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Abstract

We consider systems of static nuclei and electrons {atoms and

molecules{ coupled to the quantized radiation �eld. The interactions

between electrons and the soft modes of the quantized electromagnetic

�eld are described by minimal coupling, ~p! ~p� e ~A(~x), where ~A(~x) is

the electromagnetic vector potential with an ultraviolet cuto�. If the

interactions between the electrons and the quantized radiation �eld are

turned o�, the atom or molecule is assumed to have at least one bound

state. We prove that, for su�ciently small values of the feinstructure

constant �, the interacting system has a ground state corresponding

to the bottom of its energy spectrum and that the excited states of the

atom or molecule above the ground state turn into metastable states
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whose life-times we estimate. Furthermore the energy spectrum is

absolutely continuous, except, perhaps, in a small interval above the

ground state energy and around the threshold energies of the atom or

molecule.

Keywords: Renormalization Group, Spectrum, Resonances, Fock

space, QED.



BFS-3, November 20, 1998 1

I Introduction and Survey of Results

I.1 The Quantum Theory of Photons and Nonrelativi-

stic, Bound Electrons

In this paper we continue our mathematical analysis of the standard model

of nonrelativistic, quantum-mechanical matter interacting with the quantized

radiation �eld initiated in [4, 5, 6]. The purpose of the present paper is to

re�ne the techniques developed in [4, 5, 6] in such a way that they can be

applied to the study of physically relevant models.

The physical system we are analyzing consists of a �nite number of nuclei,

treated as static sources, and a �nite number of nonrelativistic electrons, e.g.,

atoms, ions, or molecules in a Born-Oppenheimer approximation, interacting

with the soft modes of the quantized electromagnetic �eld which is cut-o�

in the ultraviolet. The Hilbert space of pure state vectors of the system is

given by

H := Hel 
F ; (I.1)

where Hel is the Hilbert space of some �nite number, N , of electrons, and

F is the photon Fock space. Thus, in the Schr�odinger (con�guration-space)

representation, Hel is given by the subspace of totally antisymmetric wave

functions in L2[(R3 � Z2)
N ], where R3 is the con�guration space of a single

electron, and Z2 describes its spin, i.e.,

Hel := AN L
2

�
(R3 � Z2)

N

�
; (I.2)

with AN being the orthogonal projection onto the subspace of totally anti-

symmetric wave functions, as required by the Pauli principle.

The one-photon Hilbert space is given by L2[R3 � Z2], where R
3 is the

photon momentum space and Z2 describes the two independent transversal

polarizations of a photon. (Here and above, the integration measure on R
3

is Lebesgue measure.) The photon Fock space is then de�ned by

F :=
1M
n=0

Sn L2
�
(R3 � Z2)

n

�
; (I.3)

where Sn is the orthogonal projection onto the subspace of totally symme-

tric n-photon wave functions, in accordance with the fact that photons are

bosons. It is convenient to represent the Hilbert space H as the space of anti-

symmetric, square-integrable wave functions on the N -electron con�guration
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space with values in the photon Fock space F , i.e.,

H �= AN L
2
�
(R3 � Z2)

N ; F
�
: (I.4)

The dynamics of the system is generated by the Hamiltonian

H 0
� :=

NX
j=1

�
~�j �

�
�i~r~xj � 2�1=2�3=2 ~A�(�~xj)

��2
+ Vc(x) + Hf ; (I.5)

where we use units in which ~ = 1 and the electron mass equals 1=2. In

(I.5), ~�j = (�xj ; �
y
j ; �

z
j ) denotes the three Pauli matrices associated with the

jth electron, xj is its position (in suitable units of length described below), �

is the feinstructure constant, and ~A(~x) denotes the quantized vector potential

of the transverse modes of the electromagnetic �eld in the Coulomb gauge,

i.e.,

~A(~x) :=
X
�=1;2

Z
d3k �(j~kj=K)

�
q
2!(~k)

�
~"�(~k)e

�i~k�~xa��(
~k) + ~"�(~k)

�ei
~k�~xa�(~k)

�
;

(I.6)

where � is an entire function of rapid decrease on the real line, e.g., �(r) :=

exp(�r4), cutting o� the vector potential in the ultraviolet domain, !(~k) :=

j~kj is the frequency of a photon with wave vector ~k, and ~"�(~k), � = 1; 2, are

photon polarization vectors satisfying

~"�(~k)
� � ~"�(~k) = ��� ; ~k � ~"�(~k) = 0 ; for �; � = 1; 2. (I.7)

Moreover, a��(
~k), a�(~k) are standard creation- and annihilation operators

(see, e.g., [25]) on F obeying the canonical commutation relations

[a#� (
~k1); a

#
� (
~k2)] = 0; [a�(~k1); a

�
�(
~k2)] = ��� �(~k1 � ~k2) ; (I.8)

where a# = a or a�. These objects are densely de�ned, operator-valued

tempered distributions on Fock space F . Fock space F contains a vector 
,

the vacuum vector, uniquely determined, up to a phase, by the properties

that k
k = 1 and a�(~k)
 = 0, for all � and ~k. A dense set of vectors in F
is obtained by applying polynomials in a�� (� = 1; 2), smeared out with test

functions, to the vacuum vector 
.

The term Vc on the right side of Eqn. (I.5) de�ning the Hamiltonian is the

Coulomb potential describing the electrostatic interactions between electrons

and nuclei. In our units, it is given by

Vc(x) :=
NX
j=1

MX
m=1

�Zm
j~xj � ~Rmj

+
X

1�i<j�N

1

j~xi � ~xjj
; (I.9)
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where x � (~x1; : : : ; ~xN) 2 R
3N , and ~R1; : : : ; ~RM 2 R

3 are the positions ofM

static nuclei with atomic numbers Z1; : : : ; ZM .

Finally, the Hamiltonian of the free quantized electromagnetic �eld, Hf ,

is given by

Hf :=
X
�=1;2

Z
d3k a��(

~k)!(~k) a�(~k) : (I.10)

The r.s. of Eqn. (I.10) de�nes a densely de�ned, positive, self-adjoint operator

on F with absolutely continuous spectrum on the positive half-axis and a

simple eigenvalue at 0 corresponding to the eigenvector 
.

Next, we comment on the units chosen in (I.5). Length (and hence the

positions, ~xj, of the electrons and, ~Rm, of the nuclei) is measured in units

of half a Bohr radius, 1
2
rBohr =

~2

2mele
2 , expressed in Gaussian units, where

mel is the mass of an electron and �e its electric charge. Photon wave

lengths are measured in units of � times half a Bohr radius, �
2
rBohr, i.e., the

unit for photon wave vectors is 2��1rBohr
�1. The energy unit is chosen to

be 4 Rydberg, with 4Ry = 2e2

rBohr
. The ultraviolet cuto� of the radiation

�eld imposed by the function �(jkj=K) used in the de�nition of the vector

potential ~A(~x) turns o� interactions between electrons and photons with

energy large compared to K � 4Ry. The physical value of the feinstructure
constant � is� 1=137. In this paper, � plays the rôle of a small, dimensionless

number. Our results hold for su�ciently small values of �. We shall not

verify that the radii of convergence in � of our analytical constructions cover

the physical point � = �(phys) � 1=137 (such a veri�cation would presumably

require numerical work on a computer).

Our main concern in this paper is to analyze properties of the energy

spectrum of the Hamiltonian H 0
� and to study resonances for the dynamics

generated by H 0
� and estimate their life times. We shall show that, for

su�ciently small values of � > 0, H 0
� has a normalizable ground state corre-

sponding to the minimum of its spectrum and that \most" of its spectrum

is absolutely continuous. Furthermore, we shall show that the excited bound

states of the atom or ion (for purely technical reason, we exclude molecules

here) with electrons decoupled from the radiation �eld, i.e., the bound states

of H0, turn into metastable states of �nite life time when that coupling is

turned on. We show that Fermi's golden rule [24] yields an accurate estimate

of the life times of metastable states, and we provide a rigorous justi�cation

of Bethe's formula [10, 9] for the Lamb shift.

In order to describe our results and methods more precisely, we start

with a discussion of the spectral properties of the unperturbed Hamiltonian
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(electrons decoupled from the radiation �eld),

H0 � H 0
�=0 = Hel + Hf ; (I.11)

where Hel is the usual atomic (or molecular) Hamiltonian de�ned by

Hel :=
NX
j=1

��~xj + Vc(x) : (I.12)

We recall some key properties of Hel, viewed as an operator on Hel. For

details and proofs, see [24, 13] and references given there. We �rst note

that the potential Vc is a perturbation of the kinetic energy operator �x :=PN
j=1�~xj with zero relative bound. Thus Hel is a semibounded, self-adjoint

operator on the domain D(Hel) = D(�x) = Hel \ H2[(R3 � Z2)
N ], where

H2 is the usual Sobolev space. The essential spectrum of Hel is given by

�ess(Hel) = [�;1), where � is the in�mum of the spectrum of Hel, with N

replaced by N � 1, as follows from the HVZ theorem (see, e.g., [13]). Thus,

� is the ionization threshold.

In what follows, we shall make the following assumption about the atom,

ion, or molecule under consideration, represented by the parameters N ,
~R1; : : : ; ~RM , and Z1; : : : ; ZM . For the proof of existence of a ground state of

H 0
� in Section II, we assume that Hel has at least one eigenvalue E0 below

the ionization threshold �, i.e., we require that

E0 := inf �(Hel) < � := inf �ess(Hel) : (I.13)

The contents of Section III on the life times of metastable states is non-

trivial only if, besides E0, Hel has at least one further eigenvalue E1, with

E0 < E1 < �, i.e., in Section III we additionally require that the spectrum

�(Hel) = fE0; E1; : : : g [ [�;1) (I.14)

of Hel consists of eigenvalues E0 < E1 < E2 < � � � � �, of �nite multiplicity

below �, possibly with an accumulation point at � and (absolutely) conti-

nuous spectrum in [�;1); see Fig. 1. In Section III we shall also require an

assumption saying, roughly speaking, that there are no accidental selection

rules in the system described by Hel, which could prevent excited eigenstates

of Hel from decaying radiatively (in 2nd order in the relevant coupling con-

stant).

For positive ions and (neutral) atoms or molecules our assumption (I.14)

is justi�ed, as it is known that if N � PM
m=1 Zm then Hel has in�nitely

many eigenvalues of �nite multiplicity below � [31]. In the case of negatively
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E1 E2 � � � �

(abs.) cont. spectrum

exc. states

gr. states

E0

Figure 1: The Spectrum of Hel

E1 E2 � � � �E0

Figure 2: The Spectrum of H0 = Hel 
 1+ 1
Hf

ionized atoms or molecules, i.e., if N >
PM
m=1 Zm, the question, whether Hel

has isolated eigenvalues below the ionization treshold, is more subtle. Indeed,

if N � PM
m=1(2Zm + 1) then Hel has no eigenvalues at all [23] (see [27, 28]

for earlier results).

Assuming that the atomic numbers of the nuclei are such that E0 < �,

i.e., that Hel has isolated eigenvalues below the ionization threshold, it tends

to be an open question whether the ground state corresponding to the energy

E0 is unique or not, except when N = 1 or = 2, in which case a standard

Perron-Frobenius argument proves uniqueness. (Non-uniqueness for N � 3

may arise as a consequence of the Pauli principle.)

The spectrum of the photon Hamiltonian Hf consists of a simple ei-

genvalue at 0, corresponding to the vacuum vector 
 2 F , and absolutely

continuous spectrum (of in�nite multiplicity) covering the half-axis [0;1).

Consequently, by separation of variables, the unperturbed HamiltonianH0 =

Hel +Hf on F has spectrum

�(H0) = �(Hel) + �(Hf) : (I.15)

The point spectrum of H0 is the same as the point spectrum of Hel, i.e., it

consists of the eigenvalues fEjgj=0;1;2;::: (corresponding to the eigenvectors

'j;`

, where f'j;`g`=1;2;::: ;nj is an orthonormal basis of eigenvectors of Hel

corresponding to the eigenvalue Ej of multiplicity nj). The continuous spec-

trum of H0 covers the half-axis [E0;1) and consists of a union of branches

[Ej;1) starting at the eigenvalues Ej and the branch [�;1); as indicated

in Fig. 2.

