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DNS data for channel flow at a friction Reynolds number of 4200, generated by

Lozano-Durán & Jiménez (JFM, vol 759, 2014), are used to examine the properties

of near-wall turbulence within sub-ranges of eddy-length scale. Attention is primar-

ily focused on the intermediate layer (“meso-layer”) covering the logarithmic velocity

region within the range of wall-scaled wall-normal distance of 80-1500. The exam-

ination is based on a number of statistical properties, including pre-multiplied and

compensated spectra, pre-multiplied derivative of the second-order structure func-

tion and three scalar parameters that characterise the anisotropic or isotropic state

of the various length-scale sub-ranges. This analysis leads to the delineation of three

regions within the map of wall-normal-wise pre-multiplied spectra, each character-

ized by distinct turbulence properties. A question of particular interest is whether

the Townsend-Perry Attached Eddy Hypothesis (AEH) can be shown to be valid

across the entire meso-layer, in contrast to the usual focus on the outer portion of

the logarithmic-velocity layer at high Reynolds numbers, which is populated with

very large-scale motions. This question is addressed by reference to properties in the

pre-multiplied scale-wise derivative of the second-order structure function (PMDS2)

and joint PDFs of streamwise-velocity fluctuations and their streamwise and spanwise

derivatives. This examination provides evidence, based primarily on the existence of

a plateau region in the PMDS2 for the qualified validity of the AEH right down the

lower limit of the logarithmic velocity range.
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I. INTRODUCTION

The Townsend-Perry Attached-Eddy Hypothesis (AEH; Townsend1 and Perry et al.2,3)

is one of the major historical fix-points of sheared near-wall turbulence. Its most important

statistical constituent is the statement that the energy-containing motions in the log-layer

are associated with coherent eddies that are “attached” to the wall, both, their dimension

and their energy, rising linearly with wall distance, implying that the eddies are self-similar.

Perry et al.3 thus proposed a conceptual model of a hierarchy of wall-attached eddies which

increase in size by consecutive doubling and span the entire boundary layer, from the viscous

scale δν = ν/uτ to the outer edge δ.

The AEH is compatible with two principal statistical characteristics. One, derived by

Townsend1, is that the streamwise and spanwise turbulence-energy components u′u′, w′w′,

respectively, decay logarithmically towards the edge of the velocity log layer. Another is

that the energy spectra, within the logarithmic range of the energy components, follow the

law Euu(kx) ∝ k−1
x , Eww(kx) ∝ k−1

x – i.e., that the pre-multiplied spectra assume a constant

value (Perry at al.3,4, Nickels at al.5). Integration of these spectra with respect to kx (or

its inverse – the wave length) then readily yields the logarithmic variation of the related

turbulence-energy components.

As the presence of k−1
x variation is not easily identifiable, at least in one-dimensional

spectra at moderate Reynolds-number values, Davidson et al6,7 proposed that the second-

order structure function S2,u(δx) = 〈[u(x+ δx)− u(x)]2〉 should provide a more sensitive

indicator of the validity of the AEH. Davidson et al show that the behaviour is consistent

with a logarithmic rise of S2,u(δx) up to the integral length scale, beyond which the structure

function tends to a constant value. When the structure function is scaled with the squared

of the shear velocity u2
τ , and δx is scaled with y, the expectation is that it should display

a universal behaviour, independent of the wall distance y, and this is indeed demonstrated

by Davidson et al6,7 for two particular boundary layers at momentum-thickness Reynolds-

number values Reθ = 12600 and 37500, the latter corresponding to Reτ ≈ 14000. A focus on

S2,u(δx), as a diagnostic indicator of wall-normal eddy organisation and the AEH, was most

recently advocated by de Silva et al8 and Chung et al9, the former analysing the structure

of boundary layers at Reτ up to approximately 106, and the latter aimed primarily at

reconciling significant differences between high-Reynolds-number boundary-layer and pipe-
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flow data in respect of the k−1
x region in the associated spectra. In common with most studies

examining aspects of the AEH, de Silva et al8 concentrate their attention on the outer portion

of the respective boundary layers, beyond the position of the plateau (or second maximum)

in the wall-normal variation of the streamwise turbulence-energy component, where the

second-order structure function varies logarithmically with the two-point separation and

where the variations collapse if this separation is normalized by the wall distance. Based

on theoretical considerations by Woodcock and Marusic10, who provide formal support and

analytical model for the AEH, de Silva et al8 also extend their investigation to higher-order

structure functions and demonstrate a logarithmic-scaling behaviour for these functions at

sufficiently high Reynolds-number values and a separation distance larger than the wall

distance.

Townsend’s and Perry’s original interpretation was that the AEH applies to the entire

velocity log-law region. Studies consistent with this view are those of Davidson6,7 and

Hwang11. The former discusses the logarithmic behaviour of the structure function within

the range 100 < y+ < 200, in relation to the k−1
x behaviour that is observed by Nickels

et al5 to apply in the boundary layer at Reθ = 37500 over a similar y+ range. Analyzing

the implications of a sequence of minimal-channel simulations, each used to isolate the

characteristics of a narrow size ranges of eddies, Hwang11 argues that the entire log-law

layer is populated, as suggested by Jiménez & Hoyas12 and Marusic et al13, by a hierarchical

set of self-similar and self-sustaining attached eddies, in line with the original AEH. However,

the above interpretation appears at odds with results derived from experimental data for

high-Reynolds-number pipe flow (Hultmark et al,14, Rosenberg et al15) and also DNS data for

channel flow at Reτ = 4200 (Lozano-Durán & Jiménez16,17), which show that the logarithmic

variation of u′u′
+
does not apply across the intermediate portion of the velocity log-law layer

– referred to as the “meso-layer” henceforth – which separates the layer below y+ ≈ 100 from

the outer region lying beyond y ≈ 0.5δ (around y+ = 2000 in the channel flow considered

herein). The reason is that the streamwise fluctuation-energy profile is increasingly affected,

as the Reynolds number exceeds Reτ ≈ 1000, by contributions arising from energetic outer

structures having streamwise and spanwise length scales of order 5 − 10δ and 0.5 − 1δ,

respectively (Kim et al.18, Del Álamo & Jiménez19, Hutchins et al.20). The wall-normal

variation of the streamwise energy associated with these structures is fairly flat (Marusic et

al21), increases with Reτ , and its (weak) maximum is reported by Marusic et al22 to follow the
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location y+ ≈ 3.9
√
Reτ (corresponding to around 0.05δ). Importantly, the energy remains

elevated well beyond this location, as well across the entire near-wall region including meso-

layer and, indeed, the viscosity-affected sublayer, causing substantial friction footprints on

the wall; in other words, the energetic outer large-scale motions are highly correlated in the

wall-normal direction. As a consequence, the energy profile no longer scales with uτ and

the logarithmic variation of u′u′
+
in the velocity log-law region is lost or becomes highly

indistinct, at least at Reτ < 5000. As observed by Vassilicos et al.23 , this behaviour is

incompatible with the AEH, and this led them to propose a new spectral range of the form

Euu = Cu2
τδ(kxδ)

−m for the intermediate range, allowing them to ’predict’ the rise in u′u′
+

due to the outer scales.

