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Abstract

The paper studies the fundamental solutions to fractional in time hyperbolic diffusion equation

or telegraph equations and their properties. Then it derives the exact solutions of the fractional

hyperbolic diffusion equation with random data in terms of series expansions of isotropic

in space spherical random fields on the unit sphere. Numerical illustration are presented to

illustrate the theoretical results.

Keywords Spherical random fields · Spectral theory · Isotropy · Fractional hyperbolic

diffusion equation · Fractional telegraph equation · Random data · Laplace–Beltrami

operator

1 Introduction

Spherical random fields are very useful for modelling some phenomena in areas such as earth

sciences (like, for example, in geophysics and climatology [8,9,18,22,40,48]) and cosmology

(see, for instance, [45]). In fact, the application of statistical methods in cosmology [5] has

become increasingly important due to the many experimental data obtained in recent years

[1], and spherical random fields are of particular interest regarding the analysis of Cosmic

Microwave Background (CMB) radiation [33]. As well-known [12,54], the CMB is a spatially

isotropic radiation field spread throughout the visible universe, originated around 14 billion

years ago, and it is the main source of information we have about the evolution of the

universe. The CMB radiation can be mathematically modelled as an isotropic, mean-square

continuous spherical random field for which there is a spectral representation by means of

spherical harmonics. Consequently, the study of models of temporal evolution of spherical
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random fields, in addition to its innate theoretical interest, is a problem that may have some

practical interest in the study of CMB radiation.

One such model was recently provided by [4], where stochastic hyperbolic diffusion

equations were used for the spherical random fields. The hyperbolic heat equation is formally

identical to the linear telegraph equation introduced by Heaviside in his study of transmission

lines, and it was introduced by Cattaneo [7] in order to impose a bounded speed of propaga-

tion for the temperature disturbances, in contrast therefore with the classical parabolic heat

equation, that has an unbounded propagation speed. The boundedness of the speed propa-

gation is desirable because the large-scale coherent structures that are observed in the CMB

are believed to be the remains of acoustic waves in the plasma universe. In [4] the explicit

solution of the model was given in terms of series of elementary functions, and therefore it

could be useful for various qualitative and numerical studies. For more details and references

on the telegraph equations, or hyperbolic diffusion equation, see [4,16,28], among others.

On the other hand, deviations from the standard diffusive behaviour are known to occur in

many situations [3,44,47]. Among the different models of anomalous behaviour, an interest-

ing one is provided by the use of fractional differential equations (FDE) [11]. The calculus of

non-integer order, or simply fractional calculus, showed an increasing interest over the last

decades, specially for the modelling of phenomena like, for example, processes involving

memory effects (see, for example, [52,53]), anomalous transport [11], problems with dissipa-

tion [31], etc. However, these models are not unique in the sense that there are many different

definitions of a fractional derivative in the literature [50], and in some cases these definitions

are introduced into the equations on an ad hoc basis. Nevertheless, among these different

definitions there is one that deserves to be highlighted, which is the so-called Caputo (or

Caputo-Djrbashian) derivative [24]. One interesting thing about FDE using Caputo deriva-

tive is that they appear in the formalism of continuous time random walk (CTRW) [25,46] as

being associated to a long-tailed probability distribution function (PDF). Caputo fractional

derivative is also a particular case of more general non-local operators—see for instance

[26,51].

Let us remember that the normal diffusion can be modelled in terms of a random walk

where jumps are taken in equal time intervals. In the CTRW approach, the time interval

between sucessive jumps is replaced by a waiting time PDF w(t) and the length of the jumps

is given by a PDF λ(x). CTRW gives a very general method to discuss anomalous diffusion

processes, and as a result many generalizations of classical results have been obtained (see,

for example, [2,19,36,38]). For the case of a fractal time random walk, where we have long-

tailed waiting time PDF with asymptotic behaviour of the form w(t) ∼ (τ/t)(1+α) (where

0 < α < 1 and τ is a characteristic time), and the usual Gaussian jump length PDF, the

so-called master equation of the CTRW approach reduces to an equation of diffusion type

with Caputo fractional derivative replacing the usual first order time derivative (see [39,43]

for details).

It is natural at this point to think of looking to Cattaneo’s approach to the hyperbolic

diffusion equation under the perspective of the CTRW approach. The key point in Cattaneo’s

approach was to modify the constitute equation (Fick’s law) by introducing a term propor-

tional to the first order derivative of the flux. In [10] Compte and Metzler have discussed

possibilities for the generalization of the Cattaneo equation, and one of these possibilities is

to consider the CTRW scenario of fractal time random walk, which gives an equation which

can be written in terms of Caputo fractional derivatives in the time variable. Another CTRW

approach to the fractional Cattaneo/telegraph equation is given in [35].

The present paper is a continuation of the line of research of the work [4]. Our main

objective is to study the fundamental solutions to fractional hyperbolic diffusion equation
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in the time variable using the Caputo derivative, and its properties. The exact solutions of

the fractional hyperbolic diffusion equation with random data in terms of series expansions

of isotropic in space spherical random fields on the unit sphere are derived, and numerical

illustration are presented to illustrate the theoretical results. This paper is also an extension

of the results of the papers [17,41], in which the time-fractional telegraph equations and

telegraph processes have been considered—see also [13–15], among the others.

