~vl)®cd(Dv2) is uniformly dense in cd(bvl)®cg(Dv2). Using lemma 2.5 the 

theorem is proved. 

If we now want to impose a condition that makes at ~ act strongly continuous 

on cd o, it suffices to show that it acts strongly continuous on algebras that we 

denoted by (d r for all finite subsets I C N. This will be done by transfinite induction. 

Let Vua) be a finite volume in IR 3 with 

VN(I) = U Vk' I some finite subset of N. 

Consider cdx=@ cd(~)v~) and denote as before by £vta) the automorphism on 
kzI 

~(Dv~-(,)) induced by the local Hamiltonian on t)v~,(x); its derivation is denoted 

by AN(l). If Vp("IVN(I)=O, w e  denote by ?t o the automorphism on .~(bv~(,)®§%) 

given by ~t (x)®~ p. Let a~vt a)+l be the automorphism on ~(bvN~,®bvp) generated 

by the local Hamiltonian on bv~.,®bv~, to, A~(x)+ ~, ~ stand for the derivations 

associated with 7 °, ey)+~ and ~P respectively. 

We now impose the following: second regularity condition on oq 
D(ANa)+ O~D(Fo)c~cdl®(¢(§%) is uniformly dense in D(Fo)~CdI®cg(Dv~), 

VN(I), Vpc~ VNa ) = 0. 

Theorem 2.7. Let D(Amr))c~cgx be uniformly dense in cdr and let furthermore the 
second regularity condition on ~ be satisfied, then it follows that ~(~)+1 acts strongly 
continuous on cdx ®cd(~)%). 

Proof Take A~D(ANa))c~cgx and B~D(6v)~Cd(bvp ). Then we have 

o~Nt (t)(A) ® 
c~(B)- A® B _ ANa)(A)® B -  A ® 5p(B) = _ < 

< aNa)(A)®~tP(~-- ~tNa)(A)®B _~a)(A)®gp(B ) + 

+ I[~a)(A)®3P(B)-A®3v(B)H + ~a)(A)®B-A®Bt -ANa)(A)®B <= 

c~(B)-B bp(B) + I[Sp(B)]l [latN(X)(A)-All + 
<tlAl] t 

+ ~")(A)-A AN(~)(A) IIBII--~O, 
t t-~O 

due to the assumptions on A,B and the strong continuity of ~(t) on c~. What 

the above estimate shows is that A®B belongs to D(Fo) for VA~D(Au(t))c~c~ ~ 
and VB~D(6p)c~cg(§%). By assumption D(Aua))c~cg ~ is norm dense in cg~ and 

cg(Dv~)c~D(6p) is norm dense in cg([~%) by the same argument as used in theorem 2.6. 

Therefore we conclude that D(Fo) has dense intersection with ~®c~([~%). 

The same, by our second regularity condition holds for D(Aua)+ a). Lemma 2.5 

then guarantees that at ~a)+~ acts strongly continuous on this dense set and there- 

fore acts strongly continuous on all of cg~®c~([~%). Q.E.D. 
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By combination of the regularity conditions we have 

Theorem 2.8. Let a t be a one-parameter group of automorphisms of 9.1 satisfying 
the regularity conditions, then at acts strongly continuous on cgo. 

Proof. Take arbitrary V N -  Vmi ) = ~) V k. Take Vkl and Vk~ from U Ve Theorem 2.6 
keI keI 

gives the strong continuity on C~(Dv~l)®cg(t)v~) of the automorphism group in- 

duced by the local Hamiltonian belonging to Vk,wVkz Now by successively 

applying theorem 2.7 on the remaining elements of ~) V k, we obtain the strong 

continuity of ~ on c~x From the first regularity condition it follows that a, acts 

strongly continuous on ~o- Q.E.D. 

Nowhere it is guaranteed that c~ o is a t invariant as a set. 

Definition 2.9. ~o is the C*-algebra generated by all elements A of c£ o and the 

translates O:t~(A ) thereof with t i rational. 

Due to the strong continuity of a t o n  c6~ 0 we can easily show that 910 contains 

all elements at(A ) and furthermore is invariant under the action of a t. Clearly by 

construction 91o is a norm separable C*-algebra contained in 91. Because 91 is 

not separable in its norm topology we have that 91o C 91. However 91o is a(91, N) 

dense in 91 by lemma 2.3. 