We note that the ground state energy E0 = inf �(Hel) of the atom or

molecule in the absence of the quantized radiation �eld coincides with the

ground state energy E0 � E0(� = 0) = inf �(H0) of the system of an atom
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or molecule in the presence of photons, but decoupled from them. But, while

E0 is an isolated eigenvalue of Hel, it lies at the tip of a branch of continuous

spectrum of the HamiltonianH0. Similarly, the energies E1; E2; : : : are isola-

ted eigenvalues of Hel; but they are eigenvalues of H0 imbedded in continuous

spectrum of H0, and each Ej is the threshold of a branch of continuous

spectrum of H0.

These spectral properties of H0 make it a di�cult problem to analyze,

mathematically rigorously, the fate of the eigenvalues Ej of H0, and the

nature of the energy spectrum of the interacting system described by the

Hamiltonian H 0
� introduced in (I.5), for � > 0. Although the perturbation,

W 0
� := H 0

� � H0, is a small perturbation of H0, general analytical methods

to deal with this type of problem in perturbation theory do not appear to

be available. In [5, 6], we have started to develop such methods, tailor-made

to analyze a class of Hamiltonians describing interactions between nonrelati-

vistic quantum-mechanical matter and the radiation �eld. In this paper we

extend those methods to the Hamiltonian H 0
� (= H0 + W 0

�) of Eqn. (I.5),

which describes much of the physics of light atoms or molecules interacting

with the quantized electromagnetic �eld (within the Born-Oppenheimer ap-

proximation). For background material concerning the physics described by

H 0
�, see e.g., [11, 12] and references given there.

I.2 Survey of Main Results

In the next section, I.3, we consider the structure and properties of the

perturbation W 0
� in the Hamiltonian H 0

� = H0 +W 0
� of (I.5). The strength

of the perturbation W 0
� relative to H0 is measured by the parameter

g := (�K)3=2 ; (I.16)

where K is the ultraviolet cuto� in the electromagnetic vector potential ~A, as

described in Eqn. (I.6). The parameter K is a \dimensionless energy scale"

given by the photon energy above which interactions between electrons and

the radiation �eld are cut o�, divided by 4 Ry. In Section I.3 we prove that if

g is su�ciently small then the interaction Wg is bounded by H0, in the sense

of Kato [22, 25], with relative bound strictly smaller than 1. This proves

that, for small �, H 0
� is bounded from below and self-adjoint on the domain

of H0; see Corollary I.2. (Under somewhat weaker assumptions one can prove

that H 0
� de�nes a semibounded quadratic form on an appropriate core. It

is not easy, however, to characterize the domain of the corresponding self-

adjoint operator.) Since g := (�K)3=2 is the relevant coupling parameter, we
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henceforth write

Hg := H 0
�=g2=3=K ; Wg := W 0

�=g2=3=K : (I.17)

We should emphasize that our bounds on g = (�K)3=2 become poor, as

the number of electrons, N , becomes large. This does not mean that the

Hamiltonian Hg is ill-de�ned or unbounded from below, for large values of

�, as long as the ultraviolet cuto� K is kept �nite. In fact, using path-

space methods one can rigorously construct the semi-group exp(�tHg), for

t � 0, and prove that it is self-adjoint, strongly continuous in t > 0 with

exp(�tHg) ! 1, as t ! 0, for arbitrary values of � and N , as long as

K <1; (see [17, 30] for various ingredients of the proof). However, for the

purposes of the analysis presented in Section III, Kato- (or quadratic-form-)

boundedness of Wg in terms of H0 is an important property.

In Section II we address the question whether Hg has a ground state cor-

responding to an eigenvalue E0(g) := inf �(Hg). Our main result is Theorem

II.1, which answers this question in the a�rmative, as long as the e�ective

coupling constant g is su�ciently small.

The method used in Section II is "non-perturbative" but non-constructive.

For this reason, they do not enable us to estimate the multiplicity of the

ground state energy E0(g). However, if the number N of electrons is = 1 or

= 2, and if the Zeeman terms in the Hamiltonian Hg are set to 0, then we

can construct an L2-space representation of the photon Fock space F (\elec-

tric �eld" representation) with the property that exp(�tHg) is positivity-

preserving on Hel 
 F , where Hel is taken in the usual Schr�odinger con�-

guration-space representation, and, for N = 2, only spin-singlet states are

considered. Modulo ergodicity of exp(�tHg) (see [24]), which we have not

checked, a Perron-Frobenius argument then establishes uniqueness of the

groundstate.

It is worthwhile to point out some (fairly standard, but) fundamental

consequences of the existence of a ground state of Hg for scattering theory:

Using straightforward variants of methods developed in [18, 19, 20, 2, 3], one

can construct M�oller (wave) operators, 
�, such that the range of 
+ (
�)

describes asymptotic states of the system consisting of an atom (or molecule)

in a ground state accompanied by an outgoing cloud of freely moving photons.

The obvious conjecture is that Ranf
+g = Ranf
�g =: Hasy, where Hasy

is isomorphic to H(0)
g 
 F , and where H(0)

g is the space of ground states

of Hg. This conjecture, called \asymptotic completeness", would imply the

unitarity of the scattering matrix for the scattering of photons o� an atom

or molecule below the ionization threshold. We are miles away from proving

this conjecture! But, in a drastically simpler model of massive photons and

con�ned electrons, it has recently been proven in [16, 14].
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In Section III, we prove that, outside small neighbourhoods of E0 and �

and below �, the spectrum of Hg is purely absolutely continuous (Outside

small neighbourhoods of the thresholds of Hel and above �, the spectrum of

Hg can be shown to be purely absolutely continuous by using the methods

in [5, 7]. In particular, Hg does not have any eigenvalues in the vicinity of

the imbedded eigenvalues E1 < E2 < � � � < En < �� �, of H0, where � is a

small positive constant depending on g and n. We will, however, make the

idea rather precise that imbedded eigenvalues of H0 give rise to metastable

states of Hg, and we shall estimate the life time, / g2, of these metastable

states up to an error term O(g2+"), for some " > 0.

Our notion of resonance is based on dilatation analyticity. In order to

state our ideas simply, we assume that there is only one atomic nucleus

(M = 1 in Eqn. (I.9)) of atomic number Z = Z1 � 2N located at ~R1 = 0;

(the general case of an arbitrary, �nite number M of nuclei can be studied,

too, by borrowing ideas developed in [21]). To describe dilatation analyticity,

we start by scaling the positions, ~xj, of the electrons and the momenta, ~k, of

the photons by

~xj 7! e� ~xj ; ~k 7! e�� ~k : (I.18)

When � is real, the transformations (I.18) determine a unitary transformation

U� on the Hilbert space H de�ned in Eqns. (I.1){(I.4). It is easy to see that

the subspace, D � H, of vectors,  , with the property that  (�) := U� is

analytic in �, for jIm�j < �=2, is dense in H. Furthermore, one easily checks
that

U�Hf U
�
� = e��Hf : (I.19)

These facts, combined with well-known results [1, 8] on dilatation analyticity

for Schr�odinger operators, show that, for arbitrary  ; ' 2 D, the function

F 0
 ;'(�; z) :=

D
 ��

��� �z �H0(�)
��1

'(�)
E
; (I.20)

where H0(�) = U�H0U
�1
� , is independent of �, for jIm�j < �=2, and, for

Im� =: # �xed, F 0
 ;'(�; z) is analytic in z in the complement of the shaded

region depicted in Fig. 3

In Section III, we construct the function

F
g
 ;'(�; z) :=

D
 ��

��� �z �Hg(�)
��1

'(�)
E
; (I.21)

where Hg(�) = U�HgU
�1
� , with Hg as in (I.5), and we show that, for our

choice of an ultraviolet cuto� � (see (I.6) and below), and for arbitrary  
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E0

Im(�)

�� � �E2E1

Figure 3: A projection of the Riemann surface of z 7! F 0
 ;'(�; z) onto the

energy plane

Ej;`(g)

E0

E0(g)

E1(g)

Ej� � �E1

Figure 4: A projection of the Riemann surface of z 7! F
g
 ;'(�; z) onto the

energy plane

and ' in D, F g
 ;'(�; z) is independent of �, for jIm�j < �=4 small enough, and,

for Im� =: # �xed, F g
 ;'(�; z) is analytic in z in the complement of the shaded

region depicted in Fig. 4. It thus provides an analytic continuation of the

matrix element F
g
 ;'(0; z) of the resolvent of Hg � z in z from the upper half

plane into the lower half plane outside the spectrum of Hg(�). This implies

the absolute continuity of the spectrum of Hg for those energies which are

contained in the resolvent set of Hg(�) (see Corollary III.2).

In Section III, Eqns. (III.7){(III.10), we introduce a notion of resonance

energy Ej(g) corresponding to the energy Ej of the j
th excited state of the

atom or molecule. We show that the Lamb shift, RefEj(g) � Ejg, is given
by Bethe's formula and ImfEj(g)g is given by Fermi's Golden Rule, to order

g2, with error terms that we prove to be O(g2+"), for any 0 < " < 1=3. If

there are no miraculous selection rules forbidding the decay of the jth excited

state of the atom to �rst order in g then

ImfEj(g)g = �j g
2 + O(g2+") ; (I.22)

with �j strictly positive.

It then follows by standard reasoning that, for g > 0 su�ciently small,

the spectrum of Hg is purely absolutely continuous in a neighbourhood of

every eigenvalue Ej, j � 1, of Hel for which �j > 0.

What we are really looking after, from a physics point of view, is a precise

understanding of the decay of the excited states of the atom under the time

evolution exp[�itHg], as t becomes large. Let � := dist
�
Ej ; �(Hel)nfEjg

�
>



BFS-3, November 20, 1998 10

0, set Ij(�=2) := (Ej � �=2; Ej + �=2), and notice that Ij(�=2) is an open

interval containing Ej and such that dist
�
Ij ; �(Hel) n fEjg

�
= �=2. Let Fj

denote a smooth characteristic function of Ij(�=2) (see Subsection III.1). We

shall identify a "jth excited state" of the atom with a vector of the form

 j := F
1=2
j (Hg)Pel;j exp

h
�g�2Hf

i
� (I.23)

(see (III.14)), where Pel;j is the projection onto the eigenspace of Hel cor-

responding to the eigenvalue Ej, and the operator exp
h
�g�2Hf

i
essentially

eliminates high-energy photons of energy larger than g2 in the state �, which

is assumed to be dilatation analytic. An example for a state � is given by

� = 'j;` 
 
 ; (I.24)

where 'j;` is an eigenvector of Hel with corresponding to the eigenvalue Ej.

We then show that, for any 0 < " < 1=3, there exists a constant C � 0

and, for any N 2 N , a constant CN � 0 such that���� � j���� exp[�itHg]  j

�����
� B2

�

�
C ln(1=g) exp

�
�t
�
g2�j � Cg2+")

�
+ CN t

�N g4
�
; (I.25)

where B� := 1 + supj�j��0 k�(�)k. This estimate implies that, given " > 0,

there is a �nite constant C" > 0 such that, for t > C"�
�1
j g�2 ln ln(1=g),��� D j��� e�itHg  j

E ��� � " : (I.26)

We remark that it is known from other methods (see e.g. [15]) that, given

" > 0, there is a constant D" > 0 such that, for 0 � t < D"g
�2,��� D j��� e�itHg  j

E ��� � " : (I.27)

Estimate (I:26) shows that the state  j decays, with a life-time bounded

above by O
�
g�2 ln ln(1=g)

�
. It is a typical example for the kind of estimates

we are able to prove with the help of the methods developed in Section III.

I.3 Relative Bounds, Self-Adjointness, and Dilatation

Analyticity

We return to Eqn. (I.5), which we write as

Hg = H0 + Wg ; (I.28)
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where H0 is de�ned in (I.11), and we obtain

Wg =
NX
j=1

(
�4�1=2�3=2 ~A�(�~xj) � (�i~r~xj ) + 2��3 ~A2

�(�~xj)

+ 2�1=2�5=2~�j �
�
~r� ~A�

�
(�~xj)

)�����
�=g2=3=K

(I.29)

from expanding the square in (I.5). Our �rst goal in this subsection is to

prove in Corollary I.2 that Wg is de�ned on D(H0) and obeys the bound


Wg jH0 + iC(N)j�1



 � C 0(N) (�K)3=2 ; (I.30)

for some constants C(N); C 0(N) � 0. This establishes the semiboundedness

and self-adointness of Hg on D(H0) for g := (�K)3=2 < C 0(N)�1. Our second

goal is to establish the dilatation analyticity of Wg(�) := U�WgU
�1
� (see

Corollary I.3), where U� is the dilatation operator de�ned in (I.18), i.e., we

prove that � 7!Wg(�) is an analytic function on D(0; �0) := fz 2 C jjzj < �0g
with values in B(D(H0);H), the bounded operators from D(H0) to H, for
some �0 > 0. We establish this property by observing that the coupling

functions in Wg(�) are analytic in �, pointwise in the other parameters, and

by verifying a bound similar to (I.30), namely,


Wg(�) jH0 + iC(N; �)j�1



 � C 0(N; �) g ; (I.31)

for some constants C(N; �); C 0(N; �) � 0. In fact, Eqn. (I.30) is just the spe-

cial case � = 0 in Eqn. (I.31). Finally, we establish the dilatation analyticity

of Hg(�) := U�HgU
�1
� in Corollary I.4, assuming that Hel = ��x + Vc(x) is

the Hamiltonian of an atom, i.e., M = 1. This simplifying assumption could

be avoided by using exterior dilatations [21, 29], at the expense of having to

deal with more involved estimates; we do not carry out this analysis here.