Basic results and definitions about spherical isotropic random fields and their spectral and

covariance representations are given in Sect. 2. Section 3 derives the solution of the fractional

hyperbolic diffusion equation on the sphere. Basic results about spherical isotropic random

fields which are solutions of random fractional hyperbolic diffusions and their spectral and

covariance representations are given in Sect. 4. Section 5 contains the detailed proofs of the

main results. Section 6.1 presents numerical illustration of the theoretical results.

2 Isotropic Spherical Random Fields

This section introduces basic notations and background by reviewing some results in the

theory of spherical random fields from the monograph [33](see, also [29,30,32,55]).

Consider a sphere in the three-dimensional Euclidean space

S
2 =

{
x ∈ R

3 : ‖x‖ = 1
}

⊂ R
3

with the Lebesgue measure (the area element on the sphere)

σ(dθ, dϕ) = sin θdθdϕ, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, or (θ, ϕ) ∈ S
2.

A spherical random field on a complete probability space (	, F, P), denoted by

T =
{
T (θ, ϕ) = Tω(θ, ϕ) : 	 × S

2 → R
1, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, ω ∈ 	

}
,

that is
{
T (θ, ϕ), (θ, ϕ) ∈ S

2
}

or T̃ = {T̃ (x) , x ∈ S
2}, is a stochastic function defined on

the sphere S
2.

The field T̃ (x) is called isotropic (in the weak sense) on the sphere S
2 if ET̃ (x)2 < ∞ and

its first and second-order moments are invariant with respect to the group SO(3) of rotations

in R
3, i.e.

ET̃ (x) = ET̃ (gx), ET̃ (x)T̃ (y) = ET̃ (gx)T̃ (gy),

for every g ∈ SO(3) and x, y ∈ S
2. This is equivalent to saying that the mean ET̃ (x) =

ET (θ, ϕ) = c = constant (without loss of generality we assume that c = 0), and that the

covariance function ET̃ (x)T̃ (y) = ET (θ, ϕ)T (θ ′, ϕ′) depends only on the angular distance

� = �P Q between the points P = (θ, ϕ) and Q = (θ ′, ϕ′) on S
2.

We consider a real-valued second-order spherical random field T that is continuous in

the mean-square sense. Note that [34] proved that the covariance function of a measurable

finite-variance isotropic random field on the sphere is necessarily everywhere continuous.

Under these conditions, the field T can be expanded in the mean-square sense as a Laplace

series (see, [55], p. 73, [30], p. 33, or [34], p. 123):

T (θ, ϕ) =
∞∑

l=0

l∑

m=−l

almYlm(θ, ϕ), (1)
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where {Ylm(θ, ϕ)} represents the complex spherical harmonics. The spectral representa-

tion (1) can be viewed as a Karhunen–Loève expansion, which converges in the Hilbert

space L2(	 × S
2, sin θdθdϕ), that is,

lim
L→∞

E

⎛
⎜⎝
∫

S2

(
T (θ, ϕ) −

L∑

l=0

l∑

m=−l

Ylm(θ, ϕ)alm

)2

sin θdθdϕ

⎞
⎟⎠ = 0.

According to the Peter–Weyl theorem (see [34], p. 69), the expansion (1) also converges in

the Hilbert space L2(	), for every x ∈ S
2, that is, for each x ∈ S

2,

lim
L→∞

E

(
T̃ (x) −

L∑

l=0

l∑

m=−l

Ylm(x)alm

)2

= 0.

Recall that for −l ≤ m ≤ l it holds

Ỹlm(x) = Ylm(θ, ϕ) = dlm exp(imϕ)Pm
l (cos θ),

dlm = (−1)m

[
(2l + 1)(l − m)!

4π(l + m)!

]1/2

,

where Pm
l (·) denotes the associated Legendre functions with the indices l and m, and Pl(·)

is the l-th Legendre polynomial, i.e.

Pm
l (u) = (−1)m(1 − u2)m/2 dm

dxm
Pl(u), Pl(u) =

1

2l l!
dl

dx l
(u2 − 1)l . (2)

The spherical harmonics have the following properties

∫ π

0

∫ 2π

0

Y ∗
lm(θ, ϕ)Yl ′m′(θ, ϕ) sin θdϕdθ = δl ′

l δm′
m ,

Y ∗
lm(θ, ϕ) = (−1)mYl(−m)(θ, ϕ), (3)

Ylm(π − θ, ϕ + π) = (−1)lYlm(θ, ϕ),

Yl0(0, 0) =
√

2l + 1

4π
Pl(1) =

√
2l + 1

4π
, Ylm(0, 0) = Yl0(0, 0)δm

l , (4)

where δl ′
l is the Kronecker delta function and the symbol * means the complex conjugation.

The random coefficients alm in the Laplace series (1) can be obtained through inversion

arguments in the form of mean-square stochastic integrals

alm =
∫ π

0

∫ 2π

0

T (θ, ϕ)Y ∗
lm(θ, ϕ) sin θdθdϕ. (5)

As T is real-valued, then, by the property (3), it holds

alm = (−1)mal (−m), l ≥ 0, −l ≤ m ≤ l. (6)

The field is isotropic if and only if

Ealma∗
l ′m′ = δl ′

l δm′
m Cl , −l ≤ m ≤ l, −l ′ ≤ m′ ≤ l ′.

