
SPECTRAL ANALYSIS OF FOKKER–PLANCK AND
RELATED OPERATORS ARISING FROM LINEAR

STOCHASTIC DIFFERENTIAL EQUATIONS∗

DANIEL LIBERZON† AND ROGER W. BROCKETT‡

SIAM J. CONTROL OPTIM. c© 2000 Society for Industrial and Applied Mathematics
Vol. 38, No. 5, pp. 1453–1467

Abstract. We study spectral properties of certain families of linear second-order differential
operators arising from linear stochastic differential equations. We construct a basis in the Hilbert
space of square-integrable functions using modified Hermite polynomials, and obtain a representation
for these operators from which their eigenvalues and eigenfunctions can be computed. In particular,
we completely describe the spectrum of the Fokker–Planck operator on an appropriate invariant
subspace of rapidly decaying functions. The eigenvalues of the Fokker–Planck operator provide
information about the speed of convergence of the corresponding probability distribution to steady
state, which is important for stochastic estimation and control applications. We show that the
operator families under consideration can be realized as solutions of differential equations in the
double bracket form on an operator Lie algebra, which leads to a simple expression for the flow of
their eigenfunctions.
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1. Introduction. Given a system of stochastic differential equations, one can
associate with it a (deterministic) partial differential equation which describes the
evolution of the probability density with time. This so-called Fokker–Planck equation
takes the form

∂ρ

∂t
= Lρ,(1)

where L is a second-order linear differential operator known as the Fokker–Planck
operator. If g0, g1, g2, . . . are the eigenfunctions of L corresponding to distinct eigen-
values λ0, λ1, λ2, . . . , then the solution of (1) with initial condition

ρ(0, x) =
∞∑
i=0

αigi(x), αi ∈ R,

is given by

ρ(t, x) =

∞∑
i=0

αie
λitgi(x).
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Thus the eigenvalues of the Fokker–Planck operator L, particularly the one with the
smallest magnitude, provide information about the speed of convergence of the prob-
ability distribution to steady state (when one exists), which is important in stochastic
filtering and control applications. For a discussion along these lines and examples, see
[3].

In the paper by Holley, Kusuoka, and Stroock [14], and more recently in [7], [8],
[9], spectral properties of Fokker–Planck operators associated with certain types of
nonlinear stochastic systems were investigated with the view towards applications to
function minimization procedures. In this paper we confine our attention to Fokker–
Planck operators that correspond to linear stochastic differential equations. An under-
standing of their spectral properties, besides being of interest in its own right, under
certain circumstances helps shed some light on the nonlinear case (see [16, p. 88]). As
in [14], we consider these operators as acting on a dense subspace of L2(Rn) (rather
than L1(Rn) which might seem more natural from the probabilistic point of view).
We apply a standard gauge transformation technique to convert them to self-adjoint
operators, which greatly facilitates the analysis.

The paper starts with the one-dimensional case. Motivated by the explicit form of
the steady-state probability density, we modify the classical Hermite polynomials by
introducing one additional parameter σ (in our context, σ corresponds to the steady-
state variance). This construction leads to an orthonormal basis for L2(R) with respect
to which the operators under consideration take a particularly transparent form. The
representation thus obtained allows us to compute their eigenvalues and eigenfunctions
directly. As a result, we are able to provide a complete description of the spectrum of
the Fokker–Planck operator on an appropriate invariant subspace of rapidly decaying
functions. We then show that the essential features of this analysis carry over to
the multidimensional case and enable us to obtain information about eigenvalues of
Fokker–Planck operators in a more general setting.

Moreover, we observe that the operator families parameterized by σ can be de-
scribed by differential equations on an operator Lie algebra which take the so-called
double bracket form dL

dσ = [L, [L,M ]]. This leads to a simple expression for the flow
of the corresponding eigenfunctions. The study of differential equations in the double
bracket form on finite-dimensional Lie algebras was initiated in [2] and [6] in con-
nection with integrable gradient flows and numerical algorithms. It was shown, in
particular, that such equations give rise to isospectral flows. In this paper we present
what seems to be a new framework in which double bracket equations appear. The
corresponding flows on an operator Lie algebra preserve the eigenvalues (actually, the
entire spectrum in the self-adjoint case). This property is supported by probabilistic
intuition.

The paper is organized as follows. In section 2 we construct an orthonormal basis
in L2(R) using modified Hermite polynomials. In section 3 we study second-order
differential operators arising from scalar linear stochastic differential equations. In
section 4 we treat the multidimensional case, giving generalizations of the previous
results. In section 5 we discuss double bracket differential equations on an operator Lie
algebra and indicate connections with some known results on completely integrable
gradient flows.