It tbllows from its construction that 91o will in general depend on the auto- 

morphism group a~. Again when we specialize to a quantum lattice algebra, there is 

no such dependence on the dynamics because ~o on its own coincides already with 

~tl. Also in the case of a quantum lattice algebra, the first regularity condition on at 

implies already strong continuity of % The second regularity condition is trivially 

satisfied because all local algebras are finite-dimensional matrices and the deriva- 

tions appearing in this condition are everywhere defined. (The local Hamiltonians 

are bounded operators.) Furthermore the second regularity condition is easily 

verifiable for non-interacting Fermi and Bose systems. In these latter cases the 

local Hamiltonians are double differentiation operators and dense subsets of 

D(b)c~cg(I)v~)®cg(Dv~) and D(cS°)c~(Dv~)®cg(tlv~) can be constructed by combina- 

tion of finite rank operators which are formed from suitable C~-functions with 

compact support. 

c) Results Jbr Thermodynamic Systems 

We assume that there exists a partition of IR 3 which we consider as fixed for our 

further reasoning. We assume that our dynamics at is given by a one-parameter 

group of automorphisms of the quasi-local algebra 91 that satisfies the regularity 

conditions as described in section 2b. Let o) be an a~ K.M.S.-state at inverse 

temperature fl and Do the Gel'fand-Segal representation space carrying the 

representation rco~ of 91 with a cyclic vector f2~o that is also separating for rc~(91)". 

Uf ° denotes the unitary one-parameter group that implements a~, Ho denotes the 

generator of U~. On t)~ o one has the following representation of the convolution 

algebra LIOR): 

feLlOR) '~, ~(f)e~(t),o), 
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where rc(f)z = ~ f ( t )U~zdt ,  VZ~ Do and the integral is in the Bochner sense. Follow- 

ing Arveson we define like we did in section 2a 

Sp U =  {yelRl: f ( j = 0 V f e k e r  re}, 

which by a lemma in section 2a equals the spectral set of H~. We now state 

Theorem A. Let co be any ~t K.M.S.-state at inverse temperature fi, then Sp H~ 

is independent oj'o~ and ft. 

Proof Since co as an ~t K.M.S.-state is locally normal [7] we have by lemma 2.4 

that Q,o is cyclic for rc~(910). Furthermore observe that, since ~t acts strongly 

continuous on 9[ 0 and 91o is invariant under the action of at, we can Bochner 

integrate on 9]0. In particular we observe the existence in the Bochner sense of 

objects like 

~c~t(A)f(t)dt for f~LIOR)  and A ~ o .  

Also we then know for representations ~ of 91o that 

rc(~ ~t(A) f (t)dt) = ~ ~(~t(A)) f (t)dt . 

The proof of our theorem now proceeds by proving that for any K.M.S.-state 

at any inverse temperature fl + 0 

{7 EIR1 :f(7) = 0 V f  with ~ f(t)U~'zdt = 0Vxeb~} 

= {y ~IR 1 : f ( J  = 0 Vf  with ~ f(t)et(A)dt = 0 VA ~ 91o }. 

Indeed 

S f ( t )  U~zdt -- 0 VZ ~ b~ ~ ~ f ( t )  U~n~o(A)f2oflt = 0 VA E 9.10 

~ f(t)no~(at(A))~?jt = 0 VA ~ 9.10 => 

%~[~ f (t)~t(A)dt] f2o~ = 0 VA ~ 9.I o 

rro,[~ f (t)at(A)dt] = 0 VA ~ ~l o . 

The latter step is due to the fact that f2~ is separating for z~(91)" and hence 

for no,(910). Since 9.1 is simple [14] we have that 

7ro,[~ f (t)e,(A)dt] = 0 ~  ~ f (t)c~(A)dt = O, VAe 91 0 . 

Conversely let ~ f(t)et(A)dt = 0 VA e 9I o. Hence 

~o~[~ f (t)~-t(A)dt] = 0 VA e 9.1 0 ~ ~ f (t)rc~(c~t(A))f2Jt = 0 VA ~ 91o 

~ f ( t )  U~'zc~(A)f2~flt = 0 VA ~ 9.I o . 

For arbitrary Z~ [?o~ we can find a suitable A t  91o such that for every e > 0 

I] ~ f ( t ) U ~(rc~( A )g2o~ - Z) dt l[ < e 11 f 1[1, 

where 11 f II 1 is the L ~ norm of f Hence we have that 

f(t)c~t(A)dt= OVA ~ 9.Io <:~ ~ f ( t )U~zdt  = 0Vz~Do~ • Q.E.D. 
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Remark. In any system where the dynamics is given by a strongly continuous 

one-parameter group of automorphisms theorem A holds (ef. [3]). In particular 

this holds for a quantum lattice gas. 

