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Abstract: The time evolution of a quantumwave packet in
the linear gravitypotential is knownasQuantumBouncing
Ball. The qBounce collaboration recently observed such a
system by dropping wave packets of ultracold neutrons
by a height of roughly 30 microns. In this article, space
and momentum spectra as well as Wigner functions of
the neutron wave functions in the gravitational field of
the Earth are analyzed. We investigate the quantum states
in the “preparation region”, into which they transition
after exiting a narrow double-mirror system and where we
would expect to observe free fall and bounces in classical
physics. For this,we start from the stationary solutions and
eigenvalues of the Schrödinger equation in terms of Airy
functions and their zeros. Subsequently,we examine space
and momentum distributions as well as Wigner functions
in phase space for pure and mixed quantum states. The
possible influenceofYukawa-like forces for smalldistances
of severalmicrometers from themirror is included through
first order perturbation calculations. Those allow us to
study the resultingmodifications of space andmomentum
distributions, and phase space functions.
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1 Introduction
A quantumwave packet bouncing on a hard surface under
the influence of gravity has drawn some attention in the
literature due to its departures from classical behaviour
[1–7]. Other aspects of this quantum bouncer have also
been studied to some extent. Of those, we would like to
mention its chaotic behavior [8], the mathematical basis
with orthonormal Airy eigenfunction solutions [9], the
Wigner phase space as an interface of gravity andquantum
mechanics [10], quantum revivals in a periodically driven
gravitational cavity [11], and inertial and gravitational
mass in quantum mechanics [12]. The development of
sufficient ultracold neutron sources at the Institut Laue
Langevin (ILL) in Grenoble and techniques to manipulate
neutrons with high precision have made the simple quan-
tum bouncer experimentally realizable. Demonstrations
of quantum states in the gravitational potential of the
Earth can be found in [13–15] and aspects from a more
theoretical point of view in [16, 17]. From the beginning
these experiments were used to constrain hypothetical
gravity-like interactions [18–20].

In this article, we will examine some details of the
bounce of a neutron wave packet closely related to an
experimental realization by the qBOUNCE collaboration.
More precisely, we will investigate the behavior of the
momentum space wave packet solutions, the widths of
the position and momentum space wave packets during
the “bounce”, and aspects of Yukawa-type interactions.
Extensive use of the Wigner function formalism as a
function of time is made as well.

The qBOUNCE experiment has been performed at the
UCN-beam position of the PF2 instrument at ILL, so far
the 7th strongest source for ultracold neutrons with high
continuous fluence, which is ideal for quantum bouncer
realizations. It tests gravity at small distances with quan-
tum interference techniques. The experimental tool is a
gravitationally interacting quantum system – an ultracold
neutron in the gravitational potential of the Earth – and
a reflecting mirror above which the neutron is bound in
well-defined quantum states. The collaboration is contin-
uously developing a gravity resonance spectroscopy (GRS)
[21–25] technique, which allows for a clear identification
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of the measured energy eigenstates states |1⟩ → |2⟩, |1⟩
→ |3⟩, |1⟩ → |4⟩, |2⟩ → |3⟩, |2⟩→ |4⟩, |2⟩→ |5⟩, and most
recently |1⟩→ |6⟩. In this way, precisions are reached
which enable us to search for hypothetical gravity-like
interactions with relevance for cosmology. So far limits
for axions [22], chameleon [23] and symmetron fields [24]
have been placed.

For the purpose of this article, an important observ-
able is the spatial density distribution of a free falling
neutron above a reflecting mirror. A newly developed
position-dependent neutron detector makes it possible to
visualize the square of the Schrödinger wave function [26,
27]. Detailed descriptions of these processes can be found
in [28].Wenowhaveahigh-precisiongravitationalneutron
spectrometer with available spatial resolution of 1.5 𝜇m at
ourdisposal.Neutronsaredetected inCR-39 trackdetectors
after neutron capture in a coated Boron-10 layer of 100 nm
thickness. An etching technique makes the tracks visible
with a length of about 3 μm–6 μm [29].

Because of the Schrödinger equation, and therefore
by means of the quantum mechanical description of
particles in a gravitational field, a wave function is estab-
lished exhibiting both, a local spreading and amomentum
distribution. As is well-known, it is possible to describe
this phenomenon using Airy functions. In doing so, it
appears that, due to the reflection on the mirror surface,
a ground state and excited states emerge. Moreover, the
Wigner function allows for a combined view within the
entire phase space. Further attention is especially put on
marginal distribution functions of the Wigner distribution
which correspond exactly to the space and momentum
distributions. For all our numerical calculationsweuse the
computer software Mathematica. The space distribution
had been measured using a track detector [29]. Like-
wise, the momentum distribution should be determined
experimentally using an appropriate detector. The main
objective of our calculations is the comparison with these
measurements.

The article is organized as follows: In chapter 2 the
Schrödinger equation including agravitational potential is
given and time-independent solutions are explored. Using
an appropriate scaling, a differential equation is found,
whose solutions can be expressed by Airy functions. The
calculation of the Fourier transform of the ground state is
presented and excited states are considered. Furthermore,
the solutions using the Wigner function and the time
dependence of the superposition of ground and first
excited states are described. In chapter 3 we investigate
the qBOUNCE-system in which the neutron wave is enclosed
between 2 mirrors. This chapter is subdivided into two

sections, one dealing with the Fourier transformation of
the wave function and the other one being concerned with
the Wigner function. Chapter 4 is dedicated to a wave
function exiting the double mirror system and falling onto
a subsequent mirror. One section describes the space dis-
tribution in this “free fall” region, another one is dedicated
to the space distribution of mixtures, the third one deals
with the calculation of the momentum distribution and
the last section presents the related Wigner function. In
chapter 5 we perform a first order perturbation calculation
in order to describe a very small change in the potential
near the mirror. At first, the mathematical background
is presented. Afterwards, the Fourier transformations of
the results are carried out, the momentum distribution
including a Yukawa-like term described and the related
space distribution evaluated. A discussion and proposed
applications of the Yukawa correction including possible
experimental results are added. Finally, chapter 6 gives a
short summary.

2 Schrödinger equation for
qBounce

In this section we specify the Schrödinger equation of
neutrons in the gravitational field. Because of an infinitely
hard mirror where the neutrons impinge (qBounce) well
known stationary solutions of the wave function (eigen-
functions) are found in terms of Airy-functions. The energy
eigenvalues are linked to the zeros of these functions.
Furthermore the Fourier transform of the ground state and
of excited states are calculated and graphically displayed.
The Wigner function of these states is presented. The
time-dependence of coherent and incoherent mixtures of
ground and excited states are investigated. The basic idea
behind this section is to prepare for the following Section 3
where the neutron beam is enclosed between 2 mirrors.

The time-dependent Schrödinger equation for a neu-
tron with mass mN in the gravitational field of the Earth
with potential energy (g is the gravitational acceleration, z
the distance above the mirror)

V(z) = mNgz (1)

reads
Ĥ 𝜓(z, t) = iℏ �̇�(z, t), (2)

where Ĥ is the Hamiltonian containing V(z). The energy of
thewave function𝜓(z, t) is quantized in the potentialV(z).
Using the ansatz

𝜓n(z, t) = e−i
En
ℏ
t𝜓n(z) (3)
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for a stationary state of energy En with n = 1, 2,…, we
obtain the time-independent Schrödinger equation[

− ℏ2

2mN

d2
dz2

+mNgz
]
𝜓n(z) = En𝜓n(z). (4)

For negative values of z we have 𝜓(z) = 0 because the
particles cannot enter the mirror surface. Therefore, the
boundary condition for the solution of the differential
equation is 𝜓(0) = 0. For this reason, it is supposed that
the surface of the mirror has an infinite Fermi potential
and the quantum wave does not enter the surface. This is
of course just an approximation.

At this point, it is appropriate to mention that the
problem of two mirrors as well as the transition from
an inertial frame (z0, t0) to a non-inertial frame (z, t) has
already been described in [30].