2. Orthonormal bases in L2(R). It is well known (see, e.g., [15, p. 121]) that
the Hermite functions

uk(x) = hk(x)e
−x2/2, k = 0, 1, . . . ,(2)
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where hk(x) =
1

π1/4
√

2kk!
ex

2 dke−x2

dxk are the Hermite polynomials, form an orthonormal

basis for L2(R). We consider here the modified Hermite polynomials

hk(x, σ) :=

√
σk

(σπ)1/4
√
2kk!

ex
2/σ d

ke−x2/σ

dxk
, k = 0, 1, . . . ,

where σ > 0 is a real parameter, and introduce the modified Hermite functions

uk(x, σ) := hk(x, σ)e
−x2/2σ = ck(σ)e

x2/2σ d
ke−x2/σ

dxk
(3)

with constants ck(σ) given by the relations

ck(σ) =

√
σk

(σπ)1/4
√
2kk!

.(4)

The functions (3) reduce to those given by (2) for σ = 1. Various modifications
of the classical Hermite polynomials, analogous to (and more general than) the one
considered here, can be found in the literature [10], [13].

Lemma 1. For any σ > 0, the functions (3) form an orthonormal basis for
L2(R).

Proof. We have

〈uk(x, σ), ul(x, σ)〉 = ck(σ)cl(σ)

∫ ∞

−∞
ex

2/σ d
ke−x2/σ

dxk

dle−x2/σ

dxl
dx

= ck(1)cl(1)

∫ ∞

−∞
ey

2 dke−y2

dyk
dle−y2

dyl
dy,

where we have made the change of variable x =
√
σ y. The statement of the lemma

follows from the fact that the Hermite functions (2) form an orthonormal basis for
L2(R).

3. Fokker–Planck operators in L2(R). Let us consider the linear stochastic
differential equation in the Itô sense

dx = −ax dt+ b dw, a > 0,(5)

where x ∈ R and w is a standard Wiener process. The reader may consult [11] for
basic concepts of the theory of stochastic differential equations. The equation for the
steady-state probability density that corresponds to (5) is L(a, b)ρ(x) = 0, where

L(a, b)ρ :=
b2

2
ρxx + axρx + aρ(6)

and ρx and ρxx denote the first and the second derivatives of ρ, respectively. The
operator L(a, b) is the Fokker–Planck operator associated with (5). Define

σ =
b2

2a
.(7)

The steady-state probability density is then given by ρ̄(x) = Ne−x2/2σ, where N > 0
is a normalization constant. Dividing the Fokker–Planck operator L(a, b) by a, we are
led to studying a one-parameter family of differential operators, Lσ, defined by

Lσρ :=
1

a
L(a,

√
2aσ)ρ = σρxx + xρx + ρ , σ > 0.(8)
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Before proceeding, we need to specify the domain of the above operators. It is easy
to see that Lσuk(x, σ) ∈ L2(R) for each k, and Lσ is well defined by the formula (8) on
the dense subspace U of L2(R) consisting of finite linear combinations of the functions
uk(x, σ). We then define Lσ to be the minimal closed linear operator in L2(R) such
that Lσρ is given by (8) whenever ρ ∈ C2(R)∩L2(R) and σρxx+xρx+ρ ∈ L2(R). We
thus obtain an operator Lσ : DLσ

→ L2(R), where DLσ
is a dense subspace of L2(R)

that contains U . Throughout the paper, unless specified otherwise, all differential
operators are to be interpreted in the above sense.1 For details on defining differential
operators in this way, see [12].

The analysis of the operators Lσ is complicated by the fact that they are not
self-adjoint. There is a standard technique which allows one to convert these oper-
ators to self-adjoint ones (this is sometimes referred to as gauge, or ground state,
transformation). In our case, write ρ = vf, where the function v is to be fixed. We
have

Lσ(vf) = σvxxf + 2σvxfx + σvfxx + xvxf + xvfx + vf.

We see that in order for the first-order derivatives to disappear, v must satisfy the

equation vx = − x

2σ
v. Letting

v = e−x2/4σ(9)

we obtain v−1Lσ(vf) = σfxx + ( 1
2 − x2

4σ )f .

Motivated by the above discussion, we define a new operator family, Tσ, by the
formula

Tσρ := σρxx +
(1
2
− x2

4σ

)
ρ, σ > 0.(10)

For any positive σ, the operator Tσ is closed and self-adjoint, its domain being a dense
subspace DTσ of L2(R) (defined as explained before).

