
EQUADIFF 6

Jozef Brilla
Spectral analysis of non-self-adjoint elliptic operators

In: Jaromír Vosmanský and Miloš Zlámal (eds.): Equadiff 6, Proceedings of the International
Conference on Differential Equations and Their Applications held in Brno, Czechoslovakia,
Aug. 26 - 30, 1985. J. E. Purkyně University, Department of Mathematics, Brno, 1986.
pp. [197]--202.

Persistent URL: http://dml.cz/dmlcz/700176

Terms of use:
© Masaryk University, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access
to digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/700176
http://project.dml.cz


SPECTRAL ANALYSIS OF 
NON-SELF-ADJOINT 
ELLIPTIC OPERATORS 
J. BRILLA 
Institute of Applied Mathematics and Computing Technique, Comenius University 
842 15 Bratislava, Czechoslovakia 

1. In t roduct ion 

Many important problems of mathematical physics lead to analys is 
of the d i f f e r e n t i a l equation 

n „k 
E A £ _ u = f, in fi, (1 ) 

k=0 k a t k 

where A, are symmetric positive definite elliptic operators of order 

2m. When dealing with analysis of these equations we assume that Q -

the domain of definition is bounded and 3̂2 - the boundary is suffi

ciently smooth. We consider homogeneous boundary conditions and non-

homogeneous initial conditions. 

When applying Laplace transform we arrive at 

n . _ 
A(p)u = I p A, u = f*, (2) 

k = o k 

where a tilde denotes the Laplace transform and f* includes initial 

conditions. The operator A(p) is a complex symmetric non-self-adjo

int elliptic operator. 

For analysis of equations (2) we have introduced [ 1 — 2] spaces 

of analytic functions valued in Sobolev spaces, which are isomorphic 

to weighted anisotropic Sobolev spaces convenient for analysis of e-

quations (1 ) . 

Now we shall deal with spectral analysis of complex symmetric 

operators and show that it is possible to obtain similar results on 

existence of eigenvalues and completeness of sets of eigenvectors as in 

the case of symmetric compact operators. 

2. Spectral analysis 

Operators A(p) are complex symmetric operators. Thus it holds 

A*(p) = A(p) and 

(Ax,x) = (x,Ax) . 

When A A 4= A A i.e. when operatore A are noncommutative 

( 3) 
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AA:c * A*A (H) 

and A(p) is a nonnormal operator. Thus for their analysis it is not 

possible to apply the spectral theory of symmetric compact operators. 

However it is possible to generalize some of its results. 

I.C. Gokhberg and M.G. Krein [3l delt with the spectral analysis 

of (1) from the point of view of a nonlinear eigenvalue problem 

n k 
I X A, e = 0 . (5) 

k=0 K 

When applying this approach we cannot use valuable results of the li

near spectral theory. 

Therefore for the problem under consideration we define a linear 

eigenvalue problem considering the equation 

n k 
A(p)e(p) = I p*A,e(p) = X(p)e(p) , (6) 

k = o K 

where X(p) for which the solutions of (6) exist are eigenvalues and 

the corresponding solutions e(p) are eigenvectors of (6). Both 

eigenvalues and eigenvectors are in general functions of the parameter 

p. Eigenvalues in the sense of (5) are values of p for which 

A(p) = 0 (7) 

and the corresponding values of e(p) are eigenvectors of (5). 

For nonnegative real values of p A(p) is a symmetric positive 

definite elliptic operator. Thus it has discrete spectrum and a 

complete pairwise orthogonal set of eigenvectors. Then there exists a 

neighbourhood Q of the positive real semiaxis plf where A(p) has 

the compact inverse B(p) = A (p) and B^(p) = Re B(p) and B2(p) = 

= Im B(p) are positive symmetric compact operators. 

The we can prove: 

Theorem 1. The operator B(p) = A (p) has at least one nonzero ei

genvalue and its eigenvalues and eigenvectors are solutions of the 

variational problem 

min max [ I(B e,e)I - IyI I(e,e)I] , p = 1/X . (8) 
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Proof: As B-(p) and B2(p) are positive operators the trace of 

B(p) is not equal to zero. Therefore B(p) is not a quasi-nilpotent 

operator and has at least orte nonzero eigenvalue. Further the Gateaux 

derivative of (8) yields the condition 

1 [(B e,h)(B e,e) + (B e,e)(B e,h)] 
I(Ë e,t)\ (9) 

~ lylJ7e^eTT t(e'n*)(e'e) + ( e , e ) ( e , h ) l = 0 

What is fulfilled by 

B e = ye . (10) 

Analysis of the s econd Gateaux derivative shows that (10) is a 

saddle point of (8). 

Theorem 2. Eigenvectors of a complex symmetric operator B(p) and 

eigenvectors of its adjoint B*(p) = B(p) form biorthogonal systems 

which can be biorthonormalized. 

