
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2015-005 February 18, 2015

Spectral Alignment of Networks
Soheil Feizi, Gerald Quon, Muriel Medard, Manolis
Kellis, and Ali Jadbabaie

Spectral Alignment of Networks

Soheil Feizi✯, Gerald Quon✯, Muriel Médard✯, Manolis Kellis✯ and Ali Jadbabaie❸

February 2015

Abstract

Network alignment refers to the problem of finding a bijective mapping across vertices of
two or more graphs to maximize the number of overlapping edges and/or to minimize the num-
ber of mismatched interactions across networks. This paper introduces a network alignment
algorithm inspired by eigenvector analysis which creates a simple relaxation for the underlying
quadratic assignment problem. Our method relaxes binary assignment constraints along the
leading eigenvector of an alignment matrix which captures the structure of matched and mis-
matched interactions across networks. Our proposed algorithm denoted by EigeAlign has two
steps. First, it computes the Perron-Frobenius eigenvector of the alignment matrix. Second, it
uses this eigenvector in a linear optimization framework of maximum weight bipartite matching
to infer bijective mappings across vertices of two graphs. Unlike existing network alignment
methods, EigenAlign considers both matched and mismatched interactions in its optimization
and therefore, it is effective in aligning networks even with low similarity. We show that, when
certain technical conditions hold, the relaxation given by EigenAlign is asymptotically exact
over Erdös-Rényi graphs with high probability. Moreover, for modular network structures, we
show that EigenAlign can be used to split the large quadratic assignment optimization into small
subproblems, enabling the use of computationally expensive, but tight semidefinite relaxations
over each subproblem. Through simulations, we show the effectiveness of the EigenAlign algo-
rithm in aligning various network structures including Erdös-Rényi, power law, and stochastic
block models, under different noise models. Finally, we apply EigenAlign to compare gene regu-
latory networks across human, fly and worm species which we infer by integrating genome-wide
functional and physical genomics datasets from ENCODE and modENCODE consortia. Eige-
nAlign infers conserved regulatory interactions across these species despite large evolutionary
distances spanned. We find strong conservation of centrally-connected genes and some biological
pathways, especially for human-fly comparisons.

Keywords. Network alignment, graph matching, graph isomorphism, matrix spectral theory,
matrix perturbation, random graphs, gene regulatory networks.

1 Introduction

The term network alignment encompasses several distinct but related problem variants [1]. In
general, network alignment aims to find a bijective mapping across two (or more) networks so that
if two nodes are connected in one network, their images are also connected in the other network(s).

✯Department of Electrical Engineering and Computer Science, MIT, Cambridge MA.
❸Department of Electrical and Systems Engineering, University of Pennsylvania, and Sociotechnical Systems Re-

search Center, MIT.

1

If such an errorless alignment scheme exists, network alignment is simplified to the problem of
graph isomorphism [2]. However, in general, an errorless alignment scheme may not be feasible
across two networks. In that case, network alignment aims to find a mapping with the minimum
error and/or the maximum overlap.

Network alignment has a broad range of applications in different areas including biology, com-
puter vision, and linguistics. For instance, network alignment has been used frequently as a com-
parative analysis tool in studying protein-protein interaction networks across different species [3–8].
In computer vision, network alignment has been used in image recognition by matching similar im-
ages [9, 10]; while it has been applied in ontology alignment to find relationships among different
representations of a database [11,12].

Finding an optimal alignment mapping across networks is computationally challenging [13], and
is closely related to the quadratic assignment problem (QAP) [14]. However, owing to numerous
applications of network alignment in different areas, several algorithms have been designed to solve
this problem approximately. Some algorithms are based on linear [15], [16] or semidefinite [17, 18]
relaxations of the underlying QAP, some methods use a Bayesian framework [19], or message
passing [20], while other techniques use heuristics to find approximate solutions for the network
alignment optimization [3, 4, 6]. We will review these methods in Section 2.2.

In general, existing network alignment methods have two major shortcomings. First, they only
consider maximizing the number of overlapping edges (matches) across two networks and therefore,
they ignore effects of mismatches (interactions that exist only in one of the networks). This can
be critical in applications where networks have low similarity and therefore, there are many more
expected possible mismatches than matches. Second, their performance is assessed mostly through
simulations and/or validations with real data where an analytical performance characterization is
lacked even in simple cases.

In this paper, we introduce a network alignment algorithm called EigenAlign which advances
previous network alignment techniques in several aspects. EigenAlign creates a simple relaxation for
the underlying QAP by relaxing binary assignment constraints linearly along the leading eigenvector
of an alignment matrix which captures the structure of matched and mismatched interactions across
networks. This leads to a solution for the underlying network alignment optimization which can
be computed efficiently through an eigen decomposition step followed by a linear assignment step.
Unlike existing network alignment methods, EigenAlign considers both matched and mismatched
interactions in the optimization and therefore is effective in aligning networks even with low simi-
larity. This is critical in comparative analysis of biological networks of distal species because there
are numerous mismatched interactions across those networks, partially owing to extensive gene
functional divergence due to processes such as gene duplication and loss.

EigenAlign advances existing network alignment methods in both algorithmic aspects, as well
as qualitative aspects of the network alignment objective function, by considering both match
and mismatch effects. Through analytical performance characterization, simulations on synthetic
networks, and real-data analysis, we show that, the combination of these two aspects leads to an im-
proved performance of the EigenAlign algorithm compared to existing network alignment methods
in the literature. On simple examples, we isolate multiple aspects of the proposed algorithm and
evaluate their individual contributions in the performance. We note that, existing network align-
ment packages may be improved by borrowing algorithmic and/or qualitative ideas of the proposed
EigenAlign method. However, extending those methods is beyond the scope of this paper.

For an analytical characterization of the EigenAlign performance, we consider asymptotically

2

large Erdös-Rényi graphs [21] owing to their tractable spectral characterization. In particular, we
prove that the EigenAlign solution is asymptotically optimal with high probability for Erdös-Rényi
graphs, under some general conditions. Proofs are based on a characterization of eigenvectors of
Erdös-Rényi graphs, along with a spectral perturbation analysis of the alignment matrix. Moreover,
we evaluate the performance of the proposed method on real biological networks as well.

Although the EigenAlign relaxation leads to an efficient method to align large and complex
networks which performs better than existent contenders, its relaxation may not be as tight as con-
vex and semidefinite programming (SDP) relaxations of the underlying QAP that seek solutions in
the intersection of orthogonal and stochastic matrices [17,18,22–25]. However, these methods have
high computational complexity which prohibits their applications in aligning large networks. For
modular network structures, we show that, EigenAlign can be used to split the large underlying
quadratic assignment problem into small subproblems, enabling the use of computationally expen-
sive SDP relaxations over each subproblem, in parallel. The key insight is that, the EigenAlign
solution which can be computed efficiently even for large networks, provides a robust mapping of
modules across networks. The resulting algorithm which we term EigenAlign+SDP is effective in
aligning modular network structures with low computational complexity, even in high-noise levels.

We compare the performance of our proposed method against four existing network alignment
methods based on belief propagation (NetAlign [20]), spectral decomposition (IsoRank [3]), La-
grange relaxation (Klau optimization [15]), and an SDP-based method [17] via simulations. Our
simulation results illustrate the effectiveness of the EigenAlign algorithm in aligning various net-
work structures including Erdös-Rényi, power law, and stochastic block structures, under different
noise models. Moreover, we apply our method to compare gene regulatory networks across human,
fly and worm species. First, we infer gene regulatory networks in these species by integrating
genome-wide functional and physical datasets from ENCODE and modENCODE consortia, using
both rank-based and likelihood-based integration approaches. We show that, inferred regulatory
interactions have significant overlap with known interactions in TRANSFAC [26], REDfly [27] and
EdgeDB [28] benchmarks, for human, fly and worm species, respectively, indicating the robust-
ness and accuracy of the inference pipeline. Next, we apply the EigenAlign algorithm and other
network alignment techniques to infer conserved regulatory interactions across these species using
homolog gene mappings. Our results highlight the effectiveness of the EigenAlign algorithm in
finding mappings which cause more matches and fewer mismatches across networks, compared to
other network alignment techniques proposed in the literature. Using EigenAlign mappings, we
find strong conservation of centrally-connected genes and some biological pathways, especially for
human-fly comparisons.

The rest of the paper is organized as follows. In Section 2, we present the network alignment
problem and review existent network alignment techniques. In Section 3, we introduce our proposed
algorithm and discuss its relationship with the underlying quadratic assignment problem. Moreover,
we present the optimality of our method over random graphs, under some general conditions. In
Section 4, we consider the network alignment problem of modular networks and introduce an
algorithm which solves it efficiently. In Section 5, we compare performance of our method with
existent network alignment methods under different network structures and noise models. In Section
6, we introduce our network inference framework to construct integrative gene regulatory networks
in different species. In Section 7, we illustrate applications of our method in comparative analysis of
regulatory networks across species. In Section 8, we present optimality proofs of proposed methods.
In Section 9, we conclude the paper and highlight future directions.

3

inconsistent

j’

s’r

i

mismatch

j’

s’r

i

neutral

j’

s’r

i

match

j’

s’r

i

(b)(a)

Figure 1: (a) An illustration of matched, mismatched, and neutral mappings, for
undirected graphs. (b) An illustration of inconsistent mappings, for directed graphs,
where they are matches in one direction, and mismatches in the other direction.

2 Network Alignment Problem Setup

2.1 Problem Formulation and Notation

In this section, we introduce the network alignment problem formulation. Let G1 = (V1,E1) and
G2 = (V2,E2) be two graphs (networks) where Va and Ea represent set of nodes and edges of graph
a = 1,2, respectively. By abuse of notation, let G1 and G2 be their matrix representations as well
where Ga(i, j) = 1 iff (i, j) ∈ Ea, for a = 1,2. Suppose network a has na nodes, i.e., ∣Va∣ = na. We
assume that networks are un-weighted (binary), and possibly directed. The proposed framework
can be extended to the case of weighted graphs as well.

Let X be an n1 ×n2 binary matrix where x(i, j′) = 1 means that node i in network 1 is mapped
to node j′ in network 2. The pair (i, j′) is called a mapping edge across two networks. In the
network alignment setup, each node in one network can be mapped to at most one node in the
other network, i.e., ∑i x(i, j′) ≤ 1 for all j′, and similarly, ∑j′ x(i, j′) ≤ 1 for all i.

Let y be a vectorized version of X. That is, y is a vector of length n1n2 where, y(i+(j′−1)n1) =
x(i, j′). To simplify notation, define yi,j′ ≜ x(i, j′).

Two mappings (i, j′) and (r, s′) can be matches which cause overlaps, can be mismatches which
cause errors, or can be neutrals (Figure 1-a).

Definition 1 Suppose G1 = (V1,E1) and G2 = (V2,E2) are undirected graphs. Let {i, r} ⊆ V1 and{j′, s′} ⊆ V2 where x(i, j′) = 1 and x(r, s′) = 1. Then,

❼ (i, j′) and (r, s′) are matches if (i, r) ∈ E1 and (j′, s′) ∈ E2.

❼ (i, j′) and (r, s′) are mismatches if only one of the edges (i, r) and (j′, s′) exists.

❼ (i, j′) and (r, s′) are neutrals if none of the edges (i, r) and (j′, s′) exists.

Definition 1 can be extended to the case where G1 and G2 are directed graphs. In this case,
mappings (i, j′) and (r, s′) are matches/mismatches if they are matches/mismatches in one of the
possible directions. However, it is possible to have these mappings be matches in one direction,
while they are mismatches in the other direction (Figure 1-b). These mappings are denoted as
inconsistent mappings, defined as follows:

4

Definition 2 Let G1 = (V1,E1) and G2 = (V2,E2) be two directed graphs and {i, r} ⊆ V1 and{j′, s′} ⊆ V2 where x(i, j′) = 1 and x(r, s′) = 1. If edges i → r, r → i, and j′ → s′ exist, however,
s′ → j′ does not exist, then mappings (i, j′) and (r, s′) are inconsistent.

Existing network alignment formulations aim to find a mapping matrix X which maximizes the
number of matches between networks. However, these formulations can lead to mappings which
cause numerous mismatches, especially if networks have low similarity. In this paper, we propose
a more general formulation for the network alignment problem which considers both matches and
mismatches simultaneously.

For a given alignment matrix X across networks G1 and G2, we assign an alignment score by
considering the number of matches, mismatches and neutrals caused by X:

Alignment Score (X) = s1(# of matches) + s2(# of neutrals) + s3(# of mismatches), (2.1)

where s1, s2, and s3 are scores assigned to matches, neutrals, and mismatches, respectively. Note
that, existing alignment methods ignore effects of mismatches and neutrals by assuming s2 = s3 = 0.
In the following, we re-write (2.1) as a quadratic assignment formulation.

Consider two undirected graphs G1 = (V1,E1) and G2 = (V2,E2). We form an alignment network
represented by adjacency matrix A in which nodes are different mappings across the networks, and
the edges capture whether there are matches, mismatches or neutrals (Figure 2).

Definition 3 Let {i, r} ⊆ V1 and {j′, s′} ⊆ V2, where x(i, j′) = 1 and x(r, s′) = 1.

A[(i, j′), (r, s′)] =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s1, if (i, j′) and (r, s′) are matches,

s2, if (i, j′) and (r, s′) are neutrals,

s3, if (i, j′) and (r, s′) are mis-matches,

(2.2)

where s1, s2, and s3 are scores assigned to matches, neutrals, and mismatches, respectively.

We can re-write (2.2) as follows:

A[(i, j′), (r, s′)] = (s1 + s2 − 2s3)G1(i, r)G2(j′, s′) + (s3 − s2)(G1(i, r) +G2(j′, s′)) + s2. (2.3)

We can summarize (2.2) and (2.3) as follows:

A = (s1 + s2 − 2s3)(G1 ⊗G2) + (s3 − s2)(G1 ⊗ ✶n2
) + (s3 − s2)(✶n1

⊗G2) + s2(✶n1
⊗ ✶n2

), (2.4)

where ⊗ represents matrix Kronecker product, and ✶n is an n×n matrix whose elements are all
ones.

Remark 1 A similar scoring scheme can be used for directed graphs. However when graphs are
directed, some mappings can be inconsistent according to Definition 2, i.e., they are matches in one
direction and mismatches in another. Scores of inconsistent mappings can be assigned randomly to
matched/mismatched scores, or to an average score of matches and mismatches (i.e., (s1 + s3)/2).
For random graphs, inconsistent mappings are rare events. For example, suppose network edges are

5

distributed according to a Bernoulli distribution with parameter p. Then, the probability of having
an inconsistent mapping across networks is equal to 4p3(1 − p). Therefore, their effect in network
alignment is negligible specially for large sparse networks. Throughout the paper, for directed
graphs, we assume inconsistent mappings have negligible effect unless it is mentioned explicitly.

Alignment scores s1, s2 and s3 of (2.2) can be arbitrary in general. However, in this paper we
consider the case where s1 > s2 > s3 > 0 with the following rationale: Suppose a mapping matrix
X has a total of κ mapping edges. For example, if networks have n1 = n2 = n nodes and there
is no unmapped nodes across two networks, κ = n. The total number of matches, mismatches
and neutrals caused by this mapping is equal to (κ

2
). Thus, for mapping matrices with the same

number of mapping edges, without loss of generality, one can assume that, alignment scores are
strictly positive s1, s2, s3 > 0 (otherwise, a constant can be added to the right-hand side of (2.2)).
In general, mappings with high alignment scores might have slightly different number of mapping
edges owing to unmapped nodes across the networks which has a negligible effect in practice.
Moreover, in the alignment scheme, we wish to encourage matches and penalize mismatches. Thus,
throughout this paper, we assume s1 > s2 > s3 > 0.

Remark 2 In practice, some mappings across two networks may not be possible owing to ad-
ditional side information. The set of possible mappings across two networks is denoted by R ={(i, j′) ∶ i ∈ V1, j

′ ∈ V2}. If R = V1 × V2, the problem of network alignment is called unrestricted.
However, if some mappings across two networks are prevented (i.e., yi,j′ = 0, for (i, j′) ∉ R), then
the problem of network alignment is called restricted.

In the following, we present the network alignment optimization which we consider in this paper:

Definition 4 (Network Alignment Problem Setup) Let G1 = (V1,E1) and G2 = (V2,E2) be
two binary networks. Network alignment aims to solve the following optimization:

max
y

yT Ay, (2.5)

∑
i

yi,j′ ≤ 1, ∀i ∈ V1,

∑
j′

yi,j′ ≤ 1, ∀j′ ∈ V2,

yi,j′ ∈ {0,1}, ∀(i, j′) ∈ V1 × V2,

yi,j′ = 0, ∀(i, j′) ∉R,

where A is defined according to (2.3), and R ⊆ V1×V2 is the set of possible mappings across two
networks.

In the following, we re-write (2.5) using the trace formulation of a standard QAP. Here, we
consider undirected networks G1 = (V1,E1) and G2 = (V2,E2) with n1 and n2 nodes, respectively.
Without loss of generality, we assume n1 ≤ n2. Moreover, we assume that all nodes of the network
G1 are mapped to nodes of the network G2.

Define ξ1 ≜ s1 + s2 − 2s3, ξ2 ≜ s3 − s2 and ξ3 ≜ s2. We can rewrite the objective function of
Optimization (2.5) as follows:

6

yT Ay = ξ1y
T (G1 ⊗G2)y + ξ2y

T (G1 ⊗ ✶n2
)y + ξ2y

T (✶n1 ⊗G2)y + ξ3y
T (✶n1

⊗ ✶n2
)y

= ξ1Tr(G1XG2X
T) + ξ2Tr(G1X✶n2

XT) + ξ2Tr(✶n1
XG2X

T) + ξ3Tr(✶n1
X✶n2

XT)
= Tr((G1 +

ξ2

ξ1

)X(ξ1G2 + ξ2)XT) + (ξ3 −
ξ2
2

ξ1

)Tr(✶n1
X✶n2

XT)
= Tr(G′1XG′2X

T) + (ξ3 −
ξ2
2

ξ1

)(min(n1, n2))2
= Tr(G′1XG′2X

T) + constant,

where

G′1 ≜ G1 +
ξ2

ξ1

= G1 +
s3 − s2

s1 + s2 − 2s3

,

G′2 ≜ ξ1G2 + ξ2 = (s1 + s2 − 2s3)G2 + (s3 − s2).
Thus, the network alignment optimization (2.5) can be reformulated as follows:

max
X

Tr(G′1XG′2X
T), (2.6)

∑
i

xi,j′ ≤ 1, ∀i ∈ V1,

∑
j′

xi,j′ ≤ 1, ∀j′ ∈ V2,

xi,j′ ∈ {0,1}, ∀(i, j′) ∈ V1 × V2,

xi,j′ = 0, ∀(i, j′) ∉R.

