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Spectral Analysis of Randomly Sampled Signals:
Suppression of Aliasing and Sampler Jitter

Andrzej Tarczynski, Member, IEEE, and Najib Allay

Abstract—Nonuniform sampling can facilitate digital alias-free
signal processing (DASP), i.e., digital signal processing that is not
affected by aliasing. This paper presents two DASP approaches for
spectrum estimation of continuous-time signals. The proposed al-
gorithms, named the weighted sample (WS) and weighted prob-
ability (WP) density functions, respectively, utilize random sam-
pling to suppress aliasing. Both methods produce unbiased estima-
tors of the signal spectrum. To achieve this effect, the computa-
tional procedure for each method has been suitably matched with
the probability density function characterising the pseudorandom
generators of the sampling instants. Both proposed methods are
analyzed, and the qualities of the estimators they produce have
been compared with each other. Although none of the proposed
spectrum estimators is universally better than the other one, it has
been shown that in practical cases, the WP estimator produces gen-
erally smaller errors than those obtained from WS estimation. A
practical limitation of the approaches caused by the sampling-in-
stant jitter is also studied. It has been proven that in the presence
of jitter, the theoretically infinite bandwidths of WS and WP signal
analyses are limited. The maximum frequency up to which these
analyses can be performed is inversely proportional to the size of
the jitter.

Index Terms—Alias-free estimation, Fourier transform, nonuni-
form sampling, sampling methods, spectral analysis.

1. INTRODUCTION

IGITAL alias-free signal processing (DASP) can only

be performed when the processed signals are sampled at
nonuniformly distributed sampling instants. However, usage of
nonuniform sampling is merely a necessary and by no means
a sufficient condition for practicing DASP. Therefore, it is not
surprising that, despite the fact that the theory of processing
nonuniformly sampled signals has been studied for a number of
decades [1]-[3], DASP methodology has attracted only a small
fraction of the interest devoted to that area.

There are a number of reasons why nonuniform sampling
is used in signal processing. In some cases, this is enforced
by inconvenient circumstances such as inaccessibility of the
measured signals at some time instants or periods of time, as
often happens in astronomy, geophysical sciences, or medicine
[4]. Another cause of nonuniform sampling is when some sam-
ples are lost from otherwise uniformly distributed sampling se-
quences [5]. Nonuniform sampling can also be a means of com-
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pressing data. Compression can be achieved by relating the sam-
pling rate with the signal rate and, hence, reducing the storage
space over the periods when the signal changes slowly [6]. In the
case of DASP, nonuniform sampling is introduced intentionally
to provide additional flexibility and opportunities, which are not
available when the traditional periodic sampling schemes are
in use. As a general rule, the sampling schemes used here are
based on random sampling independent of the shape of the pro-
cessed signal [7], [8]. One of the earliest ideas of DASP can
be traced back to [8], where Shapiro and Silverman proposed
sampling schemes and processing algorithms that allowed esti-
mation of the power spectral density of random stationary sig-
nals. Since then, several authors have reconsidered and extended
DASP techniques [9]-[11], and some interesting applications in
instrumentation [12] and digital radio [13] have been found. In
general, processing of nonuniformly sampled signals is more
complicated and time-consuming than classical DSP. The main
benefit of using DASP is that these techniques often enable dig-
ital signal analysis to be performed over a wide range of frequen-
cies while maintaining a low sampling rate. Therefore, DASP
can be recommended mainly for processing signals that, due
to technical or economical constraints, cannot be sampled fast
enough to facilitate usage of classical DSP. Interesting reviews
of DASP techniques can be found in [7], [13], and [14].

This paper builds on the earlier results reported in [15] and
[16]. We propose two DASP algorithms for spectral analysis of
signals. The spectrum is understood here as the complex-valued
Fourier transform of the signal. The frequency bandwidth within
which the proposed method can be used to estimate the signal
spectrum exceeds significantly the traditional Nyquist limit of
half of the sampling rate.

The problem of estimating spectrum from nonuniformly dis-
tributed samples has a relatively long history. Below, we discuss
briefly how our work relates to some major approaches to this
problem.

Early DASP papers [8], [9] aimed at reconstructing the power
spectral density of random stationary signals using infinitely
long sequences of nonuniformly distributed signal samples.
Here, we tackle deterministic signals and estimate the Fourier
transform using only finite numbers of signal samples.

Lomb [17] and Scargle [18], [19] investigated the properties
of the periodogram obtained from arbitrarily distributed signal
samples and its use in detecting the discrete spectral compo-
nents of the analyzed signal. Their research was motivated by
applications where nonuniform sampling is enforced by the
experimental circumstances, and freedom in selecting sampling
instants is limited. The methods proposed in our paper rely
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on the user’s ability to sample the signal at prescribed sam-
pling instants. The signals are sampled nonuniformly but not
arbitrarily. The algorithms that process the acquired data are
matched with the properties of the sampling instant generators.
Consequently, with the use of the methods proposed here, it is
possible to tell more about the accuracy of spectrum estimation
than in [17]-[19]. Of course, all the results related to the peri-
odogram remain valid for the sampling schemes that we suggest
in this paper. The periodogram obtained from nonuniformly
distributed samples may show alias-free properties. However,
when arbitrary sampling is used, alias-free features cannot be
guaranteed, as their existence depends on the use of suitable
sampling schemes. Another difference between the approaches
is that the periodogram represents only the magnitude of the
signal spectrum, whereas the WS and WP algorithms estimate
the complex-valued Fourier transform of the signal, allowing
extraction of not only the magnitude of the spectrum but also
its phase.