Searching for solutions𝜓n(z), wemultiply Eq. (4) with

the factor
(

2
ℏ2mN g2

)1∕3
and, using the substitutions [28]

𝜁 = z∕z0, z0 =
(

ℏ2

2m2
Ng

)1∕3
≈ 5.86796μm,

an = −En∕E0, E0 =
(
ℏ2mNg2

2

)1∕3
≈ 0.602 peV,

(5)

where E0 is a characteristic gravitational energy scale, we
obtain the differential equation(

d2
d𝜁 2 − (𝜁 + an)

)
𝜓n(𝜁 ) = 0. (6)

Comparing this equation with the Airy equation(
d2
d𝜁 2 − 𝜁

)
Ai(𝜁 ) = 0, (7)

we notice that the (non-normalized) eigenfunctions 𝜓n(𝜁 )
can be expressed through the Airy function Ai(𝜁 ) by
moving the origin of coordinates to the nth zero point an:

𝜓n(𝜁 ) = Ai(𝜁 + an)Θ(𝜁 ). (8)

As described in [30] the normalized wave function𝜓n(z, t)
is given by

𝜓n(z, t) =
1√

z0Ai′
(
− zn

z0

)Ai(z − zn
z0

)
e−

i
ℏ
Ent

= 𝜓n(z) e
− i
ℏ
Ent. (9)

The first zero point of the Airy function is located
at a1 ≈ −2.3381. This means, that E1 = −a1E0 ≈ 1.41 peV.
Additional zero points are located along the negative axis,

as can be seen in Figure 1. They determine the energy
eigenvalues En according to Eq. (5). We list some of them
below (zn = −z0an):

n = 1, E1 ≈ 1.40672 peV, z1 ≈ 13.71680μm,

a1 ≈ −2.33810,

n = 2, E2 ≈ 2.45951 peV, z2 ≈ 23.98246μm,

a2 ≈ −4.08795,

n = 3, E3 ≈ 3.32144 peV, z3 ≈ 32.38707μm,

a3 ≈ −5.52056,

n = 4, E4 ≈ 4.08321 peV, z4 ≈ 39.81502μm,

a4 ≈ −6.78671,

n = 5, E5 ≈ 4.77958 peV, z5 ≈ 46.60526μm,

a5 ≈ −7.94412,

n = 6, E6 ≈ 5.42846 peV, z6 ≈ 52.93243μm,

a6 ≈ −9.02262.

(10)

The quantities zn are given, such that they can later be
compared to Eq. (29).

Concerning the calculation of the spectra and the
Wigner function, the following formalism is developed
using the example of the ground state. The wave function
of the ground state 𝜓 1(𝜁 ) can be written as 𝜓 1(𝜁 ) =
Ai(𝜁 + a1)Θ(𝜁 ), where Θ(𝜁 ) is Heaviside’s step function,
see Figure 2(a). This Heaviside step function is necessary
in order to fulfill the boundary condition caused by the
mirror whereupon the wave function has to be zero for
negative 𝜁–values.

The spatial distribution is given by |𝜓 1(𝜁 )|2. This
function can be taken from Figure 1, orange curve, by
imagining that the curve is shifted by a1 to the positive
𝜁–axis.

Figure 1: Airy function Ai(𝜁 ) (blue) and [Ai(𝜁 )]2 (orange).
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(a) (b)

Figure 2: Wave functions and momentum distributions of the ground state with a1 ≈ −2.3381 and the first excited state with a2 ≈ −4.08795.

2.1 Calculation of Fourier transform of
ground state

In order to attain the momentum space (variable k), the
wave function 𝜓 1(𝜁 ) has to be Fourier transformed:

F(k, a1) =
1√
2𝜋

∞

∫
−∞

e−i𝜁kAi(𝜁 + a1)Θ(𝜁 ) d𝜁

= 1√
2𝜋

∞

∫
0

[cos(𝜁k)− i sin(𝜁k)]Ai(𝜁 + a1) d𝜁

=: fc(k, a1)− i fs(k, a1), (11)

where the two functions

fc(k, a1) :=
1√
2𝜋

∞

∫
0

cos(𝜁k)Ai(𝜁 + a1) d𝜁,

fs(k, a1) :=
1√
2𝜋

∞

∫
0

sin(𝜁k)Ai(𝜁 + a1) d𝜁

(12)

havebeendefined. Theyaredisplayed inFigure 3. It should
be mentioned that Fourier integrals of Airy-functions of
this type (or similar expressions throughout the paper)
have to be calculated numerically using Mathematica. To
the best of our knowledge we did not find any analytical
results of such integrals.

The momentum spectrum is given by

|F(k, a1)|2 = [ fc(k, a1)]2 + [ fs(k, a1)]2, (13)

see Figure 2(b).We have to stress that k is actually a dimen-
sionless variable and related to the physical momentum
kp by

k = z0
ℏ
kp. (14)

2.2 Excited states
Here we look at the excited states by discussing their
momentum spectra for a few selected example values of n.
The first excited state is characterized by the second zero
pointa2 ≈ −4.08795 of theAiry function. Itswave function
and momentum spectrum are depicted in Figure 2(a) and
(b), respectively.

The third zero point of the Airy function is located at
a3 ≈ −5.52056 (2nd excited state) and yields a momentum
spectrum as given in Figure 4. Besides, this figure also
shows the results for the 3rd and 9th excited stateswith the
corresponding fourth and tenth zero points a4 ≈ −6.78671
and a10 ≈ −12.8288 of the Airy function.

In Figure 4 we can see that the number of oscillations
before the onset of the asymptotic behavior of themomen-
tum spectra increases with n. In case of n towards infinity,

Figure 3: fc(k, a1) with a1 ≈ −2.3381 (blue) and fs(k, a1) with
a1 ≈ −2.3381 (orange).
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Figure 4: Momentum distributions of the second excited state|F (k, a3)|2 with a3 ≈ −5.52056 (blue), the third excited state|F (k, a4)|2 with a4 ≈ −6.78671 (orange), and the ninth excited state|F (k, a10)|2 with a10 ≈ −12.8288 (green).

the amplitudes of the oscillations tend to zero and the
momentum spectrum becomes a constant.

2.3 Presentation using Wigner function
The 2-dimensional Wigner function is an important tool
in quantum optics. It allows for a simultaneous view into
space andmomentum regions. TheWigner function is real
but can be positive and negative as well. In this respect,
it is not a classical 2-dim distribution function. There-
fore, it is often called a quasi-distribution function. Most
remarkably is the property that an integration of a Wigner
function over momentum gives the spatial probability,
while integration over the spatial coordinate gives the
momentum probability. These two marginal distribution
functions (spatial and momentum distributions) are, at
least in principle, experimentally accessible. The Wigner
function formalism has already been applied within the
framework of investigations of the gravitational potential
of the Earth [12]. In addition, we would like to point to
an article, in which the interface of gravity and quantum
mechanics has been discussed with the Wigner phase
space distribution function [10].

For our purposes, we will use the Wigner function
in order to recover the momentum spectrum Eq. (13).
The definition of the Wigner function is [31]:

W(𝜁, k) := 1
2𝜋

∞

∫
−∞

ei𝜁 ′k 𝜓∗
(
𝜁 + 𝜁 ′

2

)
𝜓

(
𝜁 − 𝜁 ′

2

)
d𝜁 ′.

(15)
Plugging Eq. (8) into this definition, we find

W(𝜁, k, an) =
1
2𝜋

∞

∫
−∞

ei𝜁 ′k Ai
(
𝜁 + 𝜁 ′

2 + an
)
Θ
(
𝜁 + 𝜁 ′

2

)

× Ai
(
𝜁 − 𝜁 ′

2 + an
)
Θ
(
𝜁 − 𝜁 ′

2

)
d𝜁 ′, (16)

which is obviously symmetric in k: W(𝜁, k, an) =
W(𝜁,−k, an).

Due to 1
2𝜋 ∫ ∞

−∞e
i𝜁 ′k dk = 𝛿(𝜁 ′), we can easily see how

integration over the momentum k yields the space distri-
bution:

∞

∫
−∞

W(𝜁, k, an) dk = [Ai(𝜁 + an)Θ(𝜁 )]2 = |𝜓n(𝜁 )|2. (17)

The Wigner function in Eq. (16) can be rewritten as:

W(𝜁, k, an) =
1
𝜋

∞

∫
0

cos(𝜁 ′k)Ai
(
𝜁 + 𝜁 ′

2 + an
)

Θ
(
𝜁 + 𝜁 ′

2

)

× Ai
(
𝜁 − 𝜁 ′

2 + an
)

Θ
(
𝜁 − 𝜁 ′

2

)
d𝜁 ′. (18)

UsingEq. (18),we canfind themomentumdistribution
by integrating over 𝜁 :

|F(k, an)|2 =
∞

∫
−∞

W(𝜁, k, an) d𝜁

= 1
𝜋

∞

∫
0

cos(𝜁 ′k) f (𝜁 ′, an) d𝜁 ′,

f (𝜁 ′, an) :=
∞

∫
𝜁′
2

Ai
(
𝜁 + 𝜁 ′

2 + an
)
Ai
(
𝜁 − 𝜁 ′

2 + an
)
d𝜁,

𝜁 ′ ≥ 0. (19)

Evaluating this expression numerically for the states
considered in Figure 2(b), we obtain the same results as in
these figures. Consequently, the Wigner function provides
us with a second option to calculate |F(k, an)|2.