Thus, E|alm |2 = Cl , m = 0,±1, ...,±l.
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From (1) and (5) we deduce that the covariance function of an isotropic random fields has

the following spectral representation

Ŵ(cos �) = ET (θ, ϕ)T (θ ′, ϕ′) =
1

4π

∞∑

l=0

(2l + 1)Cl Pl(cos �),

where

∞∑

l=0

(2l + 1)Cl < ∞. (7)

The series {C0, C1, C2, . . . , Cl , . . .} is called the angular power spectrum of the isotropic

random field T (θ, ϕ).

If T (θ, ϕ) is an isotropic Gaussian field, then the coefficients alm, m = −l, . . . , l, l ≥ 1,

are complex-valued independent Gaussian random variables if m �= −m′, with

Ealm = 0, Ealma∗
l ′m′ = δm′

m δl ′
l Cl , (8)

if Cl > 0, or degenerate to zero if Cl = 0.

3 Solution for Non-random Point-Source Spherical Fractional
Hyperbolic Diffusion Equation

This section derives the fundamental solutions of non-random fractional in time hyperbolic

diffusion equations. The obtained results will be used in Sect. 4 to obtain solutions of diffusion

equations with random initial conditions.

The fractional in time Caputo or Caputo-Djrbashian derivatives are defined for a nice

function f (θ, ϕ, t), t ≥ 0, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π (see, i.e., [37]) as

Dα
t f (θ, ϕ, t) =

∂α

∂tα
f (θ, ϕ, t) =

1

Ŵ(m − α)

∫ t

0

[
1

(t − τ)1+α−m

∂m

∂τm
f (θ, ϕ, τ )

]
dτ,

m − 1 < α < m, (9)

and

Dm
t f (θ, ϕ, t) =

∂m

∂tm
f (θ, ϕ, t), for α = m, (10)

where m = 1, 2, . . . , is an integer, α > 0.

Consider the following fractional in time hyperbolic diffusion equations, also known as

the fractional telegraph equations (see [28,41]) or relativistic fractional diffusion equation

([16]) on sphere S
2

1

c2

∂2α p(θ, ϕ, t)

∂t2α
+

1

D

∂α p(θ, ϕ, t)

∂tα
= k2�(θ,ϕ) p(θ, ϕ, t), 0 < α ≤ 1, (11)

with the initial conditions

p(θ, ϕ, t)|t=0 =
1

sin θ
δ(θ)δ(ϕ),

∂

∂t
p(θ, ϕ, t)

∣∣∣∣
t=0

= 0, (12)

if 1
2

< α ≤ 1, and

p(θ, ϕ, t)|t=0 =
1

sin θ
δ(θ)δ(ϕ), (13)
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if 0 < α ≤ 1
2
, where p(θ, ϕ, t), θ ∈ [0, π), ϕ ∈ [0, 2π), t > 0, is the real function,

c > 0, D > 0, k > 0 are constants (see [4]), δ(·) is the Dirac delta-function, and

�(θ,ϕ) =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2
(14)

is the Laplace–Beltrami operator on the sphere.

It is known (see, i.e., [34], p. 72) that the eigenvalue problem for Laplace operator on the

sphere has the following exact solution

�(θ,ϕ)Ylm(θ, ϕ) = −l(l + 1)Ylm(θ, ϕ), l = 0, 1, 2, . . . , m = −l, . . . , l, (15)

where {Ylm(θ, ϕ)} is the system of spherical harmonics. Therefore, it is natural to seek a

solution of the problem (11),( 12),(13) in the form of the series

p(θ, ϕ, t) =
∞∑

l=0

l∑

m=−l

blm(t) Ylm(θ, ϕ), (16)

where

blm(t) =
∫

S2

p(θ, ϕ, t) Y ∗
lm(θ, ϕ) sin θdϕdθ. (17)

Let

Eα,β(z) =
∞∑

k=0

zk

Ŵ(αk + β)
, α > 0, β > 0, z ∈ C. (18)

be the two-parametrical Mittag-Leffler function ([21]). The case β = 1 corresponds to the

usual Mittag-Leffler function Eα(z) = Eα,1(z).

Introduce

	 =

⎡
⎣2D

c2

√
c4

4D2
− k2c2l(l + 1)

⎤
⎦ 1{l≤A} + i

⎡
⎣2D

c2

√

k2c2l(l + 1) −
c4

4D2

⎤
⎦ 1{l>A},

(19)

where

A = A(D, c, k) =
√

D2k2 + c2 − Dk

2Dk
, (20)

and 1{·} denotes the binary indicator function.

Let

z± = z
l,α
± (t) = −

c2

D

tα

2
(1 ± 	). (21)

The proofs of the following two results are given in Sect. 5.

Theorem 1 Consider the functions

B
(1)
α,l (t) =

1

2
[Eα(z

l,α
− (t)) + Eα(z

l,α
+ (t))], (22)

B
(2)
α,l (t) =

1

2	
[Eα(z

l,α
− (t)) − Eα(z

l,α
+ (t))], (23)

where Eα(z) denotes the Mittag-Leffler function.
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Then, for 1
2

< α ≤ 1 we have

∣∣∣B(1)
α,l (t)

∣∣∣ ≤ K
(1)
0

[
exp

[
−K

(1)
1 t(k2c2l(l + 1))

1
2α

]
+

1

1 + tαkc
√

l(l + 1)

]
, (24)

∣∣∣B(2)
α,l (t)

∣∣∣ ≤ K
(2)
0

√
c2

4D2k2l(l + 1)

[
exp

[
−K

(2)
1 t(k2c2l(l + 1))

1
2α

]

+
1

1 + tαkc
√

l(l + 1)

]
, (25)

for some positive constants K
(1)
0 , K

(1)
1 , K

(2)
0 , K

(2)
1 , and for 0 < α ≤ 1

2
we have

∣∣∣B(1)
α,l (t)

∣∣∣ ≤ K
(1)
2

1

1 + tαkc
√

l(l + 1)
, (26)

∣∣∣B(2)
α,l (t)

∣∣∣ ≤ K
(2)
2

1

1 + tαkc
√

l(l + 1)
(27)

for some positive constants K
(1)
2 , K

(2)
2 .