We characterize the coupling functions in Wg(�) in terms of the following

functions,

~G~x(~k; �; �) :=

p
2 e��=2 �(e��j~kj=K)q

� K3 !(~k)
exp[�i�~k � ~x] ~"�(~k) (I.32)

and

~B~x(~k; �; �) :=
�
p
2 e�3�=2 �(e��j~kj=K)

i
q
�K3 !(~k)

exp[�i�~k � ~x]
�
~k � ~"�(~k)

�
;

(I.33)
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where we introduce a dilatation parameter � 2 D(0; �0) � C , for some �0 > 0

su�ciently small. Note that, pointwise for every ~x;~k 2 R
3 and � 2 Z2, the

maps � 7! ~G~x(~k; �; �) and � 7! ~B~x(~k; �; �) are analytic in D(0; �0). Further-

more, we notice that ~B~x(~k; �; 0) = ~r� ~G~x(~k; �; 0). By means of ~G~x(~k; �; �)

and ~B~x(~k; �; �) we de�ne the following functions on R
3 � Z2 with values in

the operators on Hel,

w1;0(~k; �; �) := w0;1(~k; �; ��)
� :=

NX
j=1

�
�2 ~G~xj (

~k; �; �) � ~pj + ~�j � ~B~xj (~k; �; �)
�
;

(I.34)

w2;0(~k1; �1;~k2; �2; �) := w0;2(~k1; �1;~k2; �2; ��)
� (I.35)

:=
NX
j=1

�
~G~xj(

~k1; �1; �) � ~G~xj (
~k2; �2; �)

�
;

w1;1(~k1; �1;~k2; �2; �) :=
NX
j=1

�
~G~xj(

~k1; �1; ��)
� � ~G~xj(

~k2; �2; �) (I.36)

+ ~G~xj(
~k1; �1; �) � ~G~xj(

~k2; �2; ��)
�

�
;

and these, in turn, serve as coupling functions for the operators de�ned by

Wm;n(�) :=
X

�1;::: ;�m+n=1;2

Z
d3k1 � � �d3km+n wm;n(~k1; �1; : : : ; ~km+n; �m+n; �)

a��1(
~k1) � � �a��m(~km) a�m+1

(~km+1) � � �a�m+n(
~km+n) :(I.37)

Then we observe that, after normal ordering, the (dilated) interaction Wg(�)

reads

Wg(�) =
X

m+n�2

gm+nWmn(�) + g2Cno ; (I.38)

where Cno is de�ned by Cno := 2N
R j ~G~x(~k; 1; 0)j2 d3k, which is independent

of x, and g := (�K)3=2. Henceforth and consistent with our previous de�ni-

tions, we omit � in our notation in the undilated case, � = 0, writing

~G~x(~k; �) := ~G~x(~k; �; 0) ; ~B~x(~k; �) := ~B~x(~k; �; 0) ; (I.39)

wm;n(~k1; �1; : : : ; ~km+n; �m+n) := wm;n(~k1; �1; : : : ; ~km+n; �m+n; 0) ; (I.40)

Wm;n := Wm;n(0) : (I.41)
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Next, we de�ne J : R3 ! R+ to be the smallest function such that


w1;0(~k; �; �) (��x + 1)�1=2



 ; 


w0;1(~k; �; �) (��x + 1)�1=2




 � J(~k)

(I.42)

holds, for all j�j � �0 and (~k; �) 2 R
3 � Z2, and such that


w2;0(~k1; �1;~k2; �2; �)




 ; 


w1;1(~k1; �1;~k2; �2; �)



 ; (I.43)


w0;2(~k1; �1;~k2; �2; �)



 � J(~k1) J(~k2)

holds, for all j�j � �0 and (~k1; �1); (~k2; �2) 2 R
3 � Z2. Note that, due to

�i~r~xj � (��~x + 1)1=2, we have that

J(~k) � C(�0)N K�3=2 j~kj�1=2
� ����(e��j~kj=K)

��� + �j~kj
����(e��j~kj=K)

��� � ;
(I.44)

for some constant C(�0) � 0. The rapid decay of � implies that

�� :=

 Z
J(~k)2 !(~k)� d3k

!1=2

< 1 ; (I.45)

for any � > �2. In particular, �� is uniform in K � 1, for any 1 � � > �2.
This uniformity in K � 1 is actually the basic requirement that determines

p = 3=2 in the coupling parameter g = �3=2Kp.

The main relative bound that we use is described in the following lemma.

Lemma I.1. For all m;n 2 N0 with 1 � m + n � 2 and all � 2 D(0; �0),

the operators Wm;n(�) are de�ned on D(H0) and obey the bound




Wm;n(�) jH0 + iC(N; �0)j�1



 �

�
4(1 + �2

0 + �2
�1)
�(m+n)=2

; (I.46)

for some constant C(N; �) > 0.

Proof: We �rst note that the canonical commutation relations (I.8) allow

us to convert estimates on W1;0(�) into those for W0;1(��). Indeed, for any

 2 D(H0),

kW1;0(�) k2 = kW0;1(��) k2 +
X
�=1;2

Z
d3k kw1;0(~k; �; �) k2

� kW0;1(��) k2 + 2�0




(��x + 1)1=2  



2 : (I.47)
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Furthermore,

kW0;1(�) k �
X
�=1;2

Z
d3k J(~k)




(��x + 1)1=2a�(k) 





� 2��1



(��x + 1)1=2H

1=2
f  




 ; (I.48)

and hence

kW1;0(�) k ; kW0;1(�) k � 2 (�0 + ��1)



(��x +Hf + 1) 




 : (I.49)

Similarly, we convert estimates on W2;0 and W1;1 into those for W0;2. For

W2;0, for instance, the canonical commutation relations (I.8) imply that

W2;0(�)
�W2;0(�) = W0;2(��)

�W0;2(��) (I.50)

+ 2
Z
d�1d�2w2;0(�1; �2; �)

�w2;0(�1; �2; �)

+4
Z
d�1d�2d�3w2;0(�1; �3; �)

�w2;0(�2; �3; �) a
�(�1)a(�2) ;

where we denoted � := (~k; �),
R
d� :=

P
�=1;2

R
d3k, and a#(�) := a

#
� (
~k). This

yields

kW2;0(�) k � 3kW0;2(��) k + 4�2
0 k k2 ; (I.51)

and, as in (I.48), we obtain that

kW0;2(�) k � �2
�1 kHf k � �2

�1




(��x +Hf + 1) 



 : (I.52)

The bound (I.46) follows from (I.49), (I.51), (I.52), and the additional use of

the fact that ��x is relatively Hel-bounded with relative bound arbitrarily

close to 1.

Now self-adjointness of Hg on D(H0) and dilatation analyticity of Wg(�)

are just two immediate implications of Lemma I.1.

Corollary I.2. If 0 < g = (�K)3=2 < (1 + �2
0 + �2

�1)
�1=2=10 then Hg is

self-adjoint and semibounded on D(H0).

Corollary I.3. The map Wg : D(0; �0)! B(D(H0);H), � 7! Wg(�) is ana-

lytic.

Finally, we establish the dilatation analyticity of Hg(�) := U�HgU
�1
� , as-

suming that the potential Vc(x) is dilatation analytic, i.e., D(0; �0) 3 � !
Vc(e

�x) 2 B(D(H0);H) is an analytic function. This property holds in case
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that Hel = ��x+Vc(x) is the Hamiltonian of an atom, i.e., M = 1, for arbi-

trary �. Indeed, in the atomic case we may choose without loss of generality

the position of the nucleus to be the origin of the one-electron con�guration

space, and then we obtain

Hel(�) := U�HelU
�1
� = e�2�

�
��x) + e�� Vc(x) : (I.53)

Therefore,

H0(�) := U�H0U
�1
� = Hel(�) + e��Hf (I.54)

is an analytic family of type A and, by Corollary I.3, so is Hg(�) = H0(�) +

Wg(�). We summarize this discussion and a simple consequence of (I.54) in

the following corollary.

Corollary I.4. The family fHg(�)j� 2 D(0; �0)g is dilatation analytic, i.e.,

the map Hg : D(0; �0) ! B(D(H0);H), � 7! Hg(�) is analytic. Moreover,

there exists a constant b � 0 such that


�Hel(�) (Hel � i)�1



 � b j�j ; (I.55)

where �Hel(�) := Hel(�)�Hel, for all � 2 D(0; �0).

II Soft Photon Bound

and Existence of a Ground State

In this section we derive a new soft photon bound; see Inequalities (II.5){(II.6)

and Theorem II.3 below. It is taylored for the minimal coupling model, and

we use this bound to prove the existence of a ground state.

Theorem II.1. There exists a constant C(N;��E0) � 0 such that, for all

0 < g = (�K)3=2 � C(N;� � E0), the Hamiltonian Hg has a ground state,

i.e., E0(�) := inf �(Hg) is an eigenvalue.

Proof: We introduce the notation a#(~F ) :=

�
a#(F1); a

#(F2); a
#(F3)

�T
,

a�(F ) :=
P
�=1;2

R
d3k F (~k; �)a��(

~k), and a(F ) :=
P
�=1;2

R
d3k F (~k; �)�a�(~k).

Here, F is a function on R
3 � Z2 with values in the operators on Hel such

that
P
�=1;2

R
d3k





F (~k; �)(��x+1)�1=2




2 <1. We further denote �(F ) :=
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a�(F )+a(F ), �(~F ) := a �(~F )+a(~F ), and ~pj := �i~r~xj . In this notation, the

interaction Wg reads

Wg =
NX
j=1

�
�2g�( ~G~xj) � ~pj + g2�( ~G~xj )

2 + ~�j � g�( ~B~xj)
�
; (II.1)

where ~G and ~B are de�ned in Eqns. (I.32), (I.33), and (I.39).

Next, we introduce an infrared regularization by switching o� the inter-

action for photons of small momenta. Speci�cally, we pick a \photon mass",

m > 0, that is, we replace ~G~x(~k; �), ~B~x(~k; �), and Wg in (I.32), (I.33), and

(II.1) by

~G
(m)
~x (~k; �) := �[!(k) � m] ~G~x(~k; �) ; (II.2)

~B
(m)
~x (~k; �) := �[!(k) � m] ~B~x(~k; �) ; (II.3)

W (m)
g :=

PN
j=1

�
�2g�( ~G(m)

~xj
) � ~pj + g2�( ~G

(m)
~xj

)2 + g ~�j � �( ~B(m)
~xj

)

�
;(II.4)

and we denote H(m)
g := H0 +W (m)

g and E
(m)
0 (g) := inf �(H(m)

g ). We remark

that H(m)
g ! H(0)

g = Hg in norm resolvent sense, as m ! 0. This easily

follows from an estimate similar to Lemma I.1 (see [5]). In Theorem II.2

below we show that, for g = (�K)3=2 su�ciently small, H(m)
g has a ground

state, �m, i.e., there exists a normalized solution of H(m)
g �m = E

(m)
0 (g)�m,

for all m > 0. Since k�mk = 1, the family f�mgm>0 contains a weakly

convergent subsequence, f�m(n)gn2N , where limn!1m(n) = 0. We put �0 :=

w � limn!1 �m(n). Then one easily shows [5], that �0 2 D(Hg) and that

Hg�0 = E0(�)�0. To conclude, it remains to show that �0 6= 0.