The 2-dimWigner function Eq. (18) of the ground state
W(𝜁, k, a1) is plotted in Figure 5(a). It is almost everywhere
positive. There are only very small and hardly visible
negative regions.

The negative regions are much more visible for the
Wigner functions of the first and second excited states,
which are plotted in Figure 5(b) and (c), respectively. This
negativity distinguishes the Wigner distribution from the
always strictly positive spatial and momentum distribu-
tions. In Figure 5(d) the ninth excited state is plotted. As a
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Figure 5: Wigner functions of the ground state and first, second and ninth excited state.

consequence, a great deal of oscillations can be observed
together with a slight decrease of their amplitudes for
increasing quantum number. This can be understood
becauseof interference inphasespace.Asimilarbehaviour
we observe for the momentum distribution in Figure 4 in
case of a10 where the Wigner function has been integrated
over 𝜁 .

2.4 Time-dependence of a mixture of ground
state and first excited state

The spatial probability density has been experimentally
verified for ultracold neutrons in [23]. Here we suggest that
the momentum probability distributions could be mea-
sured in a similar fashion. For example, if the ground state
population amounts to 70% (p1 = 0.7), the first excited
stateamounts to30% (p2 = 0.3),andnootherexcitedstates
are populated, then extracting the total probability distri-
butions fromFigure 2(b) is straightforward. This is because

the relative contributions canbeextracted from thefigures:∑
npn|F(k, an)|2, see Figure 6. The orange line in Figure 6

presents an example forp1 = p2 = 0.5. In this case, thefirst
excited state, represented by |F(k, a2)|2 and Figure 2(b), is
clearly visible. It should be mentioned that this procedure
corresponds to an incoherent superposition.

Therefore, the proposed procedure is not exact. We
have to take the time dependence of the wave function,
see Eq. (3), into account. Consequently, we will now go
back to the time-dependent space distribution |𝜓(𝜁, t)|2
using the following ansatz of coherent superposition

𝜓s(𝜁, t) =
√
p1e

−i E1
ℏ
t𝜓1(𝜁 )+

√
p2e

−i E2
ℏ
t𝜓2(𝜁 ), (20)

where 𝜓 1(𝜁 ) = Ai(𝜁 + a1)Θ(𝜁 ) and 𝜓 2(𝜁 ) = Ai(𝜁 + a2)
Θ(𝜁 ) are real functions, and we ignore a potential phase
between both terms for simplicity. The time-dependent
position probability of this superposition state is
therefore
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Figure 6: Combined momentum distributions of the ground state
and the first excited state p1|F (k, a1)|2 + p2|F (k, a2)|2 with p1 = 0.7
and p2 = 0.3 (blue), and p1 = p2 = 0.5 (orange).

|𝜓s(𝜁, t)|2 = p1[Ai(𝜁 + a1)Θ(𝜁 )]2 + p2[Ai(𝜁 + a2)Θ(𝜁 )]2

+ 2
√
p1p2 Ai(𝜁 + a1) Ai(𝜁 + a2)Θ2(𝜁 )

× cos
(
E1 − E2
ℏ

t
)
. (21)

This function oscillates with time t. If p1 = 1 and p2 = 0,
we recover |𝜓 1(𝜁 )|2, which is the square of the function
depicted in blue in Figure 2(a). Furthermore, we have

E1 − E2
ℏ

= E0
ℏ
(−a1 + a2) ≈ 1600.4Hz. (22)

This means, that |𝜓 s(𝜁, t)|2 oscillates in the time-range
of milliseconds, as can be seen in the example shown
in Figure 7(a). The first small peak at t = 0 appears
at 𝜁 ≈ 2.5 and not at 𝜁 ≈ 1.3, i.e., the maximum of
𝜓 1(𝜁 ), see Figure 2(a), because the interference term in

Eq. (21) contains Ai(𝜁 + a2), which is negative in the region
between 𝜁 = 0 and 𝜁 ≈ 1.7, see Figure 2(a). However, the
large maximum at t ≈ 0.002 s appears for 𝜁 ≈ 1.3 due to
𝜓 1(𝜁 ) and p1 = 0.7. We assume that such properties of
time-dependent position probabilities for superpositions
of ground and excited states can be measured.

We have to point out that in case of a non-time-
resolving measurement we have to integrate time t in
Eq. (21) over one time period, e.g., from 0 to 2𝜋ℏ∕(E1 − E2).
In this case, the interference termdisappearsandweobtain
only the first two terms |𝜓 |2 = p1[Ai(𝜁 + a1)Θ(𝜁 )]2 +
p2[Ai(𝜁 + a2)Θ(𝜁 )]2. Figure 8 depicts an example. This
spatial probability density is very similar to the results
of an experiment using a track detector [23].

The Fourier transform of 𝜓 s(𝜁 ) in Eq. (20) reads

Fs(k, t) =
√
p1e

−i E1
ℏ
tF(k, a1)+

√
p2e

−i E2
ℏ
tF(k, a2). (23)

Next, we want to calculate |Fs(k, t)|2. We obtain

|Fs(k, t)|2 = p1|F(k, a1)|2 + p2|F(k, a2)|2
+
√
p1p2(𝛼𝛽∗ + 𝛼∗𝛽),

𝛼 = ei
(E1−E2)

ℏ
t, 𝛽∗ = F∗(k, a1)F(k, a2).

(24)

Using Eq. (11) in order to decompose 𝛽∗, we find

𝛽∗ = fc(k, a1) fc(k, a2)+ fs(k, a1) fs(k, a2)

+ i [ fs(k, a1) fc(k, a2)− fc(k, a1) fs(k, a2)]. (25)

Since 𝛼𝛽∗ + 𝛼∗𝛽 = 2[Re(𝛼)Re(𝛽)+ Im(𝛼)Im(𝛽)], the final
expression for |Fs(k, t)|2 is

Figure 7: Time-dependent position and momentum probabilities of superposition of the ground state and first excited state with p1 = 0.7
and p2 = 0.3.
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Figure 8: Non-time-resolving position probability|𝜓 |2 = p1[Ai(𝜁 + a1)Θ(𝜁 )]2 + p2[Ai(𝜁 + a2)Θ(𝜁 )]2 of superposition
of ground state and first excited state, see Eq. (21), with p1 = 0.7
and p2 = 0.3.

|Fs(k, t)|2 = p1|F(k, a1)|2 + p2|F(k, a2)|2 + 2
√
p1p2

×
{
cos

[
E1 − E2
ℏ

t
] [

fc(k, a1) fc(k, a2)

+ fs(k, a1) fs(k, a2)
]

− sin
[
E1 − E2
ℏ

t
] [

fs(k, a1) fc(k, a2)

− fc(k, a1) fs(k, a2)
]}

. (26)

The time dependence of this momentum spectrum could
also be measured experimentally.

Figure 7(b) gives an example of Eq. (26) with p1 = 0.7
and p2 = 0.3. If we chose p1 = 1 and p2 = 0, or p1 = 0
and p2 = 1, we would instead recover Figure 2(b). In the
case of a non-time-resolving measurement, we have to
integrate time t in Eq. (26) over one time period. Hence,
the interference term disappears and we obtain only the
first two terms p1|F(k, a1)|2 + p2|F(k, a2)|2, which, using
p1 = 0.7 and p2 = 0.3, is the function in blue in Figure 6.

Using Eqs. (16) and (20), the Wigner function of the
coherent superposition can be found to be

Ws(𝜁, k, t) = p1W(𝜁, k, a1)+ p2W(𝜁, k, a2)

+
√
p1p2

1
𝜋

∞

∫
−∞

Ai
(
𝜁 − 𝜁 ′

2 + a2
)

× Ai
(
𝜁 + 𝜁 ′

2 + a1
)
Θ
(
𝜁 − 𝜁 ′

2

)

×Θ
(
𝜁 + 𝜁 ′

2

)
cos

(
E1 − E2
ℏ

t + 𝜁 ′k
)
d𝜁 ′.

