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Abstract— We perform spectral analysis of the Internet topol-
ogy at the AS level, by adapting the standard spectral filtering
method of examining the eigenvectors corresponding to the
largest eigenvalues of matrices related to the adjacency matrix
of the topology. We observe that the method suggests clusters
of ASes with natural semantic proximity, such as geography or
business interests. We examine how these clustering properties
vary in the core and in the edge of the network, as well as across
geographic areas, over time, and between real and synthetic data.
We observe that these clustering properties may be suggestive of
traffic patterns and thus have direct impact on the link stress
of the network. Finally, we use the weights of the eigenvector
corresponding to the first eigenvalue to obtain an alternative
hierarchical ranking of the ASes.

I. INTRODUCTION

Studying and modeling network topologies is necessary for
protocol performance evaluation and simulation of a variety
of network problems. Early modeling efforts focused around
random graphs with relatively regular degree distributions [6],
[37], [40], [41]. With the rapid growth of the network and the
persistent effort of network measurement [13], [14], [34], real
topology data started becoming available, in particular at the
AS (Autonomous System) level. Using such data Faloutsos
et al. first observed that the degree distribution of the AS
level topology is actually consistently highly skewed [11].
Consequently, the research community has shown considerable
interest in obtaining topology models that better resemble the
real data [2], [5], [18], [23], as well as understanding the
impact of such network topologies on the performance of
network protocols [27], [32].

This new generation of synthetic Internet topology models is
strongly driven by the observed skewed statistics of the degree
sequence and its evolution, and by even further observations
of more detailed graph theoretic characteristics of the network.
Most notably, following the natural intuition that, for example,
geography must be relevant in the real Internet topology,
[5] paid special attention to the “clustering” coefficient; the
observation of the significance of geography has been also
made in [39] and [21].

In this paper we revisit the issue of clustering. As opposed
to previous work that has focused on the clustering coefficient,
our starting point is the method of spectral filtering. This
method examines the large eigenvalues of matrices related to
the adjacency matrix, and looks for clusters in the eigenvectors
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associated with these eigenvalues. Indeed, the first reference
to the large eigenvalues of the adjacency matrix of the AS
Internet topology is the “eigenvalue power-law” which was
reported together with the “degree power-law” in [11]. The
connection between spectral filtering and graph connectivity,
including clustering, has been extensively studied in discrete
mathematics (e.g. see the books of [9], [29] and the further
references that they point to), and has found very successful
applications in information retrieval and data-mining where
clusters represent groups of data with semantic proximity
[31, [17], [20], [26], [28]. Practical experience suggests that
spectral analysis might be better suited for data that lack
regularity (thus it has been extensively used in computer
science), while clustering coefficients are better suited for data
that have stronger regularities (thus they have been extensively
used by physicists who study lattices, crystals, etc.). Indeed, by
definition, spectral filtering yields a large number of clusters,
and it can be applied iteratively in subgraphs of a network. By
contrast, it is not clear how to grow clusters around nodes with
large clustering coefficient and this approach is not typical in
information retrieval or data-mining'.
Our contributions include:

« The observation that the eigenvectors related to the largest
eigenvalues of the adjacency matrix of the AS topology
examined in [11] do not express interesting clusters. This
is an experimental validation of the result of [24] who
showed that the eigenvalues power law is a consequence
of the degree power law. We thus conclude that further
normalizations are needed to retrieve non-trivial cluster-
ing properties.

o Adaptation of the spectral filtering method in the con-
text of the AS Internet topology, by (a)performing
inverse frequency normalization via stochastic ma-
trices, (b)considering similarity transformations and
(c)considering the entire topology as well as subgraphs of
the topology. As a result, we get non-trivial groupings of
ASes with clear semantic proximities, such as geography
and business interests. We note that without this adapta-
tion, i.e., by considering the eigenvectors corresponding
to the eigenvalues of the adjacency matrix as in [11], we
get trivial groupings corresponding to the large ISPs and
their customers: this is indeed a restatement of the highest
degrees.

'Though a related approach called “k-means” is quite common; but we do
not expand further on it, since we do not use it in this work.
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o The observation that the clustering properties (a)vary
in the core and the edge of the network and across
geographic areas, (b)persist over time, and (c)are not
accurately matched by synthetic Internet topology gen-
erators, though the Power Law Random Graph (PLRG)
model comes close [2].

« Study of the connection between the information retrieved
by spectral filtering and link stress (link stress can be
thought of as a first approach towards congestion). In
particular, we argue that the eigenvectors associated with
the largest eigenvalues are suggestive of non-trivial in-
tracluster traffic patterns that cause significant decrease
in the link stress. The decrease is much more notable
in the Internet than in any synthetic topology. If on the
other hand the traffic patterns become intercluster the link
stress correspondingly increases. This reasoning is in line
with [7], [10] which suggest that network characteristics
should be studied in the context of the design problem
they are trying to solve.

e A method to define intracluster and intercluster “traffic”
patterns. These are patterns that deviate from uniform
treatment of all pairs of nodes, and may represent “good”
and “bad” test case for network performance.

e A detailed and efficient AS ranking method according
to the first eigenvector of a suitably defined stochastic
matrix, which has strong correlation with other known
hierarchical assignments [31]. This approach is an adap-
tation of the pagerank used by Google [25]. An adaptation
of the same method for ranking links between ASes,
found that rankings are highly correlated with link stress
under uniform traffic. A further adaptation of the method
to obtain groups of ASes that correspond to seemingly
highly stressed cuts.