To show that �0 6= 0, we employ a soft photon bound, as in [5]. There is an

important di�erence, though. The soft photon bound in [5] estimated the pho-

ton number expectation h�mjNf�mi, where Nf :=
P
�=1;2

R
a��(

~k)a�(~k)d
3k, in

terms of sup~x k!�1 ~G~xk2. It was derived from a virial type argument, using

the commutator of a�(~k) and Hg. This bound does not directly apply to the

present problem because k!�1 ~G~xk2 =1, for all ~x. Modifying the argument

slightly by using the commutator of a�(~k)� iFx(~k; �) and Hg, for a suitably

chosen Fx, we avoid the appearance of sup~x k!�1 ~G~xk2 on the right side of

the estimate, which we trade for a factor of k jxj�m k.
More precisely, in Theorem II.3 below we show that

h�mjNf �mi � C1(N) g2




 (1 + jxj)�m 



2 ; (II.5)
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for some constant C1(N) � 0. In [5] we showed that �m is exponentially

localized in the electron variables. More generally, there exists an " > 0 such

that 


 e"jxj ��(H(m)
g )




 � C2 < 1 ; (II.6)

where ��(H
(m)
g ) is the spectral projection onto � := (�1 ; (� + E0)=2),

provided that g2(1+��E0) is su�ciently small (with C2 and " independent

of g). Since �m 2 Ranf��(H(m)
g )g, this implies the boundedness of k jxj�mk.

Thus there exists a constant, C3 � C3(N;�� E0), such that

h�mjNf �mi � C3 g
2 ; (II.7)

for all m > 0. Next, we introduce the projection Pel onto all bound states of

Hel below
1
2
(�+E0) < �. Note that Pel has �nite rank and that (��E0)P

?
el �

2(H0 � E0). The latter implies that

h�mj P?
el �mi � 2(�� E0)

�1 h�mj (E(m)
0 (g)� E0 �W (m)

g )�mi
� C3 g

2 : (II.8)

From (II.7){(II.8) and Pel P
 � 1� P?
el �Nf we draw the important conse-

quence that

h�mjPel P
 �mi � 1 � 2C3 g
2 ; (II.9)

where P
 := j
ih
j denotes the rank-one projection onto the photon vacuum
vector 
. Thus, if g = (�K)3=2 is su�ciently small then h�mjPel P
 �mi �
1=2, for all m > 0. Since Pel P
 has �nite rank, it follows that �0 6= 0.

In the following theorem, we review the proof in [5] of the existence of a

ground state of H(m)
g , for m > 0.

Theorem II.2. There exists a constant C � C(N;� � E0) > 0 such that,

for all 0 < g = (�K)3=2 � C, the Hamiltonian H(m)
g has a ground state, i.e.,

E
(m)
0 (g) := inf �(H(m)

g ) is an eigenvalue, for any m > 0.

Proof: We only sketch the argument, see [5, Section II.2] for details.

Alternatively, one may proceed as in [16]. The assertion is proven if we can

�nd some ~m > 0 such that the sum of the negative eigenvalues of H(m)
g �

E
(m)
0 (g) � ~m is �nite, i.e., Tr

n
[H(m)

g � E
(m)
0 (g) � ~m]�

o
> �1, where the

negative part of a real number � is de�ned as [�]� := minf�; 0g. To this
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end, we �rst employ a discretization. Given " > 0 and a locally integrable

function F , we de�ne its "-average by

hF (~k)i" := "�3
Z
~n(~k)+Q"

F (~k0; �)d3k0 ; (II.10)

where Q" = [�"=2; "=2)3 and ~n(~k) 2 ("Z)3 is the integer part of ~k, i.e.,
~k�~n(~k) 2 Q". We de�ne the corresponding interaction, W (m;")

g , by replacing

~G
(m)
~x (~k; �) and ~B

(m)
~x (~k; �) in (II.2){(II.4) by

�
~G
(m)
~x (~k; �)

�
"

and

�
~B
(m)
~x (~k; �)

�
"

,

respectively. Then, by the bound (I.46) it follows that

�(W (m;")
g �W (m)

g ) (II.11)

� o("0) (H(m)
g � E

(m)
0 (g) + 1)1=2

�
1 + jxj

�
(H(m)

g � E
(m)
0 (g) + 1)1=2 ;

where o("0) denotes a function which possibly depends on g, N , �, m and

tends to zero as " ! 0. Here, our original manuscript contained a small

mistake in that the factor 1 + jxj was missing, as was kindly pointed out to

us by F. Hiroshima. Next, we de�ne H
(m;")
f by replacing !(~k) in H

(m)
f by

h!(~k)i". Since j!(~k)� h!(~k)i"j = O(") and !(k) � m, we obtain that�
1� o("0)

�
H

(m)
f � H

(m;")
f �

�
1 + o("0)

�
H

(m)
f : (II.12)

Denoting H(m;")
g := Hel +H

(m;")
f +W (m;")

g , we hence obtain that

H(m)
g �

�
1� o("0)

�
H(m;")
g (II.13)

� o("0) (H(m)
g � E

(m)
0 (g) + 1)1=2 (1 + jxj) (H(m)

g � E
(m)
0 (g) + 1)1=2 :

Next, we introduce the interval e� := (�1 ; E
(m)
0 (g) + ~m) and observe that

[H(m)
g � E

(m)
0 (g)� ~m]� = �e�(H(m)

g )
�
H(m)
g � E

(m)
0 (g)� ~m

�
�e�(H(m)

g ) :

(II.14)

Furthermore, we note that, thanks to (II.6) and �e� = �e���, for ~m > 0

su�ciently small, we have


�e�(H(m)
g ) (H(m)

g � E
(m)
0 (g) + 1)1=2 (II.15)�

1 + jxj
�
(H(m)

g � E
(m)
0 (g) + 1)1=2 �e�(H(m)

g )



 < 1 :
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Thus,

Tr
n
[H(m)

g � E
(m)
0 (g)� ~m]�

o
� Tr

n
�e�(H(m)

g )
�
H(m;")
g � E

(m;")
0 (g)� ~m� o("0)

�
�e�(H(m)

g )
o

� Tr
n
�e�(H(m)

g )
h
H(m;")
g � E

(m;")
0 (g)� ~m� o("0)

i
�
�e�(H(m)

g )
o

� Tr
n h
H(m;")
g � E

(m;")
0 (g)� ~m=2

i
�

o
; (II.16)

for " > 0 su�ciently small, and the �niteness of the right side in (II.16) (and

hence the claim) follows if we can show that, for any " > 0, the discretized

HamiltonianH(m;")
g has only �nitely many eigenvalues below E

(m;")
0 (g)+ ~m=2.

The key point of the discretization by means of the "-average is the tensor

product representation F �= F [Hdisc] 
 F [H?
disc], where Hdisc is spanned

by �Q"+~n, ~n 2 ("Z)3 (see [5] for details). Note that, with respect to this

representation, we have H
(m;")
f

�= H
(m;")
f 
1+1
H(m;")

f ,W (m;")
g

�= W (m;")
g 
1,

and hence

H(m;")
g

�= H(m;")
g 
 1 + 1
H

(m;")
f (II.17)

�
�
E

(m;")
0 (g) +m

�

 P?


 + H(m;")
g 
 P
 ;

denoting the projection onto the vacuum in F [H?
disc] by P
. Hence, for

~m � m,

H(m;")
g � E

(m;")
0 (g)� ~m=2 �

�
H(m;")
g � E

(m;")
0 (g)� ~m=2

�

 P
 : (II.18)

Next, for su�ciently small " > 0, an estimate similar to Lemma I.1 together

with an interpolation argument implies that, on Hel 
 F [Hdisc], we have

W (m;")
g � �C 0

1 g
�
Hel +H

(m;")
f + C(N)

�
; (II.19)

for some constants C 0
1; C(N) � 0. Thus, we obtain that

H(m;")
g � E

(m;")
0 (g) (II.20)

� (1� C 0
1 g)Hel � (1 + C 0

1 g)E0 + (1� C 0
1 g)H

(m;")
f � 2C 0

1C(N)

�
n1
2
(�� E0) � 2C 0

1g(1 + 2jE0j)� o("0)
o
P?
el

+
n
(1� C 0

1g)H
(m;")
f � 2C 0

1g(1 + 2jE0j)� o("0)
o
Pel ;

where Pel is the �nite dimensional projection onto the bound states of Hel of

energy < 1
2
(� + E0). Now, if g is su�ciently small such that

m̂ :=
1

2
(�� E0) � 2C 0

1g(1 + 2jE0j) > 0 (II.21)
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then, for any 0 < ~m < minfm; m̂g, we obtain from inserting (II.20) into

(II.18) that

H(m)
g � E

(m)
0 (g)� ~m=2 (II.22)

�
n
(1� o("0)� 2C 0

1g)H
(m;")
f � 2C 0

1g(1 + 2jE0j)� o("0)
o
Pel 
 P
 ;

for " > 0 su�ciently small. The right side, however, has clearly only �nitely

many negative eigenvalues, for any " > 0, which proves that, for any " > 0,

the discretized Hamiltonian H(m;")
g has only �nitely many eigenvalues below

E
(m;")
0 (g) + ~m=2.

Theorem II.3. Let �m be a ground state of H(m)
g , for m > 0, and denote

by Nf :=
P
�=1;2

R
a��(

~k)a�(~k)d
3k the photon number operator. Assume that

�(K + 1) � 1. Then there exist constants C(N); C1(N) � 0 such that

h�mjNf �mi � C(N) g2 sup
~x;�

(Z
Tr3�3

�
j~r~x

~G~x(~k; �)j2
��

1 +
1

!(~k)2

�
d3k

+
Z
j ~G~x(~k; �)j2d3k +

Z �
j ~B~x(~k; �)j2 + j�~x

~G~x(~k; �)j2
�
d3k

!(~k)2

) 



(1 + jxj)�m



2
� C1(N) g2





 (1 + jxj)�m 



2 : (II.23)

Before giving the proof of Theorem II.3, we remark that using the de�-

nitions (I.32), (I.33), and (I.39) of ~G and ~B, one easily checks the integrals

on the right side of Eqn. (II.23) to be bounded by a constant, uniformly in

K � 1.

Proof of Theorem II.3: Throughout the proof we omit the superscript

\(m)". To prove the asserted bound, we �rst observe the following commu-

tation relations,

a�(~k)Hg =

�
Hg + !(~k)

�
a�(~k) (II.24)

+
NX
j=1

(
~�j � g ~B~xj(~k; �) � 2g ~G~xj(

~k; �)

)
�
�
~pj � g�( ~G~xj)

�
;

F~xj(
~k; �)Hg = Hg F~xj(

~k; �) (II.25)

+ �~xjF~xj (
~k; �) + 2i ~r~xjF~xj(

~k; �) �
�
~pj � g�( ~G~xj)

�
;
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on C0(R
3N ;F)\D(H0), for any F 2 C2(R3 ;L2(R3�Z2)). We therefore have 

a�(~k)� i
NX
j=1

F~xj (
~k; �)

!�
Hg � E0(�)

�
(II.26)

=

�
Hg � E0(�) + !(~k)

�
a�(~k) � i

�
Hg � E0(�)

� NX
j=1

F~xj (
~k; �)

!

+
NX
j=1

(
~�j � g ~B~xj(~k; �) + �~xjF~xj (

~k; �)

� 2

�
~pj � g�( ~G~xj)

�
�
�
g ~G~xj(

~k; �)� ~r~xjF~xj(
~k; �)

�)
;

We apply (II.26) to �(jxj=R)�m, where � 2 C1
0 (R; [0; 1]) and � 1 on [�1; 1].

Letting R!1 and using (Hg � E0(�))�m = 0, we derive that

a�(~k)�m = iR
�
!(k)

��
Hg � E0(�)

� NX
j=1

F~xj (
~k; �)

!
�m (II.27)

+R
�
!(k)

� NX
j=1

(
~�j � g ~B~xj(~k; �) + �~xjF~xj (

~k; �)

� 2

�
~pj � g�( ~G~xj)

�
�
�
g ~G~xj(

~k; �)� ~r~xjF~xj(
~k; �)

�)
�m ;

where R(!) :=
�
Hg � E0(�) + !

��1
. We choose F~x(~k; �) := g ~x � ~G~x(~k; �).