(27)

Figure 9: Wigner function of superposition of ground state and first
excited state for non-time-resolving measurement p1W(𝜁, k, a1)
+ p2W(𝜁, k, a2), see Eq. (27), with p1 = 0.7 and p2 = 0.3.

The single Wigner functions W(𝜁, k, a1) and W(𝜁, k, a2)
have already been depicted in Figure 5(a) and (b),
respectively, while the integral on the right-hand side of
Eq. (27), the interference term, can be evaluated similarly
to Eq. (19).

If the time t cannot be resolved experimentally, we
have to integrate over one time period, which causes
the interference term to disappear. The resulting Wigner
function for an example population is given in Figure 9.

3 Wave function in a double mirror
system (region I)

In a real experimentultracoldneutrons (UCNs) are induced
in a double mirror system Figure 10 (region I), [23]. The
situation is significantly different from Section 2. Because
of the 2 mirrors there are 2 boundary conditions where
the wave function has to be zero. This entails a linear
combination of the two Airy-functions Ai(z) and Bi(z)
and modified eigenvalues. In this section we will record
the position-dependent wave function as well as the
Fourier transform. At the end of the section the Wigner
function is calculated and graphically displayed. It turns
out that – because of the rough upper mirror – essentially
the ground state survives at the end of double-mirror
system.

Well, in thischapterweareconsidering theexperimen-
tal setting depicted in Figure 10, and focus on the states
in region I. We can take the normalized wave function of
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Figure 10: Sketch of the two regions I and II, in which the horizontal
direction (abscissa) is the time t-axis and the vertical direction
(ordinate) is the z–axis. UCN (ultracold neutrons) enter a double
mirror system of distance L, called the preparation region (or region
I). The lower mirror is smooth, the upper one rough. Due to the
roughness of the upper mirror, at the end of region I, only the
ground state of the quantum wave is left (m = 1). In region II, the
quantum wave falls down a step of height h onto a smooth mirror
located at z = 0. The transition point from region I to II is where we
choose to set t = 0. At the end of region II, a track detector
measures the vertical space distribution |𝜓m,II(z, t)|2.

the qBOUNCE problem in the case of two mirrors with fixed
separation L from article [32] Eq. (10):

𝜓 (0)
m (z, t) = 1√

z0
1
Nm

e−
i
ℏ
Ēmt

[
bmAi

(
z − z̄m
z0

)

− amBi
(
z − z̄m
z0

)]
,

N2
m =

[
bmAi′

(
−z̄m
z0

)
− amBi′

(
−z̄m
z0

)]2

−
[
bmAi′

(
L− z̄m
z0

)
− amBi′

(
L− z̄m
z0

)]2
,

am = Ai
(
−z̄m
z0

)
, bm = Bi

(
−z̄m
z0

)
. (28)

Here the prime denotes derivatives with respect to the
argument, i.e., z0 d∕dz, and Ai(x) and Bi(x) are the two
independent solutions of Airy’s equation. Due to the
experimental setting, we assume that the wave function
in region I has support only on [0, L] × (−∞,0], but we
keep this assumption implicit for notational convenience.
Below we present a selection of possible numerical values
for the parameters used in Eq. (28):

L = 28μm,

m = 1, Ē1 ≈ 1.40821 peV, z̄1 ≈ 13.73133μm,

m = 2, Ē2 ≈ 2.53045 peV, z̄2 ≈ 24.67419μm,

m = 3, Ē3 ≈ 3.84125 peV, z̄3 ≈ 37.45569μm,

m = 4, Ē4 ≈ 5.64658 peV, z̄4 ≈ 55.05930μm,

m = 5, Ē5 ≈ 7.98191 peV, z̄5 ≈ 77.83089μm,

m = 6, Ē6 ≈ 10.8441 peV, z̄6 ≈ 105.7399μm.

(29)

Here we have Ēm = z̄mmNg. The energy spectrum Ēm is
obtained by the conditions that the wave functions vanish
at the lower as well as upper mirror surface, i.e., 𝜓 (0)

m (0) =
𝜓 (0)
m (L) = 0.

3.1 Fourier transformation of the wave
function

The Fourier transformation of thewave function in Eq. (29)
is given by

F(0)m (k, t) = 1√
2𝜋

∞

∫
−∞

e−ikz𝜓 (0)
m (z, t) dz

= Cm(t)
L

∫
0

e−ikz
[
bmAi

(
z − z̄m
z0

)

− amBi
(
z − z̄m
z0

)]
dz, (30)

where Cm(t) = 1√
2𝜋
√
z0Nm

e−
i
ℏ
Ēmt and we made use of the

restrictions on the support of the wave function that we
mentioned earlier. Since z has the dimension of a length,
here the variable k must have the dimension of an inverse
length and is related to the physical momentum kp by

k = kp
ℏ
. (31)

We define the following stationary quantities:

𝛼c(k,m) :=
1

Cm(t)
Re
[
F(0)m (k, t)

]
,

𝛼s(k,m) := − 1
Cm(t)

Im
[
F(0)m (k, t)

]
,

(32)

such that

F(0)m (k, t) = Cm(t) [𝛼c(k,m)− i𝛼s(k,m) ], (33)
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and the spectral function is given through

|F(0)m (k)|2 = |Cm|2 [𝛼2c(k,m)+ 𝛼2s (k,m) ] (34)

with |Cm|2 = 1
2𝜋z0N2

m
. Notice that this momentum

distribution is stationary. It is depicted for the casesm = 1,
m = 2, and m = 3 in Figure 11(a)–(c), respectively. These
figuresalsoexplicitly showthe respective |Cm|2𝛼2s (k,m) and|Cm|2𝛼2c(k,m).

The wave function for two mirrors𝜓 (0)
m (z, t) in Eq. (28)

is normalized as

∞

∫
−∞

|𝜓 (0)
m (z, t)|2 dz =

L

∫
0

|𝜓 (0)
m (z, t)|2 dz = 1. (35)

In a similar way, the spectral function |F(0)m (k)|2 has to be
normalized, such that

∞

∫
−∞

|F(0)m (k)|2 dk = 1. (36)

We can easily show that this normalization is indeed valid
here by using the first equality in Eq. (30):

∞

∫
−∞

|F(0)m (k, t)|2dk

= 1
2𝜋

∞

∫
−∞

eikz′𝜓 (0)∗
m (z′, t)e−ikz𝜓 (0)

m (z, t) dz′dzdk

=
∞

∫
−∞

𝛿(z − z′)𝜓 (0)∗
m (z′, t)𝜓 (0)

m (z, t) dz′dz

=
∞

∫
−∞

|𝜓 (0)
m (z, t)|2 dz

= 1. (37)

3.2 Wigner function
Using Eq. (28) with Eq. (15) gives the Wigner function

(a)

(b) (c)

Figure 11: Spectral functions of the ground state, and first and second excited state, see Eq. (34).
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W (0)
m (z, k) = 1

2𝜋

∞

∫
−∞

eiz′k𝜓 (0)∗
m

(
z + z′

2 , t
)
𝜓 (0)
m

×
(
z − z′

2 , t
)
dz′

= 1
2𝜋z0N2

m

B(z)

∫
A(z)

eiz′kD(z, z′) dz′ (38)

with

D(z, z′) :=
[
bmAi

(
z + z′

2 − z̄m
z0

)
− amBi

(
z + z′

2 − z̄m
z0

)]

×
[
bmAi

(
z − z′

2 − z̄m
z0

)

− amBi
(
z − z′

2 − z̄m
z0

)]
, (39)

and A(z) and B(z) are the limits of integration that appear
due to the restrictions on the support of𝜓 (0)

m . It can directly
be seen that D(z, z′) = D(z,−z′).