Remark 3 Some network alignment formulations aim to align paths [7] or subgraphs [8,29] across
two (or multiple) networks. The objective of these methods is different than the one of our network
alignment optimization (2.5), where a bijective mapping across nodes of two networks is desired.
However, obtained solutions of these different methods may be related. For instance, a bijective
mapping across nodes of two networks can provide information about conserved pathways and/or
subgraphs across networks, and vice versa.

2.2 Prior Work

Network alignment optimization (2.5) is an example of a quadratic assignment problem (QAP) [14].
Reference [30] shows that approximating a solution of maximum quadratic assignment problem

within a factor better than 2log1−ǫn is not feasible in polynomial time in general. However, owing
to various applications of QAP in different areas, several works have attempted to solve it ap-
proximately. In the following, we briefly summarize previous works by categorizing them into four
groups and explain advantages and shortcomings of each. For more details on these methods, we
refer readers to references [14,31].

❼ Exact search methods: these methods provide a global optimal solution for the quadratic
assignment problem. However, owing to their high computational complexity, they can only

7

be applied to very small problem instances. Examples of exact algorithms include methods
based on branch-and-bound [32] and cutting plane [33].

❼ Linearizations: these methods attempt to solve QAP by eliminating the quadratic term in
the objective function of Optimization (2.5), transforming it into a mixed integer linear pro-
gram (MILP). An existing MILP solver is applied to find a solution for the relaxed problem.
Examples of these methods are Lawlers linearization [34], Kaufmann and Broeckx lineariza-
tion [35], Frieze and Yadegar linearization [36], and Adams and Johnson linearization [37].
These linearizations can provide bounds on the optimal value of the underlying QAP [30]. In
general, linearization of the QAP objective function is achieved by introducing many new vari-
ables and new linear constraints. In practice, the very large number of introduced variables
and constraints poses an obstacle for solving the resulting MILP efficiently.

❼ Semidefinite/convex relaxations and bounds: these methods aim to compute a bound
on the optimal value of the network alignment optimization, by considering the alignment
matrix in the intersection of the sets of orthogonal and stochastic matrices. The provided
solution by these methods may not be a feasible solution of the original quadratic assignment
problem. Examples of these methods include orthogonal relaxations [22], projected eigenvalue
bounds [23], convex relaxations [18,24,25], and matrix splittings [17]. In the computer vision
literature, [38,39] use spectral techniques to approximately solve QAP by inferring a cluster of
assignments over the feature network. Then, they use a greedy approach to reject assignments
with low associations.

In particular, [17] introduces a convex relaxation of the underlying network alignment op-
timization based on matrix splitting which provides bounds on the optimal value of the
underlying QAP. The proposed SDP method provides a bound on the optimal value and ad-
ditional steps are required to derive a feasible solution. Moreover, owing to its computational
complexity, it can only be used to align small networks, limiting its applicability to alignment
of large real networks 1. In Section 4, we address these issues and introduce a hybrid method
based on our proposed scheme in Section 3, and the semidefinite relaxation of [17] to align
large modular network structures with low computational complexity.

❼ Other methods: there are several other techniques to approximately solve network align-
ment optimization. Some methods use a Lagrangian relaxation [15], Bayesian framework [19],
or message passing [20], or some other heuristics [3, 4, 6]. In Section 5, we assess the perfor-
mance of some of these network alignment techniques through simulations.

Besides described method-specific limitations of existing network alignment methods, these
methods have two general shortcomings: First, they only consider maximizing the number of
matches and therefore ignore effects of mismatches across networks (i.e., they assume s2 = s3 = 0
in (2.5)). This can be critical in applications in which networks show low similarity (i.e., there are
much more expected possible mismatches than matches). Second, their performance assessment is
mostly based on simulations and/or validations with real data without an analytical performance
characterization. In this paper, we propose a network alignment algorithm which considers both
matches and mismatches in the alignment scheme. Moreover, we analyze its performance over

1In our simulations, networks should have approximately less than 70 nodes to be able to run it on an ordinary

laptop.

8

random graphs and show that, the proposed relaxation is asymptotically exact under some technical
conditions.

2.3 Network Alignment and Graph Isomorphism

Network alignment optimization (2.5) is closely related to the problem of graph isomorphism,
defined as follows:

Definition 5 (Graph Isomorphism) Let G1 = (V1,E1) and G2 = (V2,E2) be two binary net-
works. G1 and G2 are isomorphic if there exists a permutation matrix P such that G1 = PG2P

T .

The computational problem of determining whether two finite graphs are isomorphic is called
the graph isomorphism problem. Moreover, given two isomorphic networks G1 and G2, the problem
of graph isomorphism aims to find the permutation matrix P such that G1 = PG2P

T . The graph
isomorphism problem seems computationally intractable in general. However, its computational
complexity is still unknown [13].

Problems of network alignment and graph isomorphism are related to each other. Loosely
speaking, network alignment aims to minimize the distance between premuted versions of two
networks (or, alternatively to maximize their overlap). Therefore, if the underlying networks are
isomorphic, an optimal solution of the network alignment optimization should be the same (or
close) to the underlying permutation matrix P , where G1 = PG2P

T . In the following lemma, we
formalize such a connection between the network alignment optimization and the classical graph
isomorphism problem:

Lemma 1 Let G1 and G2 be two isomorphic Erdös-Rényi graphs [21] such that Pr[G1(i, j) = 1] = p

and G2 = PG1P
T , where P is a permutation matrix. Let p ≠ 0,1. Then, for any selection of scores

s1 > s2 > s3 > 0, P maximizes the expected network alignment objective function of Optimization
(2.5).

Proof Let A be the alignment network of graphs G1 and G2. Suppose P̃ is a permutation matrix
where ρ ≜ 1

2n
∥P − P̃ ∥ > 0. Let y and ỹ be vectorized versions of permutation matrices P and P̃ ,

respectively. Then, we have,

1

n2
❊[ỹT

2 Aỹ2] =(1 − ρ)[ps1 + (1 − p)s2] + ρ[p2s1 + (1 − p)2s2 + 2p(1 − p)s3] (2.7)

<(1 − ρ)[ps1 + (1 − p)s2] + ρ[p2s1 + (1 − p)2s2 + p(1 − p)(s1 + s2)]
=(1 − ρ)[ps1 + (1 − p)s2] + ρ[ps1 + (1 − p)s2]
=ps1 + (1 − p)s2

=
1

n2
❊[yT

1 Ay1].

The result of Lemma 1 can be extended to the case where edges of graphs are flipped through
a random noise matrix.

9

Lemma 2 Let G1 be an Erdös-Rényi graphs such that Pr[G1(i, j) = 1] = p. Let G̃1 be a graph
resulting from flipping edges of G1 independently and randomly with probability q. Suppose G2 =

PG̃1P
T where P is a permutation matrix. Let 0 < p < 1/2 and 0 ≤ q < 1/2. Then, for any

selection of scores s1 > s2 > s3 > 0, P maximizes the expected network alignment objective function
of Optimization (2.5).

Proof Similarly to the proof of Lemma 1, let A be the alignment network of graphs G1 and G2 and
suppose P̃ is a permutation matrix where ρ ≜ 1

2n
∥P − P̃ ∥ > 0. Let y and ỹ be vectorized versions of

permutation matrices P and P̃ , respectively. Define a′ and b′ as follows:

a′ ≜p(1 − q)s1 + (1 − p)(1 − q)s2 + (pq + (1 − p)q)s3, (2.8)

b′ ≜(p2(1 − q) + pq(1 − p))s1

+((1 − p)2(1 − q) + pq(1 − p))s2

+(2p(1 − p)(1 − q) + 2p2q)s3.

Thus,

a′ − b′ = p(1 − p)(1 − 2q)(s1 + s2 − 2s3) + q(1 − 2p)s3. (2.9)

Because s1 > s2 > s3, we have, s1 + s2 − 2s3 > 0. Because 0 < p < 1/2 and 0 ≤ q < 1/2, we have(1 − 2p) > 0 and (1 − 2q) > 0. Therefore, according to (2.9), a′ > b′. Thus we have,

1

n2
❊[ỹT Aỹ] = (1 − ρ)a′ + ρb′ < a′ =

1

n2
❊[yT Ay].

Finding an isomorphic mapping across sufficiently large Erdös-Rényi graphs can be done ef-
ficiently with high probability (w.h.p.) through canonical labeling [40]. Canonical labeling of a
network consists of assigning a unique label to each vertex such that labels are invariant under
isomorphism. The graph isomorphism problem can then be solved efficiently by mappings nodes
with the same canonical labels to each other [41]. One example of canonical labeling is the de-
gree neighborhood of a vertex defined as a sorted list of neighborhood degrees of vertices [40].
Note that, network alignment formulation is more general than the one of graph isomorphism;
network alignment aims to find an optimal mappings across two networks which are not necessarily
isomorphic.

Remark 4 In [42], Babai, Erdös, and Selkow derive an interesting and perhaps a counter-intuitive
result on random graph isomorphism. Based on their result, any two infinite random graphs are
isomorphic with probability one. For instance, consider two infinite Erdös-Rényi graphs G1 and
G2 where Pr[G1(i, j) = 1] = p1 and Pr[G2(i, j) = 1] = p2 and p1, p2 ≠ 0,1. The result of [42]
indicates that, G1 and G2 are isomorphic even if p1 ≠ p2. This may seem counter-intuitive as two
networks may seem to have different densities. However, this result is only true for infinite graphs,
not asymptotically large ones. The difference may seem subtle but significant. In infinite graphs,
notions of graph size, graph density, etc. are different than the ones for finite graphs. Throughout

10

this paper, we only consider finite or asymptotically large graphs, not infinite ones. In the following,
we give some intuition on the results of [42] about infinite graphs.

The proof of the result of [42] is based on a notion for infinite graphs called the extension
property which roughly states that, an infinite graph G has the extension property if for any two
disjoint finite subsets of nodes V1 and V2, there exists a vertex v ∈ V −V1−V2 such that v is connected
to all vertices in V1 and to no vertices in V2. If two infinite graphs have extension properties, they
are isomorphic with probability one. One way to prove this is to construct an infinite sequences of
mappings by considering disjoint subsets of nodes V1 and V2, and adding a node v according to the
extension property.

Finally, it is straightforward to show that an infinite Erdös-Rényi graph with parameter p ≠ 0,1
has the extension property with probability one. This is analogous to the monkey-text book
problem: if a monkey randomly types infinite letters, with probability one, he will type any given
text book. This is because the number of letters in a text book is finite and therefore, the probability
that the letter sequence of a given text book does not appear in a random infinite letter sequence
is zero. Now consider two finite disjoint subsets V1 and V2 over an infinite graph. Note that being
finite is key here. Similarly, the probability that a vertex v exists such that it is connected to all
vertices in V1 and to no vertices in V2 is one because its complement set has zero probability (or it
has zero Lebesgue measure if we map binary sequences to numbers in [0,1].).
3 EigenAlign Algorithm

In this section, we introduce EigenAlign, an algorithm which solves a relaxation of the network
alignment optimization (2.5) leveraging spectral properties of networks. Unlike other alignment
methods, EigenAlign considers both matches and mismatches in the alignment scheme. More-
over, we prove its optimality (in an asymptotic sense) in aligning Erdös-Rényi graphs under some
technical conditions. In the following, we describe the EigenAlign algorithm:

Algorithm 1 (EigenAlign Algorithm) Let G1 = (V1,E1) and G2 = (V2,E2) be two binary net-
works whose corresponding alignment network is denoted by A according to (2.3). EigenAlign
algorithm solves the network alignment optimization (2.5) in two steps:

❼ Eigen Decomposition Step: In this step, we compute v, an eigenvector of the alignment
network A with the maximum eigenvalue.

❼ Linear Assignment Step: In this step, we solve the following maximum weight bipartite
matching optimization:

max
y

vTy, (3.1)

∑
j′

yi,j′ ≤ 1, ∀i ∈ V1,

∑
i

yi,j′ ≤ 1, ∀j′ ∈ V2,

yi,j′ ∈ {0,1}, ∀(i, j′) ∈ V1 × V2,

yi,j′ = 0, ∀(i, j′) ∉R.

11

Input networks Alignment graph

e
ig

e
n

 d
e

c
o

m
p

o
s

itio
n

 o
f

a
lig

n
m

e
n

t g
ra

p
h

Aligned networks
Eigenvector

weights

G2G1

m
a

x
im

u
m

 b
ip

a
rt

it
e

g
ra

p
h

 m
a

tc
h

in
g

neutrals

mis-matches

matches

3,4’

4,4’2,3’

1,2’

1,1’

4

3

2

1

4

3

2

1

4

3

2

1

4’

3’

2’

1’

4’

3’

2’

1’

4’

3’

2’

1’

Figure 2: Framework of EigenAlign algorithm 1.

This framework is depicted in Figure 2. In the rest of this section, we provide intuition on
different steps of the EigenAlign algorithm through both quadratic assignment relaxation argument
as well as a fixed point analysis. In Section 3.3, we discuss optimality of EigenAlign over random
graphs.

3.1 EigenAlign as Relaxation of Quadratic Assignment

In this section, we explain EigenAlign as a relaxation of the underlying quadratic assignment
optimization (2.5). For simplicity, we assume all mappings across networks are possible (i.e.,
R = {(i, j′) ∶ ∀i ∈ V1,∀j

′ ∈ V2}). In the restricted network alignment setup, without loss of generality,
one can eleminate rows and columns of the alignment matrix corresponding to mappings that are
not allowed.

In the eigen decomposition step of EigenAlign, we ignore bijective constraints (i.e., constraints

∑i yi,j′ ≤ 1 and ∑j′ yi,j′ ≤ 1) because they will be satisfied in the second step of the algorithm
through a linear optimization. By these assumptions, Optimization (2.5) can be simplified to the
following optimization:

max
y

yT Ay, (3.2)

yi,j′ ∈ {0,1}, ∀(i, j′) ∈ V1 × V2.

To approximate a solution of this optimization, we relax integer constraints to constraints
over a hyper-sphere restricted by hyper-planes (i.e., ∥y∥2 ≤ 1 and y ≥ 0). Using this relaxation,
Optimization (3.2) is simplified to the following optimization:

12

max
y

yT Ay, (3.3)

∥y∥2 ≤ 1,

y ≥ 0.

In the following, we show that v, the leading eigenvector of the alignment matrix A is an optimal
solution of Optimization (3.3).

Suppose y1 is an optimal solution of Optimization (3.3). Let y2 be a solution of the following
optimization which ignores non-negativity constraints:

max
y

yT Ay, (3.4)

∥y∥2 ≤ 1.

Following the Rayleigh − Ritz formula, the leading eigenvector of the alignment matrix is an
optimal solution of Optimization (3.4) (i.e., y2 = v). Now we use the following theorem to show
that in fact y1 = v1:

Theorem 1 (Perron−Frobenius Theorem [2]) Suppose A is a matrix whose elements are strictly
positive. Let v be an eigenvector of A corresponding to the largest eigenvalue. Then, ∀i, vi > 0.
Moreover, all other eigenvectors must have at least one negative, or non-real component.

Since y2 is a solution of a relaxed version of Optimization (3.4), we have yT
2 Ay2 ≥ yT

1 Ay1.
Using this inequality along with Perron-Frobenius Theorem lead to y1 = v, as the unique solution
of optimization (3.3).

The solution of the eigen decomposition step assigns weights to all possible mappings across
networks ignoring bijective constraints. However, in the network alignment setup, each node in one
network can be mapped to at most one node in the other network. To satisfy these constraints, we
use eigenvector weights in a linear optimization framework of maximum weight bipartite matching
setup of Optimization (3.1) [43].

Remark 5 Many existing network alignment techniques are based on iterative algorithms [3,4,20].
The EigenAlign relaxation of the underlying quadratic assignment problem can be viewed as the
following fixed point solution using a linear mapping function which can be solved iteratively:

y(t1) = 1

λ
∑
t2

A(t1, t2)y(t2), (3.5)

where λ is a constant and ti represents a node in the alignment network A. Note that, this map-
ping function is not necessarily a contraction. Instead of using an iterative approach, EigenAlign
solves this relaxation in a closed form using the leading eigenvector of the alignment network. In
particular, (3.5) can be re-written as,

Ay = λy, (3.6)

13

where y is the vector of mapping weights whose elements represent a measure of centrality of
nodes in the alignment network. If A is diagonalizable, eigenvectors of matrix A provide solutions
for this equation, where λ is the eigenvalue corresponding to eigenvector y. However, eigenvectors
of matrix A can have negative components which are not allowed in the mapping function since
yi,j′ ≥ 0. Since components of matrix A are all positive, similarly to discussions of (3.3), according
to Perron-Frobenius Theorem 1, all components of the eigenvector associated with the maximum
positive eigenvalue are positive. This result holds for non-negative matrices as well if they are
strongly connected. Therefore, the leading eigenvector of matrix A satisfies desired conditions for
the mapping function and provides alignment scores for the nodes in the alignment network.

Remark 6 Suppose G1 and G2 are two undirected graphs with n1 and n2 nodes, respectively.
IsoRank [3] is a network alignment method which aligns networks using neighborhood similarities
of nodes. Let I be the identity matrix of size n1 × n1. Suppose D1 and D2 are diagonal matrices
of sizes n1 × n1 and n2 × n2 whose diagonal elements are node degrees of networks G1 and G2,
respectively. The first step of the IsoRank algorithm solves the following fixed point equation:

y = (I ⊗D−11)A(I ⊗D−12)y, (3.7)

where ⊗ represents matrix Kronecker product, and s2 = s3 = 0 in (2.3). IsoRank solves (3.7)
using a power iteration method. The IsoRank algorithm has several differences with EigenAlign
in both algorithmic and qualitative aspects. In the qualitative aspect, IsoRank ignores effects of
mismatches across networks by assuming s2 = s3 = 0. In algorithmic aspects, IsoRank uses a sta-
tionary centrality measure in the alignment network, having a degree scaling step which is based
on the assumption of uniformly random distribution of alignment scores over potential mappings.
Moreover, it uses a greedy method to select bijective mappings across networks, instead of the
linear optimization framework used in the EigenAlign algorithm. In Sections 5 and 7, over both
synthetic and real networks, we show that, the EigenAlign solution has significantly better per-
formance compared to the one of IsoRank. Moreover, in Section 5, we isolate multiple aspects of
the EigenAlign algorithm on some toy examples, and evaluate their individual contributions in its
performance. We note that, existent network alignment methods such as IsoRank may be improved
by borrowing algorithmic and/or qualitative ideas of the proposed EigenAlign method. However,
these extensions are beyond the scope of this paper.

3.2 Computational Complexity of EigenAlign

In this part, we analyze computational complexity of the EigenAlign Algorithm 1. Suppose the
number of nodes of networks G1 and G2 are in the order of O(n). Let k = O(∣R∣) be the number of
possible mappings across two networks. In an unrestricted network alignment setup, we may have
k = O(n2). However, in sparse network alignment applications, k = O(n). EigenAlign has three
steps:

❼ (i) First, the alignment network A should be formed which has a computational complexity
of O(k2) because all pairs of possible mappings should be considered.