We know that Lσu0(x, σ) = Lσc0e
−x2/2σ = 0, i.e., e−x2/2σ is an eigenfunction

with the eigenvalue zero. To investigate the spectral properties of the operators Lσ

and Tσ, it seems natural to use the basis given by the modified Hermite functions (3)
(with the same value of σ). We first carry out direct calculations for the family Lσ,
setting the stage for the multidimensional case. We will then see that the analysis
of the self-adjoint operators Tσ is more straightforward and allows one to obtain
precise information about the spectrum of the original Fokker–Planck operator on an
appropriate space of rapidly decaying functions.

Proposition 2. The spectrum of the operator Lσ : DLσ → L2(R) is independent
of σ. For any σ > 0, the eigenvalues of Lσ are all numbers in the half-plane {λ ∈ C :
Reλ < 1/2}.

1Alternatively, C2(R) here could be replaced by the space of functions ρ : R → R such that ρx
exists and is absolutely continuous, i.e., the space of twice weakly differentiable functions for which
the differential expression (8) is defined almost everywhere.
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Proof.2 Straightforward computations give

Lσuk(x, σ) = ck(σ)

[(
2 +

2x2

σ

)
ex

2/2σ d
ke−x2/σ

dxk

+3xex
2/2σ d

k+1e−x2/σ

dxk+1
+ σex

2/2σ d
k+2e−x2/σ

dxk+2

]
.

(11)

We introduce the notation dk(x, σ) = ex
2/2σ d

ke−x2/σ

dxk
, so that (11) becomes

Lσuk = ck

((
2 +

2x2

σ

)
dk + 3xdk+1 + σdk+2

)
.(12)

To obtain recurrence relations on dk, notice that by Newton’s binomial formula we
have

dk+1 = ex
2/2σ

(
−2x

σ

dke−x2/σ

dxk
− 2k

σ

dk−1e−x2/σ

dxk−1

)

which in the new notation becomes

dk+1 = −2x

σ
dk − 2k

σ
dk−1 .(13)

From (13) we obtain

xdk = −σ

2
dk+1 − kdk−1, k = 1, 2, . . . ,(14)

and also (multiplying both sides of (13) by x and then using (14))

2x2

σ
dk = (2k + 1)dk +

σ

2
dk+2 +

2k(k − 1)

σ
dk−2.(15)

Combining (12)–(15) gives

Lσuk = ck

(
−kdk +

2k(k − 1)

σ
dk−2

)
(16)

and we see that the terms containing dk+2 disappear. Moreover, notice that we have

2k(k − 1)

σ
ck =

√
k(k − 1) ck−2.(17)

The formulas (16) and (17) imply that with respect to the basis (3) the operator Lσ

takes the upper triangular form as given by

Lσuk(x, σ) = −kuk(x, σ) +
√
k(k − 1)uk−2(x, σ).(18)

From (18) it immediately follows that the spectrum of Lσ is independent of σ.
Moreover, it is easy to see that the nonpositive integers are eigenvalues of Lσ. The

2The proofs in this section are given in sketched form; full details can be found in [16].
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corresponding eigenfunctions are finite linear combinations of the basis elements uk

and thus belong to C∞(R) ∩ L2(R). They do not, however, form a complete set of
eigenfunctions. The formula (18) implies that the existence of an eigenfunction of Lσ

with an eigenvalue λ is equivalent to the convergence of at least one of the series

∞∑
n=1

λ2(λ+ 2)2 · · · (λ+ 2n− 2)2

(2n)!

and

∞∑
n=1

(λ+ 1)2(λ+ 3)2 · · · (λ+ 2n− 1)2

(2n+ 1)!
.

Using Gauss’ test for convergence (see, e.g., [18]), one can show in a straightforward
manner that each series converges if Reλ < 1/2 and diverges if Reλ ≥ 1/2.

We can gain more insight into the spectral properties of the operator Lσ from its
probabilistic interpretation. Recall that Lσ was defined in terms of the Fokker–Planck
operator L(a, b) via the formula (8). It follows from Proposition 2 that the eigenvalues
of L(a, b) are all numbers in the half-plane {λ ∈ C : Reλ < a/2}. (However, it can be
deduced from (1) that any eigenfunction of L(a, b) that is nonnegative and belongs to
L1(R) must be proportional to the steady-state probability density, which corresponds
to the eigenvalue zero.) The fact that the spectrum of L(a, b) does not depend on the
noise coefficient b should not be surprising if we notice that we can change b by simply
rescaling x; i.e., substituting y = px in (5) for an arbitrary p ∈ R gives ẏ = −ay+pbẇ.
It is easy to check that the spectrum of the Fokker–Planck operator associated with
(5) is not affected by such changes of variable.