Measurements at Reτ > 7000 by Hutchins at al24, Hultmark et al14,25,26 and Rosenberg

et al15 display a tendency for u′u′
+
to re-establish a logarithmic-decay variation well beyond

the meso-layer of the velocity log-law and also well beyond the position of maximum large-

scale energy - although with a slope different from that applicable within the velocity log-law

layer at much lower Reynolds-number values. This has led to a proposition that the AEH

should only apply in the extreme outer layer of the velocity log-law region, on the grounds

that “determining the extend of the logarithmic layer from U+ alone is difficult because of

the slow departure from any log law” (Smits et al27 ).

The evident controversy on the subject of the AEH - in particular, the wall-normal range

to which it applies – motivated the present authors to examine the statistical properties

of a channel flow at Reτ = 4200. This value is substantially lower than that achieved in

experiments, but is arguably high enough to undertake a searching study by post-processing

the highly resolved data that yield well-converged statistics. The DNS data were obtained

with a spectral code by Lozano-Durán & Jiménez16,17, according to well established quality

criteria, over a domain Lx = 2πh, Lz = πh, with a grid containing 3072×3072×1081 nodes

and cell dimensions ∆x+ = 12.8, ∆z+ = 6.4, ∆y+max = 10.7. Downloaded data consisted of

full-volume snapshot at 40 time levels, corresponding to 15 turnovers of the global eddies.

While the motivation for the present study is rooted in, and emphasis is placed on, the

AEH, the analysis extends, more broadly, to an examination of the statistical properties of,

and scaling laws pertaining to, different scale sub-ranges within the spectrum of turbulent

fluctuations across the near-wall layer. Observations derived from this latter part turn out

to be highly pertinent to the discussion on the validity of the AEH in the meso-layer.
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FIG. 1. Wall-normal distribution of the streamwise stress at Reτ = 4200 (red line) and Reτ = 5200

from Lee & Moser28. The dashed lines represents the variation u′u′
+

= −1.26 log y+ + B, with

B = 12.2 and 12.7 for Reτ = 4200 and Reτ = 5200, respectively.

II. STATISTICAL PROPERTIES OF EDDY-LENGTH-SCALE

SUB-RANGES

Figure 1 shows profiles of the streamwise turbulence energy for Reτ = 4200 and 5200.

The latter originates from a DNS study by Lee & Moser28 for a channel flow performed over

a box of Lx = 8πh, Lz = 3πh – i.e., much larger than that exploited in the present study.

Unfortunately, the raw data necessary for the analysis to follow are not available for the

Reτ = 5200 case.

Attention focuses here on what is termed the “meso-layer”, divided into two portions:

the “plateau” region, covering y+ ≈ 80 − 500, and the outer layer, extending to around

y+ ≈ 2000 - i.e., roughly 0.5h in the present flow. The outer portion of the meso-layer,

beyond the region in which the streamwise energy features an inflection region or a (second)

maximum , is populated with very large scale motions (VLSMs), and it is this layer that

has been the focus of attention in studies of Vassilicos et al.23, Hutchins at al13, Hultmark

et al14 and Rosenberg et al15, at Reτ > 7000, who show that the streamwise energy displays

a logarithmic-decay variation at the same slope as that in figure 1. The variation of the

energy in the outer layer, 500 < y+ < 1000, suggests a log-like decay, especially at the high
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Reynolds value, and the slope of this decay is given in figure 1. Whether a logarithmic-decay

law within the meso-layer is supported by other statistical properties will be examined below.

A property consistent with the log-variation of u′u′
+
and with the AEH is the presence

of a region of constant value in the pre-multplied spectra kxΦuu, where x is assumed statis-

tically homogeneous. If this region is bounded by λ+
x,min = Cy+ and λ+

x,max = cst, the log

relationship emerges from:

u′u′
+
(y+) =

∫ λ+
x,max

λ+

x,min

kxφuu(y
+, λ+

x )d log(λ
+
x ) (1)

=

∫ cst

Cy+
Ad log(λ+

x )

= −A log(y+) +B

If, on the other hand, the upper limit of integration is a line parallel to that defining the

lower limit – i.e. λ+
x,max = Dy+ – then u′u′

+
(y+) = cst. The significance of this distinction

between the two variations in the upper limits of integration will transpire in Section III.

It is important to underline that, for the AEH to be valid, the equivalent of equation 1

must also apply in respect of the spanwise spectra, i.e. kzΦuu must also be constant within

boundaries corresponding to those applicable to the streamwise spectra.

Figure 2 shows the pre-multiplied spectra for Reτ = 4200. Although there is an indication

that the λ+
x and λ+

z locations at which the energy begins to rise steeply vary linearly with y+,

neither spectral maps features a well-defined constant-value plateau within the meso-layer,

thus offering no obvious support for equation 1.

A curious feature observed in figure 2(b) is the oscillatory behaviour of the contours below

and to the right of the red line, especially along the y+−λ+
z locus of maximum energy density.

Although relatively mild, this behaviour is indicative of a lack of convergence of the FFT –

an artefact that encourages the alternative use of the second-order structure function as a

primary diagnostic means, pursued in Section III. The use of the structure function is also

motivated by the fact that it is not affected by aliasing associated to the large-scale motion

and thus leads to a better identification of the plateau region (see Davidson et al6). However,

prior to this change in focus, the spectra, both those in figure 2 and others pertaining to

the spanwise and wall-normal fluctuations, are used to examine some statistical properties
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(a) (b)

FIG. 2. Pre-multiplied power spectrum of the streamwise fluctuations, in both streamwise (a) and

spanwise direction (b); at Reτ = 4200. The dotted red lines show either the relation λ+
x = 3.5y+

or λ+
z = 7y+ = 2λ+

x .

of turbulence within different spectral portions of the eddy scales. The main objective is to

identify and separate sub-ranges of isotropic and anisotropic scales, the former characterizing

the inertial subrange and associated with detached eddies ( Jiménez29), and the latter – at

larger scales – associated with attached eddies (Perry et al.3, Högström et al.30, Davidson

et al6). This identification is pursued below.