We will now determine the limits of integration. For
this, we consider that z is limited between 0 and L, leading
us to the following 4 equations

z + z′
2 = 0 ⇒ z′ = −2z; z − z′

2 = 0 ⇒ z′ = 2z;

z + z′
2 = L ⇒ z′ = 2(L− z);

z − z′
2 = L ⇒ z′ = 2(z − L); (40)

which represent 4 straight lines in the (z, z′)-diagram and
generate a rhombus. The values inside of this rhombus
are the allowed values for integration. Therefore, we
conclude

0 ≤ z ≤ L
2

⇒ A(z) = −2z ≤ z′ ≤ 2z = B(z);

L
2 ≤ z ≤ L ⇒ A(z) = −2(L− z) ≤ z′ ≤ 2(L− z) = B(z).

(41)

Since A(z) = −B(z), the Wigner function can finally be
written as

W (0)
m (z, k) = 1

𝜋z0N2
m

B(z)

∫
0

cos(z′k)D(z, z′) dz′

= 1
𝜋z0N2

m

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2z

∫
0

cos(z′k)D(z, z′) dz′,

for 0 < z < L
2

2(L−z)

∫
0

cos(z′k)D(z, z′) dz′,

for L
2
< z < L

.

(42)

It is depicted in Figure 12(a)–(c) for m = 1, m = 2, and
m = 3, respectively. As can be seen from Figure 12(a), the
Wigner function W (0)

1 (z, k) of the ground state (m = 1) is
positive everywhere. This is not the case for the Wigner
function W (0)

2 (z, k) of the first excited state (m = 2), see
Figure 12(b), and the Wigner function W (0)

3 (z, k) of the
second excited state (m = 3), see Figure 12(c). For these
stateswecanclearlyobservenegative regionsof theWigner
functions. This is a very characteristic property of excited
states in quantum mechanics. At z = 0 (bottom mirror)
and at z = 28 μm (top mirror) the Wigner functions vanish
exactly because of the boundary conditions.

In summary, in this chapter, we considered the eigen-
states of the neutron wave function in a double mirror
system, calculated the spectral functions and evaluated
the correspondingWigner functions. The latter enabled us
to look into the complete phase space in order to study
momentum and position simultaneously.

4 ‘‘Free fall’’ of wave function after
double mirror (region II)

Here we shall discuss an entire new physical problem.
Because of Earth’s gravitational force the quantum wave,
coming out from the double mirror system of region I,
freely falls down a step of height h, see Figure 10. This
region will be called region II. In this region only 1 smooth
mirror lies at the bottomand above there is nomoremirror.
Considered classically, the particle would periodically fall
down, impinge on the mirror being reflected like a bounc-
ing ball. Due to the quantum character of this qBounce
arrangement with one mirror only the quantum waves are
superpositions of eigenstates with different energies En.
Interference of the corresponding time-dependent wave-
functions has to be expected. Subsequently we investigate
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Figure 12: Wigner functions of the ground state, and first and second excited state, see Eq. (42).

the time-dependent spatial and momentum distribution
functions forvarious initial states.At theendof thischapter
we study the Wigner functions.

Therefore, in this chapter we consider the “free fall”
of a wave function which exits a double mirror system (we
denote this region by I, see Figure 10). The wave function
reaches a second region II, where it falls down a height
h = 27 μm on a subsequent static mirror located below
the double mirror system. This case has been investigated
theoretically in [30]. Thewave function in region I has been
given in Eq. (28). Since we are now also going to consider
region II, and for convenience, we apply the coordinate
shift z→ z − h to the result from Eq. (28), such that we
have

𝜓m,I(z, t) := C̄me
− i
ℏ
Ēmt

[
bmAi

(
z − h− z̄m

z0

)

− amBi
(
z − h− z̄m

z0

)]
, (43)

where we introduced the notation C̄m := 1√
z0Nm

, and the
wave function has support only on [h, L+ h] × (−∞,0].

In region II the wave function takes on the following
form

𝜓m,II(z, t) = C̄m
∞∑
n=1

Dn,mAi
(
z − zn
z0

)
e−

i
ℏ
Ent (44)

and includes coefficients

Dn,m :=
{[

bmAi′
(
L− z̄m
z0

)
− amBi′

(
L− z̄m
z0

)]

×
[
Ai
(
L+ h− zn

z0

)
− Ai

(
L− z̄m
z0

)]

−
[
bmAi′

(
− z̄m
z0

)
− amBi′

(
− z̄m
z0

)]

×
[
Ai
(
h− zn
z0

)
− am

]} (
z0

zn − z̄m − h

)

×
[
Ai′

(
− zn
z0

)]−2
. (45)

FormulaEq. (44) togetherwithEq. (45) correspondsexactly
to Eq. (70) in article [30].
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The wave function in region II, given in Eq. (44),
should have support only on [0,∞) × (0,∞) ∪ [h, L+ h] ×
{0}. This results from the requirement of a continuous
transition between regions I and II expressed by

𝜓m,I(z, t = 0) = 𝜓m,II(z, t = 0), (46)

which can only be fulfilled if both 𝜓m,I(z, t) and 𝜓m,II(z, t)
have the same support at t = 0.

Next, we examine the coefficients Dn,m for m = 1, 2
and n = 1, 2,… For this, in what follows, we present the
numerical values of a few selected parameters relevant for
Eq. (45):

z1 = 13.71680μm, z2 = 23.98246μm,

z3 = 32.38707μm, z4 = 39.81502μm,

z5 = 46.60526μm, z6 = 52.93243μm,

z7 = 58.90210μm, z8 = 64.58300μm,

z9 = 70.02430μm, z10 = 75.26180μm,

z11 = 80.23200μm, z12 = 85.22950μm.

(47)

Figure 13 shows some of the first coefficients Dn,m for
the cases m = 1 and m = 2. From there it can be seen that
for n > 12 the coefficients Dn,m become very small and can
therefore be neglected.

Now we can check whether 𝜓 1,I(z, t = 0) and
𝜓 1,II(z, t = 0) fulfill the condition in Eq. (46). We do this
for the ground state m = 1. For this, we consider only
a finite number of coefficients Dn,1. The results includ-
ing n up to 12 and 15 are presented in Figures 14(a)
and (b), respectively. There the abscissa represents the
z−coordinate in μm shifted to the point of origin of the
coordinate system. Therefore, in region I there are values

Figure 13: Coefficients Dn,m from Eq. (45) for ground state withm = 1
(blue) and first excited state withm = 2 (orange); for these cases,
the coefficients are very small for n > 12.

of z from 0 to L. The agreement between 𝜓 1,I(z, t = 0) and
the plotted approximation of 𝜓 1,II(z, t = 0) is very good
except near certain regions, e.g., around z = 0. These
small differences supposedly are due to using only a
finite number of Dn,1-coefficients. We expect the differ-
ences to become smaller when more Dn,1-coefficients are
considered.

4.1 Spatial distribution (SD) in ‘‘free-fall’’
region

The spatial distribution in region II follows from Eq. (44):

|𝜓m,II(z, t)|2 = |||||C̄m
∞∑
n=1

Dn,mAi
(
z − zn
z0

)
e−

i
ℏ
Ent
|||||
2

. (48)

We define

Gc
m(z, t) := C̄m

∞∑
n=1

Dn,mAi
(
z − zn
z0

)
cos

(
En
ℏ
t
)
,

Gs
m(z, t) := C̄m

∞∑
n=1

Dn,mAi
(
z − zn
z0

)
sin

(
En
ℏ
t
)
,

(49)

such that the spatial distribution in region II reads

|𝜓m,II(z, t)|2 = [
Gc
m(z, t)

]2 + [
Gs
m(z, t)

]2 . (50)

Whenever performing numerical calculations we will only
consider the sums in Eq. (49) from n = 1 to 15 due to the
smallness of later coefficients Dn,m.

In Figure 15(a) and (b) the spatial distributions (SD)|𝜓 1,II(z, t)|2 and |𝜓 2,II(z, t)|2, respectively, are plotted as a
function of the z−coordinate (in μm) and time t (in s). For
t = 0 the ground and the first excited state are visible. This
means, that between z = 0 and z = h = 27 μm the SD are
zero. Between z = h and z = h+ L = 55 μm the SD have
the shape of the ground state, see Figure 15(a), or the first
excited state, Figure 15(b). For z > 55 μm the SD vanish
again. While t evolves, the wave function is reflected from
themirror in region IImultiple times. Since the frequencies
En∕ℏ vary during this process, which leads to varying
superpositions of waves, more complicated SD pictures
result at times after t = 0.