We now turn our attention to the family of self-adjoint operators Tσ defined
by (10). It is well known that Hermite polynomials appear frequently in expressions
for eigenfunctions of self-adjoint linear second-order differential operators. The next
proposition shows that the eigenfunctions of Tσ are given by the modified Hermite
functions (3) and is to be considered as a preparation for a more general result to be
presented in the next section. For σ = 1/2, the statement reduces to a standard result
involving the classical Hermite functions (see, e.g., [1, p. 256]).

Proposition 3. For any σ > 0, the spectrum of the operator Tσ : DTσ
→ L2(R)

consists of the nonpositive integers, all of which are eigenvalues. The corresponding
eigenfunctions are the functions uk(x, 2σ), i.e., Tσuk(x, 2σ) = −k uk(x, 2σ).

Proof. For ρ = ex
2/4σ dke−x2/2σ

dxk one can verify that

Tσρ = ex
2/4σ d

ke−x2/2σ

dxk
+ xex

2/4σ d
k+1e−x2/2σ

dxk+1
+ σex

2/4σ d
k+2e−x2/2σ

dxk+2

which in our previous notation becomes

Tσdk(x, 2σ) = dk(x, 2σ) + xdk+1(x, 2σ) + σdk+2(x, 2σ).(19)

Replacing σ by 2σ in (14) and substituting into (19), we arrive at

Tσdk(x, 2σ) = −k dk(x, 2σ).

This immediately implies the second part of the statement. The first part of the state-
ment follows from this, since we have found an orthonormal basis in L2(R) consisting
of eigenfunctions of Tσ.
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As a consequence, the eigenvalues of the original operator Lσ restricted to the
space of functions of the form ρ = vf, where v is given by (9) and f ∈ DTσ , are the
nonpositive integers. The eigenfunction that corresponds to the eigenvalue −k is given

by e−x2/4σuk(x, 2σ) = ck(2σ)
dke−x2/2σ

dxk . This leads us to a complete characterization of
the spectrum of the Fokker–Planck operator L(a, b) restricted to an appropriate space
of rapidly decaying functions. Namely, let us denote by Lσ the space of functions that

can be represented by finite linear combinations of the form
∑m

k=1 αk
dke−x2/2σ

dxk , αk ∈
R. From the definitions of Lσ and Tσ and from Proposition 3 we immediately obtain
the following result.

Corollary 4. The space Lσ is invariant with respect to the Fokker–Planck
operator L(a, b) associated with (5). The spectrum of the restriction of L(a, b) to Lσ

consists of the numbers 0, −a, −2a, −3a, . . . , all of which are eigenvalues.

Remark 1. The eigenfunctions of Lσ on Lσ found above form an orthonormal
basis for the space L2(R, ex

2/2σdx), on which the operator Lσ can be shown to be

self-adjoint. If instead of Lσ we consider a dense subspace of L2(R, ex
2/2σdx) contain-

ing Lσ, which can be constructed as explained at the beginning of the section, the
statement about the spectrum still applies. Clearly, this larger subspace is no longer
invariant under the action of L(a, b). The operator Tσ is convenient because it is
self-adjoint with respect to the standard inner product on L2(R).

We see in view of (7) that as the value of a increases while the noise coefficient b
stays constant, the rate of decay of functions in Lσ becomes more rapid and so does
the convergence to steady state. If we fix one member of the family {Tσ : σ > 0}, say,
T1/2, then for any value of σ the operator Tσ can be expressed as Tσ = Θ−1

σ T1/2Θσ,
where Θσ is the unitary operator defined by Θσuk(x, 2σ) = uk(x, 1) = uk(x). We will
use this observation in section 5.

4. Fokker–Planck operators in L2(Rn). Consider the system of linear stochas-
tic differential equations

dx = Axdt+B dw , x ∈ R
n,(20)

where w is a standard m-dimensional Wiener process and A and B are matrices of
suitable dimensions. Recall that separable functions, i.e., functions that can be ex-
pressed as products ρ1(x1) · · · ρn(xn), span a dense subspace of L2(Rn). Thus we
can construct an orthonormal basis for L2(Rn) by taking products of the modified
Hermite functions (3) for each variable. The analysis of the previous section now
directly generalizes to those linear stochastic systems in R

n whose equations are com-
pletely decoupled. In this case, the Fokker–Planck operator decomposes into a sum
of Fokker–Planck operators of the kind considered above for each variable. Our ear-
lier results then imply, in particular, that the sums of the eigenvalues of the matrix
A are eigenvalues of the corresponding Fokker–Planck operator, and that the corre-
sponding eigenfunctions belong to the space C∞(Rn) ∩ L2(Rn) and can be explicitly
constructed.

