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Abstract. Previous studies on social networks are often focused on net-
works with only positive relations between individual nodes. As a signif-
icant extension, we conduct the spectral analysis on graphs with both
positive and negative edges. Specifically, we investigate the impacts of
introducing negative edges and examine patterns in the spectral space
of the graph’s adjacency matrix. Our theoretical results show that com-
munities in a k-balanced signed graph are distinguishable in the spectral
space of its signed adjacency matrix even if connections between commu-
nities are dense. This is quite different from recent findings on unsigned
graphs, where communities tend to mix together in the spectral space
when connections between communities increase. We further conduct
theoretical studies based on graph perturbation to examine spectral pat-
terns of general unbalanced signed graphs. We illustrate our theoretical
findings with various empirical evaluations.

1 Introduction

Signed networks were originally used in anthropology and sociology to model
friendship and enmity [2, 4]. The motivation for signed networks arose from the
fact that psychologists use -1, 0, and 1 to represent disliking, indifference, and
liking, respectively. Graph topology of signed networks can then be expressed as
an adjacency matrix where the entry is 1 (or −1) if the relationship is positive
(or negative) and 0 if the relationship is absent.

Spectral analysis that considers 0-1 matrices associated with a given network
has been well developed. As a significant extension, in this paper we investigate
the impacts of introducing negative edges in the graph topology and examine
community patterns in the spectral space of its signed adjacency matrix. We
start from k-balanced signed graphs which have been extensively examined in
social psychology, especially from the stability of sentiments perspective [5]. Our
theoretical results show that communities in a k-balanced signed graph are dis-
tinguishable in the spectral space of its signed adjacency matrix even if connec-
tions between communities are dense. This is very different from recent findings
on unsigned graphs [9, 12], where communities tend to mix together when con-
nections between communities increase. We give a theoretical explanation by
treating the k-balanced signed graph as a perturbed one from a disconnected
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k-block network. We further conduct theoretical studies based on graph pertur-
bation to examine spectral patterns of general unbalanced signed graphs. We
illustrate our theoretical findings with various empirical evaluations.

2 Notation

A signed graph G can be represented as the symmetric adjacency matrix An×n

with aij = 1 if there is a positive edge between node i and j, aij = −1 if
there is a negative edge between node i and j, and aij = 0 otherwise. A has
n real eigenvalues. Let λi be the i-th largest eigenvalue of A with eigenvector
xi, λ1 ≥ λ2 ≥ · · · ≥ λn. Let xij denote the j-th entry of xi. The spectral
decomposition of A is A =

∑
i λixix

T
i .

x1 xi xk xn

↓

αu →




x11 · · · xi1 · · · xk1

...
...

...
x1u · · · xiu · · · xku

...
...

...
x1n · · · xin · · · xkn

· · · xn1

...
· · · xnu

...
· · · xnn




(1)

Formula (1) illustrates our notions. The eigenvector xi is represented as a
column vector. There usually exist k leading eigenvalues that are significantly
greater than the rest ones for networks with k well separated communities.
We call row vector αu = (x1u, x2u, · · · , xku) the spectral coordinate of node
u in the k-dimensional subspace spanned by (x1, · · ·xk). This subspace re-
flects most topological information of the original graph. The eigenvectors xi

(i = 1, . . . , k) naturally form the canonical basis of the subspace denoted by
ξi = (0, . . . , 0, 1, 0 . . . , 0), where the i-th entry of ξi is 1.

Let E be a symmetric perturbation matrix, and B be the adjacency matrix
after perturbation, B = A + E. Similarly, let µi be the i-th largest eigenvalue
of B with eigenvector yi, and yij is the j-th entry of yi. Row vector α̃u =
(y1u, . . . , yku) is the spectral coordinate of node u after perturbation.

3 The Spectral Property of k-balanced Graph

The k-balanced graph is one type of signed graphs that have received extensive
examinations in social psychology. It was shown that the stability of sentiments
is equivalent to k-balanced (clusterable). A necessary and sufficient condition for
a signed graph to be k-balanced is that the signed graph does not contain the
cycle with exactly one negative edge [2].