Figure 16(a) and (b) show the cosine and sine dis-
tribution functions |Gc

1(z, t)|2 and |Gs
1(z, t)|2 of the ground

state. The sum of these functions yields Figure 15(a).
It is interesting to consider these parts of |𝜓 1,II(z, t)|2
separately since they could be important for interpreting
experimental results.
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(a) (b)

Figure 14: Comparison of 𝜓 1,I(z, t = 0) (blue) with 𝜓 1,II(z, t = 0) (orange) form = 1, see Eq. (46); the coordinate z = h has been shifted to the
point of origin.

Figure 15: Spatial distributions, see Eq. (50), in region II.

Figure 16: Trigonometric spatial distributions, see Eq. (50), in region II.

4.2 Spatial distribution of mixtures

So far, we have considered only a particular state (ground
state or first excited state) which enters region II. It would

be interesting to consider, for example, a mixture of these
two types of quantum states arriving at the step before
entering region II. This casewill nowbe investigated. In the
following, we distinguish between coherent mixtures and
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incoherent mixtures. We consider mixtures of the ground
state with the first excited state.

4.2.1 Coherent mixtures

In the beginning, we look at the following coherent
superposition state:

𝜓1+2,II(z, t) =
√
p1 𝜓1,II(z, t)+

√
p2 𝜓2,II(z, t), (51)

wherep1 andp2 are probabilities, andwe ignore a potential
phase between both terms for simplicity. Note that

∞

∫
0

|𝜓1+2,II(z, t)|2 dz = 1 (52)

because of the orthonormality of the eigenfunctions:
∫ ∞
0 𝜓1𝜓2 dz = 0.

The next step is to calculate the spatial distribution
of the coherent superposition |𝜓 1+2,II(z, t)|2. This can be
accomplished by using Eq. (44) form = 1 andm = 2:

𝜓1+2,II(z, t) =
√
p1 C̄1

∞∑
n=1

Dn,1Ai
(
z − zn
z0

)
e−i

En
ℏ
t

+
√
p2 C̄2

∞∑
n=1

Dn,2Ai
(
z − zn
z0

)
e−i

En
ℏ
t

=
∞∑
n=1

Ai
(
z − zn
z0

)(√
p1 C̄1Dn,1 +

√
p2 C̄2Dn,2

)

×
[
cos

(
En
ℏ
t
)
− i sin

(
En
ℏ
t
)]

. (53)

For numerical calculationswewill again cut off the infinite
sums at n = 15. We define:

|𝜓1+2,II(z, t)|2 = [
Hc
1+2(z, t)

]2 + [
Hs
1+2(z, t)

]2
,

Hc
1+2(z, t) :=

∞∑
n=1

Ai
(
z − zn
z0

) (√
p1 C̄1Dn,1

+
√
p2 C̄2Dn,2

)
cos

(
En
ℏ
t
)
,

Hs
1+2(z, t) :=

∞∑
n=1

Ai
(
z − zn
z0

) (√
p1 C̄1Dn,1

+
√
p2 C̄2Dn,2

)
sin

(
En
ℏ
t
)
. (54)

In Figure 17(a) and (b) we present two examples, for which
the coherent superposition of mixtures can be observed,
namely for p1 = 0.7 and p2 = 0.3, and p1 = 0.5 and
p2 = 0.5, respectively. Because of the superposition of
waves in Eq. (51), in both cases, only the ground state has
beenamplified at t = 0.Altogether,we conclude that using
a coherent superposition is not very useful for obtaining a
damped behavior of the oscillations. We expect this to be
different when using incoherent mixtures.

4.2.2 Incoherent mixtures

Incoherent mixtures can be described by the following
formula:

|𝜓 incoh
mix,II(z, t)|2 = p1|𝜓1,II(z, t)|2 + p2|𝜓2,II(z, t)|2. (55)

In Figure 18(a) and (b) two examples are presented,
for which incoherent mixtures can be observed, namely

Figure 17: Coherent mixtures, see Eq. (54), in region II.
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Figure 18: Incoherent mixtures, see Eq. (55), in region II.

for p1 = 0.7 and p2 = 0.3, and p1 = 0.5 and p2 = 0.5,
respectively. InFigure 18(a), for example, at t = 0 the shape
of theSD isqualitatively the sameas inFigure8.Altogether,
the oscillations are less distinct than in the previous case.

Figure 19(a) and (b) show two examples, in which|𝜓 incoh
mix,II(z, t)|2 is separated into a cosine and a sine part.

The formulas are included in the corresponding figure
captions, and the sumof both of these plots gives the result
in Figure 18(a).

4.3 Momentum distribution
The momentum distribution in region II is calculated
through a Fourier transformation:

|Fm,II(k, t)|2 =
|||||||

1√
2𝜋

∞

∫
−∞

e−ikz𝜓m,II(z, t) dz
|||||||
2

=
|||||

1√
2𝜋

C̄m
∞∑
n=1

Dn,me
− i
ℏ
Ent

×
[
fAic,II(k, n)− i fAis,II(k, n)

] ||||||
2

,

fAic,II(k, n) :=
∞

∫
0

cos(kz) Ai
(
z − zn
z0

)
dz,

fAis,II(k, n) :=
∞

∫
0

sin(kz) Ai
(
z − zn
z0

)
dz.

(56)

Figure 19: Incoherent trigonometric mixtures, see Eqs. (49) and (55), in region II with p1 = 0.7 and p2 = 0.3.
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This can be expressed as

|Fm,II(k, t)|2 = [
FRem,II(k, t)

]2
+
[
FImm,II(k, t)

]2
,

FRem,II(k, t) :=
C̄m√
2𝜋

∞∑
n=1

Dn,m

[
cos

(
En
ℏ
t
)
fAic,II(k, n)

− sin
(
En
ℏ
t
)
fAis,II(k, n)

]
,

FImm,II(k, t) := − C̄m√
2𝜋

∞∑
n=1

Dn,m

[
cos

(
En
ℏ
t
)
fAis,II(k, n)

+ sin
(
En
ℏ
t
)
fAic,II(k, n)

]
. (57)

In Figure 20(a) and (b) we present two examples of|Fm,II(k, t)|2 for m = 1 and m = 2. Figure 20(a) shows the
time dependence of the ground state momentum distri-
bution in region II. At t = 0 the function |F1,II(k,0)|2 is
the Fourier transform of the approximated wave function
of Figure 14(b) squared and has a maximum exactly at
k = 0. During the evolution of time t the maxima are
displaced to larger values of k. This causes an inclined
periodic (t − k)-pattern of the momentum distribution.
For the first excited state (m = 2) the pattern is shifted
once more, as can be seen in Figure 20(b). At t = 0
we can observe a double peak in accordance with the
first excited state at the boundary between regions I
and II. As expected, there is a distinct minimum at
k = 0.

4.4 Wigner function
The Wigner function Wm,II(z, k, t) in region II is given in
terms of the corresponding wave function 𝜓m,II(z, t) from
Eq. (44):

Wm,II(z, k, t) =
1
2𝜋

∞

∫
−∞

eiz′k𝜓∗
m,II

(
z + z′

2 , t
)
𝜓m,II

×
(
z − z′

2 , t
)
dz′, z ≥ 0. (58)

Proceeding similarly to how we did in Eq. (40), we find
the limits of integration to fulfill −2z ≤ z′ ≤ 2z. Moreover,
we can separate the wave function into two parts using
Eq. (49):

𝜓m,II(z, t) = Gc
m(z, t)+ iGs

m(z, t). (59)

After a simple calculation we obtain the following result
for the Wigner function in region II:

Wm,II(z, k, t)

= 1
𝜋

2z

∫
0

dz′
⎧⎪⎨⎪⎩
cos(kz′)

×
[
Gc
m

(
z + z′

2 , t
)
Gc
m

(
z − z′

2 , t
)

+ Gs
m

(
z + z′

2
, t
)
Gs
m

(
z − z′

2
, t
)]

Figure 20: Momentum distributions, see Eq. (57), in region II for the ground state and the first excited state.
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+ sin(kz′)
[
Gs
m

(
z + z′

2 , t
)
Gc
m

(
z − z′

2 , t
)

− Gc
m

(
z + z′

2 , t
)
Gs
m

(
z − z′

2 , t
)]⎫⎪⎬⎪⎭

. (60)

Figure 21(a) and (b) show two examples for m = 1 at time
t = 0 and t = 3 ms, respectively. At first, we will discuss
the case t = 0. In this case, the Wigner function reads

W1,II(z, k,0) =
1
𝜋

2z

∫
0

dz′cos(kz′)Gc
1

(
z + z′

2
,0
)
Gc
1

×
(
z − z′

2
,0
)
,

Gc
1(z,0) =

C̄1√
2𝜋

∞∑
n=1

Dn,1Ai
(
z − zn
z0

)
. (61)

W1,II(z, k,0) is depicted in Figure 21(a). It is non-vanishing
between z = 27 μm and z = 55 μm and should be posi-
tive almost everywhere. This Wigner function should be
approximately the same as in Figure 12(a), where only
positive k−values have been taken into account and the
z−values are shifted (0 ≤ z ≤ 28 μm) because no step has
been considered there.