Although the analysis for the general multidimensional system (20) is more com-
plicated than in the scalar case, results that parallel most of our earlier developments
can be obtained. Let us denote the Fokker–Planck operator associated with (20) by
Ln and consider it as being a closed operator defined on a dense subspace DLn

of
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L2(Rn) (cf. section 3). We have the following expression for Ln:

Lnρ =
1

2

n∑
i,j=1

(BBT )ij ρxixj −
n∑

i,j=1

Aijxjρxi − trA · ρ.(21)

From this point on, let us make the following two assumptions with regard to the
system (20):

(a) The eigenvalues of A have negative real parts.

(b) (A,B) is a controllable pair (i.e., rank(B,AB, . . . , An−1B) = n).

Under these assumptions, the steady-state variance equation

AQ+QAT +BBT = 0(22)

associated with (20) has a positive definite symmetric solutionQ. After an appropriate
change of coordinates in R

n we can have Q = 1
2I, so that A = Ω−BBT with Ω skew-

symmetric. Such a coordinate transformation does not change the eigenvalues of the
Fokker–Planck operator Ln. The steady-state probability density then becomes ρ̄(x) =

Ne−xT x, N > 0, and this is an eigenfunction that corresponds to the eigenvalue zero
of the Fokker–Planck operator.

Next let us determine all eigenfunctions of Ln that take the form

ρ(x) = (h1x1 + · · ·+ hnxn)ρ̄(x) = hTxρ̄(x), h ∈ R
n.(23)

Lemma 5. Suppose that A = Ω − BBT , where Ω = −ΩT . Then the function
(23) is an eigenfunction of the operator Ln with eigenvalue λ if and only if h is an
eigenvector of the matrix A with the same eigenvalue λ.

Proof. Let ρ be of the form (23). Taking into account that Lnρ̄ = 0, we have

Lnρ =

n∑
i,j=1

(BBT )ij(h)i(−2xj)ρ̄−
∑
i,j

Aijxj(h)iρ̄

= −ρ̄

n∑
i,j=1

(Aji + 2(BBT )ji)(h)jxi

= ρ̄

n∑
i,j=1

(Ωij − (BBT )ij)(h)jxi =

n∑
i=1

(Ah)ixiρ̄

and this obviously equals λρ = λ
∑

i hixiρ̄ if and only if Ah = λh.

Denote by h1, . . . , hk the eigenvectors of A and by λ1, . . . , λk the corresponding
eigenvalues (k ≤ n). Now let us see how Ln acts on functions of the form

ρ(x) = ρ̄(x)
∏
m∈J

hT
mx,(24)

where the product is taken over some index set J whose elements are (not necessar-
ily distinct) positive integers no greater than n. Using Lemma 5 and the fact that
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Lnρ̄ = 0, we have

Ln(ρ̄
∏

m∈J hT
mx) =

n∑
i,j=1

∑
m,l∈J

(BBT )ij(hm)i(hl)j ρ̄
∏

p∈J\{m,l}
hT
p x

+

n∑
i,j=1

∑
m∈J

(BBT )ij(hm)iρ̄xj

∏
p∈J\{m}

hT
p x

−
n∑

i,j=1

∑
m∈J

Aijxj(hm)iρ̄
∏

p∈J\{m}
hT
p x

=

n∑
i,j=1

∑
m,l∈J

(BBT )ij(hm)i(hl)j ρ̄
∏

p∈J\{m,l}
hT
p x+

( ∑
m∈J

λm

)
ρ̄
∏
m∈J

hT
mx.

Thus functions of the form (24) for various index sets J form an invariant subspace
under the action of Ln. It is not hard to see that

∑
m∈J λm are eigenvalues of Ln. The

corresponding eigenfunctions are finite linear combinations of functions of the form
(24). Summarizing, we have the following theorem.

Theorem 6. The sums of the eigenvalues of the matrix A are eigenvalues of the
Fokker–Planck operator Ln : DLn → L2(Rn).

Theorem 6 can probably be best appreciated in the following context. It is well
known and easy to show that there are Np

n =
(
n+p−1

p

)
linearly independent monomials

of degree p in n variables of the form xp1

1 . . . xpn
n , where

∑n
i=1 pi = p and pi ≥ 0. The

linear differential equation

ẋ = Ax, x ∈ R
n,

gives rise to the equation

d

dt
x[p] = A[p]x

[p], x[p] ∈ R
Np

n .