❼ (ii) In the eigen decomposition step, we need to compute the leading eigenvector of the
alignment network. This operation can be performed in almost linear time in k using QR
algorithms and/or power methods [44]. Therefore, the worst case computational complexity
of this part is O(k).

14

❼ (iii) Finally, we use eigenvector weights in a maximum weight bipartite matching algorithm
which can be solved efficiently using linear programming or Hungarian algorithm [43]. The
worst case computational complexity of this step is O(n3). If the setR has a specific structure
(e.g., small subsets of nodes in one network are allowed to be mapped to small subsets of
nodes in the other network), this cost can be reduced significantly. In Section 7, we see this
structure in aligning regulatory networks across species as genes are allowed to be aligned to
homologous genes within their gene families.

Proposition 1 The worst case computational complexity of the EigenAlign Algorithm is O(k2
+

n3).
Remark 7 For large networks, to reduce the overall computational complexity, the linear as-
signment optimization may be replaced by a greedy bipartite matching algorithm. In the greedy
matching approach, at each step, the heaviest possible mapping is added to the current matching
until no further mappings can be added. It is straightforward to show that, this greedy algorithm
finds a bipartite matching whose weight is at least half the optimum. The computational complexity
of this greedy algorithm is O(k log(k) + nk).
3.3 Performance Characterization of EigenAlign Over Erdös-Rényi Graphs

In this section, we analyze optimality of the EigenAlign algorithm over Erdös-Rényi graphs, for
both isomorphic and non-isomorphic cases, and under two different noise models. In this section,
we only consider finite and asymptotically large graphs. For arguments on infinite graphs, see
Section 2.3.

Suppose G1 = (V1,E1) is an undirected Erdös-Rényi graph with n nodes where Pr[G1(i, j) =
1] = p. Self-loops are allowed as well. Suppose G̃ is a noisy version of the graph G1. We consider
two different noise models in this section:

❼ Noise Model I: In this model, we have,

G̃1 = G1 ⊙ (1 −Q) + (1 −G1)⊙Q, (3.8)

where ⊙ represents the Hadamard product, and Q is a binary random matrix whose edges are
drawn i.i.d. from a Bernoulli distribution with Pr[Q(i, j) = 1] = pe. In words, the operation
G1 ⊙ (1 −Q) + (1 −G1)⊙Q flips edges of G1 independently randomly with probability pe.

❼ Noise Model II: In this model, we have,

G̃1 = G1 ⊙ (1 −Q) + (1 −G1)⊙Q′, (3.9)

where Q and Q′ are binary random matrices whose edges are drawn i.i.d. from a Bernoulli
distribution with Pr[Q(i, j) = 1] = pe and Pr[Q′(i, j) = 1] = pe2

. Under this model, edges of
G1 flip independently randomly with probability pe, while non-connecting tuples in G1 will
be connected in G̃1 with probability pe2

. Because G1 is an Erdös-Rényi graph with parameter
p, choosing

pe2
=

ppe

1 − p
, (3.10)

leads to the expected density of networks G1 and G2 be p.

15

We define G2 as follows:

G2 = PG̃1P
T , (3.11)

where P is a permutation matrix. Throughout this section, we assume that, we are in the
restricted network alignment regime: we desire to choose n mappings i ↔ j′ across two networks
among ∣R∣ = kn possible mappings where i ∈ V1, j′ ∈ V2, and k > 1. n true mappings (i↔ i′ if P = I)
are included in R, while the remaining (k − 1)n mappings are selected independently randomly.
Moreover, we choose scores assigned to matches, neutrals and mismatches as s1 = α + ǫ, s2 = 1 + ǫ

and s3 = ǫ, respectively, where α > 1 and 0 < ǫ ≪ 1. These selections satisfy score conditions
s1 > s2 > s3 > 0.

Theorem 2 (EigenAlign over Erdös-Rényi graphs) Let P̃ be the solution of the EigenAlign
Algorithm 1. Then, under both noise models (3.8) and (3.9), if 0 < p < 1/2, and 0 ≤ pe < 1/2, then
as n→∞, the error probability goes to zero:

Pr[1
n
∥P̃ − P ∥]→ 0.

Theorem 2 states that, the EigenAlign algorithm is able to recover the underlying permutation
matrix which relates networks G1 and G2 to each other according to (3.11). On the other hand,
according to Lemma 2, this permutation matrix is in fact optimizes the expected network alignment
score.

Proposition 2 Under conditions of Theorem 2, the permutation matrix inferred by EigenAlign
maximizes the expected network alignment objective function defined according to Optimization
(2.5).

In noise models (3.8) and (3.9), if we put pe = 0, then G2 is isomorphic with G1 because
there exists a permutation matrix P such that G2 = PG1P

T . For this case, we have the following
Corollary:

Corollary 1 (EigenAlign on Isomorphic Erdös-Rényi graphs) Let G1 and G2 be two iso-
morphic Erdös-Rényi graphs with n nodes such that G1 = PG2P

T , where P is a permutation
matrix. Under conditions of Theorem 2, as n → ∞, the error probability of EigenAlign solution
goes to zero.

We present proofs of Theorem 2 and Corollary 1 in Sections 8.1 and 8.2. In the following, we
sketch main ideas of their proofs:

Since input networks G1 and G2 are random graphs, the alignment network formed according to
(2.3) will be a random graph as well. The first part of the proof is to characterize the leading eigen-
vector of this random alignment network. To do this, we first characterize the leading eigenvector of
the expected alignment network which in fact is a deterministic graph. In particular, in Lemma 3,
we prove that, eigenvector scores assigned to true mappings is strictly larger than the ones assigned
to false mappings. To prove this, we characterize top eigenvalues and eigenvectors of the expected
alignment network algebraically. The restricted alignment condition (i.e., ∣R∣ = kn) is necessary to
have this bound. Then, we use Wedin Sin Theorem 8 from perturbation theory, Gershgorian circle

16

Network 1 Network 2 Module-Network
(a) (b)

V
2

3

V
2

2

V
2

1

V
1

3

V
1

2

V
1

1

Figure 3: (a) Example modular network structures of Definition 6. (b) An illustration
of the module-network bipartite graph whose nodes correspond to modules in the
original networks.

Theorem 7 from spectral matrix theory, and Chernoff bound to characterize the leading eigenvector
of the random alignment network for sufficiently large n. Finally, we use Chebyshev’s inequality to
show that the error probability of the EigenAlign algorithm is asymptotically zero w.h.p.

Remark 8 Finding an isomorphic mapping across asymptotically large Erdös-Rényi graphs (Corol-
lary 1) is a well studied problem and can be solved efficiently through canonical labeling [40]. How-
ever, those techniques do not address a more general network alignment problem similar to the
setup considered in Theorem 2. For more details, see Section 2.3.

Remark 9 Theorem 2 and Corollary 1 consider a restricted network alignment case where ∣R∣ = kn.
As explained briefly in the proof sketch and with more details in Lemma 3, this technical condition
is necessary to show that, expected eigenvector scores of true mappings are strictly larger than the
ones of false mappings as n→∞. In Section 5 and through simulations, we show that, error of the
EigenAlign algorithm is empirically small even in an unrestricted network alignment setup.

4 Alignment of Modular Networks

As we discussed in Section 3.1, EigenAlign provides a simple relaxation of the QAP in (2.5), based
on the eigenvector centrality of the alignment mappings. This can be thought of as a linearization
of the quadratic assignment cost along the direction of the eigenevctor centrality. EigenAlign
relaxes integer constraints to constraints over a hyper-sphere restricted by hyper-planes. This
relaxation leads to an efficient method to align large networks. There are several methods based
on convex relaxations of the underlying QAP that seek solutions in the intersection of orthogonal
and stochastic matrices [17, 18, 22–25]. In general, these relaxations are tighter than the one used
in the EigenAlign algorithm and lead to a better approximation of the optimal solution. However,
these methods have high computational complexity which limits their applicability in aligning large
networks. For instance, as reported in [17] and also according to our experiments, to be able to
run the SDP-based method proposed in [17] on an ordinary laptop, networks should not have more
than around 70 nodes. Although this threshold can be improved by a better implementation of
the method, the SDP-based method is not scalable for large networks. Our key idea is to use the
EigenAlign solution to make the SDP-based methods scalable for modular network structures.

17

We therefore consider the network alignment problem of modular network structures. We
propose a method, which we term EigenAlign+SDP, that uses the EigenAlign algorithm along
with an SDP-based relaxation of the underlying QAP. The proposed algorithm uses the EigenAlign
solution to identify small subgraphs (modules, or blocks) across two networks which are likely to
be aligned to each other. Then, it uses a more computationally expensive SDP-based method to
solve multiple small-size network alignment problems, in parallel. The proposed method is based
on this key insight that, the EigenAlign solution provides a robust mapping of modules across
networks, which enables the use of more expensive and accurate optimization methods over small
sub-problems.

In this section, we consider stochastic block network structures:

Definition 6 Let G1 = (V1,E1) be an undirected graph. Suppose there is a partition of nodes{V 1
1 , V 2

1 , . . . , V m
1 }, where nodes in the same partition are connected to each other independently

randomly with probability p, while nodes across partitions are connected to each other independently
randomly with probability q.

Let G̃1 be a noisy version of G1. Here, we consider the noise model II (3.9) as it is more general,
while all arguments can be extended to the noise model I (3.8). We assume G2 is a permuted version
of G̃1 according to (3.11), i.e., G2 = PG̃1P

T . Figure 3-a demonstrates example networks according
to this model.

In the following, we present the EigenAlign+SDP method which aims to infer an optimal align-
ment across G1 and G2.

Algorithm 2 (EigenAlign+SDP Algorithm) Let G1 = (V1,E1) be a stochastic block matrix of
Definition 6, and G2 = (V2,E2) is defined according to (3.11). The EigenAlign+SDP algorithm
solves the network alignment optimization (2.5) in the following steps:

❼ EigenAlign Step: In this step, we compute the EigenAlign solution across G1 and G2.

❼ Spectral Partitioning Step: In this step, we use a spectral partitioning method [45] to
partition each network to m blocks.

❼ Module Alignment Step: In this step, we use the EigenAlign solution in a maximum
weight bipartite matching optimization to compute an optimal alignment of modules across
G1 and G2.

❼ SDP-based Alignment Step: In this step, we use a SDP-based relaxation of the underlying
QAP [17] followed by a maximum weight bipartite matching step, to compute node alignments
in each module pairs.

In the following, we explain the above steps with more details. In the EigenAlign step, we
use EigenAlign algorithm 1 to find a mapping across networks G1 and G2, denoted by X∗. In
the spectral partitioning step, we use the algorithm proposed in [45] to find m blocks (modules)
in each network. These modules are denoted by {V 1

1 , V 2
1 , . . . , V m

1 } and {V 1
2 , V 2

2 , . . . , V m
2 }, in net-

works G1 and G2, respectively. Note that other network clustering methods can be used in this
step alternatively. Moreover, here we assume that, the number of clusters (blocks) m is known.
Otherwise, it can be learned using Bayesian [46] or Monte Carlo [47] techniques. In the module

18

0.0105 0.0115 0.0125 0.01350.01 0.012 0.014 0.016 0.018 0.02

eigenvector scoreeigenvector score

across module- false mappings

within module- false mappings

true mappings

(b)(a)

Figure 4: Eigenvector scores of within and across module mappings of the expected
alignment network with parameters n = 20, m = 4, p = 0.3, q = 0.01, and (a) α = 100,
(b) α = 10. Parameters of panel (a) satisfy conditions of Theorem 3.

alignment step, we use the EigenAlign solution X∗ to infer a mapping across inferred modules. To
do this, we form a bipartite module-network whose nodes in the first and second layers correspond
to {V 1

1 , V 2
1 , . . . , V m

1 }, and {V 1
2 , V 2

2 , . . . , V m
2 }, respectively (Figure 3-b). The edge weight connecting

node i in the first layer of this graph to node j′ in the second layer (i.e., w(i, j′)) is computed as
follows:

w(i, j′) = ∑
a∈V i

1

b∈V
j

2

X∗(a, b). (4.1)

We use these weights in a maximum bipartite matching optimization to infer a one-to-one
mapping across modules of two networks. Note that, other methods based on random walks over
aggregation of Markov chains [48] can be used in this step to find module mappings. In the last
step, we use an SDP-based relaxation of the underlying QAP [17] along with a linear programming
step of maximum weight bipartite matching to compute node alignments in each module-pair. Note
that, in this step, other methods based on convex/semidefinite relaxations of the underlying QAP
can be used as well.

In the following, we prove that the EigenAlign solution provides a robust module-level mapping
across networks even in the high-noise regime.

Define,

Min ≜ {(i, j′) ∶ i ∈ V a
1 , j′ ∈ V a

2 ,1 ≤ a ≤m} (4.2)

Macross ≜ {(i, j′) ∶ i ∈ V a
1 , j′ ∈ V b

2 ,1 ≤ a, b ≤m,a ≠ b},
where Min and Macross represent mappings within and across modules in two networks, re-

spectively. We wish to show that eigenvector centrality scores assigned to Min mappings in the
EigenAlign algorithm are strictly larger than the ones assigned toMacross mappings. Suppose G1

and G2 have m blocks, each with size n. Thus, the total number of nodes in each network is mn.
Let A represent the alignment network across G1 and G2, according to (2.3). This network has

19

m2n2 number of nodes, out of which mn2 are within module mappings (i.e., ∣Min∣ =mn2), and the
rest are across module mappings (i.e., ∣Macross∣ = (m2

−m)n2). Let Ā be the expected alignment
matrix, where Ā(t1, t2) = ❊[A(t1, t2)]. To highlight key optimality conditions, in this section, we
focus on the eigenvector analysis of the matrix Ā. Similarly to Section 3.3, these properties can be
extended to the alignment network A by using perturbation analysis of random matrices.

We choose scores assigned to matches, neutrals and mismatches as s1 = α + ǫ, s2 = 1 + ǫ and
s3 = ǫ, respectively, where α > 1 and 0 < ǫ ≪ 1. To simplify notation, we assume ǫ is sufficiently
small so that its effect is negligible. Let v correspond to the leading eigenvector of the expected
alignment matrix Ā.

Theorem 3 For the noiseless case (pe = 0), if p > q, α > 1/q − 1, and m > 2, then,

v(i) > v(j), ∀i ∈Min,∀j ∈Macross. (4.3)

Proof A proof is presented in Section 8.3.

The condition p > q implies that the connectivity density of nodes in modules are larger than
the one across modules. This condition is also essential in the spectral partitioning step of the
EigenAlign+SDP algorithm to infer modules reliably. The condition m > 2 is a technical condition
required in the proof of the strict inequality of (4.3). In Section 5.2, through simulations, we show
that, this condition is not essential for the algorithm. The condition α > 1/q − 1 guarantees that
the expected alignment score of two mapping pairs where one belongs to Min and the other one
belongs to Macross is strictly larger than the one where both mappings belong to Macross. More
details on these optimality conditions can be found in Section 8.3.

Now, we consider the case when G2 is related to a noisy version of G1:

Theorem 4 Suppose 0 ≤ p2
e ≪ 1 and 0 ≤ p2

e2
≪ 1. Let p > q, m > 2 and α≫ 1/q.

❼ If q ≤ 1
4

and p < 1
1+pe

,

❼ or, if q > 1
4

and p <min(1
1+pe

,
6q−
√

4q(4q−1)(1−q)
2(1+2q)),

then,

v(i) > v(j), ∀i ∈Min,∀j ∈Macross. (4.4)

Proof A proof is presented in Section 8.4.

If pe = 0, the condition p < 1
1+pe

is simplified to p < 1. For higher noise level, this condition
guarantees that correct within module mappings are assigned to higher scores than incorrect within-

module ones. The additional constraint p <
6q−
√

4q(4q−1)(1−q)
2(1+2q) is required to guarantee that, the

expected alignment score of two mapping pairs, one in Min and the other one in Macross, is
strictly larger than the one where both mappings belong toMacross. We illustrate Theorems 3 and
4 in Figure 4. More details on these sufficient optimality conditions can be found in Section 8.4.

Theorems 3 and 4 indicate that, eigenvector scores of within module mappings are strictly
larger than the ones of across module mappings, in the expected alignment network. However,
definitions ofMin andMacross are based on the permutation matrix P which relates networks G1

and G2 according to (3.11). In general, P may not be necessarily the optimal solution of the network
alignment optimization (2.5). In the following, we provide conditions where the permutation matrix
P in fact maximizes the expected objective function of the network alignment optimization (2.5).

20

Theorem 5 Under the conditions of Theorem 3, if

p ≤
1 +
√

1 + (α2 − 1)q
1 + α

, (4.5)

then, the permutation matrix P maximizes the expected objective function of the network align-
ment optimization (2.5).

Proof A proof is presented in Section 8.5.

For instance, setting α = 1/q and q ≪ 1, the condition of Theorem 5 results to the condition
p2 ≤ q.

Theorem 6 Under the conditions of Theorem 4, if

p2
≤

q(1 − pe)
1 + p2

e

, (4.6)

then, the permutation matrix P maximizes the expected objective function of the network align-
ment optimization (2.5).

Proof A proof is presented in Section 8.6.

Conditions of Theorems 5 and 6 are based on an upper bound on the parameter p. To explain
this condition intuitively, suppose the permutation matrix P maps modules V a

1 in network G1 to
modules V a

2 in network G2, where 1 ≤ a ≤m. In the case of large number of modules, the expected
alignment score of the permutation matrix P is dominated by mapping-pairs (V a

1 , V a
2) and (V b

1 , V b
2),

where a ≠ b. These scores depend on the connectivity density across modules, namely q. On the
other hand, consider an incorrect permutation matrix P̃ where 1

nm
∥P −P̃ ∥ > 0. The alignment score

of P̃ is upper bounded by scores of incorrect within module mappings which depend on p. To have
a sufficient optimality condition, we wish the expected alignment score of P to be larger than the
upper bound of the expected alignment score of P̃ . More details on these optimality conditions are
presented in Sections 8.5 and 8.6.

Remark 10 In the EigenAlign+SDP algorithm 2, errors can also happen in other steps of the
algorithm including the network partitioning and semidefinite relaxation steps. In Section 5.2,
we empirically analyze the performance of the proposed algorithm. Our results suggest that,
the proposed method significantly outperforms existent network alignment techniques in aligning
modular networks, while it has significantly lower computational complexity compared to standard
convex-relaxation methods.