At t = 3 ms the Wigner function takes the shape
shown in Figure 21(b). It is clearly more complicated than
the shape of the ground state in Figure 21(a), and has
multiple local extrema. For the UCNs with a horizontal
velocity of 𝑣0 = 6m∕s the time t = 3 ms chosen for the

representation of the Wigner function corresponds to the
distance x = 18 cm from thebeginningof region II. One can
recognize that the Wigner function is strongly compressed
at the mirror z = 0 and starts being reflected whereupon
distinct waves appear for z > 0. Likewise, the reflection of
the spatial distributions in Figure 15(a) and in Figure 20(a)
for the momentum distribution can be observed in case of
t ≈ 3 ms. By the way, this reflection time of t ≈ 3ms can
be derived classically from z = − g

2𝑣20
x2 + H setting z = 0

and x = 𝑣0t. If we take an average height of free fall of
H = (h+ 9.1 μm) = 36.1 μm (see Figure 15(a) for t = 0)
the result is t =

√
2H∕g = 2.713 ms. The corresponding

k− value at z = 0 is k = −mgt∕ℏ = −0.423 μm−1. We use
t ≈ 3 ms as a rough value. In Figure 15(a) a high-peaked
reflection-wave appears at z = 0 and in Figure 20(a) the
momentum performs a jump from k ≈ −0.4 μm−1 to k ≈
0.4 μm−1 because of the reflection at the mirror. Like-
wise the linear time-evolution of the momentum is seen
clearly.

It would be interesting to compare to a classical
picture. In case of absence of a mirror the Wigner function
Figure 21(a) falls down to z = 0 and then gains negative
values z < 0 always keeping the same structure. In case of
a mirror the same Wigner function would be reflected at
z = 0 and attains regions of z > 0 bouncing like a ball.
Most suitable is again Figure 15(a) where the quantum
mechanical spacial distribution is drawn. The classical
parabolic time-course z = − g

2 t
2 + H is apparent and the

reflection at t ≈ 3 ms and then the recovery to the initial
position and so on.

Figure 21: Evolution of the Wigner functionW1,II(z, k,0) of the ground state in region II, see Eq. (60).
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5 Including a Yukawa-like term in
region II

It is interesting to include a small perturbation to the
potential in the Schrödinger equation in order to simu-
late a small variation of the gravitational field near the
mirror. The basic idea behind this proposal is to modify
gravity at small distances and determine the limits on
non-Newtonian gravitation below 10 μm.

5.1 First order perturbation calculation and a
new wave function

When a neutron with mass mN approaches the mirror,
the mass of this extended source might modify the
gravitational acceleration of Earth g due to a potentially
present non-Newtonian force with range 𝛿, see Ref. [21].
This modification would lead to an additional, Yukawa-
type interaction

W(z) = W0 e
− 𝜁

(𝛿∕z0) . (62)

The parameter W0 is a positive or negative constant with
the dimension of an energy and 𝛿 is called Yukawa-
distance over which the corresponding force acts. 𝛿 is
measured in units of z0. The stationary Schrödinger Eq. (4)
reads now[

− ℏ2

2mN

d2
dz2 +mNgz +W(z)

]
ΨYu

n (z) = 𝜖nΨYu
n (z). (63)

ΨYu
n (z) and 𝜖n are the corresponding wave functions

and energy eigenvalues. The quantity W(z) has to be
a small correction to mNgz. In the basis of normalized
Airy-functions given in Eq. (9) we obtain at first order:

𝜖n = En + E(1)n , (64)

ΨYu
n (z) = 𝜓n(z)+ 𝜓 (1)

n (z), (65)

where

E(1)n = ⟨𝜓n|W|𝜓n⟩ =
∞

∫
0

|𝜓n(z)|2W(z) dz, (66)

𝜓 (1)
n (z) =

∑
n′≠n

⟨𝜓n′ |W|𝜓n⟩
En − En′

𝜓n′ (z)

=
∑
n′≠n

Jn′,n
En − En′

𝜓n′ (z) (67)

with

Jn′,n :=
∞

∫
0

[
𝜓n′ (z′)

]∗ W(z′)𝜓n(z′) dz′. (68)

Note that ⟨𝜓n|𝜓n⟩ = 1, ⟨𝜓n|𝜓 (1)
n ⟩ = 0,

⟨
𝜓n|ΨYu

n

⟩
= 1 and⟨

ΨYu
n |ΨYu

n

⟩
≈ 1.

In Figure 22(a) the total potential V(z) = mNgz +W(z)
is drawn forW0 = 0 and for an additional attractive poten-
tial with the strengthW0 = −1 peV. Since the total force is
thereforegivenby K⃗(z) = −∇⃗V(z) =

[
−mg + W0

𝛿
e−z∕𝛿

]
ez,

wecansee that theYukawa-potential leads toanadditional
force. Figure 22(b) shows 𝜖n as a function of −W0. The
eigenvalues 𝜖n decrease with increasingW0.

Next, we write the eigenfunctions (65) in the form

ΨYu
n (z) = 𝜓n(z)+

∑
n′≠n

Jn′,n
En − En′

𝜓n′ (z)

=:
∑
n′
𝜓n′ (z) Tn′,n. (69)

Tn′,n is a unit matrix but with small off-diagonal terms
proportional toW0 that represent the small numbers Jn′,n.

For simplicity, we neglect the modifications of the
neutron wave function at t = 0 by the Yukawa interaction
in region Iandconsequentlyassumethat thewave function
in region II resembles the one in Eq. (44), but with a yet
unknown form of 𝜓n′ (z):

𝜓Yu
m,II(z) = C̄m

∑
n′
𝜓n′ (z) D̄n′,m with

D̄n′,m :=Dn′,m
√
z0Ai′

(
−zn′
z0

)
.

(70)

From Eq. (69) we can extract 𝜓n′(z) by means of the
following approach: multiplying from the right by T−1

n,n′′
and summing over n we obtain

∑
n
ΨYu

n (z)T−1
n,n′′ =

∑
n′
𝜓n′ (z)

∑
n
Tn′,nT−1

n,n′′

=
∑
n′
𝜓n′ (z) 𝛿n′,n′′ = 𝜓n′′ (z). (71)

Inserting this relation into Eq. (70),we get themodification
of Eq. (44) for Yukawa forces

𝜓Yu
m,II(z) = C̄m

∑
n,n′

ΨYu
n (z)T−1

n,n′ D̄n′,m. (72)
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(a) (b)

Figure 22: Total potential V(z) = mNgz +W(z) and energy eigenvalues 𝜖n(W0) for a Yukawa-distance 𝛿 = 10 μm.

Taking into account the time dependence of the eigenfunc-
tions from Eq. (69) in region II

ΨYu
n (z, t) = ΨYu

n (z) exp
[
− i
ℏ
𝜖nt
]
, (73)

we get the time evolution of the perturbed wave function
from Eq. (72) in region II:

𝜓Yu
m,II(z, t) = C̄m

∑
n′,n′′

𝜓n′ (z)

×
{∑

n
Tn′,n exp

[
− i
ℏ
𝜖nt
]
T−1
n,n′′

}
D̄n′′,m.

(74)

For vanishingYukawa forces,Tn′,n = 𝛿n′,n and 𝜖n = En, this
equation reduces to Eq. (44).