One of the basic properties of the matrix A[p] defined in this way is that its eigenvalues
are the p-term sums of the eigenvalues of A. As is shown in [4], the matrices A[p] are
directly related to the pth moment equations for the system (20).

Theorem 6 shows that the situation in the infinite-dimensional case is consistent
with the one described in the previous paragraph in the following sense. Associated
with the system (20) we have the Fokker–Planck equation for the probability density

∂ρ(t, x)

∂t
= Lnρ(t, x).

The operator Ln is well defined on a dense subspace of L2(Rn). We know that the basis
elements in L2(Rn) can be taken to be polynomials of an arbitrary degree multiplied
by Gaussians, and we have shown that the sums (with an arbitrary number of terms)
of the eigenvalues of A are eigenvalues of the operator Ln.

In view of the results of section 3, it would be interesting to obtain conditions
under which it is possible to convert the Fokker–Planck operator Ln to a self-adjoint
operator by means of an appropriate gauge transformation. The following result pro-
vides such conditions, as well as an explicit formula for the function v to be used.

Proposition 7. Suppose that the matrix B is nondegenerate and that we have

ABBT = BBTAT .(25)
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If the function v is defined by the formula

v = ex
T (BBT )−1Ax/2,(26)

then the operator Tn given by

Tnρ = v−1Ln(vρ)

is self-adjoint.
Proof. The first-order terms in the expression for Tn are

1

2

n∑
j,k=1

(BBT )jk

(
vxj

∂

∂xk
+ vxk

∂

∂xj

)
−

n∑
i,j=1

Aijxjv
∂

∂xi
.

We see that the coefficient of
∂

∂xi
is

n∑
j=1

(BBT )ijvxj
−

n∑
j=1

Aijxjv

and we need this to be zero for each i. This is equivalent to having

(BBT )grad v = Axv

or

grad v = (BBT )−1Axv.(27)

Therefore, we must have

vxixj =
∂

∂xi

[
n∑

k=1

((BBT )−1A)jkxk v

]

= ((BBT )−1A)ji v +

n∑
k=1

((BBT )−1A)jkxk vxi

= ((BBT )−1A)ji v +

n∑
k=1

((BBT )−1A)jkxk

n∑
l=1

((BBT )−1A)ilxl v.

The compatibility conditions vxixj = vxjxi now imply that the matrix (BBT )−1A has
to be symmetric:

(BBT )−1A = AT (BBT )−1.

Multiplying both sides of this formula by BBT , we arrive at (25). It is straightforward
to show that the function given by (26) satisfies (27).

Let us switch to coordinates in which Q = σI for some σ > 0 (in the language
of statistical thermodynamics, these are coordinates in which the equipartition of
energy property holds, and σ is the steady-state temperature of the system). Then
(A + AT )σ = −BBT , and (25) can be rewritten as A2 = (AT )2. This last condition
is satisfied, for example, if A is symmetric. In this case (26) becomes

v = e−xT x/4σ(28)
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which is a constant multiple of the square root of the steady-state probability density.
This is in accordance with our earlier results for the one-dimensional case.

Denote by ∇ the gradient with respect to the metric on R
n given by G =

(BBT )−1. In other words, given a function φ : R
n → R, we define the vector ∇φ

by (∇φ)i =
∑n

j=1(BBT )ijφxj . Assume that A = AT and that the positive definite

solution of (22) is Q = σI. Let φ(x) = 1
4σx

Tx. Then we have

(∇φ)i = 2σ

n∑
j=1

Aijφxj
=

n∑
j=1

Aijxj

so that the system (20) can be rewritten as

dx = −∇φ(x) dt+B dw.(29)

Systems of the general form (29) and the corresponding steady-state probability den-
sities were studied in [8].

Under the present assumptions, the Fokker–Planck operator takes the form

Ln,σρ = −σ

n∑
i,j=1

Aijρxixj
−

n∑
i,j=1

Aijxjρxi
− trA · ρ.

Using Proposition 7, we can also construct a self-adjoint operator which in this case
is given by

Tn,σρ = −σ

n∑
i,j=1

Aijρxixj
−

1

2
trA− 1

4σ

n∑
i,j=1

Aijxixj


 ρ.

As we have done throughout the paper, we consider the above expression as defining
a closed operator acting on a dense subspace of L2(Rn) which we denote by DTn,σ .
The following result is to be viewed as a generalization of Proposition 3 to the case
of the multidimensional system (20) written in equipartition coordinates as explained
earlier (Q = σI), under the assumption that in these coordinates the nonrandom part
of the system is symmetric (A = AT ). As shown above, this system is of the gradient
form (29) for an appropriate quadratic function φ and a suitable constant metric.