The content of theorem A is a global statement about the spectra of generators 

of time translations as a whole in representations of states that are a, K.M.S.. In 

the case of a finite quantum system (cf. section 2a) one is able to make a much 

more detailed comparison, namely the spectra are identical in nature. For thermo- 

dynamic systems this is no longer true. The rest of this section will be devoted 

to a pointwise comparison of spectra of generators in the case where we can 

decompose a given c~, K.M.S.-state into extremal K.M.S.-states at a given temper- 

ature. 

In order to compare locally the spectra of generators of time translations, 

we restrict ourselves to a comparison that involves only c~ K.M.S.-states at a 

fixed temperature. Moreover we assume that the set of extremal points of the 

simplex K~ of c~ t K.M.S.-states at a temperature fl is a Borel set. (As pointed out 

in [7] one way to assure the latter fact is by assuming that K~ is compact.) Under 

these assumptions we have a unique decomposition for elements coeK~ into 

extremal points coy, i.e. co gives rise to a Borel measure on the set of states of 2I 

with the property that it is concentrated on the extremal points of Ks: 

co= ~ d~(~)c%. 
Ext K,a 

We can now formulate 

Theorem B. Let U~' and U'O ~ implement o~ in the representations given by co and o& 

respectively. Denote the appropriate 9enerators of U~ and Ut ~ by Ho and Ho¢ 
Denote the pointspectra of Hoe and H .... by P Sp H,o and P Sp H,o,. The following 
is true: 

2EP Sp H o ~ 2 ~ P  Sp H~,Jo~7~ V_Ext  K s where #o (V)#0 .  

Proof Suppose 2~P Sp Ho,, then clearly by definition there exists )~ebo~ with 

U t 2 z  = ei~,tX . 

From [15] we conclude that there exists at least one element A ~ ( 2 1 ) "  different 

from zero with the property that ~t(A)=ei'ttA., where ~t is the extension of ~ 

to ~(21)". 

We are discussing K.M.S.-states, therefore the states are separating on their 

associated von Neumann algebras and hence the yon Neumann algebras are 

~r-finite. 

From [16] page 31 corrolaire and Kaplansky's density theorem it follows 

that we can choose a sequence {A,}~ 9.1 such that 

7r~(A.)tro£~lyA with ]]no,(A.)][ < HAH. 

For the following we do not have to assume that ~t satisfies the regularity conditions, nor do we 

have to assume that 9.1 is quasi-local (or simple). 
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We shall prove that we can choose a subsequence {A,~} from {A,} with the 

woperty that: 

~o~(A,k)f2 ~ ~ VJ,~ e[] o~, I~-a.e. 

Furthermore we shall show that there exists a set V c Ext Ka with #o(V)+0 such 

that for all 7 with ~%eV we have 

~ + 0  and U~"~7= eiltll)~. 

Clearly the latter statement means that 2e P Sp Ho) ~. 

Let 3o, be the centre of ~,(9I)", we then have for A e rco~(9.1)" 

(Q~, A~2~) = .[ dao,(7)e(A)(7), 
Y 

where F is the spectrum of 3~; e(A)e3~ and is defined as P A P = P e ( A )  with 

P =  [ 3 j 2 j ,  furthermore e(A) (7) is the continuous function on F obtained from 

e(A)63~ by the Gel'fand isomorphism. In particular we have: 

co(B) = ((2~, z~o(B)Qo) = ~ d#o~(7)e(~(S))(7 ) = ~ d#o~(7)~o~(S), 
Y F 

where B~ ~I, cove S(9~)~Ext Ka (cf. [7], [17]), 

As we have seen above z ~ o ( A . ) - ~ A  and hence 

((2o~, (A - Tc~(A.))*(A - zc.(A.))Oo~ ),,,_~ 20 .  

From this we conclude 

d#o~(V)e[(Tr~o(A,) - A)*(no~(A,)-  A)]( ' /)~2 0. 

Since the Gel'fand isomorphism is orderpreserving,we know that 

f,(~) ~ e[(rco~(A,) - A)*(rcco(A,) - A)] (7) ->-0. 

In short we can say that together with the choice of the sequence {A,} we have 

obtained a sequence of positive functions f ,  that tends to zero in mean. We can 

therefore [18] choose a subsequence of f ,  that tends to zero #-a.e. and hence we 

can find a subsequence A,~ such that 

~[(Tc~o(A,k ) -- A)*(oz~(A,~) - A)](7) ~--L~ 0 #-a.e. 

e(A)(7) is, for 7 fixed, a positive linear functional on rco(9.I)". As such it satisfies 

the Schwartz inequality: 

le(A*B)(7)I 2 < e(A*A)(7)e(B*B)(7).  