Then (II.27) reads

a�(~k)�m = igR
�
!(k)

��
Hg � E0(�)

� NX
j=1

~xj � ~G~xj(
~k; �)

!
�m (II.28)

+R
�
!(k)

� NX
j=1

(
~�j � g ~B~xj(~k; �) + ig~xj ��~xj

~G~xj (
~k; �)

+ 2g

��
(~pj � g�( ~G~xj)) � ~r~xj

�
~G~xj(

~k; �)

�
� ~xj

)
�m :

We observe that





R�!(k)� �Hg � E0(�)
�



 � 1 and that

����PN
j=1 ~xj � ~G~xj

���� �
jxj
�PN

j=1 j ~G~xj j2
�1=2

, denoting jxj2 := PN
j=1(~xj)

2. Hence, for � 2 f1; 2g,
Z
d3k






R�!(k)� �Hg � E0(�)
� NX
j=1

~xj � ~G~xj(
~k; �)�m






 (II.29)

� N sup
~x

(Z
j ~G~x(~k; �)j2d3k

)1=2 



 jxj�m 



 :
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Additionally using kR
�
!(k)

�
k � !(~k)�1, we similarly obtain

Z
d3k






R�!(k)�
NX
j=1

�
~�j � ~B~xj (~k; �) + i~xj ��~xj

~G~xj(
~k; �)

�
�m






 (II.30)

� N sup
~x

(Z �
j ~B~x(~k; �)j2 + j�~x

~G~x(~k; �)j2
�
d3k

!(~k)2

)1=2 



 (1 + jxj)�m 



 :
Furthermore, we note that



R�!(k)� (Hg � E0(�) + 1)





 �
�
1 + !(~k)�1

�
; (II.31)



 R�!(k)� NX

j=1

�
~pj � g�( ~G~xj)

�2 



 � C(N) ; (II.32)

for some constant C(N) � 0 which only depends on N . These bounds yield

the following estimate,

Z
d3k






R�!(k)�
NX
j=1

��
(~pj � g�( ~G~xj)) � ~r~xj

�
~G~xj(

~k; �)

�
� ~xj

)
�m






 (II.33)

� N sup
~x

(Z
Tr3�3

�
j~r~x

~G~x(~k; �)j2
��

1 + !(~k)�2
�
d3k

)1=2 



 jxj�m 



 :
Thus we arrive at the assertion.

III Resonances and Time-Decay Estimates

In the present section, we study spectral properties of the Hamiltonian Hg.

We also study the propagator exp[�itHg] applied to states whose spectral

support is localized about the excited atomic energy level Ej, j � 1. As we

describe in the introduction, our main tool for this analysis is the complex

dilatation, Hg(�) = U�HgU
�1
� , of the Hamiltonian Hg, where U� is the dila-

tation de�ned in (I.18). We prove below that, for � = i#, 0 < #, and g � #,

a complex neighbourhood of an interval Ij about Ej does not contain any

spectrum of Hg(�). By the dilatation analyticity of Hg(�) in �, this implies

that the spectrum of Hg in Ij is purely absolutely continuous, and it allows

for an estimate of the time decay rate of certain states in Ran
n
�Ij (Hg)

o
.
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To state this estimate more precisely, we recall from (I.32){(I.38) that

Hg(�) = H0(�) + Wg(�) ; (III.1)

H0(�) = Hel(�) + e��Hf ; (III.2)

Wg(�) =
2X

m+n=1

gm+nWm;n(�) + g2Cno ; (III.3)

where g := (�K)3=2, and Cno := 2N
R j ~G~x(~k; 1)j2 d3k is an energy shift resul-

ting from normal-ordering Wg. We absorb this constant by rede�ning

Wg(�)! Wg(�) + g2Cno ; Hel(�)! Hel(�)� g2Cno ; (III.4)

and since it only shifts all energies by Cno, we henceforth ignore the constant

Cno by setting it equal to zero. Thus we obtain

Hg(�) := U�Hg U
�1
� = H0(�) +Wg(�) = H0(�) +

X
m+n�2

gm+nWm;n(�) :

(III.5)

Recall that we assumed in Eqn. (I.14) that the jth atomic energy level is

of �nite degeneracy nj and isolated from the rest of the spectrum of Hel by

a positive distance

� := dist
n
Ej ; �(Hel) n fEjg

o
> 0 : (III.6)

As in [5, Eqns. (IV.84), (IV.85)], we de�ne two nj � nj matrices by

Zod
j (�) :=

X
�=1;2

Z
U�Pel;jw0;1(~k; �)P

?
el;j (III.7)

�
Hel � Ej + !(~k)� i0

��1
P?
el;jw1;0(~k; �)Pel;jU

�1
� d3k ;

Zd
j (�) :=

X
�=1;2

Z
U�Pel;jw0;1(~k; �)Pel;j w1;0(~k; �)Pel;jU

�1
�

d3k

!(~k)
; (III.8)

where Pel;j :=
Pnj
`=1 j'j;`ih'j;`j is the projection onto the eigenspace of Hel

corresponding to the eigenvalue Ej. Note that the matrices Z
od
j (�) and Zd

j (�)

are similar to Zod
j (0) and Zd

j (0), respectively, for all � 2 D(0; �0). We remark

that Zd
j (0) and ImfZod

j (0)g � (Zod
j (0) � Zod

j (0)�)=2i are self-adjoint. We

require ImfZod
j (�)g to be invertible and to obey

0 < c � �j := min
n
�(ImfZod

j (0)g)
o
� c0 ; (III.9)
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for some constants 0 < c � c0. Given a small constant " > 0, and a large

constant C > 0, we de�ne the following union of \comet-shaped" sets Rj �
Rj("; C) � C � in the lower halfplane,

Rj := Ej + g2�(Zd
j (�))� ig2�j + e��R+ +D(0; Cg2+") ; (III.10)

Furthermore, for any 0 < � < �, we de�ne the interval

Ij(�) := ( Ej � � ; Ej + � ) ; (III.11)

and we remark that distfIj(�=2) ; �(Hel) n fEjg g � �=2.

Now we are ready to formulate the �rst main spectral result of this section

Theorem III.1. Let 0 < " < 1=3. For � = i# and # > 0 and g > 0

su�ciently small, there exist constants c; C > 0 such that

Aj :=
�
Ij(�=2) + i[�cg2�";1)

�
n Rj("; C) � �

�
Hg(�)

�
; (III.12)

where �
�
Hg(�)

�
is the resolvent set of Hg(�), and for any z 2 Aj, we have

that 


 �Hg(�)� z
��1 


 � C 0 dist

n
z ; Rj

o�1
; (III.13)

for some C 0 > 0.

Theorem III.1 has two important consequences. The �rst is immediate

from the analytic continuation in �, and we state it as a corollary.

Corollary III.2. For g > 0 su�ciently small, the spectrum of Hg in Ij(�=2)
is absolutely continuous, Ij(�=2) � �ac(Hg).

III.1 Time-Decay Estimates

To formulate the second main result of this section, another consequence of

Theorem III.1, we pick a smooth function F 2 C1
0

�
[0; 1=2) ; [0; 1]

�
such that

F � 1 on [0; 1=4], and we de�ne Fj 2 C1
0

�
Ij(�=2) ; [0; 1]

�
, with Fj � 1 on

Ij(�=4), by Fj(�) := F (��1j�� Ejj). Furthermore, for � 2 H, we set

 j �  j(�) := Pel;j exp
h
�g�2Hf

i
� : (III.14)

Theorem III.3. Let � 2 H be normalized, dilatation analytic in D(0; �0).

Denote �(�) := U� �, and assume that B� := 1 + supj�j��0 k�(�)k < 1.

Moreover, assume that g > 0 is su�ciently small, t > 1, and 0 < " < 1=3.
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Then there exist a constant C � 0 and, for any N 2 N , a constant CN � 0

such that����� j���� exp[�itHg] Fj(Hg) j

�����
� B2

�

�
C ln(1=g) exp

�
�t
�
g2�j � Cg2+")

�
+ CN t

�N g4
�
: (III.15)

Proof of Theorem III.3, given Theorem III.1: We �rst use the fact that

Fj(�) = ���1
Z �=2

�=4
F 0(!=�)�Ij(!)(�) d! (III.16)

to rewrite the matrix element on the left side of (III.15) as�
 j

���� exp[�itHg] Fj(Hg) j

�
= ���1

Z �=2

�=4
F 0(!=�)

�
 j

���� exp[�itHg] �Ij(!)(Hg) j

�
d! (III.17)

=
Z �=2

�=4

F 0(!=�)

� �

Z
Ij(!)

e�it� Im

� D
 j(��)

��� �Hg(�)� �
��1

 j(�)
E�

d� d! ;

where we use Stone's formula (see, e.g., [26]) together with Theorem III.1,

which implies that the limit lim"&0(Hg(�)��� i")�1 = (Hg(�)��)�1 exists
and is bounded. Indeed, Theorem III.1 even implies that �� is 7! (Hg(�)�
� + is)�1 is bounded analytic, provided s 2 R is not too large. We exploit

this fact by deforming the integration contour Ij(!) � C into the lower

half-plane. To this end, we de�ne a number

S := g2 �j � CS g
2+" ; (III.18)

where CS > 0 is later chosen su�ciently large, and we assume that � 2
Ij(�=2) and s 2 [�S; g2]. Then, Theorem III.1 yields that




 �Hg(�)� �� is
��1 


 � C 0

�
dist

n
�+ is ; Rj

o��1
; (III.19)

for g = (�K)3=2 su�ciently small and some C 0 � 0, where Rj is de�ned in

(III.10) above. Since Zd
j (�) is similar to a self-adjoint nj�nj-matrix, we may

write

Rj :=
[

e2�(Zd
j (�))

Rj(e) ; (III.20)
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with

Rj(e) := Ej + g2e� ig2�j + e��R+ +D(0; Cg2+") : (III.21)

Hence


 �Hg(�)� �� is
��1 


 � 2

�
min

e2�(Zd
j (�))

dist
n
�+ is ; Rj(e)

o ��1
(III.22)

� 2 max
e2�(Zd

j (�))

�
dist

n
�� Ej � eg2 + iCSg

2+" ; e�i#R+

o
� Cg2+"

��1
;

where Cg2+" takes the disc D(0; Cg2+") in the de�nition of Rj(e) into ac-

count. Thus, choosing CS in (III.18) larger than 4C, we obtain that




�Hg(�)� �� is
��1


 � 2�

#
max

e2�(Zd
j (�))

�
(�� Ej � eg2)2 + (CSg

2+"=4)2
��1=2

:

(III.23)

Therefore, z 7! (Hg(�)�z)�1 is analytic in the rectangular domain Ij(�=2)+
i[�S; g2], and by Cauchy's integral formula, Eqn. (III.17) can be written as�

 j

���� exp[�itHg] Fj(Hg) j

�
= A+ � A� � Ak ; (III.24)

where

A� :=
Z �=2

�=4

�F 0(!=�)

4i � �

Z S

0
exp[�it(Ej � ! � is)] (III.25)� D

 j(��)
��� �Hg(�)� Ej � ! + is

��1
 j(�)

E
�
D
 j(�)

��� �Hg(��)� Ej � ! + is
��1

 j(��)
E �

ds d! ;

Ak :=
Z �=2

�=4

�F 0(!=�)

4i � �

Z
Ij(!)

exp[�it(�� iS)] (III.26)� D
 j(��)

��� �Hg(�)� �+ iS
��1

 j(�)
E

�
D
 j(�)

��� �Hg(��)� �+ iS
��1

 j(��)
E�

d� d! :

We �rst estimate Ak. Since Pel;j and e
�Hf=g

2

are dilatation analytic and

k�(�)k � B�, we have for all j�j � �0 that k j(��)k � k j(�)k � C B2
� , for some

constant C depending on �0. Inserting this and (III.23) into the de�nition of
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Ak, we obtain that

jAkj =
��� Z �=2

�=4

F 0(!=�)

2��

Z
Ij(!)

exp[�it(�� iS)]� D
 j(��)

��� �Hg(�)� �+ iS
��1

 j(�)
E

�
D
 j(�)

��� �Hg(��)� �+ iS
��1

 j(��)
E�

d� d!

����
� C B2

� e
�tS max

e2�(Zd
j (�))

�Z
Ij(�=2)

�
(Ej + g2e� �)2 + (CSg

2+"=4)2
��1=2

d�

�
� C 0B2

� ln(1=g) exp
h
�t(g2�j � CSg

2+")
i
; (III.27)

for some constants C;C 0 � 0 which depend on �0, �, and nj. Note that

Hg(��)��+ iS is bounded invertible because the spectrum of Hg(��) = Hg(�)
�

lies in the upper half plane.

Second, we estimate A+. We omit the similar estimate on A�. We use

the fact that, for any N 2 N and t > 0,

exp
h
�it(Ej + ! � is)

i
= (�it)�N dN

d!N

�
exp

h
�it(Ej + ! � is)

i�
: (III.28)

Thus, an integration by parts yields

A+ =
i�N

2�i� tN

Z S

0

Z �=2

�=4
e�it(Ej+!�is) (III.29)

dN

d!N

�
F 0(!=�)

� D
 j(��)

��� �Hg(�)� Ej � ! + is
��1

 j(�)
E

�
D
 j(�)

��� �Hg(��)� Ej � ! + is
��1

 j(��)
E��

ds d!