The balance of the paper is as follows: In Section IT we
cover necessary primitives from linear algebra and highlight
the intuition behind the spectral filtering method. We also
introduce normalizations and similarity transformations, and
discuss their suitability and necessity for graphs with skewed
statistics, like the Internet topology. In Section III we describe
the spectral filtering results for the AS Internet topology,
and give the qualitative nature of the information retrieved
by the eigenvectors. In Section IV we give an application
of the information retrieved by the eigenvectors in terms of
defining non-trivial traffic patterns that deviate from uniform
traffic. In Section V we give a method of ranking ASes and
links between ASes that is highly correlated with hierarchical
assignments. We summarize in Section VI.

II. SPECTRAL ANALYSIS OF MATRICES ARISING FROM
GRAPHS

In this Section we give a high level overview of the intuition
and the primitives of spectral filtering. We discuss the basics
of eigenvalues and eigenvectors of matrices, some useful
transformations and normalizations, and why the eigenvectors
corresponding to the large eigenvalues contain information
relevant to clustering. This motivates the processing that we
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Fig. 1. The adjacency matrix (left) of a random graph on 600 vertices. There
is a dot in position (i, 7) iff there is a link between ¢ and j. The first and
second diagonal blocks correspond to subgraphs with high connectivity. Off-
diagonal blocks represent sparse edges between the subgraphs. The second
eigenvector (right) assigns positive weights to the nodes of the first block and
negative weights to the nodes of the second block.

will do to the eigenvectors of the AS Internet topology in
Section III. We also give a plausible explanation of the
eigenvalue power-law of [11] as a restatement of the Zipf with
exponent 1 rank-degree distribution; this serves as additional
motivation for the processing in Section III, in the sense that
without this processing the spectral method does not give non-
trivial information.

A. The Spectral Filtering Method

Let G(V, E), |[V|=n, be an undirected graph and let A be
its adjacency matrix: a;;=1 if (i,7) € E, a;; =0 otherwise.
Since G is undirected, A is symmetric a;; = aj;. In general,
the (4,7)-th entry of a symmetric matrix can be thought of
as a measure of the correlation between parameters ¢ and j.
Let € be an n-dimension real vector; & can be thought of as a
function on the vertices of G. We say that €'is an eigenvector of
A with eigenvalue X if and only if €4 = Ae. It is a well known
fact of linear algebra that every nxn real symmetric matrix A
has a spectrum of n orthonormal eigenvectors €1, €3, ..., €,
with real eigenvalues \;y > o > ... > A, [16], [38]. The
eigenvectors are unique up to degeneracies related to equal
eigenvalues. In general, the spectral filtering method can be
applied with any matrix with real spectrum.

We demonstrate the essence of the spectral method with
an example. The left panel of Figure 1 gives the adjacency
matrix of a symmetric graph. A dot in position (i,5) in
this graph corresponds to a link between ¢ and j. There are
two highly connected clusters in this graph; the first includes
nodes 1 through 200 and the second all the other nodes. The
two clusters are connected with a few links. The right panel
of Figure 1 plots the weights assigned by the eigenvector
which corresponds to the second largest eigenvalue. The nodes
belonging to the first cluster were assigned positive weights
and the nodes of the second cluster negative weights. Thus,
an efficient heuristic to separate the two clusters is to examine
the eigenvector.

In broad lines, the spectral filtering method for an n xn
symmetric matrix A proceeds as follows:

STEP 1: Compute the k largest eigenvalues of A together with
the corresponding eigenvectors. The parameter k& depends on
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Fig. 2. Typical profile of the most positive weights assigned to nodes by the
eigenvector corresponding to a large eigenvalue. This profile was taken from
a principal eigenvector of the stochastic normalization of the AS topology.

the application and the instance, but it is always one to two
orders of magnitude smaller than n.
STEP 2: For each i, 1 < i < k, let ¢; be the eigenvector
associated with \;. Sort the vertices according to the weight
assigned by é€;. A typical profile of the sorted vertices is in
Figure 2. Cut towards the most positive end (or towards the
most negative end), with special preference to sharp jumps,
if they exist (a good example of a sharp jump can be found
in Table II). These groups are candidates for clustering and/or
semantic proximity.

In general, the eigenvectors corresponding to large eigen-
values tend to capture global characteristics of the graph and
its semantics, such as groups of nodes S C V for which the

ratio
edges inside S |{(i,j) € E:i€ S,j € S}

edges incident to S {(i,5) e E:ie€ S,jeV}

(D

is large, indicating clusters of relatively high connectivity and,
thus, presumably further semantic proximity, not necessarily
otherwise expressed in the data (the deep theory of “expander”
graphs supporting this claim can be found, for example in [9],
[29]). In addition, because there is no polynomial time algo-
rithm to find a set S minimizing the above ratio, the spectral
method is an efficient heuristic. Eigenvectors corresponding to
small eigenvalues tend to capture noise, or local characteristics
that are explicit or can be easily computed from the data.

B. Algebraic Primitives of Spectral Filtering

More formally, we list a few technical facts which build the
intuition behind the spectral filtering method (the statements
are straightforward, though some of the proofs to which we
point are quite technical).

(a) The largest eigenvalue \; of a d-regular graph is d and
the corresponding eigenvector assigns uniform weights to all
vertices [9], [22]. All other eigenvalues \;, 2 <7 <n are small,
|\i| < O(v/d), almost surely [9].

(b) The eigenvalues \;, 1 <i<n, of a graph with m edges and
maximum degree d are bounded by |\;| < min{\/m, d} [22].
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(c) The spectrum of the union of vertex disjoint graphs is the
union of their spectra [9], [22].

(d) If A and B are the adjacency matrices of not necessarily
disjoint graphs with eigenvalues a; > a9 > ... > «a, and
b1 > B2 > ... > [y, then the eigenvalues of their union C'=
A+Bare y1 > 72> ... 2 v, With oy + B, < < o + i,
1 <4< n [16], [38]. In addition, the corresponding invariant
subspaces of C' follow from the invariant subspaces of A
perturbed by no more than the maximum invariant subspace
of B [16], [30].