Definition 1 Graph G is a k-balanced graph if the node set V can be divided
into k non-trivial disjoint subsets such that V1, . . . , Vk, edges connecting any two
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nodes from the same subset are all positive, and edges connecting any two nodes
from different subsets are all negative.

The k node sets, V1, . . . , Vk, naturally form k communities denoted by C1, . . . , Ck

respectively. Let ni = |Vi| (
∑

i ni = n), and Ai be the ni × ni adjacency matrix
of community Ci. After re-numbering the nodes properly, the adjacency matrix
B of a k-balanced graph is:

B = A + E, where A =




A1 0

. . .

0 Ak


 , (2)

and E represents the negative edges across communities. More generally, euv =
1(−1) if a positive(negative) edge is added between node u and v, and euv = 0
otherwise.

3.1 Non-negative Block-wise Diagonal matrix

For a graph with k disconnected communities, its adjacency matrix A is shown
in (2). Let νi be the largest eigenvalue of Ai with eigenvector zi of dimension
ni × 1. Without loss of generality, we assume ν1 > · · · > νk. Since the entries of
Ai are all non-negative, with Perron-Frobenius theorem [10], νi is positive and
all the entries of its eigenvector zi are non-negative. When the k communities
are comparable in size, νi is the i-th largest eigenvalues of A (i.e., λi = νi),
and the eigenvectors of Ai can be naturally extended to the eigenvalues of A as
follows:

(x1, x2, · · · , xk) =











z1 0 · · · 0

0 z2 · · · 0

...
...

. . .
...

0 0 · · · zk











(3)

Now, consider node u in community Ci. Note that all the entries in xi are non-
negative, and the spectral coordinate of node u is just the u-th row of the matrix
in (3). Then, we have

αu = (0, · · · , 0, xiu, 0, · · · , 0), (4)

where xiu > 0 is the only non-zero entries of αu. In other words, for a graph
with k disconnected comparable communities, spectral coordinates of all nodes
locate on k positive half-axes of ξ1, · · · , ξk and nodes from the same community
locate on the same half axis.

3.2 A General Perturbation Result

Let Γ i
u (i = 1, . . . , k) be the set of nodes in Ci that are newly connected to node

u by perturbation E: Γ i
u = {v : v ∈ Ci, euv = ±1}. In [11], we derived several

theoretical results on general graph perturbation. We include the approximation
of spectral coordinates below as a basis for our spectral analysis of signed graphs.
Please refer to [11] for proof details.
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Theorem 1 Let A be a block-wise diagonal matrix as shown in (2), and E be
a symmetric perturbation matrix satisfying ‖E‖2 ≪ λk. Let βij = xT

i Exj. For
a graph with the adjacency matrix B = A + E, the spectral coordinate of an
arbitrary node u ∈ Ci can be approximated as

α̃u ≈ xiuri +




∑

v∈Γ 1
u

euvx1v

λ1

, . . . ,
∑

v∈Γ k
u

euvxkv

λk


 (5)

where scalar xiu is the only non-zero entry in its original spectral coordinate
shown in (4), and ri is the i-th row of matrix R in (6):

R =




1 β12

λ2−λ1

· · · β1k

λk−λ1

β21

λ1−λ2

1 · · · β2k

λk−λ2

...
...

. . .
...

βk1

λ1−λk

βk2

λ2−λk

· · · 1




. (6)

3.3 Moderate Inter-community Edges

Proposition 1 Let B = A + E where A has k disconnected communities and
‖E‖2 ≪ λk and E is non-positive. We have the following properties:

1. If node u ∈ Ci is not connected to any Cj (j 6= i), α̃u lies on the half-line
ri that starts from the origin, where ri is the i-th row of matrix R shown in
(6). The k half-lines are approximately orthogonal to each other.

2. If node u ∈ Ci is connected to node v ∈ Cj (j 6= i), α̃u deviate from ri.
Moreover, the angle between α̃u and rj is an obtuse angle.