5 Performance Evaluation Over Synthetic Networks

We now compare the performance of the EigenAlign algorithm against other network alignment
methods including IsoRank [3], NetAlign [20], Klau linearization [15] as well as an SDP-based
method [17] through simulations. IsoRank is a global network alignment method which uses an
iterative approach to align nodes across two networks based on their neighborhood similarities.
NetAlign formulates the alignment problem in a quadratic optimization framework and uses mes-
sage passing to approximately solve it. Klau linearization uses Lagrange multipliers to relax the
underlying quadratic assignment problem. The SDP-based method [17] uses a convex relaxation
of the underlying QAP based on matrix splitting. In our simulations, we use default parameters of
these methods.

21

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise level

R
e

co
v

e
ry

 r
a

te
 o

f
tr

u
e

 m
a

p
p

in
g

s

(b)(a)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

co
v

e
ry

 r
a

te
 o

f
tr

u
e

 m
a

p
p

in
g

s

noise level

R
e

co
ve

ry
 r

a
te

 o
f

tr
u

e
 m

a
p

p
in

g
s

noise level

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

EA+scaling

EigenAlign

(c)

EA+greedy assign.

EigenAlign

balanced
s

2
=s

3
=0

s
1
=1000

s
1
=100

Figure 5: EigenAlign (EA) performance over power law graphs (a) with different align-
ment scores, (b) with alignment network scaling, and (c) with the greedy assignment
method. At each point, simulations have been repeated 20 times.

5.1 Erdös-Rényi and Power-Law graphs

Here, we test alignment methods over two types of input networks:

❼ Erdös-Rényi graphs [21]: In this case, G1 is a symmetric random graph where, Pr[(i, j) =
1] = p (see an example in Figure 6-a).

❼ Power law graphs [49]: We construct G1 as follows; we start with a random subgraph with 5
nodes. At each iteration, a node is added to the network connecting to θ existent nodes with
probabilities proportional to their degrees. This process is repeated till the number of nodes
in the network is equal to n (see an example in Figure 6-b).

G2 is then formed according to (3.11). In our experiments, we consider two noise models (3.8)
and (3.9). In the case of the power law network model, we use the density of G1 as parameter p in
the noise model II of (3.9). We denote pe as the noise level in both models.

In (3.11), P can be an arbitrary permutation matrix. In our simulations, we choose P such that,
P (i, n− i+ 1) = 1, for all 1 ≤ i ≤ n, where n is the number of nodes in the network. Let P̃ represent
the solution of a network alignment method in aligning networks G1 and G2. The recovery rate of
true mappings is defined as,

1 −
1

2n
∥P − P̃ ∥. (5.1)

22

Noisy removed edges

Noisy added edges

Overlapping edges

(b)

(a) Network 1 Network 2

Network Alignment

Network Alignment

Network 1 Network 2

P
o

w
e

r
L

a
w

N
e

tw
o

rk
 M

o
d

e
l

E
rd

o
s-

R
e

n
y

i

N
e

tw
o

rk
 M

o
d

e
l

Figure 6: Examples of (a) Erdös-Rényi, and (b) power law networks used in Section
5.1.

As we explain in Proposition 2, this recovery rate is directly related to the number of inferred
matches and mismatches in the network alignment optimization (2.5). Thus, we illustrate perfor-
mance evaluations using this metric, noting that using other metrics such as the number of inferred
matches/mismatches results in similar performance trends and conclusions. Moreover, in our sim-
ulations, all mappings across networks are considered to be possible (i.e., an unrestricted network
alignment case).

Figure 5 illustrates individual contributions of different components of the EigenAlign algorithm
by isolating multiple aspects of the algorithm. In these experiments, we use the power-law network
structure with 50 nodes, θ = 3, and noise model II. Performance trends and conclusions are similar
for other cases as well. In EigenAlign Algorithm 1, we use s1 = α + ǫ, s2 = 1 + ǫ, and s3 = ǫ, where
ǫ = 0.001 and,

α = 1 +
of mismatches

of matches
. (5.2)

This choice of α satisfies the required condition α > 1. Moreover, by this selection of α, we have,

∣s1 − 1 − ǫ∣(# of matches) = ∣s3 − 1 − ǫ∣(# of mismatches), (5.3)

which makes a balance between matched and mismatched interaction scores across networks
and leads to an improved performance of the method (Figure 5-a). Note that, ignoring mismatches

23

0 0.01 0.02 0.03 0.04 0.05

noise level

0 0.01 0.02 0.03 0.04 0.05

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

co
ve

ry
 r

a
te

 o
f

tr
u

e
 m

a
p

p
in

g
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise level

R
e

co
ve

ry
 r

a
te

 o
f

tr
u

e
 m

a
p

p
in

g
s

network density 0.1

Isomorphic Recovery Rates

network density 0.1

noise level

0 0.01 0.02 0.03 0.04 0.05

noise level

R
e

co
ve

ry
 r

a
te

 o
f

tr
u

e
 m

a
p

p
in

g
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

R
e

co
ve

ry
 r

a
te

 o
f

tr
u

e
 m

a
p

p
in

g
s

network density 0.4

Isomorphic Recovery Rates

network density 0.4

Klau Opt.

IsoRank

NetAlign

EigenAlign

0 0.01 0.02 0.03 0.04 0.05

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Isomorphic Recovery Rates Isomorphic Recovery Rates

(b)

(c)

(a)

N
o

is
e

 M
o

d
e

l
2

N
o

is
e

 M
o

d
e

l
1

Klau Opt.

IsoRank

NetAlign

EigenAlign

Klau Opt.

IsoRank

NetAlign

EigenAlign

Klau Opt.

IsoRank

NetAlign

EigenAlign

Figure 7: Performance evaluation of alignment methods over Erdös-Rényi graphs.
EigenAlign outperforms IsoRank, NetAlign and Klau optimization in low and high
network densities, in all considered noise levels, in both noise models. At each point,
simulations have been repeated 10 times.

(s2 = s3 = 0) leads to a significant decrease in the EigenAlign performance. Choosing other values
of α can provide a way to adjust relative importance of matching and non-matching interactions
in different applications. In general, this parameter can be tuned in different applications using
standard machine learning techniques such as cross validations [50]. Figure 5-b illustrates the
performance of the EigenAlign algorithm if we scale the alignment network by its node degrees
(we replace Ai,j by Ai,j/didj , where di is the degree of node i). As illustrated in this figure, this
scaling destroys our global match-mismatch score assignments and leads to a significant decrease in
the performance. Finally, Figure 5-c illustrates the performance of the EigenAlign algorithm if we
replace the linear optimization of maximum weight bipartite matching with the greedy approach
of Remark 7. As illustrated in this figure, this variation of the EigenAlign method decreases the
performance, although it also decreases the computational complexity.

Next, we compare the performance of the EigenAlign method with the one of other network
alignment methods over synthetic networks with n = 100 nodes. For large networks, the SDP-based
method of [17] has high computational complexity, thus we excluded it from these experiments.
Later, we will investigate the performance of the SDP-based method over small networks (n ≤ 50).

Figure 7 shows the recovery rate of true mappings obtained by EigenAlign, IsoRank, NetAlign
and Klau relaxation, over Erdös-Rényi graphs, and for both noise models. In the noiseless case
(i.e., pe = 0), the network alignment problem is simplified to the problem of graph isomorphism

24

network density 0.08 (theta=4)

network density 0.08 (theta=4)

network density 0.11 (theta=6)

network density 0.11 (theta=6)

0 0.01 0.02 0.03 0.04 0.05

noise level

0 0.01 0.02 0.03 0.04 0.05

noise level

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

co
v

e
ry

 r
a

te
 o

f
tr

u
e

 m
a

p
p

in
g

s

(c)

N
o

is
e

 M
o

d
e

l
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

co
v

e
ry

 r
a

te
 o

f
tr

u
e

 m
a

p
p

in
g

s

(a)

N
o

is
e

 M
o

d
e

l
1

noise level

0 0.01 0.02 0.03 0.04 0.05

noise level

0 0.01 0.02 0.03 0.04 0.05

R
e

co
v

e
ry

 r
a

te
 o

f
tr

u
e

 m
a

p
p

in
g

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

R
e

co
v

e
ry

 r
a

te
 o

f
tr

u
e

 m
a

p
p

in
g

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Isomorphic Recovery Rates

Isomorphic Recovery Rates

Isomorphic Recovery Rates

Isomorphic Recovery Rates

Klau Opt.

IsoRank

NetAlign

EigenAlign

Klau Opt.

IsoRank

NetAlign

EigenAlign

Klau Opt.

IsoRank

NetAlign

EigenAlign

Klau Opt.

IsoRank

NetAlign

EigenAlign

Figure 8: Performance evaluation of alignment methods over power law graphs. Eige-
nAlign outperforms IsoRank, NetAlign, and Klau optimization in low and high network
densities, in all considered noise levels, in both noise models. At each point, simulations
have been repeated 10 times.

as explained in Section 3.3. In this case, the EigenAlign algorithm finds true mappings without
error in both low and high network densities (i.e., the recovery rate of (5.1) is one.). EigenAlign
continues to outperform other methods in all considered noise levels, in both low and high network
densities.

Figure 8 shows the recovery rate of true mappings obtained by three considered methods over
power law graphs, and for both noise models. Similarly to the case of Erdös-Rényi graphs, Eige-
nAlign outperforms other methods in all considered noise levels and network densities. Notably, in
noiseless cases, EigenAlign finds true isomorphic mappings across networks without error.

Figure 9 depicts the average running time of these methods over an Erdös-Rényi graph with
density p = 0.4, and under the noise model I. All methods have been run on the same machine
and each experiment has been repeated 10 times. In these experiments, EigenAlign has the second
best runtime, after IsoRank, outperforming NetAlign and Klau relaxation methods. Notably, the
running time of Klau optimization method increases drastically as network size grows.

Next, we consider small networks with n = 50 nodes so that we are able to include a computa-
tionally expensive SDP-based method of [17] in our experiments. Note that, the method proposed
in [17] only provides a bound on the value of the underlying QAP objective function and it does
not provide a feasible solution. In order to obtain a feasible solution for the network alignment
optimization, we use the SDP-based solution in a maximum weight bipartite matching optimization.

25

10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

number of nodes

ru
n
n
in

g
 t
im

e
 (

s
e
c
) Klau Opt.

IsoRank

NetAlign

EigenAlign

Figure 9: Running time of network alignment methods over Erdös-Rényi graphs.

Figures 12-a,b illustrate the recovery rate of true mappings obtained by five considered meth-
ods over both Erdös-Rényi and power law graphs, under the noise model II. Performance trends
under the noise model I is similar. As illustrated in these figures, the computationally expensive
SDP-based method outperforms other network alignment methods significantly, while it has the
highest running time (Figure 13). Notably, in these experiments, EigenAlign outperforms other
methods except the SDP-based one consistent with the cases illustrated in Figures 7 and 8. These
results inspired us to propose the EigenAlign+SDP method to both have high recovery rate and
low computational complexity (see Section 4). In the next section, we focus on the performance
evaluation of the EigenAlin+SDP method over modular network structures.

5.2 Modular Network Structures

We then asses the performance of the proposed EigenAlign+SDP method in Section 4 in aligning
networks with modular structures. To be able to compare the performance of the proposed method
with the one of the SDP-based method [17], we only consider small modular networks with 50
nodes, having two equal-size modules. As discussed in Section 5.1, the SDP-based method of [17]
has high computationally complexity and using it for large networks is not practically feasible.
The key idea of the EigenAlign+SDP method is to use the EigenAlign solution to split the large
QAP into smaller sub-problems, enabling the use of the SDP-based relaxation method over each
sub-problem. Moreover, the SDP-based method can be run in parallel over each sub-problem.

Here, we consider network and noise models described in Section 4. In our evaluations, we
consider EigenAlign, SDP, and EigenAlign+SDP methods. Moreover, we use the performance
evaluation metric introduced in Section 5.1. Figures 12-a,b illustrates the recovery rate of true
mappings of different methods, in various noise levels, and for different set of parameters p and q

(the density of edges within and across modules, respectively). The average running time of the
methods is depicted in Figure 13. As it is illustrated in these figures, while the recovery rate of
the EigenAlign+SDP method is close to the one of the SDP-based one, it has significantly lower
computational complexity, enabling its use for large complex networks.

26

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

0

0.2

0.4

0.6

0.8

1

noise level

SDP

Klau Opt.

IsoRank

NetAlign

EigenAlign

R
e

co
ve

ry
 r

a
te

 o
f

tr
u

e
 m

a
p

p
in

g
s

Erdos-Renyi Graph (n=50)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

0

0.2

0.4

0.6

0.8

1

noise level

R
e

co
ve

ry
 r

a
te

 o
f

tr
u

e
 m

a
p

p
in

g
s

Power-Law Graph (n=50)
(b)(a)

Figure 10: Performance evaluation of network alignment methods over (a) Erdös-Rényi
(p = 0.2), and power law (θ = 3) graphs, with n = 50. The computationally expensive
SDP-based method outperforms other methods, while EigenAlign has the second best
performance. At each point, simulations have been repeated 20 times.

6 Inference of Regulatory Networks in Human, Fly and Worm

Having illustrated the efficiency of the proposed network alignment algorithm, both theoretically
and through simulations, we wish to use EigenAlign and other network alignment methods to com-
pare the structure of regulatory networks across different species. However, the paucity of compre-
hensive catalogs of regulatory genomics datasets has hindered these studies in animal genomes. In
this section, we leverage genome-wide functional genomics datasets from ENCODE and modEN-
CODE consortia to infer regulatory networks across human, fly, and worm. In the next section, we
will compare the structure of these inferred networks using EigenAlign and other network alignment
techniques.

The temporal and spatial expression of genes is coordinated by a hierarchy of transcription fac-
tors (TFs), whose interactions with each other and with their target genes form directed regulatory
networks [51]. In addition to individual interactions, the structure of a regulatory network captures
a broad systems-level view of regulatory and functional processes, since genes cluster into modules
that perform similar functions [52–54]. Accurate inference of these regulatory networks is important
both in the recovery and functional characterization of gene modules, and for comparative genomics
of regulatory networks across multiple species [55,56]. This is especially important because animal
genomes, as fly, worm, and mouse are routinely used as models for human disease [57,58].

Here, we infer regulatory networks of human, and model organisms D. melanogaster fly, and C.
elegans worm, three of the most distant and deeply studied metazoan species. To infer regulatory
interactions among transcription factors and target genes in each species, we combine genome-wide
transcription factor binding profiles, conserved sequence motif instances [59] and gene expression
levels [60, 61] for multiple cell types that have been collected by the ENCODE and modENCODE
consortia. The main challenge is to integrate these diverse evidence sources of gene regulation in

27

5 10 15 20 25 30 35 40 45 50 55
−50

0

50

100

150

200

250

300

350

400

Number of nodes

R
u

n
n

in
g

 t
im

e
 (

se
c)

SDP

Klau Opt.

IsoRank

NetAlign

EigenAlign

Figure 11: Running time of network alignment methods over Erdös-Rényi graphs with
n = 50 and p = 0.2. The SDP-based method has significantly higher computational
complexity compared to other network alignment techniques, which prohibits its use
over large graphs. At each point, simulations have been repeated 20 times.

order to infer robust and accurate regulatory interactions for each species.
Ideally, inference of regulatory networks would involve performing extensive all-against-all ex-

periments of chromatin immune-precipitation (ChIP) assays for every known transcription factor
in every cell type of an organism, in order to identify all potential targets of TFs, followed by
functional assays to verify that a TF-gene interaction is functional [54, 62]. However, the com-
binatorial number of pairs of TFs and cell types makes this experiment prohibitively expensive,
necessitating the use of methods to reduce dimensionality of this problem. Here, we first infer three
types of feature-specific regulatory connections based on functional and physical evidences and then
integrate them to infer regulatory interactions in each species (Figure 14-a). One feature-specific
network is based on using sequence motifs to scan the genome for instances of known binding sites
of each TF, and then match predicted binding instances to nearby genes (a motif network). A
second approach is to map TFs to genes nearby their ChIP peaks using a window-based approach
(a ChIP binding network). The third feature specific network uses gene expression profiles under
different conditions in order to find groups of genes that are correlated in expression and therefore
likely to function together (an expression-based network).

Previous work [54] has shown that, while ChIP networks are highly informative of true reg-
ulatory interactions, the number of experiments that can be carried out is typically very small,
yielding a small number of high confidence interactions. Motif networks tend to be less informative
than ChIP networks, but yield more coverage of the regulatory network, while co-expression based
networks tend to include many false-positive edges and are the least informative [62,63]. However,
integration of these three networks [53, 64–66] into a combined network yield better performance
than the individual networks in terms of recovering known regulatory interactions, by predicting
interactions that tend to be supported by multiple lines of evidence. Here, we use two integration
approaches: one approach combines interaction ranks across networks, while the other is based
on mapping edge weights to interaction probabilities and then combining interaction likelihoods
across input networks. Inferred regulatory interactions using both rank-based and likelihood-based
integration methods show significant overlap with known interactions in human and fly, indicating

28

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.2

0.4

0.6

0.8

1

noise level

R
e
c
o
v
e
ry

 r
a
te

 o
f
tr

u
e
 m

a
p
p
in

g
s

R
e
c
o
v
e
ry

 r
a
te

 o
f
tr

u
e
 m

a
p
p
in

g
s EigenAlign

SDP

EigenAlign+SDP

EigenAlign

SDP

EigenAlign+SDP

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.2

0.4

0.6

0.8

1

noise level

(b)(a)

Figure 12: Performance evaluation of network alignment methods over modular net-
work structures with n = 20, m = 2, p = 0.2, and (a) q = 0.05, (b) q = 0.01. The recovery
rate of the EigenAlign+SDP method is close to the one of the SDP-based method,
while it has significantly lower computational complexity.

the accuracy and robustness of the used inference pipeline. In the following, we explain our network
inference framework with more details.

6.1 Inference of feature specific regulatory networks

For each species, we form feature-specific regulatory networks using functional (gene expression
profiles) and physical (motif sequences and ChIP peaks) evidences as follows:

Functional association networks. Expression-based networks represent interactions among
TFs and target genes which are supported by correlation in gene expression levels across multiple
samples [51, 67–69]. There are several methods to infer regulatory networks using gene expression
profiles [66]. The input for these algorithms is a gene by condition matrix of expression values. The
output of these methods are expression-based regulatory networks. We use the side information of
TF lists to remove outgoing edges from target genes (in fact, TF lists are used as inputs to network
inference algorithms to enhance their performance by limiting search space of the methods.).

To reduce bias and obtain a single expression-based network for each species, we combine
results of two different expression-based network inference methods (Figure 14-a): one method is
CLR [60] (context likelihood of relatedness) which constructs expression networks using mutual
information among gene expression profiles along with a correction step to eliminate background
correlations. The second method used is GENIE3 [61] (Gene Network Inference with Ensemble
of Trees) which is a tree-based ensemble method that decomposes the network inference problem
to several feature selection subproblems. In each subproblem, it identifies potential regulators by
performing a regression analysis using random forest. GENEI3 has been recognized as the top-
performing expression based inference method in the DREAM5 challenge [66].