The intuition behind the spectral filtering method is that,
if we take the union of two vertex disjoint regular random
graphs A; and A, and connect them with a few random edges
B, then, combining Facts (a) through (e) above, the spectrum
of C' = A;+ As+ B will have 1 >~ 5 ~ d (corresponding
to the largest eigenvalues of A; and As) and ~; ~ O(\/E),
3 < i <n. Furthermore, we expect to identify the vertices of
Ay and A by examining the eigenvectors corresponding to
the first two eigenvalues. See Figure 1. Indeed, the second
eigenvector assigns mostly large negative weights on A; and
mostly large positive weights on As.

C. Similarity Transformation SIM(A)=A-AT

Now suppose that G(V, E), |V|=n, is a directed graph, and
thus the adjacency matrix A is no longer symmetric. A is
no longer guaranteed to have a complete real spectrum, and
the notion of clustering is not well defined either. Let AT
be the transpose of A, i.e., ag;:aji. Notice that the product
A-AT is a symmetric matrix. Notice further that its (i, 5)-
th entry is Z"k:l a; 0, measuring the number of nodes that
¢ and j point to in common. In the case where the nodes
represent ASes and edges are directed from customers to their
providers, the above sum relates ¢ and j to the number of their
common providers. Similarly, the product AT A relates i and j
to the number of their common customers. The transformation
A- AT is very common in spectral analysis. Depending on the
application, it is called self-adjoint, co-citation, co-variance,
or similarity transformation. Here we shall use the notation
SIM(A)=A-AT.

D. Stochastic Normalization

The intuition behind the spectral filtering method that we gave
in the previous paragraphs referred to regular graphs. Indeed,
in practice, the spectral filtering method has been found to
deteriorate rapidly when the frequencies of non-zero entries
vary substantially [17], which is certainly the case with the
very skewed degrees of Internet topologies. Inverse frequency
normalization is a general approach to restore spectral filtering
in such cases.

In its simplest form, inverse frequency normalization divides
each entry a;; with the sum }_. a;; of the entries of the
corresponding row, thus obtaining a matrix where all the rows
add up to 1. Notice that this is now a stochastic matrix, in the
sense that it describes the transition probabilities of a Markov
chain in the natural way. If, in addition, we make all diagonal
entries a;; = 1/2 and multiply all other entries by 1/2 the
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range of the eigenvalues shifts to (0,1)> . Like symmetric
matrices, such stochastic matrices have a complete spectrum
of real eigenvalues and eigenvectors. For any matrix A, we
denote its stochastic normalization N(A). In what follows, we
may apply the stochastic normalization to either A or SIM(A),
thus getting N(A) or N(SIM(A)).

E. Faloutsos’ Eigenvalue Power-Law

[11] examined the spectrum of the adjacency matrix of the
AS Internet topology, without performing any normalization
or other transformation. They reported a power-law on the
twenty or so largest eigenvalues of this matrix with exponent
between .45 and .5.

[24] observe that Faloutsos’ eigenvalue power-law is a
direct consequence of the degree sequence power-law along
the lines of Facts (d) and (e) of Section II.A, in the following
sense (see also Figure 3):

STEP 1: Decompose an undirected AS topology A as A =
F+E, as follows. Initially F' is the set of vertices that have
the k highest degrees, and let d;,ds, ..., d; be these degrees.
Initially F' contains no edges. Let E' be the entire AS topology
graph. Now we will remove some edges of £ and add them
to F', so as to create k disjoint stars in . We do this by the
following process: For each vertex v that is not in F', if v is
incident to k, vertices in F', pick one of these vertices u with
probability proportional to the degree of v in the entire graph,
make the edge {v, u} incident to the vertex € F' and remove
the edge {v,u} from E. Notice that F' is now a set of vertex
disjoint stars with degrees di,d5,...,d}, and E is the initial
AS topology where all edges belonging to the stars have been
removed.

STEP 2: Notice that the eigenvalues of a star of degree
d are +v/d and 0 with multiplicity d —1 [22]. Thus, by
Fact (d) of Section II.A, the largest eigenvalues of F' are
\/Z, \/@, ceey \/@ Also, by Fact (e) of Section IL.A, the
largest eigenvalues of A=F+FE cannot be perturbed by more
than the largest eigenvalues of F.

STEP 3: For typical AS topologies, we have found experi-
mentally that the above procedure, for k=100, gives d}~d;,
1 < i <k, hence the largest eigenvalues of F' are close to
Vdi,\/da, ..., \/dy, and the largest eigenvalues of E are, in
the worst case strictly smaller than v/d; and on the average

1/5 of v/di. Now by Fact (e) of Section IL.A, the largest
eigenvalues of A = F'4+ E can be understood to be close
to v/dy,v/da,...,\/dy. Hence, for graphs where the largest
degrees follow Zipf with exponent close to 1, as [11] reported
for the AS Internet, the largest eigenvalues follow a power-law
with exponent close to .5, also as [11] reported for AS the
Internet. We also refer to [12], [19], [24] for formal analysis
of these results in stochastic models of power-law random
graphs.

20n the other hand, the eigenvectors of stochastic matrices are not
necessarily orthogonal, and sometimes additional normalizations that rectify
orthogonality are necessary for good results. In our analysis this did not turn
out to be necessary. We also note that there are many further normalization
methods, including so-called Laplacians and divisions by logarithmic or other
functions of Zj a;j, but, again, we did not use them in our analysis.
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Fig. 3. We plot the 100 largest eigenvalues of the undirected AS topology and
compare them to the square roots of the 100 largest degrees. The eigenvalue
power-law follows the degree power-law. Both axes are in log scale.

We may now conclude that by looking at the eigenvectors
corresponding to the largest eigenvalues examined in [11] we
should not hope to get information beyond the ASes of highest
degree and their customers. Indeed, in experiment, we have
found these eigenvectors to be highly concentrated on the large
ISPs. Therefore, to obtain more interesting clusters, we will
need the processing discussed in Section II-C.