To illustrate Proposition 1, we now consider a 2-balanced graph. Suppose
that a graph has two communities and we add some sparse edges between two
communities. For node u ∈ C1 and v ∈ C2, with (5), the spectral coordinates
can be approximated as

α̃u ≈ x1ur1 + (0,
1

λ2

∑

v∈Γ 2
u

euvx2v), (7)

α̃v ≈ x2vr2 + (
1

λ1

∑

u∈Γ 1
v

euvx1u, 0), (8)

where r1 = (1, β12

λ2−λ1

) and r2 = ( β21

λ1−λ2

, 1).
The Item 1 of Proposition 1 is apparent from (7) and (8). For those nodes

with no inter-community edges, the second parts of the right hand side (RHS)
of (7) and (8) are 0 since all euv are 0, and hence they lie on the two half-lines
r1 (nodes in C1) and r2 (nodes in C2). Note that r1 and r2 are orthogonal since
r1r

T
2

= 0.
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(b) Add negative edges

−0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.1

−0.05

0

0.05

0.1

0.15

0.2

e
1

e
2

 

 

C
1

C
2

(c) Add positive edges

Fig. 1. Synth-2: rotation and deviation with inter-community edges (p = 0.05)

Next, we explain Item 2 of Proposition 1. Consider the inner product

〈α̃u, r2〉 = α̃urT
2

=
1

λ2

∑

v∈Γ 2
u

euvx2v.

If node u ∈ C1 has some negative links to C2 (euv = −1), 〈α̃u, r2〉 is thus
negative. In other words, α̃u lies outside the two half-lines r1 and r2.

Another interesting pattern is the direction of rotation of the two half lines.
For the 2-balanced graph, r1 and r2 rotate counter-clockwise from the axis ξ1

and ξ2. Notice that all the added edges are negative (euv = −1), and hence
β12 = β21 = xT

1
Ex2 =

∑n

u,v=1
euvx1ux2v < 0. Therefore, β12

λ2−λ1

> 0, β21

λ1−λ2

< 0,
which implies that r1 and r2 have an counter-clockwise rotation from the basis.
Comparison with adding positives edges. When the added edges are all
positive (euv = 1), we can deduct the following two properties in a similar
manner:

1. Nodes with no inter-community edges lie on the k half-lines. (When k = 2,
the two half-lines exhibit a clockwise rotation from the axes.)

2. For node u ∈ Ci that connects to node v ∈ Cj , α̃u and rj form an acute
angle.

Figure 1 shows the scatter plot of the spectral coordinates for a synthetic
graph, Synth-2. Synth-2 is a 2-balanced graph with 600 and 400 nodes in each
community. We generate Synth-2 and modify its inter-community edges via the
same method as Synthetic data set Synth-3 in Section 5.1. As we can see in Figure
1(a), when the two communities are disconnected, the nodes from C1 and C2 lie
on the positive part of axis ξ1 and ξ2 respectively. We then add a small number
of edges connecting the two communities (p = 0.05). When the added edges are
all negative, as shown in Figure 1(b), the spectral coordinates of the nodes from
the two communities form two half-lines respectively. The two quasi-orthogonal
half-lines rotate counter-clockwise from the axes. Those nodes having negative
inter-community edges lie outside the two half-lines. On the contrary, if we add
positive inter-community edges, as shown in Figure 1(c), the nodes from two
communities display two half-lines with a clockwise rotation from the axes, and
nodes with inter-community edges lie between the two half-lines.



6

3.4 Increase the Magnitude of Inter-community Edges

Theorem 1 stands when the magnitude of perturbation is moderate. When deal-
ing with perturbation of large magnitude, we can divide the perturbation ma-
trix into several perturbation matrices of small magnitude and approximate the
eigenvectors step by step. More general, the perturbed spectral coordinate of a
node u can be approximated as

α̃u ≈ αuR +
n∑

v=1

euvαvΛ−1, (9)

where Λ = diag(λ1, . . . , λk).

One property implied by (9) is that, after adding negative inter-community
edges, nodes from different communities are still separable in the spectral space.
Note that R is close to an orthogonal matrix, and hence the first part of RHS
of (9) specifies an orthogonal transformation. The second part of RHS of (9)
specifies a deviation away from the position after the transformation. Note that
when the inter-community edges are all negative (euv = −1), the deviation of
αu is just towards the negative direction of αv (each dimension is weighted with
λ−1

i ). Therefore, after perturbation, node u and v are further separable from
each other in the spectral space. The consequence of this repellency caused by
adding negative edges is that nodes from different communities stay away from
each other in the spectral space. As the magnitude of the noise increases, more
nodes deviate from the half-lines ri, and the line pattern eventually disappears.