Proof: For y * y it holds l-'v (ewe;j) - (Ae,,e, ) ar-d y (ek,e,) = 

= Vii^i/e^^ " (Aelfek) = (Ae ,e"1) . Then 

(yk - y ^ e ^ ^ ) = 0 . (11 ) 

Hence for y * /i, (e, ,e, ) = 0 and eigenvalues ek,e, form biorthogonal 

systems. 

Points p, where it holds (e(p), e(p)) = 0, will be called excep

tional points of the operator B(p). We can prove: 

Theorem 3. Symmetric complex compact operators B(p) = A (p) are 

semisimple with exception of exceptional points. 

Proof: We shall make the proof for an eigenvelue of the multiplic

ity two. In this case the Jordan canonical form will be 

Be = ye + e , 
1 1 2 (12) 

Be2 = ye2 . 

After biortho gonalization x = e , x = k e + k e we arrive at 
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(1 3) 

Multiplying the first equation (1 3) by x 2 and the second one by x, we 

arrive at 

(Ax ,xJ = a (x?,Xp) , 

(14) 
(Ax2,x1) = 0 , 

what can be fulfilled only when (x ,x ) = (e ,e ) = 0 . In a similar 

way we can prove our assertion also for eigenvalues of higher multi

plicity. 

This theorem holds also for complex symmetric matrices. When the 
eigenvector e belonging to the eigenvalue X of the multiplicity n ful
fil the condition (e ,e ) * 0 the corresponding canonical form is 

n' n v ? 
diagonal and the matrix is simple. J. H. Wilkinson has shown an exa

mple of a complex symmetric matrix, which cannot be diagonalized. It 

is [4] 

ñ ;] • (15) 

This matrix has a two-fold eigenvalue X = i and the eigenvector 

e = [1, -i], thus (e ,e ) = 0 and according to the above results 

the matrix cannot be diagonalized. 

Then similarly as in the case of symmetric compact operators we 

can construct a complete system of eigenvectors. It holds: 

Theorem 4. Operators B(p) = A (p) and A(p) have with exception 

of exceptional points a countable complete set of eigenvectors elfe2, 

e_,... biorthogonal or biorthonormal to the complex conjugate set of 

eigenvectors of the adjoint operators B(p; and A(p) corresponding to 

eigenvalues y , y2, P3»... C resp. Xk = l/i»k) with |y | > |y2l > |y |>., 

such that for f = Bh we have 

f = E(f,e~k)ek = Z(f,ek)e"k , (16) 
K K 

what corresponds to covariant and contravariant expansions of vectors, 

respectively. Then it holds 
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llfll2 = Kf., e, )(f, ,e, ) . (17) 
k k k k 

The proof is similar to that for symmetric compact operators. 

At exceptional points it is necessary to replace a basis with the 

eigenvector by an other biorthonormal basis of the subspace correspon

ding to the multiple eigenvalue. 

Finally we can prove the basic theorem on analycity of eigen

values and eigenvectors of A(p). 

Theorem 5. Suppose that A(p) = An+ pA,+ p A~ +...+ p Anr where 

A, are positive definite elliptic operators. Suppose that X is an 

eigenvalue of multiplicity m of the operator A(p) at pQ, where pQ 

assumes real nonnegative vaues. Then there exist ordinary power series 
A
1
(^P - Pn ),...,X (p - p ) and power series in Hilbert space e (p - p ), 

...,e (p - pn) all convergent in a neighbourhood of pn, which satisfy 

the following conditions: 

1. e.(p - pn) is an eigenvector of A(p) belonging to the ei

genvalue Xi(p - Po^'
 i#e* 

A(p)e±(p - pQ) = X±(p - p0)ei(p - p Q ) , i = l,...,m , (18) 

X.(0) = X, i = l,...,m and the eigenvectors e.(p - pQ) form with 

eigenvectors e-(p - PQ) of A(p) biorthonormal sets, i.e. 

(e±(p - p Q ) , e (p - pQ)) = 6 , i,j = 1, . . . ,m, (19) 

2. There exists such a neighbourhood of X and a positive number 

p such that the spectrum of C(p - p ) = A(p) f°r P with Ip — p 1 < p 

consists exactly of the points X (p - pQ),...,X (p - Pn)« 

Proof can be done by a generalization of results of E.Rellich [51. 

F. Rellich proved such theorem for an operator A(e) for small real 

values of e. He restricted himself to orthonormal systems of eigen

vectors. Then scalar product of analytic functions are analytic only 

at real values of the parameter e and the Weierstrass preparation 

theorem can be applied only to real values of e. Introducing of 

biorthonormal sets of eigenfunctions and scalar products (f,f) enables 

to apply the Weierstrass preparations theorem also to complex values 

of p. 

Moreover after introducing biorthonormal sets of eigenvectors it 
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is possible to generalize the proof also for complex values of pn. 

Similarly it is possible to generalize other theorems of F.Rellich. 
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