III. SPECTRAL ANALYSIS OF AS INTERNET TOPOLOGY

In this Section we describe the spectral analysis that we
performed on AS Internet topologies. We discuss the used
data, the processing, the behavior of large eigenvalues, and the
resulting groups of ASes from the corresponding eigenvectors.
We show that clustering varies in the core and the edge of the
network, as well as across different geographic areas. On the
other hand, the clustering is consistent over time. Finally, we
compare the spectral characteristics of the real AS topologies
to synthetic topologies.

A. Data Used, Transformations and Normalizations

We have used topology data from two sources. The first source
is the data of [1] who collect BGP routing information from
many routers in the Internet and combine all the routing tables
to reconstruct the undirected AS topology. Using the heuristics
in [31], they also provide the information whether an edge of
the undirected topology corresponds to a customer-provider
or a peering relationship. Finally, [31] give a heuristic to
assign the ASes to the levels of a 5-level hierarchy. The most
important ASes, such as big ISPs in the core of the Internet,
are assigned to level 1. The smallest ASes are assigned to
level 5. The topological data from this effort dating on April
6, 2002 are the ones used most in our study3.

The second set of data is from [13]. Though this data is
far less complete, it has the advantage that it spans the time
period of 1997 to date. We have thus used this data to study
the evolution of clustering over time. [13] does not contain

3We should note that perhaps the most complete set of data is in [8]. It
was difficult to annotate these data with the AS hierarchy information of [1],
and thus we did not use them.
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information about the relationships between the ASes. We have
used the algorithm of [15] to infer AS relationships®.

The data in both [1] and [13] are not perfectly accurate. We
do not believe though that this affects the results of our study,
in the sense that missing links would quite likely strengthen
the clustering findings.

An AS topology without AS relationships corresponds to an
undirected graph with a symmetric adjacency matrix A, in the
natural way. For such a topology we perform spectral anal-
ysis on the stochastic normalization N(A). An AS topology
with customer-provider or peer relationships corresponds to a
directed graph A’, where a;j;=1 and a’;=0 if and only if i is
a customer of j and j is a provider of i, and a}; =a’; =1 if
and only if 7 and 7 are peers (in all other cases the entries are
0). For such a topology we perform spectral analysis on the
stochastic normalization N(SIM(A4)).

If we perform spectral analysis starting from the entire
undirected graph A or directed graph A’ we find that the
clusters indicated by the eigenvectors associated with the large
eigenvalues correspond to groups of nodes assigned levels 3, 4
and 5 of the hierarchy of [31], thus are away from the core of
the network. This is intuitive, since we expect the edge of the
network to have more areas with higher connectivity inside
the area and relatively lower connectivity to the rest of the
network, along (1) of Section II. Similarly, we expect that the
core of the network is better connected, and thus the ratio (1)
of Section II is consistently higher in the core.

To capture the clustering properties of the core of the
network we have to explicitly isolate the core from the edge
and analyze the core alone. We have used two methods to
isolate the core. When information about the AS hierarchy is
available, such as in [1], we define the core to be the subgraph
that contains only the ASes assigned to levels one through four.
When the hierarchical information is not available, as in [13],
we iteratively prune all the nodes in the graph that have degree
one or two. The graph whose core we wish to find can be
either directed or undirected. We denote the core as Core(A)
and Core(A’) depending on whether the original graph was
undirected or directed respectively. As above, we perform
spectral analysis to N(Core(A4)) and N(SIM(Core(A’))).

B. Results for the Entire AS Topology

Figure 4 shows the largest eigenvalues of the AS topology of
[1]. We have considered the adjacency matrices of the topology
with and without AS relationships, for both the entire network
and the core. The point to notice in this graph is that the
eigenvalues are quite high, indicating the existence of clusters
in the underlying topology. Another interesting observation is
the drop in the eigenvalues between the entire topology and
the core of the network. This is expected because the core
was constructed by removing small ISP’s which tend to cluster
more.

4In addition to customer-provider and peering, [15] includes sibling re-
lationships; to be consistent with our first set of data, we replace sibling
relationships with peering relationships.
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Fig. 4. The largest eigenvalues of the AS topology. The top line corresponds
to the entire topology without AS relationships N(A). The second line
corresponds to the entire topology with AS relationships N(SIM(A’)). The
third line corresponds to the core without AS relationships N(Core(A)). The
bottom line corresponds to the core with AS relationships N(SIM(Core(A"))).

TABLE 1
A SAMPLE OF A CLUSTER FOUND IN THE N (Core (A’)) TOPOLOGY.

AS ‘Weight Level Description Country
3257 0.1096 2 Tiscali Intl Network DE
3303 0.1071 2 Swisscom Ltd CH

293 0.1032 3 ESnet us
5511 0.0986 1 France Telecom , Worldwide IP Backbone FR
3549 0.0986 1 Globalcrossing us
3582 0.0983 3 University of Oregon us
4513 0.0972 1 Globix Corporation us
6461 0.0967 3 Primary AS for Abovenet us
1668 0.0917 2 AOL Transit Data Network us
1299 0.0916 1 TeliaNet Global Network SE
3356 0.0907 1 Level 3 Communications North America us

701 0.0897 1 Alternet us
3561 0.0896 1 Cable & Wireless (CW) us
6395 0.0889 2 Broadwing Communications us
8918 0.0884 2 Carrierl Autonomous System GB
4565 0.0869 2 Epoch Internet us
1239 0.0867 1 SprintLink Backbone us
6079 0.0866 3 RCN Backbone AS us
6259 0.0862 3 Fiber Network Solutions, Inc. us
2497 0.0852 2 TUNET IP
2914 0.0846 1 Verio us
2828 0.0846 2 XO Communications, Inc. us
2548 0.0842 2 DIGEX-AS us
5459 0.0840 3 London Internet Exchange Ltd. GB
5650 0.0840 2 Electric Lightwave, Inc. Us

Note: This cluster is taken using the eigenvector which corresponds to the
highest eigenvalue. The ASes in this group are big ISP providers, mostly in
North America and Europe. The weights of the eigenvector did not show a
sharp jump.