A. Inertial Range - Detached Eddies

In order to shed light on the characteristics of scale sub-ranges, some specific manipu-

lations of the spectral maps are proposed herein. Figure 3 shows two ways of highlighting

the region in which the scales are close to being isotropic. The first entails the use of

compensated spectra ǫ−2/3k
5/3
x Φuu and ǫ−2/3k

5/3
z Φuu, which are shown figures 3(a) and 3(b),

respectively, where ǫ is a surrogate of rate of turbulence-energy dissipation, defined such

as ǫ = ωkωk/3. The red lines in the x-wise and z-wise maps are defined, respectively, by

λ+
x = 3.5 × y+ and λ+

z = 7 × y+ = 2 × λ+
x , while the blue lines describe, respectively, the

variations λ+
x = 3.5× (y+)1/3 and λ+

z = 7× (y+)1/3 = 2×λ+
x . The red and blue lines bound,

approximately, plateau regions characteristic of near-isotropy.
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The second route rests on the definition of the following “isotropy parameter”:

γ3c ≡ 3|Φuu||Φvv||Φww|
|Φuu|3 + |Φvv|3 + |Φww|3

(2)

in which Φuu, Φvv and Φww are the x-wise or z-wise spectra for the three components

u, v and w, respectively. This parameter tends to a maximum of 1 in the case of isotropy,

declining to zero in the case of a two-component or a one-component state. The maps in

figures 3(c) and 3(d) show (for greater visual impact) the square of γ3c as functions of λ+
x

and λ+
z , respectively. The fact that regions of high γ3c are, again, bounded by the red and

blue lines and broadly coincide with the near-plateau regions in the compensated spectra

supports the proposition that these regions within the meso-layer characterize detached

eddies.

B. Anisotopic Range – Attached Eddies and Large-Scale Motions

An analogous route to that taken in the previous sub-section to highlight isotropy by

use of the parameter γ3c is adopted here to identify region of elevated anisotropy. Thus, a

parameter that identifies the dominance of the streamwise component over the two others

is:

γ1c
u ≡ |Φuu||Φuu|

|Φuu|2 + |Φvv|2 + |Φww|2
(3)

This parameter tends to 1 when the energy is increasingly contained in the Φuu spectra,

and diminishes when the anisotropic state departs from the one-component condition. Maps

of (γ1c
u )3 in the x and z directions (the cubic exponent designed to accentuate gradients in

the maps) are shown in figures 4(a) and 4(b), respectively.

Both maps reveal that, within the meso-layer, the dominance of the streamwise com-

ponent is confined to the larger scales beyond the boundaries identified by the red lines,

and this is the attached-eddy region, as will be argued in Section III. In fact, the most

pronounced regions in figure 4 pertain to scales which are the subject of many studies that

deal with elongated large-scale structures in the outer part of the log-layer (Marusic31). Fig-

ure 4 also contains a y+-wise profile of the normalised streamwise energy, and this provides

confirmation of the existence of energetic structures in the outer layer around y+ = 500.

Reference to the (γ1c
u )3 distribution along the dotted black line at y+ = 500 clearly shows
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(a) (b)

(c) (d)

FIG. 3. Characterisation of isotropy across eddy-size range: (a) compensated spectra ǫ−2/3k
5/3
x Φuu,

(b) compensated spectra ǫ−2/3k
5/3
z Φuu, (c) and (d) maps of the square of the “isotropy parameter”

(γ3c)2, derived from the streamwise and spanwise spectral components. The red lines show either

the relation λ+
x = 3.5y+ or λ+

z = 7y+ = 2λ+
x and the blue lines show either the relation λ+

x =

3.5(y+)1/3 or λ+
z = 7(y+)1/3 = 2λ+

x .

that this peak in streamwise energy is associated with structures having wavelengths of order

λ+
x & 8000 and λ+

z & 4000. The near-wall energy peak, at y+ ≈ 10 is also clearly brought

out in the (γ1c
u )3 maps, in which a maximum at λ+

z ≈ 100 is evidently indicative of the

strong small-scale streaks in the buffer layer.
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(a) (b)

(c)

FIG. 4. Characterisation of anisotropy due to dominance of streamwise energy u′u′
+

>>

v′v′
+
, w′w′

+
: (a) maps of (γ1cu )3 in streamwise direction, (b) maps of (γ1cu )3 in spanwise direc-

tion and (c) cross-spectrum average of γ1cu . Red and blue dotted lines: see caption of figure 3.

C. Anisotropic Range – Small-Scale Motions

The maps shown in figures 3 and 4 contain small-scale ranges to the left of the blue lines

λ+ ∝ (y+)
1

3 which neither comply with isotropy nor with one-component dominance. The

scales in question are not far from the Kolmogorov range λ+ ∝ (y+)
1

4 . In order to identify

the state of the turbulence in this range, a third parameter, γ2c
ij , is defined as follows:
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γ2c
ij ≡ 2|Φii||Φjj|

|Φuu|2 + |Φvv|2 + |Φww|2
(4)

This parameter identifies the dominance of two normal components, i 6= j, over the

third, and thus highlights the range where the anisotopic turbulence is characteristic of

two-component turbulence. Figure 5(a) shows a map of (γ2c
vw)

3, which brings into focus

the region where the spectra of the wall-normal and spanwise components have similar

energy level, both exceeding the streamwise component. The suggestion emerging from this

map is that small-scale motions, of scales λ+
x lower than 3.5× (y+)1/3, are characterised by

v′ssv
′

ss

+ ≈ w′

ssw
′

ss

+
> u′

ssu
′

ss

+
. This rather unexpected result has motivated the isolation

of these small scales from larger scales by means of a spatially two-dimensional version of

the Empirical Mode Decomposition (EMD), previously used by Agostini & Leschziner32–34

. The distinction between small and large scales is not precise, and it depends of the

number of intrinsic modes (here 6) used for the separation process. Hence, in the present

context, the separation is rather tentative. Nevertheless, the energetic properties of the small

scales, shown in figure 5(b), support the implication of figure 5(a) to the extent that, above

the buffer region, the wall-normal and spanwise small-scale energy components exceed the

streamwise component. Attention is drawn to the
√
y+ scaling of the energy components in

figure 5(b), intended to bring to the fore the constancy of the scaled energy components, the

magnitude of which thus varies as 1/
√
y+. The physical significance of the plateau region

arising from the
√
y+ scaling is unclear, at present.