From this one easily sees that the following holds true: 

e[(A - B)*(A - B)](7 ) < [e(A*A)(?) ~ + e(B*B)(7) ~] 2 A , B ~  r~o(9,1)". 

Denoting [e(A*A)(7)]-~ = IIAII~ we have in fact that the map Aerco~(~J1)"~llAll ~ 

is a semi-norm on 7c~(2D". Let us now consider 

il uo~(A. - Am)It :, = li (zco~(A.) - A) + (A - uo,(Am) ) llv --< 

<= [ luo (A , ) -  Al[~ + HA-u~(Am)[17. 
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For  A, and Am from the above chosen subsequence of {A,} we find #-a.e.: 

11 u~(A,,) - rc~,(Am)1t 7 2 = e [(7~o,(A+) - uo,(A,.))*(rc+~(A.) - zL,(A~))] (?) . . . .  2 0 .  

This however  means that  o)~((A. -A,~)*(A. -A,~) ) - - ,O,  which in turn means that  

in the representat ion space D~,., carrying the representat ion z:o," of  ~i with cyclic 

vector f2~o~, we have #-a.e. 

[I (n~o.~(A ,) - rc~+(A ,3)f2 ~? 11 ~ 0,  

which means that  zco,,(A.)f2,, converges to a vector which we denote by ~?. 

We shall now show that ~pv is different from zero for all ? such that co s belongs 

to a set 1/o with nonzero  #-measure. Indeed  (Oo, A*Af2~)#-O because A4=0. 

(f2o, is separating for uo,(gA)" t) Since the sequence {rco~(A,) } converges strongly to A 

it follows that  

(~?,o, A* A Q ~ ) =  lim (f2~,, 7L,(A*)uo,(A,)f2 J = lira ~ coT(A* A,)d#,o(7) . 
n n F 

Fur the rmore  

6%(A*A,) = ~(7:o,(A*)7~o(A+))(?)___6 sup e(u~,(A*)no(A.))(?) = 
y~F 

= ]]~(rc+.(A*)~o(A,))H = L[ Ps(x~o(A*)xo(An))[I = 

= 1{ P~zo~(A*.)zc~o(A.)Pll < H r%(A.)112 < I] Ail 2. 

In these estimates we used successively that the representat ion theorem for 

commutat ive  C*-algebras is an isomorphism, the map 3 - , P 3  is an isomorphic  

map and that  we may choose for zc~o(A,) a bounded  sequence. (For  a simple 

algebra IfA,11 = i[~%(A,)IT and hence the estimate is immediate  because ooT(A*A,)< 

111,112< ILA[12,) If we restrict our  at tent ion to the above chosen subsequence of 

rco~(A,) we can say that * + o)~(A, A,) =/Irc~o,(A,)f2,o+Ii is a #-a.e. convergent  sequence 

that is uniformly bounded  and therefore the Lebesgue dominated  convergence 

theorem gives then for ? with o)? e V o C F with #o,(V0) 4= 0 (because (f2~,, A*AQ~o) • 0): 

II ~¢? 11 = lim II ~o?(A-,)f2o~, I[ = lim co~(A*A,) + 4= O. 

F r o m  the fact that  St(A ) = eiaA we conclude that  

[[ [rco(at(A.))- eiarc~,(A.)]Qo~ ti -- Ti [&t(zc~o(A.))- eiarc.,(A.)]f2~, t[ < 

< lJ&t(rc~,(A.) - A)Qo, tt + t{ [St(A) - e'arc~o(A.)]f2,olt = 

= 2 II (u~,(A,) - A)f2~, 11 .+ 2 0 .  

This means 

c°[(at(A')-  e+ Z' A ' )  * ( at( A~) - ei at A')  ] ~ + 2 0 .  

Like we did above we can again choose a subsequence to the effect that, with t 

and ~ fixed, 

c%[(a+(A~)- d;°tA,3*(o~t(A~)- e~aA.)] ~-2~0 #-a.e. 
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This implies for a subset V, of 1/o with/4Vo) = #(Vt) that 
coy 

coy + II v,  ~co~(A.)f2o~- e'~%,~(A°)Oco~ll 
i2t A +]te rcco~( ,)Ocoo-eiZSp~II ~ 0 .  

We can now find a subset V of V0 with #(V)= #(V o) such that (Ut ~ -  e~Z~)~p~ = 0 

for all rational t and c%~ V. Using strong continuity of U~'~ one extends this to 

all t. Q.E.D. 