Next we give some representative groups of nodes cor-
responding to the highest weights assigned by eigenvectors
corresponding to large eigenvalues. The first example was
taken using the N(SIM(Core(A’))). The group corresponds
to the largest eigenvalue, which is 1.0. In Table I, we list the
members of the group that take the highest weights in the
eigenvector.

In Table II, we give a group of ASes that belong to
Chinese ISP providers. This was taken from the eigenvector
of N(SIM(Core(A4’))) that corresponds to the 6th largest
eigenvalue with value 0.8363. Notice that the clusters of
relatively big ASes in Tables I and II (levels 1 through 3 of
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TABLE II
A SAMPLE OF A CLUSTER FOUND IN THE N (Core (A’)) TOPOLOGY

AS Weight Level Description Country
9810 0.5091 3 China Netcom CN
9805 0.4463 3 SIEMENS LTD. CHINA CN
9305 0.3141 4 Beijing Feihua Communication Technol- CN

ogy Co,Ltd
17969 0.3086 4 AS OF VLINE CN
7467 0.2798 4 21VIANET(CHINA),INC CN
17620 0.2622 3 China Netcom CN
7549 0.1799 3 The North China regional network of CN
CElnet
4808 0.1743 4 Chinanet Beijing Site AS CN
17431 0.1689 4 Beijing TONEK Information Technology CN
Development Company
9394 0.1553 3 CHINA RAILWAY Internet(CRNET) CN
17622 0.1465 3 China Netcom CN
9929 0.1076 3 China Netcom CN
4799 0.0910 3 Golden Bridge Network of China CN
10212 0.0524 3 Optic Communications Co., Ltd. CN
4774 0.0510 3 Abone JP
4813 0.0495 4 China Telecom GUANGDONG CN
PROVINCE BACKBONE NETWORK
4812 0.0495 4 China Telecom (Group) , Shanghai Tele- CN
com Company
17444 0.0475 3 NWT IP Network HK
7474 0.0451 2 Optus Communications AU
11608 0.0426 2 Accretive Networks, Inc. us
6993 0.0422 2 InterNAP us
6939 0.0416 2 HE.net us
4134 0.0407 2 Data Communications Bureau,MPT CN
5650 0.0378 2 Electric Lightwave, Inc. us
1668 0.0358 2 AOL Transit Data Network Us
4058 0.0058 3 LinkAGE Online Ltd. HK

Note: This group was found in the eigenvector corresponding to the 6th largest
eigenvalue. The last entry (AS 4058) does not belong to the group. We have
included it to indicate a typical sharp jump suggestive of where to cut a group.

TABLE III
A SAMPLE OF A CLUSTER FOUND IN THE N (SIM (A’))

AS Weight | Level Description Country
15536 -0.2472 5 CEDEFOP GR
15948 -0.2102 5 ICE/HT fundamental and technological GR

research
20813 -0.2102 5 Hellenic Open University GR
6802 -0.1868 4 National Educational and Research Infor- BG
mation Network
3268 | -0.1766 5 | CYNET , Cyprus Academic Network , | CY
Cyprus
13092 -0.1765 5 Univerzitet u Beogradu YU
2546 -0.1707 5 ARIADNE NETWORK GR
3323 -0.1707 5 National Technical University of Athens GR
5470 -0.1707 5 Aristotle University of Thessaloniki GR
5489 -0.1707 5 T.E.L of Thessaloniki GR
6744 -0.1707 5 Computer Technology Institute GR
6867 -0.1707 5 University of Crete GR
8248 -0.1707 5 Greek High-School Internet Network GR
8253 -0.1707 5 Democritus University of Thrace Network GR
8278 -0.1707 5 Technical University of Crete GR
8617 -0.1707 5 University of the Aegean GR
8618 -0.1707 5 Tonion University GR
8643 -0.1707 5 ATHENAnet GR
8700 -0.1707 5 T.E.L OF LARISSA GR
8762 -0.1707 5 T.E.I of Crete GR

Note: The whole group contains several more ASes related mostly to academic
institutions in Greece, Cyprus, and occasional ASes from other Balkan
countries. There was a sharp jump (not indicated in the figure for lack of
space) after which the entries were clearly outside the Balkans. This group
was found in the eigenvector corresponding to the 2nd largest eigenvalue.

the hierarchy) appear in prominent positions when we examine
the core of the topology. As we shall see below, such clusters
do not appear when we examine the entire topology.

In Table III we give a group of ASes that belong to Greek
academic institutions. This was taken from the eigenvector of
N(SIM(A")) that corresponds to the 2nd eigenvalue with value
0.9539. Notice that this cluster of rather small ASes (levels 4
and 5 of the hierarchy) appears in prominent position when
we examine the entire topology.

We should note that the three examples presented here are
typical. We chose to include the particular examples wanting
to give one cluster from each continent.
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C. Results specific to Geography

Is the Internet topology homogeneous across the entire globe?
Do the same connectivity patterns apply everywhere? The first
synthetic models of Internet topologies which emphasized the
principle of preferential connectivity [18], [23] were implic-
itly making such homogeneity assumptions. Recently, these
assumptions have been challenged, most notably in [21], [39]
who show strong correlation between the placement of ASes
and routers with geography as well as economic development.
We second and strengthen these findings, by observing that
different geographic parts of the network exhibit different
connectivity patterns.