An interesting feature in the small-scale range emerges upon scaling the power spectrum

as yǫ−1/3k
7/3
x Φuu. The use of kx scaling reflects the fact that the energy level in the spectrum

tends to vary with k
−7/3
x in anisotropic turbulence. When the y-scaling is added to the com-

pensated spectrum, the resulting map, shown in figure 5(c), features an elongated plateau

within the meso-layer, just to the left of the blue line λ+
x = 3.5 × (y+)1/3. The implication

is that the contribution of small-scale energy to the total energy declines inversely with y+.

D. Summary of Sub-Ranges

Based on considerations so far, it is possible to identify distinct regions within the spectral

map in which the structures possess different characteristics. Such a map is proposed in
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(a) (b)

(c)

FIG. 5. Characterisation of anisotropy of small-scale motions due to dominance of cross-flow

energy components: (a) map of (γ2cvw)
3, (b) streamwise stress associated with small-scale motions,

normalised by
√

y+: streamwise stress (red line), wall-normal stress (black line) & spanwise stress

(blue line), and (c) compensated power spectra yǫ−1/3k
7/3
x Φuu. Red and blue dotted lines: see

caption of figure 3.

figure 6.

Within the meso-layer, of primary interest herein, there are three major regions:

� Region “A”, associated with (very) small scales, is characterized by a dominance of

the wall-normal and spanwise component over the streamwise fluctuations.

� Region “B” is characterized by a trend towards isotropy. This is, essentially, indicative

of the inertial sub-range, where the eddies are presumed to be “detached”.
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FIG. 6. Sub-ranges in spectral map having distinct turbulence characteristics (1c: dominance of

streamwise component; 2c: dominance of cross-flow components).

� Region “C” is characterized by a high level of anisotropy in the scales, with the stream-

wise component dominating and the streamwise and spanwise components larger than

the wall-normal component. This region is associated to the attached eddies and with

large-scale motion. It is emphasized here that this region extends across the entire

meso-layer. While the associated condition Φuu ∝ k−1 is not clearly present in figure

2, an examination of the structure function, to follow, will support the interpretation

of this region being associated with attached eddies.

III. THE ATTACHED EDDY HYPOTHESIS

A. Structure-Function Analysis

In the absence of a clear region of Φuu ∝ k−1, conventionally associated with the

Townsend-Perry AEH, attention is directed towards the second-order structure function

S2,u(y, δ) as a potentially superior indicator of the validity of the AEH. This is a route

previously advocated by Davidson et al.6,7. Its rationale is based on the observation that

there is a close correspondence between the pre-multiplied spectra and the derivative of the

second-order structure function. In particular, Davidson et al argue that, since the two are
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effectively Fourier-transform pairs, the structure function should exhibit a real space ana-

logue of the k−1 spectrum, shown to manifest itself by a constant value of the pre-multiplied

derivative of the structure function. This correspondence is pursued and exploited below.

In channel flow, with homogeneous directions x and z, the relevant second-order structure

functions are:

S2,u(y, δx) =
〈

[u (y, x)− u (y, x+ δx)]
2〉

z,t
(5)

S2,u(y, δz) =
〈

[u (y, z)− u (y, z + δz)]
2〉

x,t

with the subscripts at the end identifying the averaging directions.

The structure function essentially represents the total energy contained within the range

of eddies with size less or equal to δ (either δx or δz). The contribution from eddies larger

than δ is negligibly small, because u (y, x) ≈ u (y, x+ δ). When δ = L, the largest distance

across which there is a correlation between motions at x and x + δ, i.e. with the motions

uncorrelated, S2,u(L) reaches a maximum equal to twice the streamwise turbulence energy.

At the other extreme, δ = 0, S2,u(0) = 0, and the correlation reaches a maximum.

The contribution to the energy associated with eddies having a length δ is given by the pre-

multiplied derivative of the structure function (PMDS2) δ × dS2,u(δ)

dδ
(Townsend1, Davidson

at al.6). This is equivalent to, but not the same as, the premultiplied power spectra (kΦuu)

. Given a constant level of the PMDS2, which is consistent with a k−1 variation of the

spectrum (Davidson et al), integration then immediately yields a logarithmic variation of

S2,u(δ/y) and thus a logarithmic dependence u′u′
+
(δ/y) for δ = L. In summary then: there

is a mutually consistent linkage between a k−1 spectrum, a constant level of the PMDS2,

the logarithmic variation of u′u′
+
and the AEH. It is not surprising, therefore, to observe a

striking similarity between the pre-multiplied power spectra and the corresponding PMDS2,

as emerges upon comparing the maps in figures 7(c) and (d) with those in figure 2.

Attention is drawn to the fact that the scaling adopted for the abscissa in the x-wise and z-

wise maps in figure 7 are 8δx and 4δz, respectively. A consequence of including the multipliers

8 and 4, respectively, is that the range of values covered in figure 7 corresponds closely to

those in figure 2. This might seem an arbitrary argument, but there is also some rational

justification for it. This emerges upon a closer examination of the relationship between the
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(a) (b)

(c) (d)

FIG. 7. Maps of the second-order structure function and its pre-multiplied derivatives:(a)

S2,u(δx)/2; (b) S2,u(δz)/2; (c) δx(dS2,u/dδx); (d) δz(dS2,u/dδz). Red and blue dotted lines: see

caption of figure 3.

spectra and the structure function, subject to idealised conditions. Such an examination

is presented Appendix A, for two idealized (“toy”) conditions. One key relationship that

emerges from the considerations in the Appendix is that the spectrum is related to the

derivative of S2,u by:

dS2,u(δ)

dδ
= 2

d

dδ

[
∫ +∞

0

cos(kxδ)Φuu(kx)dkx

]

(6)
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(a) (b)

FIG. 8. Pre-multiplied power spectra of the streamwise fluctuations for Reτ = 5200 derived from

data by Lee & Moser28; (a) streamwise spectra; (b) spanwise spectra.

It is this relationship that forms the basis for examining the two toy representations of φuu

and the corresponding derivative of the structure function. In particular, a mono-chromatic

(with λ = λx0
) and a 4-wave-number (with λxi

< λx0
, for i = 1, 2 and 3) representations

of u(x) are examined, and these are argued to imply that the relation between δ and λ is

δ = λx0
/4 for a mono-chromatic signal, with the constraint kΦuu = cst the ratio dropping

with increasing number of modes .