Table 1 summarizes the number of genes and TFs in expression-based regulatory networks.
These numbers refer to genes and TFs that are mapped to Entrez Gene IDs [70], the standard IDs
that we use throughout our analysis. As it is illustrated in this table, expression based networks
cover most of potential regulatory edges from TFs to targets. Despite a high coverage, however,

29

EigenAlign EigenAlign+SDP SDP
0

200

400

600

800

1000

1200

R
u
n
n
in

g
 t
im

e
 (

s
e
c
)

Figure 13: Average running time of network alignment methods over modular network
structures with n = 20, m = 2, p = 0.2, and q = 0.05. The average running time of
the SDP+EigenAlign algorithm is significantly lower than the one of the SDP-based
method. Simulations have been repeated 20 times.

the quality of inferred expression networks are lower than the one for physical networks [62]. This
can be partially owing to indirect effects and transitive interactions in expression-based regulatory
networks [66].

Physical association networks. We form two physical regulatory networks for each of the
considered species using two types of physical evidences as our inference features: In the first
approach, we use conserved occurrences of known sequence motifs [59], while in the second approach,
we use experimentally defined TF binding occupancy profiles from ChIP assays of ENCODE and
modENCODE [54,62]. Table 2 shows the number of TFs associated to motifs as well as the number
of TFs with genome-wide ChIP profiles in human, fly and worm. TSS coordinates are based on the
genome annotations from ENCODE and modENCODE for human and worm, respectively, and the
FlyBase genome annotations (FB5.48) for fly.

Each physical feature is assigned to a score: motif sequence features are assigned to conservation
scores according to a phylogenetic framework [59], while sequence read density of TFs determines
scores of ChIP peaks. Further, two physical features are called overlapping if their corresponding
sequences have a minimum overlap of 25% in relation to their lengths (Jaccard Index > 0.25).

Our inference algorithm is based on occurrence of these features (motif sequences or ChIP
peaks) within a fixed window size around the transcription start site (TSS) of target genes (Figure
14-b). We use a fixed window of 5kb around the transcription start site (TSS) in human and 1kb
in fly and worm. Then, we apply a max-sum algorithm to assign weights to TF-target interactions
in each case: we take the maximum score of overlapping features and sum the scores of non-
overlapping ones. In ChIP networks, because read densities are not comparable across different
TFs, we normalize TF-target weights for each TF by computing z-scores.

6.2 Inference of integrated regulatory networks

Feature specific networks have certain biases and shortcomings. While Physical networks (mo-
tif and ChIP networks) show high quality considering overlap of their interactions with known
interactions [62], their coverage of the entire network is pretty low mostly owing to the cost of
the experiments. On the other hand, while expression based networks have a larger coverage of

30

Network
 integration

Physical associationsFunctional associations

TF binding
network
(ChIP)

Conserved
motifs

network

Reg-based
network

(GENIE3)

MI-based
network
(CLR)

(b)(a)

integrated regulatory
network

Network
 integration

Likelihood

 integration

Rank integration

(borda integration)

TSS

Target gene

- w

Physical
features
{s1,..., sk}

s
4

s
3

s
2s

1

+ w

overlapping

features score = s
1
+ max(s

2
, s

3
) + s

4

Figure 14: (a) The proposed framework to infer integrative regulatory networks. (b)
The proposed framework to infer physical feature-specific regulatory networks.

regulatory networks compared to physical ones, they include many false-positive edges partially ow-
ing to indirect information flows [63]. To overcome these limitations, we therefore integrate these
feature-specific regulatory interactions into a single integrated network [53,64–66] (Figure 14-a).

Suppose there are K input feature-specific regulatory networks, each with n genes and m TFs
(only TF nodes can have out-going edges in the network). Let wl

i,j and wi,j represent interaction
weights between TF i and target gene j in the input network l and in the integrative network,
respectively. We use the following techniques to infer integrated networks:

Rank-based (borda) integration: In this approach, integrative weights are computed as
follows:

wi,j = 1/K K

∑
l=1

rl
i,j , (6.1)

where rl
i,j represents the rank of interactions i → j in the input network l. An edge with the

maximum weight is mapped to the rank nm. We also assume non-existent interactions are mapped
to rank 0 (if wl

i,j = 0, then rl
i,j = 0) [66]. Moreover, ties are broken randomly among edges with

same weights.
Likelihood-based integration: In this approach, integrative weights are computed as follows,

wi,j = 1/K K

∑
l=1

− log (1 − ̺pl
i,j), (6.2)

where pl
i,j represents the probability that edge i→ j exists in the input network l, defined as pl

i,j ≜

Pr(w < wl
i,j). ̺ is a number close to one (e.g., ̺ = 0.99) to have a well-defined log(.) function when

the edge probability is one. This approach can be considered as a maximum likelihood estimator
of integrative weights if input networks and their interactions are assumed to be independent, and
empirical distributions of input edge weights are sufficiently close to actual distributions.

We find that, top-ranking integrative interactions in human and fly networks are primarily
supported by ChIP and motif evidences specially in the rank-based integrative networks, while worm

31

CLR

GENIE3

0 0.01 0.02 0.03 0.04 0.050 0.01 0.02 0.03 0.04 0.05

0 0.01 0.02 0.03 0.04 0.050 0.01 0.02 0.03 0.04 0.050 0.01 0.02 0.03 0.04 0.05

0 0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

WormFlyHuman

L
ik

e
li

h
o

o
d

 I
n

te
g

ra
ti

o
n

R
a

n
k

 I
n

te
g

ra
ti

o
n

x-axis: percentage of top integrated edges

y-axis: contributions of input networks in integrated interactions

Motif

ChIP

Figure 15: Contributions of input feature-specific networks in integrated interactions.

interactions are primarily supported by co-expression edges, consistent with the lower coverage of
worm ChIP and motif interactions (Figure 15).

To validate inferred integrated networks, we use known interactions in TRANSFAC [26], RED-
fly [27] and EdgeDB [28] as human, fly and worm benchmarks, respectively. We assess the quality of
various networks by using (a) the area under the receiver operating characteristic curve (AUROC);
and (b) the area under the precision recall curve (AUPR), for each benchmark network (Figures
16). Let TP (k) and FP (k) represent the number of true positives and false positives in top k

predictions, respectively. Suppose the total number of positives and negatives in the gold standard
are represented by P and N , respectively. Then, an ROC curve plots true positive rate vs. false
positive rate (TP (k)/P vs. FP (k)/N), while a PR curve plots precision (TP (k)/k) vs. recall
(TP (k)/P). A high AUPR value indicates that, top predictions significantly overlap with known
interactions, while a high AUROC value indicates the advantage of inferred predictions in discrim-
inating true and false positives compared to random predictions (AUROC of a random predictor
is 0.5).

Figure 16 illustrates AUROC and AUPR scores for feature-specific and integrative networks,
in different cut-offs, and in all three considered species. Considering the top 5% of interactions in
each weighted network as predicted edges, according to AUROC metric, both integrative networks
(rank-based and likelihood-based) outperform feature-specific networks in all three species. In fact,
AUROC values of rank-based and likelihood based integrative networks are 0.58 in human, 0.62
and 0.61 in fly, and 0.52 and 0.51 in worm, respectively. According to the AUPR metric and using
the same cut-off, the likelihood-based integrative network outperforms other networks in human

32

Human Fly Worm

Genes 19,088 12,897 19,277

TFs 2,757 675 905

Table 1: Number of genes and TFs covered by gene expression data.

Human Fly Worm

Motif network 485 221 30

ChIP network 165 51 88

Table 2: Number of TFs covered by evolutionary conserved motifs and TF binding
datasets.

and fly species. AUPR values of rank-based and likelihood based integrative networks are 0.019
and 0.017 in human, 0.047 and 0.045 in fly, and 0.037 and 0.035 in worm, respectively. Notably,
all methods have low scores over the EdgeDB (worm) benchmark, which can be partially owing to
sparse physical networks and/or systematic bias of EdgeDB interactions.

As the cut-off (network density) increases, AUROC values of integrative networks tend to
increase while their AUPR scores are decreasing in general. This is because of the fact that, the
rate of true positives is lower among medium ranked interactions compared to top ones. Considering
both AUROC and AUPR curves for all species, we binarize networks using their top 5% interactions
which leads to balanced values of AUROC and AUPR in all inferred networks. This results in 2.6M

interactions in human, 469k in fly and 876k in worm. In the rank-based integrative networks, the
median number of targets for each TF is 253 in human, 290 in fly and 640 in worm, with a median
of 132 regulators per gene in human, 29 in fly, and 43 in worm. In the likelihood-based integrative
networks, the median number of targets for each TF are 478, 400 and 861, with a median of 136,
29 and 41 regulators per gene in in human, fly and worm, respectively.

7 Comparative Analysis of Gene Regulatory Networks across Hu-

man, Fly and Worm

In this section, we apply network alignment methods to compare gene regulatory networks of human,
fly, and worm, three of the most distant and deeply studied metazoan species (Figure 17-a). We
use regulatory networks which we inferred in Section 6 by integrating genome-wide functional and
physical genomics datasets from ENCODE and modENCODE consortia. In this section, we focus
on analyzing ranked-based integrated regulatory networks, while all arguments can be extended to
likelihood-based networks as well.

We use homolog mappings across genes of human, fly and worm provided by the ENCODE and
modENCODE consortia [71]. Note that, human homologs refer to homologous genes in fly and
worm, while fly/worm homologs are defined solely in relation to human. Homolog mappings across
species are based on gene sequence similarities over corresponding gene trees [71]. However, owing
to multiple duplications and losses, homolog mappings are not bijective necessarily. For example,
one gene in human can be homologous to multiple genes in fly and vice versa (see an example in
Figure 17-b). Comparative network analysis in evolutionary studies often requires having a one-
to-one mapping across genes of two networks. In this section, we use network alignment methods

33

0
0.52

0.54

0.56

0.60

0.58

H
u

m
a

n

A
U

R
O

C

0.5

0.6

0.7

F
ly

A
U

R
O

C

0 0.02 0.04 0.06 0.08 0.12 0.14 0.16 0.18 0.2
0.48

0.5

0.52

0.54

Network density

W
o

rm

A
U

R
O

C

GENIE3

CLR

Chip

Motif

Borda Integration

Likelihood Integration

(a)

0.1

(b)

Network density

0.01

0.015

0.02

0.025

H
u

m
a

n

A
U

P
R

0.04

0.045

0.05

F
ly

A
U

P
R

0 0.02 0.04 0.06 0.08
0.02

0.03

0.04

0.05

W
o

rm

A
U

P
R

0.1

Figure 16: AUROC and AUPR scores of feature-specific and integrated regulatory
networks in human, fly and worm species.

to infer bijective mappings as a subset of homolog mappings across species (Figure 17-b). An
optimal bijective mapping across networks of different species causes the most number of matched
interactions (i.e., interactions that exists in both networks) and the least number of mismatched
interactions (i.e., interactions that only exist in one of the networks).

We assess the performance of three network alignment methods (EigenAlign, NetAlign, Iso-
Rank) in comparative analysis across gene regulatory networks of human, fly and worm. We
excluded the network alignment method based on Klau optimization [15] from our analysis in this
section owing to its high computational complexity, and its low performance over synthetic net-
works of Section 5. Moreover, as we discussed in Section 5, the SDP-based method of [17] has
high-computational complexity, which prohibits its use in aligning large regulatory networks. We
use EigenAlign, IsoRank and NetAlign methods with the setup and parameters similarly to Section
5.

Unlike EigenAlign, IsoRank and NetAlign methods do not take into account the directionality
of edges in their network alignment setup. Thus, to have fair performance assessments of considered
network alignment methods, we create un-directed co-regulation networks using inferred regulatory
networks of Section 6, by connecting genes when their parent TFs have an overlap larger than 25%.
This results in undirected binary co-regulation networks in human, fly, and worm, with 19,221,

34

(a)

bijective
gene

mappings

network alignment

gene
regulatory

network

gene
regulatory

network

gene
regulatory

network

WormHumanFly

homolog
gene

mappings

10

Alignability weight of

homologs

bijective gene mappings

homolog gene mappings

fl
y
 g

e
n
e
s

human genes

(b)

Figure 17: (a) A comparative analysis framework across human, fly and worm regu-
latory networks. (b) An application example of a network alignment method (Eige-
nAlign) over three gene families across human-fly.

13,642, and 19,296 nodes, and 13.9%, 3.5%, and 4.2% edge densities, respectively.
By application of network alignment methods, we infer bijective mappings across human-fly

and human-worm networks. There are numerous mismatched interactions across networks of dis-
tal species partially owing to extensive gene functional divergence due to processes such as gene
duplication and loss. In this situation, it is critical to consider both matches and mismatches in
the network alignment optimization. Unlike existent network alignment algorithms which com-
pletely ignore mismatches across networks, EigenAlign considers both matches and mismatches
across networks in a balanced way by setting alignment scores according to (5.2). Figures 18-a,b
illustrate the number of matched (conserved) and mismatched (error) interactions across human-fly
and human-worm networks, inferred using different methods. As it is illustrated in these figures, in
both human-fly and human-worm comparisons, EigenAlign significantly outperforms other meth-
ods in terms of causing fewer number of mismatches (errors) across networks, while its performance
is close to the best one in terms of the number of matches (overlaps). Figure 18-c illustrates the
match-mismatch ratio for different network alignment methods, in both human-fly and human-
worm comparisons. As it is illustrated in this figure, EigenAlign outperforms other methods signif-
icantly indicating that, it finds mappings across networks which maximize the number of matches
and minimize the number of mismatches simultaneously. In all cases, the number of conserved
interactions is statistically significant (p − value < 0.01), indicating gene evolution has occurred in
a way to preserve regulatory pathways across these species. p-values are computed using a rank
test by randomly selecting bijective mappings from gene homolog mappings while keeping network
structures the same.

Next, we assess conservation of gene centralities across different networks. Centrality mea-
sures over regulatory networks provide useful insights on functional roles of genes in regulatory
processes [72–74]. Therefore, comparative analysis of gene centrality measures across species can
shed light on how evolution has preserved or changed regulatory patterns and functions across
distal species. A suitable alignment should map central nodes in one network to central nodes in
the other network (Figure 19-a). Here, we consider three centrality measures: degree centrality,

35

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
3

4

5

6

7

8

9

10

x 10
7

x 10
5

number of mismatches

n
u

m
b

e
r

o
f

m
a

tc
h

e
s

Human-Fly

EigenAlign

NetAlign

IsoRank

Random

(c)

(b)(a)

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0.8

1

1.2

1.4

1.6

1.8

2

number of mismatches

n
u

m
b

e
r

o
f

m
a

tc
h

e
s

Human-Worm

x 10
7

x 10
6

0

0.05

0.1

0.15

0.2

0.25

Human−Fly Human−Worm

m
a

tc
h

-
m

is
m

a
tc

h
 r

a
ti
o

EigenAlign

NetAlign

IsoRank

Random

EigenAlign

NetAlign

IsoRank

Random

Figure 18: The number of matched and mismatched interactions inferred using different
network alignment methods across (a) human-fly and (b) human-worm networks. (c)
An average match-mismatch ratio for different network alignment methods, in both
human-fly and human-worm comparisons.

eigenvector centrality, and the page-rank centrality with the damping factor 0.85. In Figure 19, we
illustrate centrality correlation of aligned genes using different network alignment methods, across
both human-fly and human-worm networks. As it is illustrated in this figure, the bijective mapping
inferred by EigenAlign preserves different node centralities across networks significantly better than
other tested methods. That is, EigenAlign is more likely to map central nodes in one network to
central nodes in the other network. Finally, we note that, the centrality conservation across human-
fly networks is significantly larger than the one across human-worm networks, partially owing to a
larger evolutionary distance between human and worm compared to the one between human and
fly.

Next, we examine enrichment of different biological processes over conserved subgraphs inferred
by different alignment methods across human-fly and human-worm. To do this, we use genome
ontology (GO) processes that are experimentally verified and have sizes in the range of 50 and 500
genes. For each GO category, we compute the number of matched and mismatched interactions
using bijective mappings of different network alignment methods across human-fly and human-
worm networks. Figure 20-a illustrates the average match-mismatch ratio over all considered GO
categories, across both human-fly and human-worm networks. As it is illustrated in this figure,
the EigenAlign solution preserves the connectivity pattern of genes in each GO category across
these species better than other network alignment methods. This is consistent with the overall
match-mismatch ratio gain of the EigenAlign method across human-fly and human-worm networks,

36

D
e
g
re

e
 c

e
n
tr

a
lit

y

 c
o
rr

e
la

ti
o
n
 o

f
a
lig

n
e
d
 n

o
d
e
s

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Human−Fly Human−Worm

EigenAlign

NetAlign

IsoRank

Random

EigenAlign

NetAlign

IsoRank

Random

EigenAlign

NetAlign

IsoRank

Random

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
ig

e
n
v
e
c
to

r
c
e
n
tr

a
lit

y

 c
o
rr

e
la

ti
o
n
 o

f
a
lig

n
e
d
 n

o
d
e
s

Human−Fly Human−Worm −0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
a
g
e
R

a
n
k
 c

e
n
tr

a
lit

y

 c
o
rr

e
la

ti
o
n
 o

f
a
lig

n
e
d
 n

o
d
e
s

Human−Fly Human−Worm

G
2

G
1

(d)(c)

(b)(a)

Figure 19: (a) A suitable alignment should map central nodes in one network to central
nodes in the other network. Correlation of (b) degree centrality, (c) eigenvector cen-
trality, and (d) page-rank centrality measures of aligned genes using different network
alignment methods, in both human-fly and human-worm comparisons.

demonstrated in Figure 18-c. Note that, the average match-mismatch ratios across GO processes
(Figure 20-a) are significantly higher than the ones across entire networks (Figure 18-c). This may
indicate that, connectivity patterns among genes involved in similar processes are better preserved
compared to the rest of the regulatory network. However, note that, this enrichment of GO processes
across species may be partially owing to biases in the study of these genes in the literature [75].
Thus, additional experimental validations are required which is beyond the scope of this paper.