=
i�N

2�i� tN

Z S

0

Z �=2

�=4
e�it(Ej+!�is)

NX
k=0

N !

(N � k)!
��N+k F (N�k+1)(!=�)� D

 j(��)
��� �Hg(�)� Ej � ! + is

��k�1
 j(�)

E
�
D
 j(�)

��� �Hg(��)� Ej � ! + is
��k�1

 j(��)
E �

ds d! :

Since all derivatives of F are bounded and S � g2�j, there exists a constant

CN � 0 such that

jA+j � CN g
2

tN
sup

� ����D j(��)��� �Hg(�)� Ej � ! + is
��k�1

 j(�)
E

�
D
 j(�)

��� �Hg(��)� Ej � ! + is
��k�1

 j(��)
E �������� 0 � k � N ;

�

4
� ! � �

2
; 0 � s � S

�
: (III.30)
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Thus, Theorem III.3 follows if we can �nd a constant C > 0 such that����D j(��)���Rg(�)
k+1  j(�)

E
�
D
 j(�)

���Rg(��)
k+1  j(��)

E ���� � C B2
� g

2 ; (III.31)

for all k 2 f0; 1; : : : ; Ng, ! 2 [�=4; �=2], and s 2 [0; S], where we denote

Rg(�) :=
�
Hg(�)� Ej � ! + is

��1
: (III.32)

To this end we introduce an unperturbed resolvent,

Q0(�) :=
�
H0(�)� Ej � ! � ig2

��1
; (III.33)

and we observe that, for g=j�j su�ciently small,


Rg(�)



 ; 


Q0(�)




 � Cj�j�1 ; (III.34)


Wg(�)Rg(�)



 ; 


Wg(�)Q0(�)




 � Cgj�j�1 ; (III.35)

and some constant C > 0, which is uniform in ! 2 [�=4; �=2] and s 2 [0; S].

Using the second resolvent equation, we obtain that

Rg(�) = Q0(�) � Q0(�)
h
Wg(�) + is+ ig2

i
Q0(�) (III.36)

+Q0(�)
h
Wg(�) + is + ig2

i
Rg(�)

h
Wg(�) + is+ ig2

i
Q0(�) :

We expand Rg(�)
k+1 by means of (III.36),

Rg(�)
k+1 = Q0(�)

k+1 �
k+1X
�=1

Q0(�)
�Wg(�)Q0(�)

k+2�� + Rem ; (III.37)

and (III.34){(III.35) show that there is a constant C � 0, depending on k

and �, such that

k Rem k � C g2 : (III.38)

Similarly, we �nd that

Rg(��)
k+1 = Q�

0(�)
k+1 �

k+1X
�=1

Q�
0(�)

�Wg(��)Q
�
0(�)

k+2�� + Rem0 ; (III.39)

k Rem0 k � C g2 (III.40)
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(note that Q�
0(�) 6= Q0(��)). Inserting the two identities (III.37) and (III.39)

into (III.31) and using (III.38) and (III.40), we observe that it su�ces to

prove that there is a constant C � 0 such that���� Im� D j(��)���Q0(�)
k+1  j(�)

E � ���� � C B2
� g

2 ; (III.41)���� D j(��)���Q0(�)
�Wg(�)Q0(�)

k+2��  j(�)
E ���� � C B2

� g
2 ; (III.42)

for all k 2 f0; 1; : : : ; Ng, � 2 f1; 2; : : : ; k + 1g, and ! 2 [�=4; �=2]. We

remark that (III.41) and (III.42) hold trivially for  j = 'j 
 
, where 'j is

an normalized eigenvector of Hel corresponding to the eigenvalue Ej.

To prove (III.42), we observe that, for any two vectors  2 D(Hm=2
f ),

' 2 D(Hn=2
f ), we have��� D ���Pel;j(�)Wg(�)Pel;j(�)'

E ��� (III.43)

�
2X

m+n=1

gm+n
Z 


Pel;j(�)wm;n(�(m); ~�(n); �)Pel;j(�)





ka(�(m)) k ka(~�(n))'kd�(m)d~�(n)

� C
2X

m+n=1

gm+n

 Z
J(k)2 d3k

!(k)

!(m+n)=2 D
 
���Hm

f  
E D

'
���Hn

f '
E

� C 0
2X

m+n=1

(��1g)
m+n




Hm=2
f  




 


Hn=2
f '




 ;
by Schwarz' inequality. Here we abbreviate the summation

P2
�1=1

� � �P2
�m=1R

d3k1 � � �d3km by d�(m), and �(m) := (k1; �1; : : : ; km; �m). Thus we have���� D j(��)���Q0(�)
�Wg(�)Q0(�)

k+2��  j(�)
E���� (III.44)

=

���� D�Q0(�)
�
��
 j(��)

���Pel;j(�)Wg(�)Pel;j(�)Q0(�)
k+2��  j(�)

E����
� C max

m+n=1;2

�
gm+n




Hm=2
f

�
Q0(�)

�
��
 j(��)




 


Hn=2
f Q0(�)

k+2��  j(�)



� ;

Next, we observe that�
Q0(�)

�
��
 j(��) =

�
e�

��Hf � ! + ig2
���

exp
h
�g�2e���Hf

i
Pel;j(��) �(��) ;

(III.45)
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and hence, for suitable constants C;C 0; C 00 � 0,


Hm=2
f

�
Q0(�)

�
��
 j(��)




 (III.46)

� C B� sup
r�0

����rm=2 �ei#r � ! + ig2
���

exp
h
�g�2ei#r

i ����
� C 0B� #

�1 sup
r�0

�
rm=2 exp

h
�g�2e#r

i �
� C 00B� #

�1
�
g2e#

�m=2
:

Inserting this and a similar estimate for kHn=2
f Q0(�)

k+2��  j(�)k into (III.44),
we obtain that���� D j(��)���Q0(�)

�Wg(�)Q0(�)
k+2��  j(�)

E���� � j�j�2B2
� max
m+n=1;2

n
(Cg2)m+n

o
= C j�j�2B2

� g
2 ; (III.47)

for some constant C � 0 and g > 0 su�ciently small. This proves (III.42).

Finally, we establish (III.41) by using the fact that we may analytically

continue in �, since the spectral parameter Ej + ! + ig2 in Q0(�) is in the

upper half-plane. ThusD
 j(��)

���Q0(�)
k+1  j(�)

E
=

D
 j(��)

��� (e���Hf � ! � ig2)�k�1  j(�)
E

=
D
 j(0)

��� (Hf � ! � ig2)�k�1  j(0)
E

(III.48)

=
D
Pel;j �

��� e�2Hf=g
2

(Hf � ! � ig2)�k�1 Pel;j �
E
:

Therefore,���ImD j(��)���Q0(�)
k+1  j(�)

E ��� � sup
r�0

�
e�2r=g

2
���Imn(r � ! � ig2)�k�1

o��� � :
(III.49)

Now, we use that ! � �=4. If r � !=2 then ! � r � �=8 and thus

j arg(r � ! � ig2)j � jIm(r � ! � ig2)j
jRe(r � ! � ig2)j �

8g2

�
: (III.50)

Hence, for r � !=2,

exp[�2g�2r]
���Imn(r � ! � ig2)�k�1

o��� � (k + 1)
�
8=�

�k+2
g2 : (III.51)

We point out that only for the derivation of (III.51) we need to estimate the

imaginary part of a matrix element rather than its magnitude. It remains to

consider the case r � !=2 � �=8. We estimate as follows,

exp[�2g�2r]
���Imn(r � ! � ig2)�k�1

o��� � g�2k�2 exp[��g�2=8] � C g2 ;

(III.52)
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for some constant C � 0. Inserting (III.51), (III.52) into (III.49), we obtain

(III.41) which, together with (III.42), �nishes the proof.

III.2 Resolvent Norm Estimates and the Proof of Theo-

rem III.1

The purpose of this subsection is to prove Theorem III.1, i.e., that Hg(�)� z
is invertible for z 2 Aj, where Aj is de�ned in (III.12), and its inverse obeys

the norm estimate 


 �Hg(�)� z
��1 


 � C dist

n
z ; Rj

o
; (III.53)

for some C > 0 and with Rj as de�ned in (III.10). Before we turn to the

actual proof, we outline our strategy. We distinguish the spectral parameters

z close to the eigenvalue Ej of Hel(�) from those which are away from Ej by

a certain minimal distance, �0=2, where

�0 := g2�2" ; (III.54)

and 0 < " < 1=3 is arbitrary but �xed. Note that, given any �; #; c > 0, we

have

�0 � � sin(#=2) and �0 � cg2�" ; (III.55)

provided g � 0 is su�ciently small.

For z 2 Aj nD(Ej; �0=2), a Neumann series expansion shows the inver-

tibility of Hg(�) � z and proves (III.53) for that region. This is proven in

Lemma III.12 below.

For z 2 D(Ej; �=2), the situation is more delicate, and we contruct the

inverse of Hg(�) � z by means of the Feshbach map discussed in detail in

[5, 6]. For this construction, we specify a partition of unity given by the

(non-orthogonal) projections

P (�) := Pel;j(�)
 �Hf<�0 and P (�) := 1� P (�) ; (III.56)

where Pel;j(�) := U�Pel;jU
�1
� and Pel;j is the (orthogonal) projection onto the

eigenspace of Hel corresponding to the eigenvalue Ej. In Lemma III.9 below

we prove that

Hg(�)P (�) � z is invertible on RanfP (�)g ; (III.57)
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where we denote AP := PAP . This property and some further relative

bounds of more technical nature stated in Lemma III.10, choosing � :=

2"(1 � ")�1 2 (0; 1), insure the existence of the Feshbach operator de�ned

by

FP (�) := FP (�)
�
Hg(�)� z

�
(III.58)

:= Hg(�)P (�) � z P (�) � P (�)WgP (�)
�
Hg(�)P (�) � z

��1
P (�)WgP (�) :

Moreover, the following identity holds,

�
Hg(�)� z

��1
=

�
P (�) � P (�)

�
Hg(�)P (�) � z

��1
WgP (�)

�
� F�1

P (�)

�
P (�) � P (�)WgP (�)

�
Hg(�)P (�) � z

��1�
+ P (�)

�
Hg(�)P (�) � z

��1
P (�) : (III.59)

Thus using bounds collected in Lemma III.10 below, we obtain that, for

z 2 D(Ej; �0=2),



 �Hg(�)� z
��1 



 =

�
1 + O(g��10 #�1)

� 


F�1
P (�)




 + O(1) : (III.60)

Next, a careful analysis of the Feshbach operator in Lemma III.11 yields that


FP (�) � (Ej + g2Zd
j (�) + g2Zod

j (�) + e��Hf)P (�)



 � O(g2+") ; (III.61)

for any 0 < " < 1=3, which immediately implies (III.53).

III.2.1 Estimates on the Dilated Atomic Hamiltonian

In this subsection, we start to implement the strategy of the proof of Theorem

III.1 outlined above. To begin with, we recall some de�nitions and notation.

The pure point spectrum of Hel is given by the set fE0; E1; : : : ; Ej; : : : g
contained in (�1;�), and its essential spectrum is contained in [�;1). We

assume that � � 0 and, we denote Ri := dist
�
Ei ; �(Hel)nfEig

�
> 0. Fixing

j � 1 { and we shall keep j � 1 �xed henceforth { we set � := Rj. So

denoting Hel(�) := U�HelU
�1
� , we can construct the projection Pel;i(�) onto

the eigenspace of Hel(�) corresponding to the eigenvalue Ei by using the

Dunford integral,

Pel;i(�) =
i

2�

Z
jz�Eij=Ri=2

dz

Hel(�)� z
; (III.62)



BFS-3, November 20, 1998 33

Next, we de�ne a �nite-rank projection Pdisc(�) by

Pdisc(�) :=
X

i:Ei����

Pel;i(�) ; (III.63)

where � is some �xed, strictly positive number. Note that

kPdisc(�) � Pdisc(0) k � C b j�j ; (III.64)

thanks to the relative bound (I.55),



�Hel(�)
�
Hel + i

��1 



 � b j�j ; (III.65)

where �Hel(�) := Hel(�)�Hel.

Our �rst result is the following bound.