Theorem 2 The fundamental solution p(θ, ϕ, t) of the fractional hyperbolic diffusion point-

source initial-value problems (11), (12), (13) are given by pointwise convergent series

p(θ, ϕ, t) =
1

4π

∞∑

l=0

(2l + 1)Pl(cos θ)Fl,α(t), (28)

where 0 < α ≤ 1 and Fl,α(t) is defined as

Fl,α(t) = B
(1)
α,l (t) + B

(2)
α,l (t), (29)

where B
(1)
α,l (t) and B

(2)
α,l (t) are given by eq. (22) and eq. (23), respectively.

Remark 1 The case α = 1 was considered in [4]. It is well-known that E1(z) = exp(z), and

then

E1(z
l,1
± (t)) = exp

(
−

c2t

2D
(1 ± 	)

)
= exp

(
−

c2t

2D

)
exp

(
∓

c2t

2D
	

)

which gives

B
(1)
1,l (t) = exp

(
−

c2t

2D

)[
cosh (t Ml)1l≤A + cos (t M

(1)
l )1l>A

]
,

B
(2)
1,l (t) = exp

(
−

c2t

2D

)
c2

2D

[
sinh (t Ml)

Ml

1l≤A +
sin (t M

(1)
l )

M
(1)
l

1l>A

]
,

where

Ml =

√
c4

4D2
− k2c2l(l + 1), M

(1)
l =

√

c2l(l + 1)k2 −
c4

4D2
,
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and A is given by 20. Then we obtain the solution given in [4] , that is,

p(θ, ϕ, t) = exp

(
−

c2t

2D

) ∞∑

l=0

(2l + 1)

4π
Pl(cos θ)

{[
cosh(t Ml)

+
c2

2DMl

sinh(t Ml)]
]

1{l≤A} +
[

cos(t M
(1)
l ) +

c2

2DM
(1)
l

sin(t M
(1)
l )]

]
1{l>A}

}
,

(30)

Note that the formula (30) is a clarification of the formula (21) [4].

Remark 2 The case α = 1/2 is another one for which the solution has a nice expression. It

is known [21] that E1/2(z) can be written as

E1/2(z) = ez2

erfc(−z),

but the complementary error function does not have properties that allow us to write the

combinations of E1/2(z
l,1/2
± (t)) in the expressions for B

(1)
1/2,l(t) and B

(2)
1/2,l(t) in a simple

form. However, there is an integral representation for E1/2(z) that gives a better result, that

is [41]

E1/2(z) =
2

√
π

∫ ∞

0

e−ω2+2zω dω.

Using this integral representation for E1/2(z), we obtain for B
(1)
1/2,l(t) and B

(2)
1/2,l(t) that

B
(1)
1/2,l(t) =

2
√

π

∫ ∞

0

e−ω2− c2

2D

√
tω

[
cosh

(√
t Mlω

)
1{l≤A}

+ cos
(√

t M
(1)
l ω

)
1{l>A}

]
dω,

B
(2)
1/2,l(t) =

2
√

π

∫ ∞

0

e−ω2− c2

2D

√
tω c2

2D

[
sinh

(√
t Mlω

)

Ml

1{l≤A}

+
sin

(√
t M

(1)
l ω

)

M
(1)
l

1{l>A}

]
dω,

and the expression for p(θ, ϕ, t) is

p(θ, ϕ, t) =
2

√
π

∞∑

l=0

(2l + 1)

4π
Pl(cos θ)

∫ ∞

0

e−ω2− c2

2D

√
tω

{[
cosh

(√
t Mlω

)
+

c2

2DMl

sinh
(√

t Mlω
) ]

1{l≤A}

+
[

cos
(√

t M
(1)
l ω

)
+

c2

2DM
(1)
l

sin
(√

t M
(1)
l ω

) ]
1{l>A}

}
dω.

(31)

Remark 3 It should be noted that Goldstein [20] and Kac [23] proposed the probabilistic

interpretation of the solution of the classical one-dimensional telegraph equation as special

random walk governing by the Poisson process. This line was continued by many authors;

for example Orsingher and Beghin [41] generalised the results for the fractional telegraph
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equation for some particular values of α. In particular for α = 1/2, they obtain a nice

generalization of Goldstein–Kac formulae replacing in the telegraph stochastic process the

time by the reflecting Brownian motion. The multidimensional random motions which govern

the hyperbolic diffusion equations is a long-standing problem, which was posed by Mark

Kac more than 50 years ago and become a subject of intensive discussions among researchers

on whether or not the multidimensional random flights could be described by the telegraph

equations similarly to the one-dimensional case. Some exhaustive answers to this question can

be found in the papers [27,28] (see also the references therein). The best of our knowledge the

random flight interpretation of the fractional hyperbolic diffusion equation is an interesting

open question as well as stochastic solution of the fractional hyperbolic diffusion equations

on the compact manifolds such as sphere.