Next, we focus on GO categories whose regulatory patterns are (partially) conserved across
these species, according to mappings of at least one of the considered network alignment methods.
To do this, we select GO categories whose match-mismatch ratio is larger than or equal to one.
Considering the small match-mismatch ratio of entire regulatory networks (Figure 18-c), this mea-
sure selects processes that have significantly higher conservation than the one of randomly selected
gene sets. We also limit processes to the ones with at least 10 conserved interactions to elimi-
nate processes whose conservation may not be statistically significant. Figure 20-b illustrates the
average match-mismatch ratio over partially conserved GO processes, across both human-fly and
human-worm networks. As illustrated in this figure, most of the (partially) conserved GO processes
are identified by EigenAlign mappings across networks. In fact, EigenAlign identifies 6 processes as
partially conserved ones across human-fly, while this number for NetAlign and IsoRank are 3 and
2, respectively. The conserved processes of EigenAlign solution include an immune system process,
embryo development, actin filament organization, and cellular response to endogenous stimulus.
Across human-worm networks, EigenAlign identifies 5 partially conserved processes, while this
number for NetAlign and IsoRank are 1, and 0, respectively. In this case, conserved processes of

37

(b)(a)

Human−Fly Human−Worm
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

m
at

ch
 m

is
m

at
ch

 ra
tio

co
ns

er
ve

d
G

O
 p

ro
ce

ss
es

m
at

ch
 m

is
m

at
ch

 ra
tio

G
O

 p
ro

ce
ss

es

Human−Fly Human−Worm
0

0.2

0.4

0.6

0.8

1

1.2

1.4 EigenAlign
NetAlign
IsoRank

EigenAlign
NetAlign
IsoRank

Figure 20: An average match-mismatch ratio across both human-fly and human-worm
networks over (a) all , and (b) partially conserved, considered GO categories.

the EigenAlign solution include different compound catabolic processes. Notably, by considering
a less restrictive match-mismatch ratio of 0.8, all conserved processes of other network alignment
methods are inferred using the EigenAlign method as well. Finally, we note that, the solution
provided by the EigenAlign method can be used in designing future experiments to extend GO
catalogs by using gene regulatory networks and cross-species information.

8 Proofs

In this section, we present proofs of Theorem 2 and Corollary 1. First, in Section 8.1, we present
proof of Corollary 1 to highlight key ideas used in the proof. Then, in Section 8.2, we present the
proof of Theorem 2.

8.1 Proof Of Corollary 1

Without loss of generality and to simplify notations, we assume the permutation matrix P is equal to
the identity matrix I, i.e., the isomorphic mapping across G1 and G2 is {1↔ 1′,2↔ 2′, . . . , n↔ n′}
(otherwise, one can relabel nodes in either G1 or G2 to have P equal to the identity matrix).
Therefore, G1(i, j) = G2(i′, j′) for all 1 ≤ i, j ≤ n. Recall that Y is a vector of length kn which has
weights for all possible mappings (i, j′) ∈ R. To simplify notations and without loss of generality,
we re-order indices of vector y as follows:

❼ The first n indices of y correspond to correct mappings, i.e., y(1) = y1,1′ , y(2) = y2,2′ , . . . , y(n) =
yn,n′ .

❼ The remaining (k − 1)n indices of y correspond to incorrect mappings. e.g., y(n + 1) =
y1,2′ , y(n + 2) = y1,3′ , . . . , y(kn) = yr,s′ (r ≠ s).

Therefore, we can write,

y = [y1

y2
] ,

where y1 and y2 are vectors of length n and (k − 1)n, respectively.

38

We re-order rows and columns of the alignment matrix A accordingly. Define the following
notations: S1 = {1,2, . . . , n} and S2 = {n + 1, n + 2, . . . , kn}. The alignment matrix A for graphs G1

and G2 can be characterized using equation (2.3) as follows:

A(t1, t2) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(α + 1)G1(i, j)G2(i′, j′) −G1(i, j) −G2(i′, j′) + 1 + ǫ, if t1 ∼ (i, i′), t2 ∼ (j, j′),
t1 and t2 ∈ S1, t1 ≠ t2.(α + 1)G1(i, j)G2(r′, s′) −G1(i, j) −G2(r′, s′) + 1 + ǫ, if t1 ∼ (i, r′), t2 ∼ (j, s′),
t1 or t2 ∈ S2, t1 ≠ t2.

1 + ǫ, if t1 = t2,

(8.1)

where notation t1 ∼ (i, r′) means that, row (and column) index t1 of the alignment matrix A

corresponds to the mapping (i, r′). Since G1 and G2 are isomorphic with permutation matrix P = I,
we have G1(i, j) = G2(i′, j′). Therefore, equation (8.1) can be written as,

A(t1, t2) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(α + 1)G1(i, j)2 − 2G1(i, j) + 1 + ǫ, if t1 ∼ (i, i′), t2 ∼ (j, j′),
t1 and t2 ∈ S1, t1 ≠ t2.(α + 1)G1(i, j)G1(r, s) −G1(i, j) −G1(r, s) + 1 + ǫ, if t1 ∼ (i, r′), t2 ∼ (j, s′),
t1 or t2 ∈ S2, t1 ≠ t2.

1 + ǫ, if t1 = t2.

(8.2)

Let Ā be the expected alignment matrix, where Ā(t1, t2) = ❊[A(t1, t2)], the expected value of
A(t1, t2).
Lemma 3 Let v be the eigenvector of the expected alignment matrix Ā corresponding to the largest
eigenvalue. Suppose

v = [v1

v2
] ,

where v1 and v2 are vectors of length n and (k − 1)n, respectively. Then,

v1,1 = v1,2 = . . . = v1,n = v∗1 ,

v2,1 = v2,2 = . . . = v2,(k−1)n = v∗2 ,

Moreover, if n→∞, then,
v∗1
v∗2
> β, (8.3)

where β = 1 +∆, and 0 <∆k <
(α−1)p+1+ǫ

(α+1)p2
−2p+1+ǫ

− 1.

Proof Since G1(i, j) is a Bernoulli random variable which is one with probability p, equation (8.4)
leads to:

Ā(t1, t2) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(α − 1)p + 1 + ǫ, if t1 and t2 ∈ S1, t1 ≠ t2,(α + 1)p2

− 2p + 1 + ǫ, if t1 or t2 ∈ S2, t1 ≠ t2,

1 + ǫ, if t1 = t2.

(8.4)

39

Define a ≜ (α − 1)p + 1 + ǫ and b ≜ (α + 1)p2
− 2p + 1 + ǫ.

Since bv is an eigenvector of Ā, we have,

Āv = λv, (8.5)

where λ is the corresponding eigenvalue of bv. Therefore,

Āv =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a∑i v1,i + b∑j v2,j + (1 + ǫ − a)v1,1

⋮

a∑i v1,i + b∑j v2,j + (1 + ǫ − a)v1,n

b∑i v1,j + b∑j v2,j + (1 + ǫ − a)v2,1

⋮

b∑i v1,i + b∑j v2,j + (1 + ǫ − a)v2,(k−1)n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1,1

⋮

v1,n

v2,1

⋮

v2,(k−1)n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8.6)

Therefore,

a∑
i

v1,i + b∑
j

v2,j = v1,r(λ + a − 1 − ǫ), ∀1 ≤ r ≤ n, (8.7)

b∑
i

v1,i + b∑
j

v2,j = v2,s(λ + b − 1 − ǫ), ∀1 ≤ s ≤ (k − 1)n.

We choose ǫ so that λ+ a− 1− ǫ ≠ 0 and λ+ b− 1− ǫ ≠ 0. We will show later in this section that
any sufficiently small value of ǫ satisfies these inequalities. Therefore, equation (8.7) leads to,

v1,1 = v1,2 = . . . = v1,n = v∗1 , (8.8)

v2,1 = v2,2 = . . . = v2,(k−1)n = v∗2 .

Using equations (8.7) and (8.8), we have,

⎧⎪⎪⎨⎪⎪⎩
anv∗1 + b(k − 1)nv∗2 = v∗1(λ + a − 1 − ǫ)
bnv∗1 + b(k − 1)nv∗2 = v∗2(λ + b − 1 − ǫ). (8.9)

We choose ǫ so that λ + b(1 − (k − 1)n) − 1 − ǫ ≠ 0. We will show later in this section that any
sufficiently small value of ǫ satisfies this inequality. Further, according to PerronFrobenius Theorem
1, v1,i > 0 and v2,j > 0, for all i and j. Under these conditions, solving equation (8.9) leads to:

(λ − λa)(λ − λb) = b2(k − 1)n2, (8.10)

where, ⎧⎪⎪⎨⎪⎪⎩
λa = (n − 1)a + 1 + ǫ,

λb = ((k − 1)n − 1)b + 1 + ǫ.
(8.11)

Equation (8.10) has two solutions for λ. However, since λ is the largest eigenvalue of the
expected alignment matrix Ā, we choose the largest of the roots. Note that, since b2(k − 1)n2 > 0,
we have λ > max(λa, λb). This guarantees conditions that we put on ǫ in the early steps of the
proof.

By solving equations (8.10) and (8.11), we have,

40

λ =
λa + λb +

√(λa − λb)2 + 4(k − 1)b2n2

2
.

First, we show v∗1 > v∗2 :
As n→∞, equation (8.9) implies,

v∗1
v∗2
=

λ

bn
− k + 1, (8.12)

where λ is the largest root of equation (8.10). For sufficiently large n,

v∗1
v∗2
=

1

2
[(a

b
− k + 1) +√(a

b
− k + 1)2 + 4k − 4]. (8.13)

If p ≠ 0,1, we always have a > b. Therefore, there exists ∆ > 0 such that a
b
> 1 +∆k. Thus, we

have,

a

b
> 1 +∆k > 1 +∆(1 + k − 1

1 +∆
) = 1 +∆ +

∆

∆ + 1
(k − 1). (8.14)

Using inequality (8.14) in (8.13), we have,

v∗1
v∗2
>
1

2
[(1 +∆)2 − k + 1

1 +∆
+

√((1 +∆)2 − k + 1)2 + 4(k − 1)(1 +∆)2
1 +∆

] (8.15)

= 1 +∆.

This completes the proof of Lemma 3.

Remark 11 In Lemma 3, if kp = c1, where c1 ≪ k and k ≫ 1, choosing α = c2k
2 results in ∆ ≈ ck

where c = c1c2
c2
1
c2+1
> 1.

If v is an eigenvector with unit norm, we have:

∥v∥ = 1⇒ nv∗1 + (k − 1)nv∗2 = 1. (8.16)

By using this equation and Lemma 3, for sufficiently large n, we have:

v∗1 =
β√

β2 + k

1√
n

, (8.17)

v∗1 =
1√

β2 + k

1√
n

.

Since edges of network G1 are random, the alignment network is a also random matrix. Let Ω
be a set of outcomes of edge variables of network G1, and let A(Ω) be the corresponding alignment
network. Let v(Ω) represent an eigenvector of A(Ω) with the largest eigenvalue.

41

Lemma 4 Let v(Ω) be a unite norm eigenvector with the largest eigenvalue of the alignment matrix
A(Ω). Suppose

v(Ω) = [v1(Ω)
v2(Ω)] ,

where v1(Ω) and v2(Ω) are vectors of length n and kn, respectively. Let v̄ = ❊[v(Ω)]. Then,

❼ (i) For all 1 ≤ i ≤ n, ❊[v1,i(Ω)] = v̄1, and σ2
v1,i(Ω) = σ2

1.

❼ (ii) For all 1 ≤ j ≤ (k − 1)n, ❊[v2,j(Ω)] = v̄2, and σ2
v2,j(Ω) = σ2

2.

❼ (iii) Let v be the eigenvector with the largest eigenvalue of the expected alignment matrix Ā.
Then, v(Ω) ⋅ v ≥ 1 − γ, where γ is a small positive number, w.h.p.

❼ (iv) 1 − γ ≤ ∥v̄∥ ≤ 1.

❼ (v) σ2
1 ≤

2γ
n

and, σ2
2 ≤

2γ
(k−1)n .

❼ (vi) If v∗1/v∗2 = β, for sufficiently large n and w.h.p., v̄1 =
a1√

n
and v̄2 =

a2√
n
, where a1 > a2 and,

a1 ≈
β(1 − γ)√
β2 + k − 1

, (8.18)

a2 ≈
(1 − γ)√
β2 + k − 1

.

Proof Owing to symmetry of the problem, for all 1 ≤ i ≤ n, random variables v1,i(Ω) have the same
probability distribution. Therefore, they have the same mean and variance. The same argument
holds for random variables v2,j(Ω) for all 1 ≤ j ≤ (k − 1)n. This proves parts (i) and (ii).

To prove part (iii), first we show that, with high probability and for sufficiently large n, ∥E∥ ≜∥A(Ω) − Ā∥ < δn, where δ is a small positive number, and ∥.∥ is the spectral norm operator. Since
Ā and A(Ω) have the same diagonal elements, all diagonal elements of E are zero.

Theorem 7 (Gershgorin Circle Theorem) Let E be a complex matrix with entries ei,j. Let
Ri = ∑j≠i ∣ei,j ∣ be the sum of absolute values of the off-diagonal entries in the row i. Let D(ei,i,Ri)
be the closed disc centered at ei,i with radius Ri. Every eigenvalue of E lies within at least one of
the Gershgorin discs D(eii,Ri).
Proof See reference [76].

We use Gershgorin Circle Theorem to show that, ∥E∥ < δn for sufficiently large n, w.h.p. First,
we show that, for sufficiently large n and w.h.p., Ri < δn, where δ is a small positive number. To
simplify notations, we write Rt for different t as follows:

42

If i ≤ n, then,

Rt =

n

∑
i=2

(α + 1)G2
i − 2Gi + 1 + ∑

(i,j)∈B
(α + 1)GiGj −Gi −Gj + 1 (8.19)

− (n − 1)((α + 1)p − 2p + 1) − (k − 1)n((α + 1)p2
− 2p + 1),

where Gi is an iid Bernoulli variable with Pr[Gi = 1] = p, and B = R − {(i, i′) ∶ 1 ≤ i ≤ n}.
Similarly, if n < t ≤ kn, we can write,

Rt = ∑
(i,j)∈B

((α + 1)GiGj −Gi −Gj + 1) − (k − 1)n((α + 1)p2
− 2p + 1). (8.20)

Using Chernoff bound, for sufficiently large n, for a given δ1 > 0, there exists ǫ1 > 0 so that,

Pr[∣ 1
n

n

∑
i=1

Gi − p∣ > δ1] ≤ e−nǫ1 , (8.21)

Pr[∣ 1
n

n

∑
i=1

G2
i − p∣ > δ1] ≤ e−nǫ1 ,

P r[∣ 1(k − 1)n ∑
(i,j)∈B

GiGj − p2∣ > δ1] ≤ e−nǫ1 .

Proposition 3 Let U1 and U2 be two random variables such that,

Pr[U1 ∈ (−δ1, δ1)] > 1 − e−nǫ1 ,

P r[U2 ∈ (−δ2, δ2)] > 1 − e−nǫ2 .

Then, w.h.p.,

Pr[U1 +U2 ≥ δ1 + δ2] ≤ e−nmin(ǫ1,ǫ2),

P r[U1U2 ≥ δ1δ2] ≤ e−nmin(ǫ1,ǫ2).

Proof Let T be a random variable representing the event U1 ∈ (−δ1, δ1), and T c be its complement.
Then,

Pr[U1 +U2 ≥ δ1 + δ2] =Pr[U1 +U2 ≥ δ1 + δ2∣T] Pr[T]
+Pr[U1 +U2 ≥ δ1 + δ2∣T c] Pr[T c]
≤Pr[U2 ≥ δ2] + Pr[T c]
≤e−nmin(ǫ1,ǫ2).

A similar argument can be made for the case of U1U2. This completes the proof of Proposition 3.

According to equations (8.19) and (8.20), for all 1 ≤ t ≤ kn, E[Rt] = 0. Using Proposition 3
and equation (8.21), there exists δ > 0 such that, ∣Rt∣ ≤ δn for sufficiently large n, w.h.p. Thus,
using Gershgorin circle Theorem 7, the maximum eigenvalue of matrix E is smaller than δn, for
sufficiently large n, w.h.p., which indicates that ∥E∥ ≤ δn, for sufficiently large n, w.h.p.

43

Theorem 8 (Wedin Sin Theorem) Let v and v(Ω) be eigenvectors of matrices Ā and A(Ω)
corresponding to their largest eigenvalues, respectively. Let λ1 and λ2 be the largest and second
largest eigenvalues of matrix Ā. Then, there exists a positive constant µ such that,

∣ sin∠(v,v(Ω))∣ ≤ µ
∥A −A(Ω)∥

λ1 − λ2

. (8.22)

Proof See reference [77].

According to equation (8.7), as n→∞, the two largest eigenvalues of the matrix Ā are the roots
of equation (8.10) because other eigenvalues are equal to −a + 1 + ǫ or −b + 1 + ǫ. Solving equation
(8.10) for sufficiently large n, we have,

∣λ1 − λ2∣ =√(λa − λb)2 + 4(k − 1)b2n2 (8.23)

=nb

√(a
b
− k + 1)2 + 4(k − 1)

>nb

√
(1 +∆

k − 1

1 +∆
) + 4(k − 1)

=
b(β2

+ k − 1)
β

n.

Therefore, using equation (8.23) in Wedin sin Theorem 8, for any small positive δ, we have,

∣ sin∠(v,v(Ω))∣ ≤ µβ

b(β2 + k − 1)δ. (8.24)

This completes the proof of part (iii).
To prove part (iv), first we use Jensen’s inequality. Since norm is a convex function, we have,

∥v̄∥ = ∥❊[v(Ω)]∥ ≤ ❊[∥v(Ω)∥] = 1. (8.25)

From part (iii), we have,

v(Ω) ⋅ v ≥ 1 − γ ⇒ v̄ ⋅ v ≥ 1 − γ. (8.26)

Then, using Cauchy Schwarz inequality, we have,

∥v̄∥ = ∥v̄∥∥v∥ ≥ v̄ ⋅ v ≥ 1 − γ. (8.27)

This completes the proof of part (iv).
To prove part (v), we can write,

❊[∥v(Ω) − v̄∥2] = ❊[1 + ∥v̄∥2 − 2v(Ω) ⋅ v̄] = 1 − ∥v̄∥2 (8.28)

≤ 1 − (1 − γ)2 = γ(2 − γ) ≤ 2γ.

44

On the other hand,

❊[∥v(Ω) − v̄∥2] = nσ2
1 + (k − 1)nσ2

2. (8.29)

Therefore,

nσ2
1 ≤ 2γ ⇒ σ2

1 ≤
2γ

n
, (8.30)

(k − 1)nσ2
2 ≤ 2γ ⇒ σ2

2 ≤
2γ(k − 1)n.

This completes the proof of part (v).
To prove part (vi), we assume that in the worst case, vectors v and v̄ has inner product value

of 1 − γ. Therefore, using part (iii) and (iv), we have,

⎧⎪⎪⎨⎪⎪⎩
nv∗1 v̄1 + (k − 1)nv∗2 v̄2 = 1 − γ,

nv̄2
1 + (k − 1)nv̄2

2 = c,
(8.31)

where 1 − γ ≤ c = ∥v̄∥ ≤ 1. Solving equation (8.31) using equation (8.17) for sufficiently large n,
we have,

a1 =
β(1 − γ) +√(k − 1)(c − (γ − 1)2)√

β2 + k − 1
, (8.32)

a2 =
(1 − γ)√k − 1 − β

√
c − (γ − 1)2√(k − 1)(β2 + k − 1) .

Choosing δ sufficiently small and n sufficiently large, equation (8.32) leads to equation (8.31).
This completes the proof of part (vi).