Positive large perturbation. When the added edges are positive, we can sim-
ilarly conclude the opposite phenomenon: more nodes from the two communities
are “pulled” closer to each other by the positive inter-community edges and are
finally mixed together, indicating that the well separable communities merge
into one community.

Figure 2 shows the spectral coordinate of Synth-2 when we increase the mag-
nitude of inter-community edges (p = 0.1, 0.3 and 1). For the first row (Figure
2(a) to 2(c)), we add negative inter-community edges in Synth-2, and for the
second row (Figure 2(d) to 2(f)), we add positive inter-community edges. As
we add more and more inter-community edges, no matter positive or negative,
more and more nodes deviate from the two half-lines, and finally the line pattern
diminishes in Figure 2(c) or 2(f). When adding positive inter-community edges,
the nodes deviate from the lines and hence finally mix together as show in Fig-
ure 2(f), indicating that two communities merge into one community. Different
from adding positive edges, which mixes the two communities in the spectral
space, adding negative inter-community edges “pushes” the two communities
away from each other. This is because nodes with negative inter-community
edges lie outside the two half-lines as shown in Figure 2(a) and 2(b). Even when
p = 1, as shown in Figure 2(c), two communities are still clearly separable in the
spectral space.
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(a) Negative edges (p = 0.1)
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(b) Negative edges (p = 0.3)
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(c) Negative edges (p = 1)
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(d) Positive edges (p = 0.1)

−0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.1

−0.05

0

0.05

0.1

0.15

0.2

e
1

e
2

 

 

C
1

C
2

(e) Positive edges (p = 0.3)

−0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.1

−0.05

0

0.05

0.1

0.15

0.2

e
1

e
2

 

 

C
1

C
2

(f) Positive edges (p = 1)

Fig. 2. Synth-2 with different types and magnitude of inter-community edges.

4 Unbalanced Signed Graph

Signed networks in general are unbalanced and their topologies can be consid-
ered as perturbations on balanced graphs with some negative connections within
communities and some positive connections across communities. Therefore, we
can divide an unbalanced signed graph into three parts

B = A + Ein + Eout, (10)

where A is a non-negative block-wise diagonal matrix as shown in (2), Ein rep-
resents the negative edges within communities, and Eout represents the both
negative and positive inter-community edges.
Add negative inner-community edges. For the block-wise diagonal ma-
trix A, we first discuss the case where a small number of negative edges are
added within the communities. Ein is also a block-wise diagonal. Hence βij =
xT

i Einxj = 0 for all i 6= j, and matrix R caused by Ein in (6) is reduced to the
identity matrix I.

Consider that we add one negative inner-community edge between node
u, v ∈ Ci. Since R = I, only λi and xi are involved in approximating α̃u and
α̃v:

α̃u = (0, . . . , 0, yiu, 0, . . . , 0), yiu ≈ xiu −
xiv

λi

α̃v = (0, . . . , 0, yiv, 0, . . . , 0), yiv ≈ xiv −
xiu

λi

.
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(a) 2 disconnected, q = 0.1
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(b) p = 0.1, q = 0.1
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(c) p = 0.1, q = 0.2

Fig. 3. Spectral coordinates of unbalanced graphs generated from Synth-2.

Without loss of generality, assume xiu > xiv, and we have the following proper-
ties when adding euv = −1:

1. Both node u and v move towards the negative part of axis ξi after pertur-
bation: yiu < xiu and yiv < xiu.

2. Node v moves farther than u after perturbation: |yiv − xiv| > |yiu − xiu|.

The two preceding properties imply that, for those nodes close to the origin,
adding negative edges would “push” them towards the negative part of axis ξi,
and a small number of nodes can thus lie on the negative part of axis ξi, i.e.,
yiu < 0).
Add inter-community edges. The spectral perturbation caused by adding
Eout on to matrix A + Ein can be complicated. Notice that (A + Ein) is still a
block-wise matrix, and we can still apply Thereom 1 and conclude that, when
Eout is moderate, the major nodes from k communities form k lines in the
spectral space and nodes with inter-community edges deviate from the lines.