Theorem 8. For any σ > 0, the spectrum of the operator Tn,σ : DTn,σ → L2(Rn)
consists of eigenvalues which are the sums of the eigenvalues of the matrix A.

Proof. The matrix A has n real negative eigenvalues λ1, . . . , λn. There exists an
orthogonal matrix R such that RART = D, where D = diag(λ1, . . . , λn). Making the
change of variables y = Rx, we obtain an operator Tn,σ given by

Tn,σρ = −σ

n∑
i=1

λiρyiyi −
(
1

2

n∑
i=1

λi − 1

4σ

n∑
i=1

λiy
2
i

)
ρ.

The spectrum of Tn,σ is the same as that of Tn,σ. We have Tn,σ = −∑n
i=1 λiTσ,yi

,
where Tσ,yi are the operators considered in section 3 for each variable (cf. remarks
made at the beginning of this section). To complete the proof, recall that by Propo-
sition 3 the eigenvalues of Tσ,yi are the nonpositive integers. The eigenfunctions of
Tn,σ are given by the products of the functions uk(yi, 2σ) for each variable; they form
an orthonormal basis for L2(Rn).
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As before, we conclude that the eigenvalues of the original operator Ln,σ restricted
to the space of functions of the form ρ = vf, where v is given by (28) and f ∈
DTn,σ , are the sums of the eigenvalues of A. The corresponding eigenfunctions take the
form vgk(x, σ), where gk(x, σ), k = 0, 1, . . . are the eigenfunctions of Tn,σ described
in the proof of Theorem 8. Let Ln,σ denote the space of functions {ρ : v−1ρ =∑m

k=1 αkgk(x, σ)}, αk ∈ R. As a generalization of Corollary 4 we have the following
statement.

Corollary 9. The space Ln,σ is invariant with respect to the Fokker–Planck
operator Ln,σ associated with (29). The spectrum of the restriction of Ln,σ to Ln,σ

consists of eigenvalues which are the sums of the eigenvalues of the matrix A.
Remark 2. Under the change of variables described in the proof of Theorem 8

the operator Ln,σ becomes a Fokker–Planck operator associated with a decoupled
system. This makes the statement of Corollary 9 obvious in view of Corollary 4 and
the discussion at the beginning of this section. In the case when A is a scalar multiple
of the identity matrix, the spectrum (but not the eigenfunctions) of the operator Ln,σ

on Ln,σ can be obtained from the analysis of its adjoint presented in [19, section
7.5]. The eigenfunctions of Ln,σ on Ln,σ found above form an orthonormal basis for

the space L2(Rn, ex
T x/4σdx). We could also consider Ln,σ as acting on a larger dense

subspace of L2(Rn, ex
T x/4σdx), which would not change the spectrum—cf. Remark 1

in section 3.
It is interesting to notice that, given the original system (20), we can always

find a basis in which Q = σI satisfies (22) and A = AT if A is allowed to depend
on time. First, switch to an equipartition basis in which we have Q = σI. Note
that the last equality is preserved under orthogonal coordinate transformations. Let
Ω = 1

2 (A−AT ). Making the change of variable y = e−Ωtx in (20), we obtain

dy =
1

2
e−Ωt(A+AT )eΩty dt+ e−ΩtB dw(30)

and the first term features a symmetric matrix as needed.

5. Double bracket equations. Consider the operators P1, P2, P3, and P4 act-
ing on the space

D = {ρ ∈ C2(R) ∩ L2(R) : ρxx, xρx, x
2ρ ∈ L2(R)}

that are defined as follows:

P1ρ = ρxx, P2ρ = xρx, P3ρ = x2ρ, P4ρ = ρ.

It is easy to verify that the linear span of the above operators is closed under com-
mutation with respect to the usual Lie bracket [Pi, Pj ] = PiPj − PjPi. We will let g
denote the operator Lie algebra spanned by Pi, i = 1, 2, 3, 4. Such Lie algebras and
their representations have been studied in the context of quantum mechanics and,
more recently, estimation theory [5].

Observe that Lσ and Tσ can be realized as operators in g because D ⊂ DLσ for
each σ > 0. More precisely, let us denote by L(σ) and T (σ) the restrictions of Lσ

and Tσ to D. Proposition 3 implies that T (σ), 0 < σ < ∞, is an isospectral family of
operators in g. In fact, for any σ > 0 the spectrum of T (σ) consists of eigenvalues which
are the nonpositive integers. As we know from Proposition 2, the nonpositive integers
are also eigenvalues of L(σ) for each σ > 0 (because the corresponding eigenfunctions
of Lσ belong to D).
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In this section we show that the families of operators L(σ) and T (σ) correspond
to integral curves of differential equations in the double bracket form on g. We also
obtain the corresponding dynamical representation for the family of modified Hermite
functions defined by (3). The proofs are completely straightforward calculations and
will not be given.