As is recognised upon comparing figure 2(b) with figure 7(d), the contours in the PMDS2

matches those in the corresponding pre-multiplied spectrum if δz is multiplied by a factor 4 in

the former map. The eddies may thus be associated with a monochromatic signal. In the log-

law region, for 4δz . 5×103, the wall-normal distribution of the locus of the maximum value

follows the relation δ+z ∝ y+, whatever the y-locations, the increase towards the maximum

value being monotonic. Hence the energy is associated mainly with eddies of a particular

size δz,o, which increase with y. If, in contrast, the “coherent” structures are described by a

range of Fourier modes (with λ ≤ λx0
), the qualitative trend is for the ratio 1/4 to decrease,

as demonstrated in the Appendix. In this case, at δ = 0, the curvature of S2,u(δ) depends

of the frequency content of the signal: it strengthens if the signal is associated to a wide

range of frequency (Townsend1). This applies to the spectra and structure-function maps in

the streamwise direction. Thus, a match between the corresponding maps in the streamwise
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direction, figure 2(a) and figure 7(c), is obtained if δx is multiplied by 8 in the latter map.

The PMDS2 maps conveyed by figures 7(c) and (d) (δxdS2,u/dδx and δzdS2,u/dδz, respec-

tively) show a number of features that are absent or not clearly delineated in the spectra.

First, the range of useful resolution in terms of δx exceeds that offered in terms of λx. This

is simply a consequence of tighter limitations on the post-processing yielding the spectra.

Second, and associated with the first, these figures suggest the presence of spanwise spatial

quasi-periodicity in the very large scales, at the extreme right of the map of S2,u(y, δz) (figure

7(b)), where an oscillatory pattern at two distinct wavelengths is visible, both also displaying

strong wall-normal coherence. These are not captured by the spectra, because of convergence

limitations at large wavelengths associated with the relatively small simulation domain. As

noted in the Appendix, S2 is closely associated with the correlation function. Hence, the

oscillatory pattern suggests the presence of spanwise-correlated motions. However, in view

of the rather small box size (especially πh in the spanwise direction), the question might be

posed as to whether the oscillatory behaviour seen in figure 7(b) and the associated bands

in figure 7(d) are physically significant.

One part of the answer rests on the observation that the oscillatory behaviour arises

at δz+ ≈ 5000 (i.e. ≈ h) and 10000, the former value being substantially lower than

the spanwise domain size L+
z = 13000. There is reason, therefore, to suppose that at

least the shorter wave-length feature is physically significant, reflecting the spanwise quasi-

periodicity of large-scale motions and their footprints, observed by Agostini & Leschziner32

to be separated by a distance of order h at Reτ = 1020.

Support for the above argument is offered by the spectra shown in figure 8 for Reτ = 5200,

obtained from the limited amount of the DNS data available for the large-box simulation of

Lee & Moser28. The spanwise spectral map is seen to contain spectral bands at λ+
z ≈ 5000

and 8000, which support the supposition that the bands in figure 7(d) reflect a physical

process. There are no such features beyond λ+
z ≈ 10000.

Third, the seemingly “noisy” portions present in these maps at low y+ and intermediate

δ values are argued to constitute a physical feature and reflects the fact that medium-

scale motions are strongly correlated across the near-wall layer, and are present on top

of earlier mentioned large-scale footprints associated with outer large-scale motions in the

upper portion of the meso-layer.
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(a) (b)

(c) (d)

FIG. 9. Turbulence state, premultiplied derivative of the structure function compensated by : (a)

ǫ−1/3δ
−4/3
x , (b) ǫ−2/3δ

−2/3
x ; (c) the compensated δx

dS2,u

dδx
defined for the isotropic case is divided by

the maximum value at each y-location and (d) isotropic parameter (γ3c)2. Red and blue dotted

lines: see caption of figure 3.

B. The Regime of Attached Eddies

Following Townsend1 and Davidson et al.6,7, among others, the PMDS2 may be used to

shed light on the validity of the AEH. The relevant test is whether δdS2,u/dδ = cst1,7.

In Section IID, it was proposed that the meso-layer may be divided into three physically

different domains - A, B and C in figure 6. These are associated, respectively, with spectra

of the form φuu ∼ ǫ1/3k
−7/3
x , φuu ∼ ǫ2/3k

−5/3
x and φuu ∼ k−1

x , the last indicative of the AEH.
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As argued by Pope35, a power-law spectrum Φ(ω) ≈ C1ω
−p can be related to the second-

order structure function Sp(δ) ≈ C2δ
q with p = q + 1, valid only under the condition that

p > 1. In accordance with the AEH, p = 1, in which case Davidson et al.6,7 show that

S2(δ) ≈ C3 log(δ)+B. The implications for subregions A, B and C in figure 6 are therefore,

respectively:

� region A: δxdS2,u/dδx ∼ ǫ1/3δ
4/3
x

� region B: δxdS2,u/dδx ∼ ǫ2/3δ
2/3
x

� region C:, δxdS2,u/dδx = cst

Figure 9(a) shows a map of δx
dS2,u

dδx
compensated by ǫ−1/3δ

−4/3
x . As expected, on the basis

of the above statements on the spectra, there is a “plateau” in region A, bounded by the

blue line. Figure 9(b) relates to the isotropic state through the augmentation by ǫ−2/3δ
−2/3
x ,

along with a normalized version thereof in figure 9(c), in which the levels at any y-value are

normalised by the maximum at that level. Both maps bring to light the plateau in region

B in the meso-layer, bounded by the blue and red lines. This region is narrow in the lower

part of the layer, but broadens as y increases – i.e. the inertial range becomes wider in

the outer portion of the log-layer. These features concur with those in the map in figure 4

showing the parameter (γ3c)2 (see equation 2). The PMDS2 maps shown in figure 7(c) and

(d) – especially the latter – include an oblique band to the right of, and parallel to, the red

line, i.e. region C, in which the condition δxdS2,u/dδx = cst is met, at least approximately.

Although this provides some support for the validity of the AEH in the meso-layer, the

absence of a well-defined plateau is counter-indicative. Further support is sought, therefore,

from an examination of joint PDFs pursued below. Implicit in this route being taken is the

assumption that the processes in the spectral range C dominates over those in ranges A and

B, assumed to make sub-ordinate contributions to cross-scale-averaged PDFs.

In an effort to shed light on any statistical bias in the motions within the meso-layer,

and thus possibly draw inferences on the “shape” of the coherent structures, attention is

directed first towards the skewness of the PDFs in the meso-layer. Figure 10(a) shows the

wall-normal distributions of skewness of the streamwise fluctuations and their streamwise

derivative. The inclusion of the latter, in combination with the former, may be argued

to allow observations to be made on a streamwise bias in the length scales, which then
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(a) (b)

FIG. 10. Wall-normal distribution of: (a) the skewness of the streamwise velocity, (b) the skewness

of the streamwise and spanwise derivative of the streamwise velocity, identified by the red and blue

lines, respectively.

leads to statements on the shape of the coherent structures. Both figures bring to light a

substantial asymmetry in the streamwise fluctuations: few large negative events occurring

in combination with many weak positive events. This also suggests asymmetric structural

properties of the coherent motions, an issue pursued next by reference to joint PDFs of the

streamwise fluctuations and their derivatives.