Lemma III.4. Let z 2 C with Refzg < �� �. Then, for j�j
�
1 + (�� ��

Refzg)�1
�
su�ciently small, Hel(�)� z is invertible on RanfP disc(�)g and


 (Hel(�)� z)�1 P disc(�)




 � 2

�� �� Refzg : (III.66)

Proof: We �rst observe that Q := P disc(0)Hel(0)� z is globally invertible
on Hel, and since � � 0 we have

kQ�1k � max
n
j�� �� zj�1 ; j � zj�1

o
�

�
�� �� Refzg

��1
:

(III.67)

Similarly, we obtain

k (Hel(0) + i)Q�1 k = max

�
sup
r�0

���� r + �� �+ i

r + �� �� z

���� ; sup
E0�r����

����r + i

z

�����
� C1

�
1 +

�
�� �� Refzg

��1�
; (III.68)

for some constant C1 � 0. Inserting this and (III.64){(III.65), we obtain


�P disc(0)Hel(0)� P disc(�)Hel(�)
�
Q�1




 (III.69)

� C2 j�j
�
1 +

�
�� �� Refzg

��1�
; (III.70)

for some constant C2 � 0. Thus a Neumann series expansion yields


(Hel(�)� z)�1 P disc(�)



 =




(P disc(�)Hel(�)� z)�1 P disc(�)



 (III.71)

�




Q�1

1X
n=0

�
(P disc(0)Hel(0)� P disc(�)Hel(�))Q

�1
�n
P disc(�)





� 1

�� �� Refzg
1X
n=0

�
C2 j�j +

C2 j�j
�� �� Refzg

�n
� 2

�� �� Refzg ;
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for j�j
�
1 + (�� �� Refzg)�1

�
� (2C2)

�1.

Next, we extend Lemma III.4 to a global bound for the resolvent of Hel.

Lemma III.5. Let � > 0. For � = i# and # > 0 su�ciently small, there

exists a constant C � 0 such that Hel(�)�Ej + e��� is invertible on Hel and


 (Hel(�)� Ej + e���)�1



 � C (#�)�1 : (III.72)

Proof: We observe thatHel(�) commutes with Pdisc(�) =
P
i:Ei���� Pel;i(�)

and that

(Hel(�)� Ej + e���)�1 Pdisc(�) =
X

i:Ei����

(Ei � Ej + e���)�1 Pel;i(�) :

(III.73)

Thus, for some constant C 0 � 0,


 (Hel(�)� Ej + e���)�1 Pdisc(�)



 (III.74)

� max
i:Ei����

�
C 0

� #




Pel;i(�)


� �#nEi 2 �(Hel)
���Ei � �� �

o
:

Using the integral representation Pel;i(�) = (2�i)�1
R
jz�Eij=Ri=2

�
z�Hel(�)

��1
dz

together with the relative bound (III.65), we obtain that



Pel;i(�)


 � 1 +

O(j�j). Conversely, on RanfP disc(�)g we apply Lemma III.4 and obtain


 (Hel(�)� Ej + e���)�1 P disc(�)



 �

�
�� �� Ej + � � Refe��g

��1
� 2

�
cos(#)�

��1
: (III.75)

Lemma III.6. Let � = �i#, 0 < # < �0 and 0 < �0 � (�=3) sin#. There

exists a constant C � 0 such that, for all z 2 D(Ej; �0=2) and all r � 0,




 �Hel(�)� Ej + e��(�0 + r)
�� P el;j(�)

Hel(�)� z + e��r

� 




 � C : (III.76)
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Proof: Using 1 = Pdisc(�) + P disc(�) as in the proof of Lemma III.5, we

obtain that


X P el;j(�)



 (III.77)

�



X P disc(�)




 +
X

i:Ei���";i6=j

�����Ei � Ej + e��(�0 + r)

Ei � z + e��r

����� 


Pel;j(�)



�




X P disc(�)



 +

C sup

( ����t+ e��(�0 + r)

t + � + e��r

����
����� t 2 R n (��; �) ; � 2 D(0; �0=2)

)
;

where we denote

X :=
�
Hel(�)� Ej + e��(�0 + r)

� �
Hel(�)� z + e��r

��1
: (III.78)

We observe that minimization with respect to r � 0 yields����� t + � + e��r

t+ e��(�0 + r)

����� =

�����1 � e���0 � �

t + e��(�0 + r)

����� (III.79)

� 1 � 3�0

2

��
t+ (�0 + r) cos#

�2
+ (�0 + r)2 sin2 #

��1=2
� 1 � 3�0

2

�
(1� cos #)

�
t2 + (�0 + r)3

���1=2
� 1

2
;

additionally taking into account that �0 � (�=3) sin#. Hence


X P el;j(�)



 �




X P disc(�)



 + 2C : (III.80)

Next, we write

X P disc(�) = P disc(�) + (e���0 + z � Ej)
�
Hel(�)� z + e��r

��1
P disc(�) ;

(III.81)

and we obtain from Lemma III.4 that


X P disc(�)



 �




P disc(�)



 �1 + 3�0

2

�
�� �� Refzg

��1� � C ; (III.82)

and hence we arrive at the claim.
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III.2.2 Relative Bounds on the Interaction

In this subsection we use the estimates on the dilated electron Hamiltonian

derived in the previous subsection to obtain suitable relative bounds on the

interaction. To this end, we recall Eqns. (I.37){(I.45), and we introduce the

operator

B�(�) := H0(�)� Ej + e��� = Hel(�)� Ej + e��(Hf + �) : (III.83)

We shall generally assume that 0 < # � �0 and that 0 < �0 � (�=3) sin#. As

before, we denote Hg(�)P (�) := P (�)Hg(�)P (�) and H0(�)P (�) := H0(�)P (�).

Finally, for a closed operator A we denote jAj :=
p
A�A. We start with a

preparatory lemma.

Lemma III.7. For � = �i# and # 2 (0; �0) su�ciently small there exists a

constant C � 0 such that


 jB�(�)j�1 (Hf + !)



 � C

#

�
1 +

!

�

�
; (III.84)




 jB�(�)j�1 (Hel(0) + i)



 � C

#

�
1 +

1

�

�
; (III.85)

for all � > 0 and ! � 0.

Proof: By the functional calculus and Lemma III.5 we have


 jB�(�)j�1 (Hf + !)



 = sup

r�0

�


 �Hel(�)� Ej + e��(r + �)
��1 


 (r + !)

�

� C sup
r>0

�
r + !

#(r + �)

�
� C

#
max

�
1 ;

!

�

�
; (III.86)

which implies (III.84). To establish (III.85) we start with a similar observa-

tion, namely, that


 jB�(�)j�1 (Hel(0) + i)



 = sup

r�0




 Y 



Hel

; (III.87)

where

Y :=
�
Hel(�)� Ej + e��(r + �)

��1
(Hel(0) + i) : (III.88)

We observe the following identity,

Y = 1 � Y (Hel(0) + i)�1�Hel(�) (III.89)

+
�
i+ Ej � e��(r + �)

� �
Hel(�)� Ej + e��(r + �)

��1
:
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Solving for Y and applying Lemma III.5, we obtain

kX(�)k � 1

1� bj�j

�
1 + C ji+ Ej � e���j

�
1 +

1

# �

� �
� C

�
1 +

1

# �

�
:

(III.90)

Now, we come to the main relative bound used in this section.

Lemma III.8. For �; �1; �2 2 f�i#g, 0 < � < 1, and # 2 (0; �0) su�ciently

small there exists a constant C� � 0 such that


 jB�1(�)j�1=2Wm;n(�) jB�2(�)j�1=2



 � C�

�
1 + ��1=2

�
; (III.91)




 jB�1(�)j�1=2Wm;n(�)P (�)



 � C�

�
1 + ��1=2

�
(�+ �0)

1=2 �
n�=2
0 ; (III.92)


 P (�)Wm;n(�) jB�2(�)j�1=2




 � C�
�
1 + ��1=2

�
(�+ �0)

1=2 �
m�=2
0 ; (III.93)


 P (�)Wm;n(�)P (�)




 � C�
�
1 + ��1=2

�
(�+ �0) �

(m+n)�=2
0 ; (III.94)

for all � > 0.

Proof: We �rst observe that a�(~k)B�(�) = B�(�+ !(k))a�(~k) and thus

a�(~k) jB�(�)j2 = a�(~k)B��(�)B�(�) (III.95)

= B��(�+ !(k))B�(�+ !(k)) a�(~k) = jB�(�+ !(k))j2 a�(~k) :

Thus, functional calculus implies the Pull-Through Formulae

a�(~k) jB�(�)j�1=2 = jB�(�+ !(k))j�1=2 a�(~k) ; (III.96)

jB�(�)j�1=2 a��(~k) = a��(
~k) jB�(�+ !(k))j�1=2 : (III.97)

Using (III.96){(III.97), we observe that, for any  2 H,


 jB�1(�)j�1=2W0;1(�) jB�2(�)j�1=2  



 (III.98)

=







2X

�=1

Z
d3k jB�1(�)j�1=2w0;1(~k; �; �) jB�2(�+ !)j�1=2 a�(~k) 







= sup

�=1;2

(Z 



jB�1(�)j�1=2 w0;1(~k; �; �) jB�2(� + !)j�1=2
�
Hf + !

�1=2 



2 d3k!
)1=2

�
(

2X
�=1

Z 



�Hf + !
��1=2

a�(~k) 





2 ! d3k
)1=2

;
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where here and henceforth we denote ! := !(k) and !0 := !(k0). Note that

there is an additional constraint !(k) � �0 in the integrals on the right side of

(III.98) if we require that  2 Ran�Hf<�0 . The last factor in (III.98) equals

(
2X

�=1

Z �
 

����P?

 H

�1=2
f a��(

~k)a�(~k)H
�1=2
f P?


  

�
! d3k

)1=2

� k k : (III.99)

Since furthermore Hf + ! commutes with and B�1(�) and w0;1(~k; �; �), we

may use (I.42) and Lemma III.7 to estimate




jB�1(�)j�1=2w0;1(~k; �; �) jB�2(�+ !)j�1=2
�
Hf + !

�1=2 


 (III.100)

�



jB�1(�)j�1=2

�
Hf + !

�1=2 


 � 


w0;1(~k; �; �) jHel(0) + ij�1=2





�



jHel(0) + ij1=2 jB�2(�+ !)j�1=2

�
Hf + !

�1=2 



� C

#

�
1 +

!

�

�1=2 �
1 +

1

� + !

�1=2
J(k)

� C

#

�
1 +

1

�

�1=2
(1 + !)1=2 J(k) ;

for some constant C � 0. Inserting (III.100) and (III.99) into (III.98), we

obtain that


 jB�1(�)j�1=2W0;1(�) jB�2(�)j�1=2



2 (III.101)

� C

#2

�
1 + ��1

� Z �
1 + !(k)�1

�
J(k)2 d3k � C (�0 + ��1)

#2

�
1 + ��1

�
;

for some constant C � 0. Similarly, by additionally requiring that  2
Ran�Hf<�0 , we obtain that




 jB�1(�)j�1=2W0;1(�) jB�2(�)j�1=2 �Hf<�0




2
� C

#2

�
1 + ��1

� Z
!(k)��0

�
1 + !(k)�1

�
J(k)2 d3k

� C �
�
0

#2

�
1 + ��1

� Z �
!(k)�� + !(k)�1��

�
J(k)2 d3k

� C (��� + ��1��) �
�
0

#2

�
1 + ��1

�
: (III.102)

The estimate for W1;0(�) is similar. Next, we derive (III.91) in the case of
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W0;2(�). Picking  2 H, we observe that


 jB�1(�)j�1=2W0;2(�) jB�2(�)j�1=2  



 (III.103)

� sup
�;�0=1;2

(Z 



jB�1(�)j�1=2 w0;2(~k;~k
0; �; �0; �)

jB�2(� + ! + !0)j�1=2
�
Hf + ! + !0

� 



2 d3k d3k0! !0

)1=2

�
(

2X
�;�0=1

Z 



�Hf + ! + !0
��1

a�0(~k0)a�(~k) 





2 ! !0 d3k
)1=2

:

Again, we have the additional constraint !(k) � �0 in the integrals on the

right side of (III.103) if we require that  2 Ran�Hf<�0 . The last factor is

bounded by k k. Thus Eqn. (I.43) and Lemma III.7 imply that, for some

constants C � 0,


 jB�1(�)j�1=2W0;2(�) jB�2(�)j�1=2



2 (III.104)

�
Z 



jB�1(�)j�1=2

�
Hf + ! + !0

�1=2



2
�




jB�2(� + ! + !0)j�1=2

�
Hf + ! + !0

�1=2



2 J(k)2 J(k0)2 d3k d3k0! !0

� C

#2

Z �
1 +

! + !0

�

��
1 +

! + !0

�+ ! + !0

�
J(k)2 J(k0)2 d3k d3k0

! !0

� C (�0 + ��1)
2

#2

�
1 + ��1

�
;

and 


 jB�1(�)j�1=2W0;2(�) jB�2(�)j�1=2 �Hf<�0




2 (III.105)

� C (��� + ��1��) �
2�
0

#2

�
1 + ��1

�
:

Estimates similar to (III.103){(III.104) establish (III.91) in the remaining ca-

ses, i.e., forW1;1(�) andW2;0(�). Finally, we observe that P (�) = �Hf<�0 P (�)

and 


B�(�)P (�)



 =




 (Hf + �)P (�)



 = �0 + � ; (III.106)

which together with (III.102) and (III.105) yields (III.92){(III.94).
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III.2.3 Domain of the Feshbach Map

In the following subsection we apply the relative bounds from Lemma III.8

to prove that, for z su�ciently close to Ej, the Feshbach map with projection

P (�) is applicable to Hg(�)� z.