Proposition 10. Let M be an operator in g defined by Mρ = 1
4ρxx. Then L(σ),

0 < σ < ∞, is a solution of the differential equation

dL

dσ
= [L, [L,M ]].(31)

The Fokker–Planck operator associated with (5) is uniquely determined by two
parameters: σ, which corresponds to the steady-state variance, and a, which describes
the speed of convergence to steady state. In making the transition to the operators
Lσ we factored out the dependence on a. Thus the flow (31) can be thought of as
evolving on the “slice” of Fokker–Planck operators with the same spectral properties
but different steady states. As we will see, in the multidimensional case σ corresponds
to the steady-state temperature of the system (defined in section 4).

To each of the operators L(σ) there corresponds the steady-state probability den-
sity ρσ which satisfies the equation L(σ)ρσ(x) = 0. The flow (31) on the operator
Lie algebra g thus induces a flow on the manifold of Gaussian probability densities.
For example, making the change of variable σ = et, we obtain a particular case of the
gradient flow of Gaussians described by Nakamura in [17].

Proposition 11. Let N be an operator in g defined by Nρ = 1
2ρxx. Then T (σ),

0 < σ < ∞, is a solution of the differential equation

dT

dσ
= [T, [T,N ]].(32)

In view of the remarks made at the end of section 3, we can write T (σ) =
Θ−1(σ)T (1/2)Θ(σ), with the domain of Θ(σ) properly defined. Using the fact that
for all σ > 0 the operator Θ(σ) is unitary and the operators T (σ) and N(σ) are
self-adjoint, we arrive at the equation

dΘ

dσ
= T (1/2)ΘN −ΘNΘ−1T (1/2)Θ = Θ[T,N ](33)

which describes the evolution of the eigenbasis for T (σ) induced by the flow (32). This
is the same equation as the one obtained in [6] for the finite-dimensional case.

We point out an interesting analogy between the results of Propositions 10 and
11 and the sorting algorithms described in [6]. If N is a real diagonal matrix with
unrepeated eigenvalues, and if H(0) is a suitably chosen symmetric matrix, then the
solution of the double bracket equation Ḣ = [H, [H,N ]] approaches a diagonal matrix
H(∞) such that the diagonal elements of H(∞) and N are similarly ordered; since
H(∞) is diagonal, it commutes with N . For large positive values of σ, the “principal

term” of the operators L(σ) and T (σ) is σ d2

dx2 , which is proportional to both M and
N and thus commutes with them. Thus the double bracket equations (31) and (32)
can be thought of as performing a task of “operator sorting.”

We would like to generalize the above results to the multidimensional case. Con-
sider the operators P1,i,j , P2,i,j , P3,i,j , and P4 acting on the space

Dn = {ρ ∈ C2(Rn) ∩ L2(Rn) : ρxixj
, xiρxj

, xixjρ ∈ L2(Rn) ∀i, j = 1, 2, . . . , n}
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that are defined as follows:

P1,i,jρ = ρxixj , P2,i,jρ = xiρxj , P3,i,jρ = xixjρ, P4ρ = ρ.

These operators span a Lie algebra which we denote by gn. For each σ > 0, let Ln(σ)
and Tn(σ) denote the restrictions of Ln,σ and Tn,σ to Dn. Theorem 8 implies that
Tn(σ), 0 < σ < ∞, is an isospectral family of operators in gn.

Proposition 12. Let M be an operator in gn defined by

Mρ = −1

4

n∑
i,j=1

(A−1)ijρxixj
.

Then Ln(σ), 0 < σ < ∞, is a solution of the differential equation

dL

dσ
= [L, [L,M ]].

Proposition 13. Let N be an operator in gn defined by

Nρ = −1

2

n∑
i,j=1

(A−1)ijρxixj
.

Then Tn(σ), 0 < σ < ∞, is a solution of the differential equation

dT

dσ
= [T, [T,N ]].

As in the scalar case, we can define a unitary operator Θσ by Θσgk(x, σ) =
gk(x, 1), where gk(x, σ) are the eigenfunctions of Tn(σ). This operator will then satisfy
(33), which describes the flow of these eigenfunctions. Finally, note that Propositions
12 and 13 apply to the system (30) without any changes (except that now Tn(σ) will
also depend on t).
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