4 Solution for Randomly Forced Fractional Spherical Hyperbolic
Diffusion

In this section we use the results of Sect. 3 to derive solutions of the fractional hyperbolic

diffusion equations with random initial conditions (or random data).

Consider the following hyperbolic diffusion equation on the sphere

1

c2

∂2α

∂t2α
u(θ, ϕ, t) +

1

D

∂α

∂tα
u(θ, ϕ, t) = k2�(θ,ϕ) u(θ, ϕ, t), 0 < α ≤ 1,

θ ∈ [0, π), ϕ ∈ [0, 2π), t > 0, (32)

where �(θ,ϕ) is the Laplace–Beltrami operator on the sphere given by (14).

Now, the random initial conditions are determined by the Gaussian isotropic random field

on the sphere

u(θ, ϕ, t)
∣∣
t=0

= T (θ, ϕ) =
∞∑

l=0

l∑

m=−l

almYlm(θ, ϕ), (33)

∂u(θ, ϕ, t)

∂t

∣∣∣∣
t=0

= 0, (34)

if 1
2

< α ≤ 1, and

u(θ, ϕ, t)
∣∣
t=0

= T (θ, ϕ) =
∞∑

l=0

l∑

m=−l

almYlm(θ, ϕ), (35)

if 0 < α < 1
2
,where Y m

l (θ, ϕ) are the spherical harmonics, and alm, m = −l, . . . , l, l ≥ 0,

are complex-valued independent Gaussian random variables satisfying (6) and (8).

The following theorem will be proven in Sect. 5.

Theorem 3 If the angular spectrum {Cl , l = 0, 1, 2 . . .} of the isotropic Gaussian random

fields T (θ, ϕ) from the initial value problem (32)–(34) satisfies summation (34), then the

random solution of u(θ, ϕ, t) of the initial value problem (32)–(34) is given by the convergent

(for each t > 0) in the Hilbert space L2(	 × S
2, sin θdθdϕ) random series

u(θ, ϕ, t) =
∞∑

l=0

l∑

m=−l

ξ
(α)
lm Ylm(θ, ϕ), (36)
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where the stochastic processes

ξ
(α)
lm = alm Fl,α(t),

where Fl,α(t) was defined in eq. (29).

Moreover, the random field (36) is isotropic and Gaussian on S
2,and its covariance function

is given by

Cov(u(θ, ϕ, t), u(θ ′, ϕ′, t ′)) =
1

4π

∞∑

l=0

(2l + 1)Cl Pl(cos �)Fl,α(t)Fl,α(t ′).

Remark 4 The caseα = 1 is related to the random spherical hyperbolic diffusion equation, see

[4] . In this case the isotropic spherical random field has the following spectral representation

in the Hilbert space L2(	 × S
2, sin θdθdϕ) :

u(θ, ϕ, t) = exp

(
−

c2t

2D

) ∞∑

l=0

l∑

m=−l

Yl0(θ, ϕ)ηlm(t), t ≥ 0, (37)

where

ηlm(t) = alm[cosh (t Ml) +
c2

2DKl

sinh (t Ml)]1{l≤A} +

+[cos
(
t M ′

l

)
+

c2

2DK ′
l

sin
(
t M ′

l

)
]1{l>A},

while its covariance function can be written in the form

Cov(u(θ, ϕ, t), u(θ ′, ϕ′, t ′)) = exp

(
−

c2

2D
(t + t ′)

)

×
∞∑

l=0

l∑

m=−l

Ylm(θ, ϕ)Y ∗
lm(θ ′, ϕ′)Eηlm(t)η∗

lm(t ′) = exp

(
−

c2

2D
(t + t ′)

)

×(4π)−1
∞∑

l=0

(2l + 1)Cl Pl(cos �)[Al(t)Al(t
′) + Bl(t)Bl(t

′)], (38)

where Ais given by 20, and the series (38) converges for every fixed t and t ′, that is

∞∑

l=0

(2l + 1)Cl Pl(cos �)[Ll(t)Ll(t
′) + Bl(t)Bl(t

′)] < ∞, (39)

where

Ll(t) =
[

cosh (t Ml) +
c2

2DKl

sinh (t Ml)

]
1{l≤A}

Bl(t) =
[

cos
(
t M ′

l

)
+

c2

2DK ′
l

sin
(
t M ′

l

)]
1{l>A}.

Note that the formula (68) is a clarification of the formula (25) [4].

Noting that |Pl(cos �)| ≤ 1, only a finite number of terms Ll is non-zero, and there is a

constant K such that supt≥0 |B(t)| < C, we obtain that condition (39) follows from (7). This

condition on the angular spectrum Cl , l ≥ 0, guarantees the convergence of the series (68)

in the Hilbert space L2(	 × S
2, sin θdθdϕ).
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5 Proofs

5.1 Proof of the Theorem 1

Theorem 1 follows from the asymptotic expansion of Mittag-Leffler functions. It is known

[21] that, for 0 ≤ α ≤ 2 and πα/2 < θ < min{π, πα}, we have the following estimates:

|Eα(z)| ≤

⎧
⎪⎨
⎪⎩

M1 exp (Re z1/α) +
M2

1 + |z|
, for |z| > 0, | Arg z| ≤ θ, (a)

M2

1 + |z|
, for |z| > 0, θ ≤ | Arg z| ≤ π, (b)

with M1 and M2 does not depending on z.