Figures 11(a) and (b) show, respectively, joint u+-du+/dx+ and u+-du+/dz+ PDFs at

y+ = 600, a position approximately in the middle of the meso-layer. Conclusions derived

for this position apply across the entirely meso-layer, as the level of skewness levels of the

PDFs for the velocity fluctuations and their streamwise derivative are fairly uniform. Figure

11(a) reveals three major features: first, consistent with the skewness level in figure 10(a),

there is a distinct asymmetry in the u+-fluctuations field; second, weak positive fluctuations

occur in combination with high negative du+/dx+ values, from which it can inferred that

the length scale of the positive fluctuations is relatively small; third, strong negative fluctu-

ations occur in combination with low values of positive du+/dx+, suggesting relatively large

length scales; fourth, negative values of du+/dx+ tend to be larger than positive ones, in

line with the skewness level in figure 10(b). There is, therefore, a bias in the length scales

associated with deceleration and acceleration, with the latter less numerous, but more in-
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(a) (b)

FIG. 11. Joint PDFs between the streamwise velocity and its derivative at y+ ≈ 600 : (a)

u+-du+/dx+ and (b) u+-du+/dz+. PDF contours identify 0.10.9 of the PDF height at constant

increment 0.1, subject to total PDF volume normalized to 1.

tense. In figure 11(b), it is observed, first, that the contours of du+/dz+ are symmetric.

This concurs with the zero-skewness line of the PDFs of du+/dz+ in figure 10(b). Second,

and in contrast to the PDF in figure 11(a), large spanwise gradients occur in combination

with negative u+-fluctuations, while low spanwise gradients occur in combination with high

velocity fluctuations. Again, interpretation of these combinations as conveying information

on the length scale, it may be inferred that the spanwise length scale is relatively large in

combination with positive fluctuations and relatively small in combination with negative

fluctuations.

The skewness distributions, and the length scales inferred, qualitatively, from the joint

PDFs in figure 11 and the ratio between λ and δ previously argued, suggest the form of

“coherent structures” conveyed conceptually in figure 12. This structure, symmetric in the

spanwise direction and tail-like in the streamwise direction, arguably provides support for

the AEH. In particular, it is consistent with the sequence of several generations of attached

eddies, as indicated in the sketch.

Further evidence in support of the AEH is provided by features contained in the maps of

the PMDS2, figures 7(c) and (d). These maps are reproduced in figures 13 and 14, in which

two regions are highlighted: a blue triangular region and a more restricted red trapezoidal
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(a) (b)

FIG. 12. Conceptual sketch of the “form” of the coherent structures associated with attached

eddies.

region, both covering the meso-layer.

If a perfect plateau in the PMDS2 and the corresponding pre-multiplied spectra existed

within the triangular region, the implications regarding the AEH would be those shown

in schematic 13. In this conceptual representation, ei are representative attached eddies.

Notional y-wise variations of the eddies’ respective energy contributions u′u′
+

and scaled

variations thereof, with the scaling variables being the eddy height (h) and wave length (λ),

are shown alongside the conceptual attached-eddy sketch. The collapse in the scaled uniform

profiles reflects the linear dependence of the eddy height on y and the implied constancy of

kΦuu in the premultiplied spectra. This is then fully consonant with the AEH and also with

logarithmic variation of u′u′
+
expressed by equation 1.

As is evident from figure 7, there is no clear plateau within the triangular region, probably

because the Reynolds number is low. However, there is an approximately constant level

within the red trapezoidal region. One consequence of this restricted plateau region is that

the logarithmic variation in equation 1 only applies in the upper portion of the meso-layer,

above the dotted line in figures 7(c) and (d). Below that line, the linear variation of the

parallel boundaries of the trapezoid, when transcribed to the pre-multiplied spectra, implies

a constant level of u′u′
+
, broadly in line with the variations shown in figure 1.

The restricted plateau region in the trapezoidal region leads to the interpretation shown

in figure 14. Prior to this interpretation, however, figure 13 provide the conventional view

introduced by Townsend, as a background against which to discuss figures 14.
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The sketches in figure 13(b)-(d) show a sequence of four attached eddies, e1 − e4, whose

energy rises with height such that the eddies collapse if the energy density and height are

normalised by λ = 1/k = y - i.e., the eddies are self-similar. If these eddies exist in the

triangular region of the spectrum, within which kΦuu = cst = A, limited between λmin = y

and λmax = cst, as shown in figure 13(e), it follows that the energy u′u′ varies logarithmically

with y, as shown in figure 13(f), which arises from equation 1. The implication is thus that,

at any y-location, only eddies larger than the attached eddy at that height contribute to the

energy, and that all such eddies contribute at the level kΦuu = A.

Figure 14 now pertain to the trapezoidal domain shown in figure 7. The upper part of this

domain is triangular, which thus conforms to the relationship shown in figure 13. Figures

14(b)-(e) relate to the parallelogram below the triangular region, with sketch (e) being an

idealised representation of the profiles in sketch (b). As before, the normalisation kΦuu = A

applies, but only over a restricted height of the eddies. Below the height defined by the

lower line of the parallelogram λmax(y), the energy of the eddy declines rapidly – notionally,

in a step-change manner to zero, as indicated by the transition between the two sketches

14(b) and (e). If, next, u′u′(y) is evaluated by integration between the parallel lines λmin(y)

and λmax(y) – the lines bounding the parallelogram (see figure 14(f)) the result is a plateau

of u′u′ , as shown in figure 14(g).

This representation differs substantially from the conventional AEH, but does imply a self-

similar set when scaling with h and λ is effected. It is thus arguable that the plateau region

within the trapezoidal region in figures 7(c) and (d) is fundamentally consistent with the

AEH even though there is no clearly defined triangular plateau region. This interpretation

also explains the plateau in the u′u′ profile.

As an aside, although relevant to the above argument, it is interesting to consider the

consequence of the Reynolds number being increased. On the assumption that the trape-

zoidal area is maintained, the change with the Reynolds number leads to the blue region in

figure 15 changing to the red area, subject to λmin(y) remaining invariant. The consequence

is then an increase in the plateau of u′u′ and an extension of the logarithmic decline in u′u′,

as observed by Smits et al.27, Hultmark et al.14,25, Vallikivi et al.36 among others.