Now, we have all technology to prove Theorem 1. Recall notations S1 = {1,2, . . . , n} and
S2 = {n + 1, n + 2, . . . , kn}. Let S1(m) ⊆ S1 and S2(m) ⊆ S2 where ∣S1(m)∣ = ∣S2(m)∣ = m. Define
following variables:

U1 ≜
1

n
∑
i∈S1

vi(Ω), (8.33)

U2 ≜
1

n
[∑

i∈S1(n−m)
vi(Ω) + ∑

j∈S2(m)
vj(Ω)].

Let ρ = m/n ≠ 0. According to Lemma 4, ❊[U1] = v̄1 and ❊[U2] = (1 − ρ)v̄1 + ρv̄2. Moreover,
σ2

U1
≤ σ2

1 and σ2
U2
≤ (1 − ρ)σ2

1 + ρσ2
2 < σ2

1. Define,

d ≜
∣❊[U1] − ❊[U2]∣

2
=

c1(1 − γ)√
n

, (8.34)

where c1 =
ρ∆

2
√
(1+∆)2+k−1 .

45

Using Chebyshev’s inequality, we have,

Pr[U1 ≤ ❊[U1] − d] ≤ 2

c2
1

γ(1 − γ)2 ≤ c2γ = ǫ1, (8.35)

Pr[U2 ≥ ❊[U2] + d] ≤ 2

c2
1

γ(1 − γ)2 ≤ c2γ = ǫ1.

Therefore,

Pr[U1 < U2] < ǫ1, (8.36)

where ǫ1 can be arbitrarily small for sufficiently large n. This completes the proof of Theorem
1.

8.2 Proof of Theorem 2

Without loss of generality and similarly to the proof of Theorem 1, let P = I. Let A be the
alignment network of graphs G1 and G2 defined according to equation (2.3). Similarly to the
proof of Theorem 1, re-order row (and column) indices of matrix A so that the first n indices
correspond to the true mappings {(i, i′) ∶ i ∈ V1, i

′ ∈ V2}. Define the expected alignment network
Ā as Ā(t1, t2) = ❊[A(t1, t2)], where t1 and t2 are two possible mappings across networks. Recall
notations S1 = {1,2, . . . , n} and S2 = {n + 1, n + 2, . . . , kn}.

First, we consider the noise model I (3.8):
Define,

a′ ≜p(1 − pe)(α + ǫ) + (1 − p)(1 − pe)(1 + ǫ) + (ppe + (1 − p)pe)ǫ (8.37)

b′ ≜(p2(1 − pe) + ppe(1 − p))(α + ǫ)
+((1 − p)2(1 − pe) + ppe(1 − p))(1 + ǫ)
+(2p(1 − p)(1 − pe) + 2p2pe)ǫ.

Since G1(i, j) and Q(i, j) are Bernoulli random variables with parameters p and pe, respectively,
the expected alignment network can be simplified as follows:

Ā(t1, t2) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a′, if t1 and t2 ∈ S1, t1 ≠ t2,

b′, if t1 or t2 ∈ S2, t1 ≠ t2,

1 + ǫ, if t1 = t2.

(8.38)

We have,

a′ − b′ = (α + 1)(2pe − 1)p(p − 1) + pe(1 − 2p)ǫ. (8.39)

Thus, if p ≠ 0,1 and pe < 1/2, for small enough ǫ, a′ > b′ > 0. Therefore, there exists a positive
∆ such that a′

b′
= 1 +∆. The rest of the proof is similar to the one of Theorem 1.

The proof for the noise model II of (3.9) is similar. To simplify notation and illustrate the main
idea, here we assume ǫ is sufficiently small with negligible effects.

Define,

46

b
pq

b
q

b
p

b
q

a
q

b
p

a
p

Figure 21: Expected alignment scores of different mapping combinations. Ellipses with
the same color represent corresponding modules across two networks. Nodes with the
same color represent true mappings across two networks.

a′′ ≜p(1 − pe)(α) + (1 − p)(1 − pe2
) = 1 − p(1 + α(pe − 1) + pe) (8.40)

b′′ ≜p2(1 − pe)α + (1 − p)2(1 − pe2
) + 2p(1 − p)pe2

(1 + α)
=1 − p(2 + pe) + p2(1 + α + 2pe).

The expected alignment network in this case is:

Ā(t1, t2) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a′′, if t1 and t2 ∈ S1, t1 ≠ t2,

b′′, if t1 or t2 ∈ S2, t1 ≠ t2,

1 + ǫ, if t1 = t2.

(8.41)

Moreover, we have,

a′′ − b′′ = p((1 − p − pe)(1 + α) + pe(1 − 2p)). (8.42)

If p < 1/2 and pe < 1/2, then a′′ − b′′ > 0. The rest of the proof is similar to the previous case.

47

8.3 Proof of Theorem 3

Without loss of generality, let P = I in (3.11). Let A be the alignment network of graphs G1 and
G2 defined according to (2.3). G1 and G2 are stochastic block networks with m modules, each with
n nodes. Modules of G1 are represented by {V 1

1 , V 2
1 , . . . , V m

1 } where V a
1 = {i1a, i2a, . . . , ina}. Similarly,

modules of G2 are represented by {V 1
2 , V 2

2 , . . . , V m
2 } where V a

2 = {j1
a, j2

a, . . . , jn
a }. The alignment

network A has n2m2 nodes. We re-order row (and column) indices of matrix A so that the first
mn2 indices are within module mappings:

(i11, j1
1), (i21, j2

1), ..., (in1 , jn
1), (i11, j2

1), (i11, j3
1), ..., (in1 , jn−1

1).
The remaining (m2

−m)n2 indices correspond to across module mappings:

(i11, j1
2), (i11, j2

2), ..., (inm, jn−1
m−1), (inm, jn

m−1).
Define,

ap ≜ (α − 1)p + 1, (8.43)

bp ≜ (α + 1)p2
− 2p + 1,

aq ≜ (α − 1)q + 1,

bq ≜ (α + 1)q2
− 2q + 1,

bpq ≜ αpq + (1 − p)(1 − q).
To form the expected alignment network Ā, we consider seven types of mapping-pairs illustrated

in Figure 21. Thus, the expected network alignment matrix has the following structure:

Ā =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 A2 A2 ⋯ A2 A3 ⋯ A3

A2 A1 A2 ⋯ A2

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

A2 ⋯ A1 A3 ⋯ A3

A3 ⋯ A3 A4 A5 A5 ⋯ A5

A5 A4 A5 ⋯ A5

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

A3 ⋯ A3 A5 ⋯ A4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8.44)

where the upper and lower blocks have mn2 and (m2
−m)n2 rows, respectively. Ai is a matrix

of size n2
× n2, defined as follows:

48

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ap ⋯ ap bp ⋯ bp

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

ap ⋯ ap bp ⋯ bp

bp ⋯ bp bp ⋯ bp

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

bp ⋯ bp bp ⋯ bp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8.45)

A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

aq ⋯ aq bq ⋯ bq

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

aq ⋯ aq bq ⋯ bq

bq ⋯ bq bq ⋯ bq

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

bq ⋯ bq bq ⋯ bq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A3 = bpq✶n2 ,

A4 = bp✶n2 ,

A5 = bq✶n2 ,

where ✶n2 is a n2
× n2 matrix whose elements are ones.

Suppose v is the leading eigenvector of the expected alignment matrix Ā. We wish to show
that,

v(i) > v(j), ∀1 ≤ i ≤mn2,∀mn2
< j ≤m2n2. (8.46)

Lemma 5 Let A be a positive matrix. If one or any number of entries of row i are increased and
all the other rows remain fixed, and if the i-th entry of the Perron vector is held a fixed constant
equal to 1, then the remaining entries of the Perron vector strictly decrease.

Proof See a proof in [78].

Define matrix B as follows:

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1 B2 B2 ⋯ B2 B3 ⋯ B3

B2 B1 B2 ⋯ B2

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

B2 ⋯ B1 B3 ⋯ B3

B3 ⋯ B3 B1 B2 B2 ⋯ B2

B2 B1 B2 ⋯ B2

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

B3 ⋯ B3 B2 ⋯ B1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8.47)

where,

B1 = bp✶n2 , (8.48)

B2 = bq✶n2 ,

B3 = bpq✶n2 .

49

Because ap > bp and aq > bq, using Lemma 5, it is sufficient to show (8.46) for the matrix B.
Suppose vB is the leading eigenvector of the matrix B. We wish to show,

vB(i) > vB(j), ∀1 ≤ i ≤mn2,∀mn2
< j ≤m2n2. (8.49)

Note that,

B = ✶n2 ⊗C, (8.50)

where C is a m2
×m2 matrix with a structure illustrated as follows:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bp bq bq ⋯ bq bpq ⋯ bpq

bq bp bq ⋯ bq

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

bq ⋯ bp bpq ⋯ bpq

bpq ⋯ bpq bp bq bq ⋯ bq

bq bp bq ⋯ bq

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

bpq ⋯ bpq bq ⋯ bp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.51)

Let vC be the leading eigenvector of the matrix C. Using the property of Kronecker products,
we have,

vB = ✶n2 ⊗ vC . (8.52)

Therefore, to show (8.46) and (8.49), it is sufficient to show that,

vC(i) > vC(j), ∀1 ≤ i ≤m,∀m < j ≤m2. (8.53)

Lemma 6 Consider the matrix

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c b b ⋯ b a ⋯ a

b c b ⋯ b

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

b ⋯ c a ⋯ a

a ⋯ a c b b ⋯ b

b c b ⋯ b

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

a ⋯ a b ⋯ c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8.54)

where the size of the top and bottom blocks are n1 and n2, respectively. Let v∗ be the leading
eigenvector of X. Then, if a > b > 0, c > 0, and n2 > n1, we have,

v∗(i) > v∗(j), ∀1 ≤ i ≤ n1,∀n1 < j ≤ n1 + n2. (8.55)

50

Proof
Suppose v is an eigenvector of the matrix X with the corresponding eigenvalue λ. Owing to

the symmetric structure of the matrix X, we have,⎧⎪⎪⎨⎪⎪⎩
v(1) = ... = v(n1) ≜ v1,

v(n1 + 1) = ... = v(n1 + n2) ≜ v2.
(8.56)

Using (8.56) in the eigen decomposition equality, we have,⎧⎪⎪⎨⎪⎪⎩
cv1 + (n1 − 1)bv1 + n2av2 = λv1

n1av1 + cv2 + (n2 − 1)bv2 = λv2.
(8.57)

Thus, we have,

(λ′ − λ1)(λ′ − λ2) = n1n2a
2, (8.58)

where,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ′ = λ − c,

λ1 = (n1 − 1)b,
λ2 = (n2 − 1)b.

(8.59)

Let λ∗ be the largest root of (8.58), which corresponds to the leading eigenvector of the matrix
v∗. To prove the lemma, it is sufficient to show that,

λ∗ > n1a + (n2 − 1)b. (8.60)

This is true if a > b and n2 > n1. To show this, we need to show,

λ∗ =
λ1 + λ2 +

√(λ1 − λ2)2 + 4n1n2a2

2
> n1a + (n2 − 1)b, (8.61)

which is true under the conditions of the lemma. This completes the proof.

If p > q and α > 1/q − 1, we have bpq > bq. Thus, Lemma 6 leads to (8.53). This completes the
proof.

8.4 Proof of Theorem 4

We use the same setup considered in the proof of Theorem 3 to form the expected alignment
network. Considering 0 < p2

e ≪ 1 and 0 < p2
e2
≪ 1, expected scores of different mapping-pairs

illustrated in Figure 21 can be approximated as follows:

ap ≃ p(1 − pe)α, (8.62)

bp ≃ p2(1 − pe)2α + 2p(1 − p)pe2
α,

aq ≃ q(1 − pe)α,

bq ≃ q2(1 − pe)2α + 2q(1 − q)pe2
α,

bpq ≃ pq(1 − pe)2α + p(1 − q)pe2
α + (1 − p)qpeα.

51

The proof is similar to the one of Theorem 3. To use Lemma 5, we need to have,

⎧⎪⎪⎨⎪⎪⎩
ap > bp,

aq > bq,
(8.63)

which results in following conditions:

p <
1 − ppe

1 + p2
e

, (8.64)

q <
1 − ppe

1 + p2
e

.

Because p2
e << 1, we then have,

p <
1

1 + pe

, (8.65)

q <
1

1 + pe

.

To use Lemma 6, we need to have bpq > bq. Using (8.62), we have:

bpq − bq = (1 − p)q(p − q) + pe(p2(1 + 2q) − 6pq + q(1 + 2q)´¹¹¹¸¹¹¶
polynomial I

). (8.66)

To show the non-negativity of the right-hand side of (8.66), it is sufficient to show the non-
negativity of polynomial I. This polynomial has two roots at

proots =
6q ±
√
−4q(4q − 1)(q − 1)
2(1 + 2q) . (8.67)

If 0 < q ≤ 1/4,

−4q(4q − 1)(q − 1) < 0. (8.68)

Because the value of the polynomial I at p = 0 is positive, if 0 < q ≤ 1/4, the polynomial is always
non-negative. If q > 1/4, we need to have,

p ≤
6q −
√

4q(4q − 1)(1 − q)
2(1 + 2q) , (8.69)

which guarantees the non-negativity of polynomial I. The rest of the proof is similar to the one
of Theorem 3.

52

8.5 Proof of Theorem 5

We use the same setup considered in the proof of Theorem 3 to form the expected alignment
network. Suppose S(P) and S(P̃) correspond to the expected objective function of the network
alignment optimization 2.5 using permutation matrices P and P̃ , respectively, where,

1

nm
∥P − P̃ ∥ > 0. (8.70)

We wish to show that, S(P) > S(P̃). We have,

S(P) =mn2ap + (m2
−m)n2aq (8.71)

>(mn)2aq

where ap and aq are defined according to (8.43). Under conditions of Theorem 3, we have
bp > bpq > bq according to (8.43). Thus,

S(P̃) ≤ (mn)2bp. (8.72)

Using (8.71) and (8.72), we need to show that aq > bp. We have,

bp − aq = (α + 1)p2
− 2p − (α − 1)q. (8.73)

This polynomial have two roots at

proots =
1 ±
√

1 + (α2 − 1)q
α + 1

. (8.74)

Because α > 1, the minimum root is always negative. Moreover, at p = 0, the polynomial value
is negative. Thus, (8.73) is negative if

0 < p ≤
1 +
√

1 + (α2 − 1)q
1 + α

. (8.75)

This completes the proof.

8.6 Proof of Theorem 6

We use the same setup considered in the proof of Theorem 3 to form the expected alignment
network. Similarly to the proof of Theorem 5, we need to show aq > bp according to (8.62). We
have,

aq − bp = α(q(1 − pe) − p2(1 + p2
e)) (8.76)

which is positive if

p2
≤

q(1 − pe)
1 + p2

e

. (8.77)

This completes the proof.

53

9 Conclusion and Future Directions

We introduced a network alignment algorithm called EigenAlign which aims to find a bijective
mapping across vertices of two graphs to maximize the number of overlapping edges and to minimize
the number of mismatched interactions across networks. EigenAlign creates a simple relaxation for
the underlying QAP by relaxing binary assignment constraints linearly along the leading eigenvector
of the alignment matrix. This leads to an eigenvector solution for the underlying network alignment
optimization which can be solved efficiently through an eigen decomposition step followed by a linear
assignment step. Unlike existent network alignment methods, EigenAlign considers both matched
and mismatched interactions in its optimization and therefore, it is effective in aligning networks
even with low similarity. This is critical in comparative analysis of biological networks of distal
species because there are numerous mismatched interactions across those networks partially owing
to extensive gene functional divergence due to processes such as gene duplication and loss.

For Erdös-Rényi graphs graphs, we proved that, the EigenAlign solution is asymptotically
optimal with high probability, under some general conditions. Through simulations, we compared
the performance of the EigenAlign algorithm with the one of existent network alignment methods
based on belief propagation (NetAlign), spectral decomposition (IsoRank), Lagrange relaxation
(Klau optimization), and a SDP-based method. Our simulations illustrated the effectiveness of the
EigenAlign algorithm in aligning various network structures such as Erdös-Rényi, power law, and
stochastic block structures, under different noise models.

For modular network structures, we showed that, EigenAlign can be used to split the large QAP
into small subproblems. This enables the use of computationally expensive, but tight, semidefinite
programming relaxations over each subproblem. We termed this hybrid method EigenAlign+SDP,
which has high performance and low computational complexity. Note that, gene regulatory net-
works do not have the stochastic block structure considered in this method. To be able to use a
SDP-based relaxation in our biological experiments, we applied the SDP relaxation to align small
regulatory sub-graphs determined by homologous gene families. However, owing to small sizes of
these gene families, this method did not perform well in our experiments. Designing practical
SDP-based network alignment methods with low computational complexity remains a promising
direction for feature work.

Identifying gene regulatory interactions and modules conserved across distal species can shed
light on functional regulatory programs and pathways across diverse phylogenies, eventually lead-
ing to better understanding of human biology. To that end, we applied EigenAlign to compare
gene regulatory networks across human, fly and worm species to infer conservation of individual
regulatory connections which can be used to compute conserved pathways and modules across hu-
man, fly and worm organisms. EigenAlign inferred conserved regulatory interactions across these
species despite large evolutionary distances spanned. Using EigenAlign mappings, we found strong
conservation of centrally-connected genes and some biological pathways, especially for human-fly
comparisons.

To compare regulatory pathways across human, fly and worm, we inferred regulatory inter-
actions in these species by integrating genome-wide functional and physical regulatory evidences.
We found that, these inferred interactions, especially in human and fly, overlap significantly with
known benchmarks. These inferred interactions can be used as a guide to design informative
high-throughput experiments to infer accurate context-specific regulatory interactions. Moreover,
inferred regulatory interactions, specially conserved ones, provide useful resources to understand
regulatory roles of individual genes, pathways and modules in human diseases [58], cancer [79] and

54

drug designs [80–82]. Recently researchers have hypothesized that some human diseases can be due
to single nucleotide variants (SNVs) sitting in enhancer-like regions of the genome and are typically
enriched in transcription factor binding sites [83]. Therefore, using regulatory networks can help us
identifying direct and indirect target genes and higher-order regulatory pathways of these disease-
causing SNVs [84]. Moreover, drugs targeting specific conserved regulatory pathways can be tested
first in model organism, reducing experimental costs and increasing their efficiency [80–82]. We be-
lieve that our inferred regulatory networks and network analysis techniques can make a significant
impact in many areas of molecular and cell biology to study complex diseases, drug designs, and
beyond.

10 Acknowledgements

Authors thank Mariana Mendoza for early processing of regulatory datasets.

References

[1] R. Sharan and T. Ideker, “Modeling cellular machinery through biological network compari-
son,” Nature biotechnology, vol. 24, no. 4, pp. 427–433, 2006.