It is difficult to give the explicit form of the lines and the deviations, because
xiu and the inter-community edges can be either positive and negative. However,
we expect that the effect of adding negative edges on positive nodes is still
dominant in determining the spectral pattern, because most nodes lie along the
positive part of the axes and the majority of inter-community edges are negative.
Communities are still distinguishable in the spectral space. The majority of nodes
in one community lie on the positive part of the line, while a small number
of nodes may lie on the negative part due to negative connections within the
community.

We make graph Synth-2 unbalanced by flipping the signs a small proportion
q of the edges. When the two communities are disconnected, as shown in Figure
3(a), after flipping q = 0.1 inner-community edges, a small number of nodes lie
on the negative parts of the two axes. Figure 3(b) shows the spectral coordinates
of the unbalanced graph generated from balanced graph Synth-2 (p = 0.1, q =
0.1). Since the magnitude of the inter-community edges is small, we can still
observe two orthogonal lines in the scatter plots. The negative edges within the
communities cause a small number of nodes lie on the negative parts of the two
lines. Nodes with inter-community edges deviate from the two lines. For Figure
3(c), we flip more edge signs (p = 0.1, q = 0.2). We can observe that more nodes



9

lie on the negative parts of the lines, since more inner-community edges are
changed to negative. The rotation angles of the two lines are smaller than that
in Figure 3(b). This is because the positive inter-community edges “pull” the
rotation clockwise a little, and the rotation we observe depends on the effects
from both positive and negative inter-community edges.

5 Evaluation

5.1 Synthetic Balanced Graph

Data set Synth-3 is a synthetic 3-balanced graph generated from the power law
degree distribution with parameter 2.5. The 3 communities of Synth-3 contain
600, 500, 400 nodes, and 4131, 3179, 2037 edges respectively. All the 13027 inter-
community edges are set to be negative. We delete the inter-community edges
randomly until a proportion p of them remain in the graph. The parameter p

is the ratio of the magnitude of inter-community edges to that of the inner-
community edges. If p = 0 there are no inter-community edges. If p = 1, inner-
and inter-community edges have the same magnitude.

Figure 4 shows the change of spectral coordinates of Synth-3, as we increase
the magnitude of inter-community edges. When there are no any negative links
(p = 0), the scatter plot of the spectral coordinates is shown in Figure 4(a). The
disconnected communities display 3 orthogonal half-lines. Figure 4(b) shows the
spectral coordinates when the magnitude of inter-community edges is moderate
(p = 0.1). We can see the nodes form three half-lines that rotate a certain angle,
and some of the nodes deviate from the lines. Figures 4(c) and 4(d) show the
spectral coordinates when we increase the magnitude of inter-community edges
(p = 0.3, 1). We can observe that, as more inter-community edges are added,
more and more nodes deviate from the lines. However, nodes from different
communities are still separable from each other in the spectral space.

We also add positive inter-community edges on Synth-3 for comparison, and
the spectral coordinates are shown in Figures 4(e) and 4(f). We can observe
that, different from adding negative edges, as the magnitude of inter-community
edges (p) increases, nodes from the three communities get closer to each other,
and completely mix in one community in Figure 4(f).

5.2 Synthetic Unbalanced Graph

To generate an unbalanced graph, we randomly flip the signs of a small pro-
portion q of the inner- and inter-community edges of a balanced graph, i.e., the
parameter q is the proportion of unbalanced edges given the partition. We first
flip edge signs on the graph with small magnitude inter-community edges. Figure
5(a) and 5(b) show the spectral coordinates after we flip q = 10% and q = 20%
edge signs on Synth-3 with p = 0.1. We can observe that, even the graph is
unbalanced, nodes from the three communities exhibit three lines starting from
the origin, and some nodes deviate from the lines due to the inter-community
edges.
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We then flip edge signs on the graph with large magnitude inter-community
edges. Figure 5(c) shows the spectral coordinates after we flip q = 20% edge
signs on Synth-3 with p = 1. We can observe that the line pattern diminishes
because of the large number of inter-community edges. However, the nodes from
3 communities are separable in the spectral space, indicating that the unbalanced
edges do not greatly change the patterns in the spectral space.