We need an expression for Eα(z
l,α
± (t)) for l → ∞ . For l sufficiently large such that l > A

we have

z
l,α
± (t) = −

c2

D

tα

2
(1 ± iϑ) ,

where

ϑ =

√
4D2k2l(l + 1)

c2
− 1.

Then

|zl,α
± (t)| =

c2tα

2D

√
1 + ϑ2 = kctα

√
l(l + 1), (40)

and

Arg z
l,α
± (t) = ∓(π − arctan ϑ). (41)

In order to use the above estimates, we need to analyse | Arg z
l,α
± (t)|. We have

| Arg z
l,α
± (t)| = |π − arctan ϑ |.

In the limit l → ∞ we have arctan ϑ = π/2 − c/(2k Dl) + O(l−2), and then

| Arg z
l,α
± (t)| =

π

2
+

c

2Dk

1

l
+ O(l−2).

Therefore, for 1
2

< α ≤ 1 and for l such that

l > l0 =
c

Dkπ(2α − 1)

we have

| Arg z
l,α
± (t)| ≤ θ, θ = πα.

Then, for 1
2

< α ≤ 1 we use the estimate provided by (a).

On the other hand, for 0 < α ≤ 1
2

, we have

| Arg z
l,α
± (t)| ≥ θ, 0 < θ <

π

2
.

Then, for 0 < α ≤ 1
2

we use the estimate provided by (b).
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For the case 1
2

< α ≤ 1 we need the expressions for |zl,α
± (t)| and Re(z

l,α
± (t))1/α . The

expression for |zl,α
± (t)| is already given in eq. 40 and for Re(z

l,α
± (t))1/α we obtain for eq. 41

that

Re(z
l,α
± (t))1/α = t(k2c2l(l + 1))1/2α cos

(π − arctan ϑ)

α
.

Then, for B
(1)
α,l (t) and B

(2)
α,l (t) given in eqs. (22) and (23) we have

|B(1)
α,l (t)| =

1

2
|Eα(z

l,α
+ (t)) + Eα(z

l,α
− (t))| ≤

1

2
(|Eα(z

l,α
+ (t))| + |Eα(z

l,α
− (t))|)

=
1

2
(M+

1 exp

[
t(k2c2l(l + 1))1/2α cos

(π − arctan ϑ)

α

]
+

M+
2

1 + kctα
√

l(l + 1)

+ M−
1 exp

[
t(k2c2l(l + 1))1/2α cos

(π − arctan ϑ)

α

]
+

M−
2

1 + kctα
√

l(l + 1)
)

≤ K
(1)
0

(
exp [−K

(1)
1 t(k2c2l(l + 1))1/2α] +

1

1 + kctα
√

l(l + 1)

)

where we denoted cos (π−arctan ϑ)
α

= −K
(1)
1 (with K

(1)
1 ≥ 0 and M±

{1,2} ≤ 2K
(1)
0 . This gives

eq. (24). The proof of eq. (25) for B
(2)
α,l (t) is analogous since

|B(2)
α,l (t)| =

1

2	
|Eα(z

l,α
− (t)) − Eα(z

l,α
+ (t))| ≤

1

2	
(|Eα(z

l,α
− (t))| + |Eα(z

l,α
+ (t))|).

The case 0 < α ≤ 1
2

uses the estimate (b), which contains the second term of the estimate

(a), and therefore gives eq. (26) and eq. (27). �

5.2 Proof of the Theorem 2

Let us look for the solution of eq. (11) satisfying the initial conditions given by eqs. (12) and

(13). If we write p(θ, ϕ, t) in the form of a series as in eq. (16) and use eq. ( 15), we obtain

that blm(t) has to satisfy

1

c2
D2α

t blm(t) +
1

D
Dα

t blm(t) + k2l(l + 1)blm(t) = 0, (42)

where Dα
t denotes the Caputo fractional derivative defined in eq. (9). From eq. (17) and the

initial conditions in eqs. (12) and (13), we see that blm(t) has to satisfy the initial conditions

bl,m(0) = Y ∗
lm(0, 0) = Yl0(0, 0)δm

l =
√

2l + 1

4π
δm

l , b′
lm(0) = 0 (43)

for 1
2

< α ≤ 1, and

bl,m(0) = Y ∗
lm(0, 0) = Yl0(0, 0)δm

l =
√

2l + 1

4π
δm

l (44)

for 0 < α ≤ 1
2

.

In order to solve eq. (42) we use the Laplace transform. It is known [24] that the Laplace

transform L of a Caputo derivative is given by

L[D2α
t blm(t)](s) = s2α Blm(s) − s2α−1blm(0) − s2α−2b′

lm(0) (45)
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for 1
2

< α ≤ 1, and

L[D2α
t blm(t)](s) = s2α Blm(s) − s2α−1blm(0) (46)

for 0 < α ≤ 1
2

, where Blm(s) = L[blm(t)](s). However, because of the initial conditions

(43) and (44), the cases 0 < α ≤ 1
2

and 1
2

< α ≤ 1 can be written in the same form, as in

eq. (46). Moreover

L[Dα
t blm(t)](s) = sα Blm(s) − sα−1blm(0). (47)