We have used the data of [33] to assign ASes to continents.
We constructed three graphs for the continents of North
America (NA), Europe (EU) and Asia (AS)’. We included
AS relationships, thus obtaining non-symmetric adjacency
matrices A}y, for North America, A}, for Europe and
Al\g for Asia. In Figure 5 we give the largest eigenvalues
of N(SIM(AN)), N(SIM(AfLy)) and N(SIM(AYg)). We
also give the plots for the spectrum of the correspond-
ing cores N(SIM(Core(Ay,))), N(SIM(Core(Agy))) and
N(SIM(Core(A’yg))). The point to notice is that, both in
the entire topology and in the core, North America exhibits
less clustering than Europe and Asia. This can be understood
intuitively by thinking of the network in North America
as being at a later evolutionary stage, and hence is more
connected.

D. Spectrum Consistency over Time

Is the spectral behavior of the Internet topology consistent over
time? See Figure 6. We have used snapshots from [13] taken
one year apart and found consistent behavior of the largest
eigenvalues of N(A). This confirms the intuitive belief that
the spectrum is a robust characteristic of a topology. Figure 6
refers to the entire AS topology without AS relationships. We
have observed similar behavior in the evolution of the AS
topology with AS relationships, as well as the core of the
topology, and when restricted to specific continents.

E. Synthetic topologies

In Figure 7 we give the largest eigenvalues of the AS Internet
topology, as well as similar graphs generated by Inet [18],
Waxman, growth with preferential connectivity according to
Barabasi-Albert and the improved GLP heuristics [5], [23]
which explicitly tries to capture better clustering (all the above
for the same number of nodes as the Internet topology), and
the power law random graph (PLRG) model of [2] (for the
specific degree sequence of the Internet topology). We give
the spectrum of both the entire AS topology and the core
(recall that the core of synthetic topologies where there is no
other indication of hierarchy is obtained by iterative pruning).

For the entire Internet topology, all synthetic generators,
except for the Power Law Random Graph (PLRG) [2], have

31t is possible that some ASes are present in more than one continents. We
treated such ASes as belonging to only one continent. However, their number
is very small, and the results are not affected.
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Fig. 5. The spectrum of different continents. The top graph is for the entire
topology of each continent, while the bottom graph is for the core of the
topology of each continent.

smaller eigenvalues. This means that they do not contain as
strong clusters as the real Internet. This could have been
expected since no synthetic generator attempts to capture such
explicit notions as geography and business interests. But, why
is PLRG an exception? Note that PLRG does not even generate
a connected graph [2]. So, the same random principles that
generate several isolated connected components in the entire
graph, generate several badly connected subgraphs within the
giant connected component.

For the core of the topologies, the WAXMAN and BA
models produce higher eigenvalues. We believe that this is a
pathological byproduct that these topology generators do not
attempt to simulate any notion of core. Therefore, the behavior
of the spectrum after pruning small degree vertices is the same
as the entire topology.
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IV. IMPACT OF SPECTRAL ANALYSIS ON PERFORMANCE
AND TRAFFIC PRIMITIVES

What is the significance of the information retrieved by the
spectral analysis of Section III? What is the significance of
the eigenvectors associated with the large eigenvalues? The
main difficulty in answering this question is in deciding which
metric to pick and examine its correlation with clustering.
In general, there is no consensus on the metrics by which
Internet topologies should be evaluated. One approach is to
include detailed graph properties [5], [18], [23], while another
approach is to use metrics that distinguish graphs with heavy
tailed degree sequences as opposed to more regular topologies
and may be correlated with further coarse characteristics of
the network [27], [32]. Our approach is closer to the latter,
and influenced from the proposal of [7], [10] that topology
properties should be studied in connection to the functionality
of the network. In particular, we shall study the correlation of
the information retrieved from the eigenvectors of Section III
to the performance of a primitive experiment that studies the
“congestion” in the network.

For an undirected (without AS relationships) topology,
suppose that we send one unit of traffic along a minimum
hop (shortest) path from each node to every other node®. This
induces a stress for each link defined as the total number
of paths going though the link. We study the maximum link
stress, which can be thought of as an indicator of congestion.

Intuitively, we expect that there is more traffic between ASes
that have geographic or business relationships. We use the
following spectral-filtering based heuristic to group ASes into
clusters:

(a) If n is the size of the topology, consider the « - n, where
a = .5 in our experiments, largest eigenvalues of N (A), and
the eigenvectors associated with each such eigenvalue.

SIn case of many shortest paths, we pick one of them arbitrarily.
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(b) Consider the nodes H; and Hj that are assigned the highest
(-n positive and the highest 3-n negative weights in each such
eigenvector. The parameter J is set to .25 in our experiments.
(c) Each AS which appears in H; or Hy for at least one
examined eigenvector will be assigned to the cluster of the
positive or negative end of the first eigenvector in whose H;
or Hs it appeared. In this way we assign ASes to at most one
cluster.

We say that a traffic pattern is €% intraclustered if each node
sends €% of its traffic exclusively inside the cluster that it
belongs, and 1—€% of its traffic uniformly to all nodes (thus
uniform traffic is 0% intraclustered).

We are interested in studying the change in the max link
load as the traffic shifts from uniform to intracluster (and,
intercluster). It is reasonable to expect that, in general, topolo-
gies with higher principal eigenvalues, and thus worse cuts (in
the sense of (1) of Section II), should tend to exhibit worse
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TABLE V
DROP IN MAX LINK STRESS AND AVERAGE EXPECTED HOP DISTANCE, AS
THE TRAFFIC SHIFTS FROM UNIFORM TO INTRACLUSTERED.

Internet | Internet Inet Inet

Avg. Avg.

Max Exp. Max Exp.