3. Some Miscellaneous Results 

To conclude this paper we want to discuss some situations that are special in the 

sense that the spectra of the generators that we encounter coincide with all oflR 1. 

Some of the results we shall discuss here are somewhat disconnected from the ones 

discussed in the previous sections. We shall therefore state the conditions under 

which the results of this section are valid separately. 

Let c~, be a one-parameter group of automorphisms of a C*-algebra 9.1. For 

every state on 91 that we shall consider co(Ac~(B)) is a continuous function of x. 

Let ~ be an c~-invariant state on 91. Then it is known that the representation rc 

of L I ~ )  in ~([)o~), given by 

f ~LlOR)~rc(f):rc(f)z=~ U~zf(x)dx Z~[3co, 

is faithful iff Sp U=Sp Pco=IRl(U~=expiPcox). Let co be ~-invariant and let ~2~ 

denote the extension of ~ to 7rco(91y. Ux denotes the continuous unitary group 

that implements ~,,. Then we have [4] 

Theorem 3.1. Sp U=IR 1 /f ~L,(91)" is non-abeIian and rc~(91)"c'~U'~= {21}. 

Let 91 be a non-abelian C*-algebra and co an extremal 7~-invariant state 

that gives rise to a faithful representation and is furthermore separating then 

we have: 

Theorem 3.2. Sp U=IR ~. 

Proof Since 9A is non-abelian and rc~, is faithful rcco(91y is non-abelian. Extremal 

invariance implies that uco(91)'n U'~ = {21 }. The fact that co is separating gives [19] 

that rco~(~"n U~,=~zco(~)'n U'~= {21 }. The theorem now follows from applying 

theorem 3.1. Q.E.D. 

Suppose now that we have a simple C*-atgebra 91, with ~t a one-parameter 

group of automorphisms, representing the dynamics, that acts asymptotically 

abelian on 91. Let co be at K.M.S. at an inverse temperature fi admitting a decom- 

position into extremal at K.M.S. states at the inverse temperature/3, 

co = ~ d~(?)co, .  

Since cot is primary and ~ acts asymptotically abelian co~, is extremal invariant 

for at. Furthermore cot is separating since it is a K.M.S.-state and hence by theo- 

rem 3.2 Sp Hco~ =IR 1. By theorem B we find that the only discrete point in Sp Hco 

is zero. The multiplicity of this eigenvalue is determined by the centre because 

the centre is pointwise invariant for a K.M.S.-state [19], and ~zco(91)'~ U', is con- 

tained in the centre because a t acts asymptotically abelian [20]. 
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If we would further specialize our situation by taking for ~I the quasi-local 

algebra and for at not only an automorphism group that acts asymptotically 

abelian but also satisfies the regularity criteria, then we have Sp H~ = Sp H~o, =IR 1. 

This is true because we are allowed to use theorem A. 

We consider next for a non-abelian C*-algebra 92[ the following 

Theorem 3.3. Let co be a primary, separating, c~ x invariant state on a C*-algebra 9.1 

(with co(AexB) continuous and ~o, faithful) then the existence of a sequence 

x,(x,~-2-~ oo) with O9(C[A, ax,(B)]D) 2.~O VA,B,C,D~gA, implies Sp U=IR 1. 

Proof ¢o( C[A, a~.(B)]D)~O V C, Ds  91 implies that Og(Aa~ B)-.Og(A)oo(B) [21] and 

hence that ~2o, is uniquely invariant for U~, i.e. co is extremal invariant. This in 

turn means, because co is separating, by theorem 3.2, that Sp U=  Sp IR ~. Q.E.D. 

For a primary separating e~-invariant state the fact that O9(C[A, c%,(B)]D)-+0 

is equivalent [21] with strong clustering, i.e. co(Aax~,(B))~c~(A)o~(B), we can there- 

fore reformulate theorem 3.3 as 
Theorem 3.3'. Let co be a primary, separating, strongly clustering, ~ invariant 

state on 9.1 (with ¢o(A~xB) continuous and rc~ faithful), then Sp U =  IR 1. 

A generalization of this theorem is 

Theorem 3.4 Let o9 be a non-primary, separating, strongly clustering, c~ x invariant 

state on 9X(co(AC~xB ) continuous and 7zo, faithful), then Sp U=IR 1. 

The fact that we took separating states in theorem 3.3' and 3.4 permits us to 

exclude the otherwise still existing possibility that Sp U =IR 1 + or IR 1 -, cf. [3]. 

Remark. As will be clear from theorem 3.2 the faithfulness of 7zo, in theorems 3.3, 

3.3' and 3.4 could be replaced by non-abetianness of rcojg.I)". 
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