Then, using the Laplace transform in eq. (42) and eq. (46) and eq. (47), and solving the

resulting expression for Blm(s), we obtain

Blm(s) = H(s)blm(0), (48)

where

H(s) =
s2α−1 + c2 D−1sα−1

s2α + c2 D−1sα + c2k2l(l + 1)
. (49)

In order to calculate L
−1[H(s)](t), we will write H(s) in the form

H(s) =
1

s
−

s−1c2k2l(l + 1)

s2α + c2 D−1sα + c2k2l(l + 1)
, (50)

and for s such that
∣∣∣∣

c2k2l(l + 1)

s2α + c2 D−1sα

∣∣∣∣ < 1, (51)

we have

H(s) =
1

s
− c2k2l(l + 1)

∞∑

n=0

[−c2k2l(l + 1)]n s−α(n+1)−1

(sα + c2 D−1)n+1
. (52)

Let us consider the three-parameter Mittag-Leffler function Ec
a,b(z) , defined as

Ec
a,b(z) =

∞∑

n=0

(c)n

n!
zn

Ŵ(an + b)
, (53)

where (c)n = Ŵ(c + n)/Ŵ(c) is the Pochhammer symbol. It is known [24] that

L[tb−1 Ec
a,b(−μta)](s) =

sac−b

(sα + μ)c
. (54)

Therefore, if we identify a = α, b = 2α(n + 1) + 1 c = n + 1, and μ = c2 D−1, we can

express the inverse Laplace transform L
−1[H(s)](t) in the form

L
−1[H(s)](t) = 1 − c2k2l(l + 1)t2α

∞∑

n=0

[−c2k2l(l + 1)t2α]n

En+1
α,1+2α(n+1)

(−c2 D−1tα). (55)

We can write the above series in a simple form if we use [49]

∞∑

n=0

(−zw)n En+1
a,2an+b(z + w) =

zEa,b(z) − wEa,b(w)

z − w
. (56)
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Fig. 1 Multiplication factor Fl,α(t) for the angular power spectra as a function of l for t = 0.04, t = 0.08,

t = 0.12 and t = 0.16 for α = 1 (continuous blue curve), α = 0.9 (dashed magenta curve) and α = 0.8

(dashed dotted gray curve)

Taking

zw = c2k2l(l + 1)t2α, z + w = −c2 D−1tα, (57)

we obtain that

z = z
l,α
+ (t), w = z

l,α
− (t), (58)

where

z
l,α
± (t) = −

c2tα

2D
(1 ± 	), 	 =

√

1 −
4k2 D2l(l + 1)

c2
. (59)

Then we have

L
−1[H(s)](t) = 1 − c2k2l(l + 1)t2α

[
(1 + 	)

2	
Eα,1+2α(z

l,α
+ (t))

−
(1 − 	)

2	
Eα,1+2α(z

l,α
− (t))

]
.

(60)

Moreover, we know [21] that

Ea,b(z) = zEa,a+b(z) +
1

Ŵ(b)
, (61)

from which we can write

Ea,1+2a(z) =
1

z2

(
Ea,1(z) −

z

Ŵ(1 + a)
− 1

)
. (62)
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Fig. 2 Multiplication factor Fl,α(t) for the angular power spectra for α = 1 (top left), α = 0.95 (top right),

α = 0.9 (bottom left) and α = 0.8 (bottom right) and different values of l (horizontal axis) and t (vertical

axis)

Using this in eq. (60), we obtain, after some simplifications, that

L
−1[H(s)](t) =

(1 + 	)

2	
Eα(z

l,α
− (t)) −

(1 − 	)

2	
Eα(z

l,α
+ (t)), (63)

where Eα(z) = Eα,1(z) is the usual Mittag-Leffler function. Using the functions B
(1)
α,l and

B
(2)
α,l defined as in eq. (22) and eq. (23), that is,

B
(1)
α,l (t) =

1

2
[Eα(z

l,α
− (t)) + Eα(z

l,α
+ (t))], (64)

B
(2)
α,l (t) =

1

2	
[Eα(z

l,α
− (t)) − Eα(z

l,α
+ (t))], (65)

we obtain that

blm(t) = blm(0)L−1[H(s)](t) =
√

2l + 1

4π
δlm[B

(1)
α,l (t) + B

(2)
α,l (t)], (66)

where we have used the initial conditions given eq. (43) and eq. (44). Finally, using this

expression for blm(t) in eq. (16), the definition eq.(29), and the expression for Yl0(θ, φ), we

get eq. (28). ⊓⊔
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Fig. 3 (Top) Multiplication factor for the angular power spectra for l = 500 (top left) and l = 1500 (top right)

as a function of t for α = 1 (continuous blue curve), α = 0.95 (dashed magenta curve) and α = 0.9 (dashed

dotted gray curve); (Bottom) Multiplication factor for the angular power spectra for l = 500 (bottom left) and

l = 1500 (bottom right) and different values of t (horizontal axis) and α (vertical axis)

5.3 Proof of the Theorem 3

Let the two functions f1(·) and f2(·) on the sphere S
2 belong to the space L2(S

2, sin θdθdϕ)

and have the Fourier-Laplace coefficients

a
(i)
lm =

∫

S2
fi (θ, ϕ)Y ∗

lm(θ, ϕ) sin θdθdϕ, i = 1, 2.