Lemma III.9. Let �0 < (�=3) sin#, and assume that # 2 (0; �0) is suf-

�ciently small. Then, for g�
�1=2
0 > 0 su�ciently small and for all z 2

D(Ej; �0=2), the operator Hg(�)P (�) � z is invertible on RanfP (�)g, and




 �Hg(�)P (�) � z

��1
P (�)





 � C

#�0
; (III.107)

for some constant C � 0.

Proof: We construct
�
Hg(�)P (�) � z

��1
P (�) by a norm-convergent Neu-

mann series,

�
Hg(�)P (�) � z

��1
P (�) =

1X
n=0

 
P (�)

H0(�)� z

!"
�Wg(�)

 
P (�)

H0(�)� z

! #n
:

(III.108)

We estimate the norm of the term in nth order by means of Lemma III.8,





 

P (�)

H0(�)� z

!"
�Wg(�)

 
P (�)

H0(�)� z

! #n




 (III.109)

�




 ���B�(�0)

���1=2 � P (�)

H0(�)� z

� ���B��(�0)
���1=2 



n+1


 jB��(�0)j�1=2




 � 


 jB�(�0)j�1=2



 � 


 jB��(�0)j�1=2Wg(�)jB�(�0)j�1=2




n
� C

#�0

�
C g �

�1=2
0

�n
:

This proves the convergence of the Neumann series (III.108) in norm.

Lemma III.9 is the main ingredient used to prove the existence of the

Feshbach operator de�ned in (III.58){(III.60).

Lemma III.10. Let �0 < (�=3) sin#, and assume that # 2 (0; �0) and g > 0

are su�ciently small. Then, for all z 2 D(Ej; �0=2), the Feshbach opera-

tor de�ned in (III.58) exists and obeys Eqn. (III.59). Moreover, for some
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constant C � 0, we have


P (�)Wg(�)P (�)
�
Hg(�)P (�) � z

��1
P (�)




 ;


P (�) �Hg(�)P (�) � z
��1

P (�)Wg(�)P (�)





9>=>; � Cg

# �
1=2
0

: (III.110)




P (�)Wg(�)P (�)



 � Cg �

1=2
0

#
: (III.111)

Proof: The proof of (III.110) is similar to the one for Lemma III.9. Then

Lemma III.9 and (III.108) imply the existence of the Feshbach operator de-

�ned in (III.58) and that it obeys Eqn. (III.59) (see, e.g., [5, 6]).

We �nally establish two lemmata which, inserted into (III.61) and (III.53),

prove Theorem III.1.

Lemma III.11. Let 0 < " < 1=3, �0 := g2�2", 0 < � < 1, and assume that

# 2 (0; �0) and g > 0 are su�ciently small and such that �0 < (�=3) sin#.

Then, for all z 2 D(Ej; �0=2),


FP (�) � (Ej + g2Zd
j (�) + g2Zod

j (�) + e��Hf)P (�)



 (III.112)

� C
�
g2+" + g2+2�(1�") + g1+(1+�)(1�") + g4�2"

�
;

for some constant C � 0.

Proof: Recall from (III.58) and (III.7){(III.8) that

FP (�) := FP (�)
�
Hg(�)� z

�
(III.113)

:= Hg(�)P (�) � z P (�) � P (�)WgP (�)
�
Hg(�)P (�) � z

��1
P (�)WgP (�)

and

Zod
j (�) :=

X
�=1;2

Z
U�Pel;jw0;1(~k; �)P

?
el;j (III.114)

�
Hel � Ej + !(~k)� i0

��1
P?
el;jw1;0(~k; �)Pel;jU

�1
� d3k ;

Zd
j (�) :=

X
�=1;2

Z
U�Pel;jw0;1(~k; �)Pel;j w1;0(~k; �)Pel;jU

�1
�

d3k

!(~k)
; (III.115)
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where Pel;j = Pel;j(� = 0) =
Pnj
`=1 j'j;`ih'j;`j is the orthogonal projection onto

the eigenspace of Hel corresponding to the eigenvalue Ej. As in [5], we write

the di�erence to be estimated as a sum of six error terms,

FP (�) � (Ej + g2Zd
j (�) + g2Zod

j (�) + e��Hf)P (�) =
5X

�=0

Rem� ; (III.116)

where (compare to [5, (IV.58), (IV.60), (IV.68), (IV.77), (IV.101), (IV.86),

and (IV.87)])

Rem0 := P (�)Wg(�)P (�)

"�
P (�)Hg(�)P (�)� z

��1
(III.117)

�
�
P (�)H0(�)P (�)� z

��1#
P (�)Wg(�)P (�) ;

Rem1 := P (�)Wg(�)P (�)
�
P (�)HgP (�)� z

��1
P (�)Wg(�)P (�) (III.118)

� g2P (�)
�
W0;1(�) +W1;0(�)

� P (�)

H0 � z

!�
W0;1(�) +W1;0(�)

�
P (�) ;

Rem2 := g2 P (�)
�
W0;1(�) +W1;0(�)

� P (�)

H0 � z

!�
W0;1(�) +W1;0(�)

�
P (�)

� g2
2X

�=1

Z
P (�)w0;1(~k; �)

"
P (�;!(k))

H0 + e�i#!(k)� z

#
w1;0(~k; �)P (�) d

3k ;

(III.119)

where P (�; !) := Pel;j(�)�Hf+!<�0 ,

Rem3 := P (�)Wg(�)P (�) ; (III.120)

Rem4 := g2
2X

�=1

Z
dk Pel;j w0;1(~k; �) (III.121)

24
�
e�i#Hf + Ej � z

�
P el;j �Hf<�0�

B�(!(k)) + Ej � z
� �
Hel � Ej + e�i#!(k)

�
35w1;0(~k; �)Pel;j�Hf<�0 ;

Rem5 := g2
�Z � X

�=1;2

Pel;jw0;1(~k; �)Pel;j w1;0(~k; �)Pel;j

�
(III.122)

h
e�i# (Hf + !(k)) + Ej � z

i�1
�Hf+!(k)��0dk � Zd

j (�)

�
�Hf<�0 :
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We �rst rewrite Rem0 using the second resolvent equation which yields

Rem0 = P (�)Wg(�)P (�)
�
P (�)Hg(�)P (�)� z

��1
P (�)Wg(�)P (�)�

P (�)H0(�)P (�)� z
��1

P (�)Wg(�)P (�) : (III.123)

Then an application of Lemma III.8 gives

kRem0 k � Cg3

#2 �
1=2
0

= O
�
g2+"

�
: (III.124)

Second, a similar estimate yields

kRem1 k � Cg3

#2 �
1=2
0

= O
�
g2+"

�
: (III.125)

The derivation of these two estimates, (III.124) and (III.125), is similar to

[5, (IV.58){(IV.62)].

Third, we observe that

Rem2 =
2X

�;�0=1

Z
dk dk0

(
(III.126)

P (�)w1;0(k; �; �) a
�(k)a�(k0)

"
P (!(k0))

H0 + e�i#!(k0)� z

#
w1;0(k

0; �0; �)P (�)

+P (�)w0;1(k; �; �)

"
P (�; !(k))

H0 + e�i#!(k)� z

#
w0;1(k

0; �0; �) a(k)a(k0)P (�)

+P (�)w0;1(k; �; �) a
�(k0)"

P (�; !(k) + !(k0))

H0+ e�i#(!(k) + !(k0))� z

#
w1;0(k

0; �0; �) a(k)P (�)

+P (�)w1;0(k; �; �) a
�(k)

"
P (�)

H0 � z

#
w0;1(k

0; �0; �) a(k0)P (�)

)

(compare to [5, (IV.66)]), which is of the form P (�)
�fW2;0(�) +

fW0;2(�) +fW1;1(�)
�
P (�). A somewhat lengthy estimate analogous to [5, Lemma IV.9]

yields, after using (III.92){(III.93),

kRem2 k = O
�
g2+2�(1�")

�
: (III.127)

Fourth, we apply (III.94) and directly obtain

kRem3 k = O
�
g �

(1+�)=2
0

�
= O

�
g1+(1+�)(1�")

�
: (III.128)
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In order to estimate Rem4, we observe that when restricted to RanP el;j,

the resolvents of B�(!(k)) + Ej � z and Hel � Ej + e�i#!(k) are boun-

ded by a constant C � 0. Since, furthermore, z � Ej 2 D(Ej; �0=2) and

kHf �Hf<�0 k = �0, the fraction in the integrand on the right side of (III.121)

is bounded in norm by 2C�0, and we thus obtain

kRem4 k � O
�
g2 �0

�
� O

�
g4�2"

�
: (III.129)

Finally, a similar argument, which is along the lines of [5, Lemma IV.12],

yields

kRem5 k � O
�
g2 �

�
0

�
� O

�
g2+2�(1�")

�
: (III.130)

Adding up all error terms, taking into account that 0 < � < 1, we arrive at

(III.112).

Lemma III.12. Let 0 < " < 1, �0 := g2�2" and assume that # 2 (0; �0)

and g > 0 are su�ciently small and such that �0 < (�=3) sin# and �0 �
�2�#�1 minfImAjg. Then, for all z 2 Aj nD(Ej; �0=2),


 �Hg(�)� z

��1 


 � Cdist
h
z ; Rj

i�1
; (III.131)

for some constant C � 0.

Proof: We �rst consider all eigenvalues Ei of Hel(�) below � � �. Since

the eigenvalue closest to z is Ej, there exists a constant c > 0 such that

min
Ei����

�
dist

h
z ; Ei + e�#R+

i�
� c # dist

h
z ; Ej + e�#R+

i
; (III.132)

for any z 2 Aj n D(Ej; �0=2). Thus, on RanfPdisc(�)g (see Eqns. (III.62){

(III.62)) we have




 Pdisc(�)

H0(�)� z






 � C max
Ei����

�
dist

h
z ; Ei + e�#R+

i�1�

� C

c #
dist

h
z ; Ej + e�#R+

i�1
: (III.133)

Moreover, since �0 � �2�#�1 minfImAjg, for g > 0 su�ciently small, we

have �#=2 � arg(z�Ej) � �+#=2, for any z 2 Aj nD(Ej; �0=2). Therefore,
we also have the estimate




B�(�0)Pdisc(�)

H0(�)� z






 � C sup
r>0

max
Ei����

(
r + �0

jEi � z + e�i#rj

)
� C #�2 ;

(III.134)
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for some C � 0.

Second, on RanfP disc(�)g we employ Lemma III.4 to prove a similar

bound,




 P disc(�)

H0(�)� z






 ;





B�(�0)P disc(�)

H0(�)� z






 � C

#
� C 0

#
dist

h
z ; Ej + e�#R+

i�1
;

(III.135)

for some constants C;C 0 � 0. Summarizing (III.133), (III.134), (III.135),

and observing that dist
h
z ; Ej + e�#R+

i
� c dist

h
z ; Rj

i
, for some c > 0,

we obtain




 1

H0(�)� z






 � C #�1

dist
h
z ; Rj

i and






 B�(�0)

H0(�)� z






 � C #�1 ; (III.136)

for some constant C � 0 and all z 2 Aj nD(Ej; �0=2). So, �nally, we obtain
the invertibility of Hg(�)� z and (III.131) from an expansion in a Neumann

series as in (III.108){(III.109).
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