5.2 Space distribution with Yukawa
correction in region II

We separate the real and imaginary parts of the wave
function in Eq. (74):

Re𝜓 = C̄m
∑
n′,n′′

𝜓n′ (z)

×
{∑

n
Tn′,n cos

(
𝜖n
ℏ
t
)
T−1
n,n′′

}
D̄n′′,m,

Im𝜓 = C̄m
∑
n′,n′′

𝜓n′ (z)

×
{∑

n
Tn′,n sin

(
𝜖n
ℏ
t
)
T−1
n,n′′

}
D̄n′′,m, (75)

such that |𝜓Yu
m,II(z, t)|2 = Re2

𝜓
+ Im2

𝜓
. (76)

An interesting way of comparing space distributions with
and without Yukawa interaction is the following quantity:

ΔYu(z, t) := |𝜓Yu
m,II(z, t)|2 − |𝜓m,II(z, t)|2. (77)

Here |𝜓m,II(z, t)|2 is given in Eq. (50) or, equivalently, by
Eq. (76) when settingW0 = 0.

In Figure 23(a) we assumeW0 = −1 peV and draw the
correspondingΔYu(z, t). For comparison, we also depicted|𝜓Yu

m,I(z, t)|2 in Figure 23(b). For t = 0 this function is exactly
the same as in Figure 15(a). However, for t > 0, small
differences to the function shown in Figure 15(a) can be
noticed.

5.3 Momentum distribution of Yukawa
correction in region II

Next, we want to look at the momentum distribution
and therefore consider the Fourier transform of the wave
function in Eq. (74), which is given by (compare with
Eq. (56))

FYum,II(k, t) =
C̄m√
2𝜋
√
z0

∑
n′,n′′

1
Ai′

(
− zn′

z0

)
×
[
fAic,II(k, n

′)− i fAis,II(k, n
′)
]

×
{∑

N
Tn′,n

[
cos

(
𝜖n
ℏ
t
)

− i sin
(
𝜖n
ℏ
t
)]

}T−1
n,n′′

}
D̄n′′,m. (78)

The real and the imaginary part of this expression are
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Figure 23: Difference in spatial distributions with and without Yukawa interaction, and spatial distribution with Yukawa interaction;m = 1,
𝛿 = 10 μm andW0 = −1 peV.

ReF =
C̄m√
2𝜋
√
z0

∑
n′,n′′

1
Ai′

(
− zn′

z0

)

×
{
fAic,II(k, n

′)
∑
n
Tn′,n cos

(
𝜖n
ℏ
t
)
T−1
n,n′′

− fAis,II(k, n
′)
∑
n
Tn′,n sin

(
𝜖n
ℏ
t
)
T−1
n,n′′

}
D̄n′′,m,

ImF = − C̄m√
2𝜋
√
z0

∑
n′,n′′

1
Ai′

(
− zn′

z0

)

×
{
fAis,II(k, n

′)
∑
n
Tn′,n cos

(
𝜖n
ℏ
t
)
T−1
n,n′′

+ fAic,II(k, n
′)
∑
n
Tn′,n sin

(
𝜖n
ℏ
t
)
T−1
n,n′′

}
D̄n′′,m, (79)

such that |FYum,II(k, t)|2 = Re2F + Im2
F. (80)

Setting W0 = 0 in Eq. (79) recovers Eq. (57), which gives
the expression for |Fm,II(k, t)|2.

An interesting way of comparing the momentum
distributions with and without Yukawa interaction is the
following quantity:

ΔYu(k, t) = |FYum,II(k, t)|2 − |Fm,II(k, t)|2. (81)

In Figure 24(a) this difference of the momentum
distributions with and without Yukawa interaction is
depicted.At the jumpdiscontinuities t ≈ 3msand t ≈ 9ms
distinct differences are visible. At these times the wave
function is reflected at the mirror where the Yukawa

potential is the strongest. This can also be observed in
Figure 24(b), inwhich |FYum,II(k, t)|2 is shown.At these points
in time |FYum,II(k, t)|2 exhibits distinct maxima compared to
the momentum distribution without Yukawa interaction
depicted in Figure 20(a).

5.4 Discussion and proposed applications
of Yukawa correction in region II

It would be interesting to apply the proposed procedure
of Yukawa correctionW(z) of the Newtonian gravitational
energy mNgz (see Eq. (62), Eq. (63) and Figure 22(a)) and
compare the calculated results to real experimental data.
Since the experiment is still running a direct precise com-
parison between theory and experiment will be possible in
the near future.

At the present time the experimental focus is directed
to the measurement of the space distribution immediately
at the double mirror system (at time t = 0) and at a
certain distance in region II (say 5 or 6 cm, which is
equivalent to a few microseconds). The calculated space
distribution |𝜓 1,II(z, t)|2 (without Yukawa-correction) for
the ground state is drawn in Figure 15(a). At t = 0 one
can directly observe the space distribution of the ground
state at the very beginning of the region II. In general
the computed space distribution will not have exactly the
experimental shape (see Ref. [26], Ref. [28], Ref. [23], Ref.
[25]). For example, a fit to the data at t = 0 (see Ref. [23]) is
approximately comparable to an incoherentmixture of the
ground-state population of 70% and a first excited-state
population of 30%. This case is presented in Figure 18(a).
However, other mixtures are possible. At a distance of
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Figure 24: Difference in momentum distributions with and without Yukawa interaction, and momentum distribution with Yukawa interaction;
m = 1, 𝛿 = 10 μm andW0 = −1 peV.

5.1 cm in region II measured values have been reported
(Ref. [25]).

We now propose the following procedure:
(1) We did not consider Yukawa-corrections in region I.

Thereforewe suggest to execute a fit ofmeasureddata
at the time t = 0 (i.e. x = 0 cm) at its best by using
e.g. an incoherent mixture of ground state and first
excited state of the spacedistribution in region II seen
in Figure 18(a).

(2) If the velocity of neutron wave amounts to 6 m∕s
then after t = 10 ms the wave has covered a dis-
tance of x = 6 cm where a detector could compare
the measurement with the theoretical prediction as
shown in the time-dependent space distribution of
Figure 18(a).

(3) If significant differences between experimental and
theoretical results areobserved, theYukawa-like term
has to be considered in region II as described in
Sections 5.1 and 5.2 of this chapter 5. We have 2
parameters which can be adjusted to the experi-
mental results. These parameters are related to the
Yukawa correctionW(z) seen in Eq. (62): The strength
parameterW0 is a positive or negative constant with
the dimension of an energy and the Yukawa-distance
𝛿 determines thedistance overwhich the correspond-
ing force acts. In Figure 22(a) an example is given
for W0 = −1 peV and 𝛿 = 10 μm. Parameter values
W0 and 𝛿 should be found which best approximate
the experimental results. These optimal parameters
would indicate the evidence of a non-Newtonian

contribution to the common Newton potential near
the surface of the mirror.

Generally speaking, the dynamics of exact quantum
mechanical treatment of the qBounce problem combines
quantum theory with aspects of Newtonian mechanics at
short distances. Newtonian gravity and non-Newtonian
hypothetical fifths forces evolve with different phase
information because of modified energy eigenvalues due
to Yukawa correction (see Figure 22(b)). In this respect the
investigation presented in this paper could contribute to a
direct search for dark matter.

6 Conclusions
In this theoretical treatise the wave function of the
qBOUNCE experiment has been investigated in detail. The
gravitational field of the Earth constitutes the potential
used in the Schrödinger equation. This yields solutions for
the wave function which correspond to the Airy function.
Since the wave function has to vanish at the mirror
surface, a ground state and excited states evolve. These
states have been analyzed with respect to spatial and
momentum distributions. For this purpose, the Wigner
function has also been used. It was shown that the
distribution spectra of the ground and excited states
exhibit the anticipatedproperties,whichare reproduced in
themarginal distribution functions. Furthermore, the time
dependence of a mixture of the ground state and the first
excited state has been considered. The qBOUNCE-problem in
which the neutron wave is enclosed between 2 mirrors has
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been analyzed as well. Finally, the case where the wave
function exits the double mirror system and freely falls
on a subsequent mirror has been considered. The purpose
of these calculations was to motivate measurements both
in real space and in momentum space for comparison
between experimental findings and theoretical results.
Finally and in addition, we made an attempt at a first
order perturbation calculation in order to describe a very
small change in the potential near the mirror due to a
Yukawa-like coupling. Already from this very simplified
calculation we predicted differences in the spatial and
momentum distributions between cases with and without
a Yukawa-like interaction. However, in order to make a
statement about a realistic experimental situation, the
probability distribution of neutrons at the transition from
region I to region II should be known in detail when
also taking into account the Yukawa-like interaction in
region I. Though, this is beyond the scope of this arti-
cle since a much more intricate computation would be
required.
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