Recall (see, i.e., [16]) that their non-commutative spherical convolution is defined as the

Laplace series

[ f1 ∗ f2](θ, ϕ) =
∞∑

l=0

l∑

m=−l

a
(∗)
lm Ylm(θ, ϕ) (67)

with the Fourier-Laplace coefficients given by

a
(∗)
lm =

√
4π

2l + 1
a

(1)
lm a

(2)
l0 ,

provided that the series (67) converges in the corresponding Hilbert space.

Thus, the random solution u(θ, ϕ, t) of equation (32) with the initial values determined

by (33) and (34) can be written as a spherical random field with the following Laplace series

representation
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Fig. 4 (Top) Multiplication factor Fl,α(t) for the angular power spectra as a function of time t for l = 500 and

α = 0.7 (top left) and α = 0.6 (top right), and for values D = 1 (continuous blue curve) and D = 100 (dashed

magenta curve). (Bottom) Same as above, but with plot ranges restricted to the intervals [0, 0.1] (bottom left)

and [0, 0.01] (bottom right). (Color figure online)

u(θ, ϕ, t) = [ T ∗ pt ](θ, ϕ) =
∞∑

l=0

l∑

m=−l

a
(t)
lm Ylm(θ, ϕ), (68)

provided that this series is convergent in the Hilbert space L2(	 × S
2, sin θdθdϕ), where

pt = p(θ, ϕ, t) is given by Theorem 1, and T is given by (33). The complex Gaussian

random variables a
(t)
lm are given by

a
(t)
lm =

√
4π

2l + 1
alma

(pt )

l0 ,

where a
(pt )

l0 = Y ∗
l0(0, 0)Fl,α (t). This gives the first statement of the theorem.

By using the addition formula for spherical harmonics (see, i.e., [34], p. 66) we obtain the

expression for covariance structure.

Noting that |Pl(cos �)| ≤ 1, and the condition on the angular spectrum Cl , l ≥ 0,

guarantees the convergence of the series (68) in the Hilbert space L2(	 × S
2, sin θdθdϕ).

6 Numerical Illustrations

From eq. (36) we see that the angular spectrum evolution over time is determined by the

function Fl,α(t), defined by eq. (29 ). Let us call Fl,α(t) the multiplication factor. In this

section we present some graphs showing the behaviour of this multiplication factor for some

different values of its arguments. All plots were made using Mathematica 12.
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Fig. 5 (Top) Multiplication factor Fl,α(t) for the angular power spectra as a function of l for t = 0.04 (top

left) and t = 0.08 (top right) for α = 0.5 (continuous blue curve), α = 0.4 (dashed magenta curve) and

α = 0.3 (dashed dotted gray curve). (Bottom) Multiplication factor for the angular power spectra for l = 100

(bottom left) and l = 1500 (bottom right) as a function of t for α = 0.5 (continuous blue curve), α = 0.4

(dashed magenta curve) and α = 0.3 (dashed dotted gray curve). (Color figure online)

In order to compare our results with the ones of [4], let us consider the values c = 1,

D = 1 and k = 0.01. Then the quantity A defined in eq. (20) equals A = (
√

10001 − 1)/2.

In [4] the authors have used the time variable t ′ = c2t/2D, but because of the presence of

the parameter α in tα in our expressions, we prefer to use the variable t , so that, for α = 1,

we have that t ′ = t/2. Moreover, like in [4], we consider l ≤ 2500.

In Fig. 1 we have the plots of the multiplication factor Fl,α(t) as a function of l for four

different times and for three different values of α. The case α = 1 corresponds to the case

studied in [4]. In Fig. 2, instead of fixing the time variable at some values as in Fig. 1, we

consider the contour plots of the multiplication factor Fl,α(t) as a function of l and of the

time variable t in the interval [0, 1], for four different values of α.

In Fig. 3 we have fixed values of l (l = 500 and l = 1500) and on the top we have the

multiplication factor Fl,α(t) as a function of t for three different values of α, while on the

bottom we have Fl,α(t) as a function of t and with a continuous variation of α.

It is easy to see from the case α = 1 that for l > A we have a damped oscillatory

behaviour with frequency increasing with the l number. For values α < 1, we see that we

have an increasing attenuation of the amplitude with the decreasing of α. The plots in Figs. 2

and 3 suggest that this oscillatory behaviour will turn into a purely diffusive behaviour

after some value of α, which we expect to be α = 1/2. In Fig. 4 we have the plots of the

multiplication factor Fl,α(t) as a function of time t for the values of l = 500 and α = 0.7

and α = 0.6. The plots displayed in continuous blue curves correspond to the same values

used in the above plots, that is, c = 1, D = 1 and k = 0.01. A quick visual inspection may

suggest that we no longer have an oscillatory behaviour in such cases; however, this false

impression is due to the values used for c, D and k. If we increase the value of D, which
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means that we are decreasing the contribution of the attenuation term D−1∂αu/∂tα in eq.

(32), we expect that the oscillatory behaviour will be easier to be seen. The plots displayed

in dashed magenta curves correspond to the values c = 1, D = 100 and k = 0.01. Versions

with reduced intervals for the plot ranges are shown in the bottom part of the figure in order

to clearly visible the small but still present oscillatory behaviour.

The behaviour of the multiplication factor Fl,α(t) is expected to transform to a diffusion

behaviour for α ≤ 1/2, where we have a fractional deformation of the usual diffusion

equation. This can be seen in Fig. 5, particularly in the bottom plots, where we can note the

typical anomalous diffusion behaviour of models based on Mittag-Leffler functions [6,21,31].
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