Link Hop Link Hop

Stress Dist Stress Dist

0% 100.0% 3.3744 | 100.0% | 2.7499
20% 91.5% 3.2855 97.7% | 2.7151
40% 83.0% 3.1965 95.4% | 2.6802
60% 74.4% 3.1076 93.1% | 2.6454
80% 65.9% 3.0187 90.8% | 2.6106
100% 57.4% 2.9297 88.5% | 2.5757

Note: The same trend applies to the other synthetic topologies.

link stress behavior. Thus, as we shift traffic from uniform to
intracluster (resp. intercluster), we expect the maximum link
stress to drop (increase) significantly, since we are increasing
(resp. decreasing) the traffic that stays inside the cluster and
reducing (resp. increasing) the traffic that crosses the bad cut.

Indeed, the AS Internet topology is exhibiting sharper shift
in link stress behavior than several synthetic topologies from
Brite (BA,GLP,Waxman [4], [5], [23], [37]) Inet [18], and
PLRG [2]. The results are given in Table IV. Assume for
example that the traffic is 20% intraclustered. Then, the
maximum link stress for the AS topology dropped to 91.5%
of that in uniform traffic. For the same intracluster traffic, the
max link stress in the topology generated by Inet dropped to
97.7%. Thus, the maximum link stress decreased by a factor
of 8.5% in the case of the AS topology and by 2.3% in the
case of Inet. At the extreme of 100% intraclustered traffic the
max link stress in the Internet drops by more than 40%, while
in every synthetic topology the drop was less than 23%, with
the exception of Waxman, in which case the drop was around
30%.

We therefore propose that the information retrieved from
the eigenvectors associated with the largest eigenvalues may
be suggestive of intracluster traffic patterns. We propose to use
the clusters suggested by these eigenvectors as one meaningful
way to generate traffic patterns that deviate from uniform
traffic. One additional remark is due. It may be thought that
the decrease in link stress under intracluster traffic patterns
is a straightforward consequence of shorter min-hop paths
that would be used in an intraclustered traffic pattern, See
Table V. For each node, define its expected hop distance as
the expected hop distance of the node from every other node
under a specific traffic pattern. Notice that both in the Internet
and in the synthetic topology produced by Inet, the drop in
the average expected hop distance is not nearly as striking as
that of the max link stress. We therefore conclude that the
drop in the link stress is a result of a better distribution of the
weighed shortest paths rather than a mere decrease of their
length. Thus the intracluster traffic pattern is indeed non trivial.
Similar observation apply to intercluster traffic patterns.
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TABLE IV
DROP OF MAX LINK STRESS AS THE TRAFFIC SHIFTS FROM UNIFORM TO INTRA-CLUSTER AND INTER-CLUSTER.

A. Intra-cluster

Internet Inet PLRG GLP | Waxman BA
0% 100.0% | 100.0% | 100.0% | 100.0% 100.0% | 100.0%
20% 91.5% 97.7% 95.6% 95.8% 94.1% 96.4%
40% 83.0% 95.4% 91.2% 91.6% 88.2% 92.9%
60% 74.4% 93.1% 86.9% 87.3% 82.3% 89.3%
80% 65.9% 90.8% 82.5% 83.1% 76.3% 85.8%
100% 57.4% 88.5% 78.1% 78.9% 70.4% 82.2%

B. Inter-cluster

Internet Inet PLRG GLP | Waxman BA
0% 100.0% | 100.0% | 100.0% | 100.0% 100.0% | 100.0%
20% 108.5% | 102.4% | 102.5% | 103.9% 107.6% | 102.8%
40% 116.9% | 104.7% | 105.1% | 107.8% 116.1% | 104.7%
60% 1254% | 107.1% | 107.6% | 111.7% 124.6% | 107.1%
80% 133.8% | 109.5% | 110.1% | 115.6% 113.2% | 109.5%
100% | 142.3% | 111.8% | 112.7% | 119.5% 141.7% | 111.8%

Note: The AS Internet exhibits more drop than any synthetic topology (almost twice as much with the exception of the Waxman model). We note that these

numbers refer to the core of the network. The behavior was similar when we did the same experiment in the whole network, and in each specific continent.

V. RANKING BY THE FIRST EIGENVECTOR

The “significance” of an AS, or its position in a hierarchy, is
a subjective matter, in the sense that ASes are never explicitly
or implicitly assigned such rankings. There is relatively good
agreement about the “top” and “bottom” of a hierarchy. For
example, an ISP that has only peers and no provider is almost
surely very big, while an AS that has no customers or peers
and only one or two providers is almost surely very small.
In two separate efforts, [15] and [31] gave heuristics to assign
hierarchical levels to ASes, after inferring AS relationships and
taking into account several non-trivial further characteristics.

In this Section we observe that a different heuristic, based
on the weights assigned to the ASes by the first eigenvector of
a suitably defined modification of the directed AS graph (i.e.,
after AS relationships have been inferred), is highly correlated
with the hierarchy of [31].

The proposed heuristic is an adaptation of the pagerank
method used by Google to infer quality of Web pages. The
analogy is natural. Both the directed AS topology and the
WWW are directed graphs. In the WWW, a hyperlink pointing
from a page ¢ to a page j indicates an endorsement of
importance from ¢ to j. In the Internet, an edge pointing from
a customer ¢ to a provider j can be thought of as a similar
endorsement of importance, while in peers the endorsement
becomes mutual.

The ranking method is the following. Let A’ be the directed
adjacency matrix. For each node ¢ define the outdegree of ¢ as
dout (1) =|{j : a;; =1}|. Now consider the stochastic matrix

O:(l) + lTﬂ lf a,-jzl
if Q5 =0

dOu
_ 1l
T n

Pe) oy = { 2

The above stochastic matrix represents a random walk on
the directed graph A’, where with probability a@ we go to
a provider or peer chosen uniformly at random, and with
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probability 1 —a we jump to a uniformly random node from
the set of all nodes (the latter step is a standard correction to
avoid degeneracies pertaining to sinks).