[2] J. A. Bondy and U. S. R. Murty, Graph theory with applications. Macmillan London, 1976,
vol. 6.

[3] R. Singh, J. Xu, and B. Berger, “Global alignment of multiple protein interaction networks
with application to functional orthology detection,” Proceedings of the National Academy of
Sciences, vol. 105, no. 35, pp. 12 763–12 768, 2008.

[4] C.-S. Liao, K. Lu, M. Baym, R. Singh, and B. Berger, “Isorankn: spectral methods for global
alignment of multiple protein networks,” Bioinformatics, vol. 25, no. 12, pp. i253–i258, 2009.

[5] J. Flannick, A. Novak, B. S. Srinivasan, H. H. McAdams, and S. Batzoglou, “Graemlin: general
and robust alignment of multiple large interaction networks,” Genome research, vol. 16, no. 9,
pp. 1169–1181, 2006.

[6] M. Zaslavskiy, F. Bach, and J.-P. Vert, “Global alignment of protein–protein interaction net-
works by graph matching methods,” Bioinformatics, vol. 25, no. 12, pp. i259–1267, 2009.

[7] B. P. Kelley, B. Yuan, F. Lewitter, R. Sharan, B. R. Stockwell, and T. Ideker, “Pathblast: a
tool for alignment of protein interaction networks,” Nucleic acids research, vol. 32, no. suppl
2, pp. W83–W88, 2004.

[8] M. Kalaev, M. Smoot, T. Ideker, and R. Sharan, “Networkblast: comparative analysis of
protein networks,” Bioinformatics, vol. 24, no. 4, pp. 594–596, 2008.

[9] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty years of graph matching in pattern
recognition,” International journal of pattern recognition and artificial intelligence, vol. 18,
no. 03, pp. 265–298, 2004.

55

[10] C. Schellewald and C. Schnörr, “Probabilistic subgraph matching based on convex relaxation,”
in Energy minimization methods in computer vision and pattern recognition. Springer, 2005,
pp. 171–186.

[11] S. Lacoste-Julien, B. Taskar, D. Klein, and M. I. Jordan, “Word alignment via quadratic as-
signment,” in Proceedings of the main conference on Human Language Technology Conference
of the North American Chapter of the Association of Computational Linguistics. Association
for Computational Linguistics, 2006, pp. 112–119.

[12] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding: A versatile graph matching
algorithm and its application to schema matching,” in Data Engineering, 2002. Proceedings.
18th International Conference on. IEEE, 2002, pp. 117–128.

[13] P. Schweitzer, “Problems of unknown complexity: graph isomorphism and ramsey theoretic
numbers,” Ph.D. dissertation, Saarbrucken, Univ., Diss., 2009, 2009.

[14] R. E. Burkard, Quadratic assignment problems. Springer, 2013.

[15] G. W. Klau, “A new graph-based method for pairwise global network alignment,” BMC bioin-
formatics, vol. 10, no. Suppl 1, p. S59, 2009.

[16] Z. Li, S. Zhang, Y. Wang, X.-S. Zhang, and L. Chen, “Alignment of molecular networks by
integer quadratic programming,” Bioinformatics, vol. 23, no. 13, pp. 1631–1639, 2007.

[17] J. Peng, H. Mittelmann, and X. Li, “A new relaxation framework for quadratic assignment
problems based on matrix splitting,” Mathematical Programming Computation, vol. 2, no. 1,
pp. 59–77, 2010.

[18] Q. Zhao, S. E. Karisch, F. Rendl, and H. Wolkowicz, “Semidefinite programming relaxations
for the quadratic assignment problem,” Journal of Combinatorial Optimization, vol. 2, no. 1,
pp. 71–109, 1998.

[19] M. Kolář, J. Meier, V. Mustonen, M. Lässig, and J. Berg, “Graphalignment: Bayesian pairwise
alignment of biological networks,” BMC systems biology, vol. 6, no. 1, p. 144, 2012.

[20] M. Bayati, D. F. Gleich, A. Saberi, and Y. Wang, “Message-passing algorithms for sparse
network alignment,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 7,
no. 1, p. 3, 2013.

[21] P. Erdős and A. Rényi, “On the strength of connectedness of a random graph,” Acta Mathe-
matica Hungarica, vol. 12, no. 1, pp. 261–267, 1961.

[22] G. Finke, R. E. Burkard, and F. Rendl, “Quadratic assignment problems,” North-Holland
Mathematics Studies, vol. 132, pp. 61–82, 1987.

[23] S. Hadley, F. Rendl, and H. Wolkowicz, “A new lower bound via projection for the quadratic
assignment problem,” Mathematics of Operations Research, vol. 17, no. 3, pp. 727–739, 1992.

[24] K. Anstreicher and H. Wolkowicz, “On lagrangian relaxation of quadratic matrix constraints,”
SIAM Journal on Matrix Analysis and Applications, vol. 22, no. 1, pp. 41–55, 2000.

56

[25] K. M. Anstreicher and N. W. Brixius, “Solving quadratic assignment problems using convex
quadratic programming relaxations,” Optimization Methods and Software, vol. 16, no. 1-4, pp.
49–68, 2001.

[26] E. Wingender, X. Chen, R. Hehl, H. Karas, I. Liebich, V. Matys, T. Meinhardt, M. Prüß,
I. Reuter, and F. Schacherer, “Transfac: an integrated system for gene expression regulation,”
Nucleic acids research, vol. 28, no. 1, pp. 316–319, 2000.

[27] S. M. Gallo, D. T. Gerrard, D. Miner, M. Simich, B. Des Soye, C. M. Bergman, and M. S.
Halfon, “Redfly v3. 0: toward a comprehensive database of transcriptional regulatory elements
in drosophila,” Nucleic acids research, vol. 39, no. suppl 1, pp. D118–D123, 2011.

[28] M. I. Barrasa, P. Vaglio, F. Cavasino, L. Jacotot, and A. J. Walhout, “Edgedb: a transcription
factor-dna interaction database for the analysis of c. elegans differential gene expression,” BMC
genomics, vol. 8, no. 1, p. 21, 2007.

[29] W. Ali and C. M. Deane, “Functionally guided alignment of protein interaction networks for
module detection,” Bioinformatics, vol. 25, no. 23, pp. 3166–3173, 2009.

[30] K. Makarychev, R. Manokaran, and M. Sviridenko, “Maximum quadratic assignment problem:
Reduction from maximum label cover and lp-based approximation algorithm,” in Automata,
Languages and Programming. Springer, 2010, pp. 594–604.

[31] E. M. Loiola, N. M. M. de Abreu, P. O. Boaventura-Netto, P. Hahn, and T. Querido, “A
survey for the quadratic assignment problem,” European Journal of Operational Research, vol.
176, no. 2, pp. 657–690, 2007.

[32] M. Bazaraa and O. Kirca, “A branch-and-bound-based heuristic for solving the quadratic
assignment problem,” Naval research logistics quarterly, vol. 30, no. 2, pp. 287–304, 1983.

[33] M. S. Bazaraa and H. D. Sherali, “On the use of exact and heuristic cutting plane methods for
the quadratic assignment problem,” Journal of the Operational Research Society, pp. 991–1003,
1982.

[34] E. L. Lawler, “The quadratic assignment problem,” Management science, vol. 9, no. 4, pp.
586–599, 1963.

[35] L. Kaufman and F. Broeckx, “An algorithm for the quadratic assignment problem using ben-
der’s decomposition,” European Journal of Operational Research, vol. 2, no. 3, pp. 207–211,
1978.

[36] A. Frieze and J. Yadegar, “On the quadratic assignment problem,” Discrete applied mathe-
matics, vol. 5, no. 1, pp. 89–98, 1983.

[37] W. P. Adams and T. A. Johnson, “Improved linear programming-based lower bounds for
the quadratic assignment problem,” DIMACS series in discrete mathematics and theoretical
computer science, vol. 16, pp. 43–75, 1994.

[38] M. Leordeanu and M. Hebert, “A spectral technique for correspondence problems using pair-
wise constraints,” in Computer Vision, 2005. ICCV 2005. Tenth IEEE International Confer-
ence on, vol. 2. IEEE, 2005, pp. 1482–1489.

57

[39] M. Carcassoni and E. R. Hancock, “Alignment using spectral clusters.” in BMVC, 2002, pp.
1–10.

[40] T. Czajka and G. Pandurangan, “Improved random graph isomorphism,” Journal of Discrete
Algorithms, vol. 6, no. 1, pp. 85–92, 2008.

[41] L. Babai and L. Kucera, “Canonical labelling of graphs in linear average time,” in Foundations
of Computer Science, 1979., 20th Annual Symposium on. IEEE, 1979, pp. 39–46.

[42] L. Babai, P. Erdo s, and S. M. Selkow, “Random graph isomorphism,” SIAM Journal on
Computing, vol. 9, no. 3, pp. 628–635, 1980.

[43] D. B. West et al., Introduction to graph theory. Prentice hall Upper Saddle River, 2001, vol. 2.

[44] J. Kuczynski and H. Wozniakowski, “Estimating the largest eigenvalue by the power and
lanczos algorithms with a random start,” SIAM journal on matrix analysis and applications,
vol. 13, no. 4, pp. 1094–1122, 1992.

[45] M. E. Newman, “Modularity and community structure in networks,” Proceedings of the Na-
tional Academy of Sciences, vol. 103, no. 23, pp. 8577–8582, 2006.

[46] G. Evanno, S. Regnaut, and J. Goudet, “Detecting the number of clusters of individuals using
the software structure: a simulation study,” Molecular ecology, vol. 14, no. 8, pp. 2611–2620,
2005.

[47] G. W. Milligan and M. C. Cooper, “An examination of procedures for determining the number
of clusters in a data set,” Psychometrika, vol. 50, no. 2, pp. 159–179, 1985.

[48] A. Bobbio and K. S. Trivedi, “An aggregation technique for the transient analysis of stiff
markov chains,” Computers, IEEE Transactions on, vol. 100, no. 9, pp. 803–814, 1986.

[49] W. Aiello, F. Chung, and L. Lu, “A random graph model for power law graphs,” Experimental
Mathematics, vol. 10, no. 1, pp. 53–66, 2001.

[50] R. Kohavi et al., “A study of cross-validation and bootstrap for accuracy estimation and model
selection,” in IJCAI, vol. 14, no. 2, 1995, pp. 1137–1145.

[51] R. De Smet and K. Marchal, “Advantages and limitations of current network inference meth-
ods,” Nature Reviews Microbiology, vol. 8, no. 10, pp. 717–729, 2010.

[52] E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman, “Module
networks: identifying regulatory modules and their condition-specific regulators from gene
expression data,” Nature genetics, vol. 34, no. 2, pp. 166–176, 2003.

[53] Z. Bar-Joseph, G. K. Gerber, T. I. Lee, N. J. Rinaldi, J. Y. Yoo, F. Robert, D. B. Gordon,
E. Fraenkel, T. S. Jaakkola, R. A. Young et al., “Computational discovery of gene modules
and regulatory networks,” Nature biotechnology, vol. 21, no. 11, pp. 1337–1342, 2003.

[54] D. Marbach, S. Roy, F. Ay, P. E. Meyer, R. Candeias, T. Kahveci, C. A. Bristow, and M. Kellis,
“Predictive regulatory models in drosophila melanogaster by integrative inference of transcrip-
tional networks,” Genome research, vol. 22, no. 7, pp. 1334–1349, 2012.

58

[55] R. Sharan and T. Ideker, “Modeling cellular machinery through biological network compari-
son,” Nature biotechnology, vol. 24, no. 4, pp. 427–433, 2006.

[56] S. A. McCarroll, C. T. Murphy, S. Zou, S. D. Pletcher, C.-S. Chin, Y. N. Jan, C. Kenyon,
C. I. Bargmann, and H. Li, “Comparing genomic expression patterns across species identifies
shared transcriptional profile in aging,” Nature genetics, vol. 36, no. 2, pp. 197–204, 2004.

[57] J. O. Woods, U. M. Singh-Blom, J. M. Laurent, K. L. McGary, and E. M. Marcotte, “Pre-
diction of gene–phenotype associations in humans, mice, and plants using phenologs,” BMC
bioinformatics, vol. 14, no. 1, p. 203, 2013.

[58] V. R. Chintapalli, J. Wang, and J. A. Dow, “Using flyatlas to identify better drosophila
melanogaster models of human disease,” Nature genetics, vol. 39, no. 6, pp. 715–720, 2007.

[59] P. Kheradpour, A. Stark, S. Roy, and M. Kellis, “Reliable prediction of regulator targets using
12 drosophila genomes,” Genome research, vol. 17, no. 12, pp. 1919–1931, 2007.

[60] J. J. Faith, B. Hayete, J. T. Thaden, I. Mogno, J. Wierzbowski, G. Cottarel, S. Kasif, J. J.
Collins, and T. S. Gardner, “Large-scale mapping and validation of escherichia coli transcrip-
tional regulation from a compendium of expression profiles,” PLoS biology, vol. 5, no. 1, p. e8,
2007.

[61] A. Irrthum, L. Wehenkel, P. Geurts et al., “Inferring regulatory networks from expression data
using tree-based methods,” PloS one, vol. 5, no. 9, p. e12776, 2010.

[62] S. Roy, J. Ernst, P. V. Kharchenko, P. Kheradpour, N. Negre, M. L. Eaton, J. M. Landolin,
C. A. Bristow, L. Ma, M. F. Lin et al., “Identification of functional elements and regulatory
circuits by drosophila modencode,” Science, vol. 330, no. 6012, pp. 1787–1797, 2010.

[63] S. Feizi, D. Marbach, M. Médard, and M. Kellis, “Network deconvolution as a general method
to distinguish direct dependencies in networks,” Nature biotechnology, 2013.

[64] D. J. Reiss, N. S. Baliga, and R. Bonneau, “Integrated biclustering of heterogeneous genome-
wide datasets for the inference of global regulatory networks,” BMC bioinformatics, vol. 7,
no. 1, p. 280, 2006.

[65] A. Greenfield, A. Madar, H. Ostrer, and R. Bonneau, “Dream4: Combining genetic and dy-
namic information to identify biological networks and dynamical models,” PloS one, vol. 5,
no. 10, p. e13397, 2010.

[66] D. Marbach, J. C. Costello, R. Küffner, N. M. Vega, R. J. Prill, D. M. Camacho, K. R.
Allison, M. Kellis, J. J. Collins, G. Stolovitzky et al., “Wisdom of crowds for robust gene
network inference,” Nature methods, vol. 9, no. 8, pp. 796–804, 2012.

[67] D. Marbach, R. J. Prill, T. Schaffter, C. Mattiussi, D. Floreano, and G. Stolovitzky, “Revealing
strengths and weaknesses of methods for gene network inference,” Proceedings of the National
Academy of Sciences, vol. 107, no. 14, pp. 6286–6291, 2010.

[68] R. Bonneau, D. J. Reiss, P. Shannon, M. Facciotti, L. Hood, N. S. Baliga, and V. Thorsson,
“The inferelator: an algorithm for learning parsimonious regulatory networks from systems-
biology data sets de novo,” Genome biology, vol. 7, no. 5, p. R36, 2006.

59

[69] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, “Using bayesian networks to analyze
expression data,” Journal of computational biology, vol. 7, no. 3-4, pp. 601–620, 2000.

[70] D. Maglott, J. Ostell, K. D. Pruitt, and T. Tatusova, “Entrez gene: gene-centered information
at ncbi,” Nucleic acids research, vol. 33, no. suppl 1, pp. D54–D58, 2005.

[71] Y.-C. Wu, M. S. Bansal, M. D. Rasmussen, J. Herrero, and M. Kellis, “Phylogenetic identifi-
cation and functional validation of orthologous genes across human, mouse, fly, worm, yeast,”
submitted to Genome Research, available on arXiv, 2014.

[72] L. d. F. Costa, F. A. Rodrigues, G. Travieso, and P. R. Villas Boas, “Characterization of
complex networks: A survey of measurements,” Advances in Physics, vol. 56, no. 1, pp. 167–
242, 2007.

[73] L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociometry, pp. 35–41,
1977.

[74] M. P. Joy, A. Brock, D. E. Ingber, and S. Huang, “High-betweenness proteins in the yeast
protein interaction network,” BioMed Research International, vol. 2005, no. 2, pp. 96–103,
2005.

[75] P. D. Thomas, V. Wood, C. J. Mungall, S. E. Lewis, J. A. Blake, G. O. Consortium et al.,
“On the use of gene ontology annotations to assess functional similarity among orthologs and
paralogs: a short report,” PLoS computational biology, vol. 8, no. 2, p. e1002386, 2012.

[76] S. A. Gershgorin, “Uber die abgrenzung der eigenwerte einer matrix,” . , no. 6, pp. 749–754,
1931.

[77] P.-A. Wedin, “Perturbation bounds in connection with singular value decomposition,” Infor-
mationsbehandling (BIT), vol. 12, pp. 99–111, 1972.

[78] E. Deutsch and M. Neumann, “On the first and second order derivatives of the perron vector,”
Linear algebra and its applications, vol. 71, pp. 57–76, 1985.

[79] J. Frasor, J. M. Danes, B. Komm, K. C. Chang, C. R. Lyttle, and B. S. Katzenellenbogen,
“Profiling of estrogen up-and down-regulated gene expression in human breast cancer cells:
insights into gene networks and pathways underlying estrogenic control of proliferation and
cell phenotype,” Endocrinology, vol. 144, no. 10, pp. 4562–4574, 2003.

[80] A. L. Hopkins, “Network pharmacology: the next paradigm in drug discovery,” Nature chem-
ical biology, vol. 4, no. 11, pp. 682–690, 2008.

[81] L. Xie, J. Li, L. Xie, and P. E. Bourne, “Drug discovery using chemical systems biology: iden-
tification of the protein-ligand binding network to explain the side effects of cetp inhibitors,”
PLoS computational biology, vol. 5, no. 5, p. e1000387, 2009.

[82] P. Csermely, V. Agoston, and S. Pongor, “The efficiency of multi-target drugs: the network
approach might help drug design,” Trends in Pharmacological Sciences, vol. 26, no. 4, pp.
178–182, 2005.

60

[83] M. T. Maurano, R. Humbert, E. Rynes, R. E. Thurman, E. Haugen, H. Wang, A. P. Reynolds,
R. Sandstrom, H. Qu, J. Brody et al., “Systematic localization of common disease-associated
variation in regulatory dna,” Science, vol. 337, no. 6099, pp. 1190–1195, 2012.

[84] A. B. Glinskii, J. Ma, S. Ma, D. Grant, C.-U. Lim, S. Sell, and G. V. Glinsky, “Identification
of intergenic trans-regulatory rnas containing a disease-linked snp sequence and targeting cell
cycle progression/differentiation pathways in multiple common human disorders,” Cell Cycle,
vol. 8, no. 23, pp. 3925–3942, 2009.

61