Observations that give added support to the above arguments linking the AEH to the

trapezoidal plateau region arise from averaging over a restricted segment of the DNS data,

following the transient phase and covering approximately two global eddy-turnover periods
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FIG. 13. Conceptual representation of the conventional Attached Eddy Hypothesis pertaining to

a triangular plateau region in the spectrum or PMDS2 map: (a,b) hierarchy of attached eddies

em, em+k, etc.; (c) eddy energy density normalized by λ; (d) eddy size normalized by hei ; (e)

normalized eddies in the triangular plateau region; (f) resulting logarithmic profile of streamwise

turbulence energy.

within the interval 2800 ≤ t+ ≤ 3150. It is emphasized here that this is done merely in

order to add support to the validity of the relationship between the plateau in the trapezoidal

area in figure 14 and the logarithmic decline of u′u′
+
(y+) in the meso-layer. The principal

consequence of this restricted averaging is that the influence of the large-scale motion in

the outer part of the log-layer on the statistics is reduced relative to averaging over the full

duration of the simulation; the outer large-scales motions are observed to strengthen over

the simulation period.

Maps of PMDS2 for the restricted interval are shown in figures 16(a) and (b), while the

variation of the related streamwise-energy component is shown in figure 17. Upon comparing

these maps in figure 7(c) and (d), it is immediately apparent that the nearly constant level
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FIG. 14. Conceptual representation of the modified Attached Eddy Hypothesis pertaining to the

trapezoidal plateau region in the spectrum or PMDS2 map: (a,b) hierarchy of attached eddies em,

em+k, etc.; (c) eddy energy density normalized by λ; (d) eddy size normalized by hei ; (e) idealized

representation of the energy density profiles in sketch (b); (f) normalized eddies in the trapezoidal

plateau region; (g) resulting logarithmic and constant portions in profile of streamwise turbulence

energy.

within the trapezoidal area – the plateau region – is far more pronounced in the former

than in the latter. This is accentuated by the δx− and δz−wise profiles of the PMDS2, at

different y+ levels within the meso-layer, shown in figures 16(c) and 16(d), respectively. The

profiles in the latter plot, in particular, feature a nearly constant level across the diagonal

band contained within the trapezoidal region in figure 14. Based on the previously discussed

relationships between the spectra, the PMDS2, and the log-law in figure 17, the expectation

is that the levels of both plateau regions in 16(c) and 16(d) would be 1.26. This value is

reasonably well returned in the streamwise-scale map, but is higher in the spanwise-scale
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FIG. 15. Conceptual representation of the consequences of increasing Reynolds number: (a) en-

largement of trapezoidal plateau region; (b) increase in the streamwise-energy plateau and wall-

normal extension of the logarithmic region.

map. It is noteworthy that the differences between the two PMDS2 maps are mirrored

by similar differences in the spectra both at Reτ = 4200 and 5200. While the origin of

the difference is difficult to identify unambiguously, an issue that may play a role is that

the spanwise eddy scales are constrained relative to the streamwise scales by the presence

of wall-normal confinement. This is in contrast to unconfined boundary layers. As eddies

evolve, wall-normal growth is inhibited, and energy is ’piling up’ in eddies whose spanwise

separation has to scale with h. This is not the case, however, in respect of streamwise scales,

which can grow without inhibition.

Figures 16(e) and 16(f) confirm two observations made previously by Davidson et al6,7,

albeit only in respect of the streamwise scales and for a much narrower range of y+. First,

at any y+, the increase in the structure function with δ+ is logarithmic; second, the profiles

collapse reasonably well when δ is scaled with y+. This behaviour is, again, compatible with

the AEH.

Consistent with the above features, the logarithmic decay of u′u′
+
in the upper portion

of the meso-layer 400 < y+ < 1200, shown in figure 17, is considerably more pronounced

than in the corresponding profile in figure 1. In this range, u′u′
+
follows A log y+ + B with

A = 1.26 and B = 12.2. Based on the AEH, Perry et al.3 show that the constant A must

be universal and that B depends of the large-scale motions. As shown by Hultmark et al25,
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Marusic et al.13, Vallikivi et al.36 and Chung at al.9, in pipe flow and turbulent boundary

layers, the value of the Townsend-Perry constant A lies in the interval 1.24-1.26.

A final observation made here on the PMDS2 map in figure 16(b) relates to the presence

of four “fingers” in the sublayer, emanating from the region above it. These appear to be

footprints of structures present in the meso-layer. Remarkably, they are equi-distant in log

units, indicating a sequential doubling in the eddy size, which is in agreement with Perry et

al’s paradigm.

IV. SUMMARY AND CONCLUSIONS

The availability of DNS data for channel flow at the credibly high friction Reynolds num-

ber of 4200 has provided a rewarding foundation for exploring open questions on structural

and spectral properties of near-wall turbulence. The examination has been undertaken by

reference to maps of properties in the spectral/wall-normal space, the former being either

the wave length, in the case of spectra, or the separation distance, in the case of the struc-

ture function. A first objective has been to examine the properties of turbulence across

the spectral range from small-scale motions to the largest resolved motions. To this end,

new anisotropy parameters were defined, and maps of these parameters were examined,

alongside pre-multiplied and compensated spectra and the pre-multiplied derivative of the

second-order structure function, the latter shown to be closely related to the former. Pri-

mary emphasis was put on the meso-layer - essentially, the log-law layer spanning the range

80 < y+ < 2000.

A first important result derived from the above is a map in wall-normal-distance/wave-

length space in which three major sub-ranges were identified within the meso-layer: (A) a

sub-range at low wave length (small-scale eddies) in which turbulence is anisotropic, charac-

terised by a dominance of wall-normal and spanwise energy components over the streamwise

component and the spectrum Φuu ∝ k
−7/3
x ; (B) a central range, which conforms to the con-

ventional view of close to isotropic turbulence in which Φuu ∝ k
−5/3
x ; and (C) a sub-range

at high wave length in which the streamwise energy component dominates and in which the

spectrum complies with a variation not far from Φuu ∝ k−1. The first result, (A), is rather

counter-intuitive, as the expectation is that turbulence in the smallest range of eddies should

be close to isotropic. Importantly, the sub-range (C) is not merely confined to the highest
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FIG. 16. Statistics for the restricted interval 2800 ≤ t+ ≤ 3150 : (a,b) maps of PMDS2 in

streamwise and spanwise directions, respectively; (c,d) profiles of PMDS2 as functions of streamwise

and spanwise wavelengths, respectively, starting from y+ = 100 (blue line ) up to y+ = 1200 (red

line) in increments of 100; (e,f) profiles of S2,u as functions of streamwise and spanwise wavelengths,

respectively, starting from y+ = 100 (blue line ) up to y+ = 1200 (red line) in increments of 100.
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FIG. 17. Wall-normal distribution of the streamwise stress for restricted interval : 2800 ≤ t+ ≤
3150 (cyan line) and 4200 ≤ t+ ≤ 4900 (red line). The profile derived from the full simulation

period is given in figure 1. The dashed line represents the variation u′u′
+
= −1.26 log y+ + 12.2.

wave length, but extends, in lower parts of the log-law meso-layer, well into the range of low

wave lengths.