Let w(v) be the stationary probability of the stochastic
matrix P(A). Google assigns to Web pages pagerank quality
m(v). By analogy, we assign to each AS hierarchical weight
m(v). In Figure 8 we compare the hierarchy of [31] to our
hierarchical weight 7(v). We have used o = .95; the results
are similar for any .9 < a < .99. To plot the graph, we have
grouped the ASes by their level in the hierarchy. Then, we sort
the ASes in each group by their weight in 7(v) and plot the
weights in decreasing order. Observe that we use logarithmic
scale for both axes.

There is notable correlation between the weights assigned
to the ASes and their level in the hierarchy. Nodes assigned
by [31] in high levels have higher values in 7 (v). Also, the
weights assigned to the ASes of a group are in general higher
than the weights assigned to ASes that belong in groups of
lower level. One noticeable exception is the weights assigned
to levels 4 and 5. ASes in these levels have very small degree
and they cannot be easily separated by the page rank method.
At first glance it seems that there is an “anomaly” in the figure,
since there are some ASes that are assigned larger weights
than ASes which belong to higher levels. We argue that this
could be a problem of the subjective nature of hierarchical
assignment, and/or the heuristic used by [31] to assign ASes
to levels. We will discuss two examples to make this point.
The largest weights in levels 2 and 3 have a very high value
which is comparable to the weights assigned to nodes in
level 1. These weights correspond to the ASes of Tiscali Intl
Network (AS number 3257) and of Abovenet (AS number
6461) respectively. We believe that they had to be assigned
in the highest level. This is justified by their degrees in the
adjacency matrix, which are 330 and 585 respectively, and by
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Fig. 8. Comparison of hierarchy with the first eigenvector.

the reputation they have as big ISP providers.

We extend the above method to obtain an assignment of
significance to links. If n is the number of ASes and m is the
number of links of the undirected AS topology, let N=n? be
the number of pairs of ASes and associate with each such pair
a shortest path between their endpoints. We may now consider
the m x N traffic matrix 7', where each row corresponds to a
shortest path and there is a 1 on the columns of the links used
by the path. Using the SVD method, which is a generalization
of the decomposition into eigenvalues and eigenvectors for
non-square matrices, we can compute the left eigenvector of T’
that corresponds to the largest eigenvalue. Just like pagerank,
this eigenvector gives an order of importance to links. Links
that get higher values are associated with links that accept
more traffic and thus are candidates to be places of congestion.
Observe that this statement was made without making any
assumption about the traffic between any two ASes.

To find the correlation between the importance assigned
to links and the amount of traffic they receive we did the
following experiment’. We assumed that between each pair of
ASes there is some amount of traffic flowing drawn from a
uniform distribution that takes values between 0 and 2 traffic
units®. After performing shortest path routing and assigning
loads to links, we have ordered the links by their load. We
are interested to find the relation between this ordering and
the ordering given by the weights in the eigenvector. In
Figure 9 we depict this relationship. There is a point in (7, j)
when a link is in ¢-th position sorted by the load and in j
position sorted by the weight in the eigenvector. Indeed it is
easy to observe that there is strong correlation between the
importance of the link and the amount of traffic it receives.
The correlation coefficient in this case is 0.8594 indicating

For this example we have used an induced graph of the real topology
which includes all the ASes in levels 1 and 2 as assigned by [31]. Memory
and processing limitations did not allow us to work with bigger matrices.

8Setting the traffic to 1 for each pair gave the same results.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE

1400

1200 PR 4

1000 - CL : 1

Order in eigenvector

I I I I I
400 600 800 1000 1200 1400
Order as found by simulating routing

Fig. 9. Correlation between link importance as assigned by the left

eigenvector of the SVD of the traffic matrix with the load of the link.
Correlation coefficient is 0.8594.

Fig. 10. An example of a link cluster.

this strong correlation.

In addition, it is possible to use the left eigenvectors to
identify clusters of related links that form a cut in the original
adjacency matrix. The links in the cut carry traffic between
areas in the Internet that are not well connected and thus
they are candidates to be points of congestion. As a simple
example we give Figure 10, where we draw a cluster of links
(cluster in the same sense as the clusters defined earlier for
ASes) taken from the left eigenvector which corresponds to the
second largest eigenvalue. Intuitively, we expect that indeed
the trans-atlantic links to carry a lot of traffic and thus be
points of congestion as indicated. We have observed similar
clusters using the other eigenvectors, and also in positions that
seem intuitively natural (across Central and Eastern Europe,
across the Pacific, e.t.c). It is still an open question to us how
the clusters observed in the AS topology related with the link
clusters.

VI. SUMMARY

Spectral filtering is a well known information retrieval
method. We studied the adaptation of spectral filtering in the
AS Internet topology. We found that the information retrieved
corresponds to groups of nodes with semantic proximities. We
found that the clustering behavior varies in the core and in the
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edge of the network, and across different geographic areas.
We gave two applications of spectral filtering. The first is to
identify non-trivial intacluster and intercluster traffic patterns.
Such traffic patterns affect the stress on elements of the
network. The second application is an adaptation of Google’s
PageRank to obtain an alternative detailed characterization of
hierarchy. Our study proves that spectral filtering methods can
be successful in processing Internet topologies.

Beyond information retrieval, spectral methods have found
great applicability in information compression, via the tech-
nique of low rank approximations [3], [26], [28]. Examining if
such low rank approximations apply to the networking context
(e.g. speed-up simulations) is a very important open question.
We believe that our study is a first step in this direction.

Finally we should mention that the first reference to the high
end of the spectrum of Internet topologies is due to [11], and
another interesting study can be found in [36] who discuss
properties of the entire spectrum and relate them to certain
structural properties of the Internet graph.
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