5.3 Comparison with Laplacian Spectrum

The signed Laplacian matrix is defined as L = D̄ −A where D̄n×n is a diagonal
degree matrix with D̄ii =

∑n

j=1
|Aij | [7]. Note that the unsigned Laplacian

matrix is defined as L = D − A where Dn×n is a diagonal degree matrix with
Dii =

∑n

j=1
Aij . The eigenvectors corresponding to the k smallest eigenvalues

of Laplacian matrix also reflect the community structure of a signed graph:
the k communities form k clusters in the Laplacian spectral space. However,
eigenvectors associated with the smallest eigenvalues are generally instable to
noise according to the matrix perturbation theory [10]. Hence, when it comes
to real-world networks, the communities may no longer form distinguishable
clusters in the Laplacian spectral space.

Figure 6(a) shows the Laplacian spectrum of a balanced graph, Synth-3 with
p = 0.1. We can see that the nodes from the three communities form 3 clusters
in the spectral space. However, the Laplacian spectrum is less stable to the
noise. Figure 6(b) and 6(c) plot the Laplacian spectra of the unbalanced graphs
generated from Synth-3. We can observe that C1 and C2 are mixed together in
Figure 6(b) and all the three communities are not separable from each other in
Figure 6(c). For comparison, the adjacency spectra of the corresponding graphs
were shown in Figure 5(b) and Figure 5(c) respectively where we can observe
that the three communities are well separable in the adjacency spectral space.

6 Related Work

There are several studies on community partition in social networks with neg-
ative (or negatively weighted) edges [1, 3]. In [1], Bansal et al. introduced cor-
relation clustering and showed that it is an NP problem to make a partition to
a complete signed graph. In [3], Demaine and Immorlica gave an approxima-
tion algorithm and showed that the problem is APX-hard. Kruegis et al. in [6]
presented a case study on the signed Slashdot Zoo corpus and analyzed various
measures (including signed clustering coefficient and signed centrality measures).
Leskovic et al. in [8] studied several signed online social networks and developed
a theory of status to explain the observed edge signs. Laplacian graph kernels
that apply to signed graphs were described in [7]. However, the authors only
focused on 2-balanced signed graphs and many results (such as signed graphs’
definiteness property) do not hold for general k-balanced graphs.
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(a) 3 disconnected commu-
nities

−0.1

0

0.1

0.2

−0.1

0

0.1

0.2

−0.1

0

0.1

0.2

 

e
1

e
2

 

e
3

C
1

C
2

C
3

(b) Negative p = 0.1
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(c) Negative p = 0.3
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(d) Negative p = 1
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(e) Positive p = 0.1
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(f) Positive p = 1

Fig. 4. The spectral coordinates of the 3-balanced graph Synth-3. (b)-(d): add negative
inter-community edges; (e)-(f): add positive inter-community edges.
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(a) p = 0.1, q = 0.1
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(b) p = 0.1, q = 0.2

−0.1

0

0.1

0.2

−0.1

0

0.1

0.2

−0.1

0

0.1

0.2

 

e
1

e
2

 

e
3

C
1

C
2

C
3

(c) p = 1, q = 0.2

Fig. 5. The spectral coordinates of a unbalanced synthetic graph generated via flipping
signs of inner- and inter-community edges of Synth-3 with p = 0.1 or 1.
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(a) p = 0.1, q = 0 (bal-
anced)
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(b) p = 0.1, q = 0.2
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(c) p = 1, q = 0.2

Fig. 6. The Laplacian spectral space of signed graphs.
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7 Conclusion

We conducted theoretical studies based on graph perturbation to examine spec-
tral patterns of signed graphs. Our results showed that communities in a k-
balanced signed graph are distinguishable in the spectral space of its signed
adjacency matrix even if connections between communities are dense. To our
best knowledge, these are the first reported findings on showing separability of
communities in the spectral space of the signed adjacency matrix. In our future
work, we will evaluate our findings using various real signed social networks.
We will also develop community partition algorithms exploiting our theoretical
findings and compare with other clustering methods for signed networks.
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