The above investigation, and its results, formed the background against which the second

major objective was pursued – namely, to examine whether the attached-eddy hypothesis

(AEH) is valid within the meso-layer. To this end, attention focused primarily on the pre-

multiplied derivative of the second-order structure function (PMDS2), in preference to the

premultiplied spectrum. This preference is based on the observation that the two are closely

related, while the latter is a more promising foundation for examining the validity of the

AEH – in particular, because the latter brings to light, much more clearly than the former,

the tell-tale plateau region with which the AEH is associated. This examination was further

aided by the inclusion of one-dimensional PDFs for the streamwise-velocity fluctuations and

their streamwise derivative, both displaying significant levels of negative skewness in the

meso-layer, and of joined PDFs between the streamwise fluctuations and their streamwise

or spanwise derivatives.

A conclusion derived from the PDFs is that the coherent structures in the meso-layer

feature a “shape” that is characterized by a broad and short head and a narrow long tail,

consistent with existence of a hierarchical structure of attached eddies. Consideration of

30



the PMDS2 in wall-normal/spanwise-separation space, brought to light a trapezoidal region,

contained with the sub-region (C) in the wall-normal/wave-length map, in which the PMDS2

level is close to being constant. Based on conceptual arguments, closely connected to the

conventional concept of self-similarity of the scaled energy of attached eddies in a triangular

plateau region, the present observations of an approximate plateau in the trapezoidal region

led to the conclusion that self-similarity – and hence, the AEH – also applies across the entire

meso-layer. An interesting implication of the trapezoidal shape, when assumed transcribable

to the spectral map, is that the upper part of the meso-layer is consistent with a logarithmic

decay of the streamwise energy, while the lower part of the meso-layer is consistent with a

constant level of energy – a behaviour broadly consistent with the directly computed (or

measured) y-wise profile of the streamwise energy.

APPENDIX A: ON THE RELATIONSHIP BETWEEN THE SPECTRA

AND THE STRUCTURE FUNCTION

First, as noted earlier, S2,u(δ) may be related to the correlation between the turbulent

motions δ apart. If the covariance is defined as cov(δ) = 2
∫ +∞

0
Φii(ω) cos(ωδ)dω, where

ω = 2πkx (or ω = 2πkz), the dependence on the correlation function arises from:

S2,u(δ) =
〈

[u (y, x)− u (y, x+ δ)]2
〉

(7)

=
〈

u (y, x)2
〉

+
〈

u (y, x+ δ)2
〉

− 2 〈u (y, x)u (y, x+ δ) 〉

= 2(cov(0)− cov(δ))

= 2u′u′(1− Fu(δ))

dS2,u(δ)

dδ
= −2u′u′

dFu(δ)

dδ
(8)

The variation of the correlation function, from its lower limit Fu(0) = 1, is monotonic if

the signal contained a wide range of eddy sizes (as in turbulent flow) the expectation is that

the upper limit is Fu(L → ∞) = 0. For example, Fu(δ) may be oscillatory if there are quasi-

regular “coherent packets” of motion within the range of δ being considered. In the spanwise
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direction, the second-order structure function and its derivative, conveyed by figures 7(b)

and (d), respectively, brings into focus that the large-scale structures (λz ≈ 5 × 103) are

strongly coherent in spanwise direction, unlike those in the streamwise direction where no

oscillatory behaviour is identifiable in the contour maps shown in figures 7(a) and (c).

Next, the one-dimensional spectrum can be related to the correlation function via the

Fourier transform:

Φuu(kx) =
2

π

∫ +∞

0

Fui
(δ) cos(kxδ)dδ (9)

Using equations 7 and 9, and the covariance definition given earlier, the following rela-

tionship can be derived between the spectra and the structure function:

S2,ui
(δ) = 2

[
∫ +∞

0

Φuu(kx)dkx −
∫ +∞

0

Φuu(kx) cos(kxδ)dkx

]

(10)

= 2

∫ +∞

0

(1− cos(kxδ))Φuu(kx)dkx

Consequently, the energy density is related to the derivative of S2,ui
by:

dS2,u(δ)

dδ
= 2

d

dδ

[
∫ +∞

0

(cos(kxδ)Φuu(kx)dkx

]

(11)

The equivalence between δ and λx (= 2π/kx) is explored here by reference two toy signals

of the form:

u(x) =
N
∑

n=1

A

nk0
sin(nk0x+ π) (12)

with N = 1 or 4. Figure 18(a) shows distributions of u(x), associated spectra, structure

function and its derivative for both cases. For N = 4, attention is drawn to the fact that the

amplitude associated to each mode decreases as the frequency increases, such that kiΦi = cst

(i = 1, N), as conveyed by the premultiplied power spectra, which may be interpreted as a

discrete version of the AEH.

For N = 1, u(x) = A cos(kx0
x + ϕ), it follows that Φuu = A2δd(kxi

− kx0
), with δd being
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the Dirac function, and equation 6 then gives:

dS2,u(δ)

dδ
=

d

dδ

[

A2 cos(kx0
δ)
]

(13)

= A2kx0
sin(kx0

δ)

This derivative reaches a maximum for kx0
δ = π

2
, – i.e. δ = λx0

/4, as is seen in figure

18(d).

When the “coherent” structures arise from several smaller eddies with lower energy, the

increase of the S2,u is sharper than in the monochromatic case, with a slope variation asso-

ciated with the effect of different-sized eddies. The maximum of the derivative of dS2,ui
/dδ

is observed to shift to the left, and this implies a decreasing ratio δ/λ. While the actual

value clearly depends on the number of modes (or eddies), and is thus uncertain in real

turbulence, it is a fact that the coherent structures are composed of a range of eddies, and

this necessarily results in a ratio between δ and λ lower than that for the mono-chromatic

case.
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(a) (b)

(c) (d)

FIG. 18. (a) Toy problems illustrating the relationship between spectra and structure function: (a)

signals determined from equations 12 with N = 1 and N = 4, identified by the red and black lines,

respectively; (b) the premultiplied power spectrum for both signals; (c) the second-order structure

function and (d) the derivative of the structure function.
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