The approach presented in this paper is related to the concept
of DASP developed by Bilinskis [7], [11], [20] and followed
by others [15], [16], [21], [22]. This paper contributes a few
new results to the theory of DASP. First, we show that alias-free
DSP can be performed even when the sampling point density
function varies with time. In fact, we show that by introducing
suitable variations of the sampling point density function, it is
possible to obtain a more accurate estimate of the signal spec-
trum than in the case where the concentration of the samples
is uniform across the window. This observation generalizes the
recommendation formulated in [7], which stipulates that DASP
uses sampling schemes producing a constant point density func-
tion. Second, we construct unbiased estimators of the signal
spectrum for the case when the sampling instants are subjected
to random jitter. Third, we provide tools for assessing accuracy
of spectrum approximation in all considered cases by deriving
closed-form formulas for standard deviations of the estimators.

This paper is organized as follows. In Section II, we define the
target signal spectrum that is to be estimated using signal sam-
ples. In Section III, we define the WS and WP estimators of the
spectrum. We prove that both are unbiased. In the next section,
we derive the standard deviations of the estimators. The qualities
of both estimators are compared with each other in Section V.
Section VI presents simulation results of spectrum estimation
using the proposed approaches. In Section VII, we discuss the
effect of sampling instant jitter on the quality and achievable
bandwidth of spectrum estimation. Finally, in Section VIII, we
provide numerical analysis of sampling instant jitter.

II. TARGET SPECTRUM OF CONTINUOUS—TIME SIGNALS

The spectrum of a deterministic signal is defined by its
Fourier transform [23]

X(f) £ / o(t) exp(—j2m f1) . M)

The above definition is rarely used in practical situations since it
requires that the analyzed signal is known in an infinitely long
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time interval. Therefore, in practice, spectrum (1) is often re-
placed with its truncated version

T
Xr(f) 2 / o(t) exp(—j2 f1)dt @)
0

where T is the length of the time interval over which signal
x(t) is observed. Owing to the Gibbs phenomenon, the shape of
spectrum Xr(f) may be significantly different from X (f) in
the neighborhood of frequencies where X (f) is discontinuous.
A standard solution for suppressing the Gibbs phenomenon is to
smooth out those differences by using a nonrectangular window

w(t)
Xur(f) = [atu(Oep(-j2afoi. G
0

There is a vast choice of windows that can be used in (3). An
excellent review of the topic that includes analysis of their prop-
erties and smoothing effects can be found in [23]. The research
in this area is still going on, and from time to time, new addi-
tions are being reported, e.g., [24]. In this paper, we do not insist
on using any particular w(t). The decisions about the shape of
the window w(¢) and its length T are left to the user. The main
task that we tackle here is to estimate the spectrum (3) of signal
x(t) by acquiring and processing signal samples.

The results presented in this paper are valid for any window
w(t), with a minor exception that in the WP case the window
w(t) must not take negative values. Additional constraints on
w(t) are imposed when we compare the quality of the proposed
WS and WP estimators. These comparisons are performed
under the following assumptions.

a) w(t) is Lipschitz [25], i.e. |w(t1) — w(t2)| < Clt1 — to

where C'is a small constant.

b) w(t) achieves its maximum in the middle of the interval

[0,T].

¢) w(t) decreases monotonically (but not necessarily strictly

monotonically) toward the ends of this interval.

[l

These limitations do not exclude any popularly used windows
and, therefore, are not too restrictive.

III. UNBIASED SPECTRUM ESTIMATORS

The names of the two methods for spectrum estimation
[weighted samples (WS) and weighted probability (WP) den-
sity function] reflect the way in which the shape of the window
w(t) is taken into account. Since both methods use randomly
selected sampling instants, the spectrum estimators they pro-
duce are random variables. In the following two subsections,
we define both estimators and prove that they are unbiased for
any frequency f. This observation justifies our claim that the
techniques we propose here belong to DASP.

A. WS Method

The sampling instants used in the WS approach are identical
random variables that are independent from each other, whose
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probability density function (PDF) is uniformly distributed in-
side the observation window.

L. whent € [0,T]
sz TV ’ 4
pws(f) {0, when ¢ ¢ [0, T7. @

The spectrum of the signal is estimated using the following for-
mula:

N
T .
Xws(f N Z n)exp(—j2m ft,).  (5)
We prove that this estimator is unbiased for any frequency f,
i.e., its expected value is Xy (f) defined by (3). Note that all
components of the sum in (5) are random variables with iden-
tical PDFs. The expected value of each component is
Xiws(f) = E{z(t)w(t) exp(—j2m f1)} ©)
where ¢ is a random variable whose PDF is described by (4). The
right-hand side of (6) can be calculated as follows: X§5(f) =

J25 w(t)w(t) exp(—j2m ft)pws(t)dt, implying that

T
1 1
XSs(f /a: t) exp(—j2m ft)dt = TXW(f).
" )
By using (5)-(7), we obtain
E{Xws(f)} = Xw(f) 3

which completes the proof that Xws(f) is unbiased.

B. WP Method

The sampling instants used in the WP approach are also
random variables that are independent from each other with
identical PDF. However, in this case, the density of sampling
instants is proportional to w(t). The PDF is given by

| 57w(t), whent € [0,T]
9
pwe(f) = { 0, when ¢ ¢ [0,T]. ®

Constant A denotes the average value of w(t) inside the interval

0.7]
O/U,

The scaling factor 1 /AT guarantees that pwp(t) satisfies one
of the axioms of PDF: [~ _pwp(t)dt = 1. It follows from (9)
that w(¢) must not be negatwe The WP estimator of the signal
spectrum is defined by

(10)

Nl

N
%Zx ) exp(—j27 fty,).

n=1

(1)

XVVP =
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To prove that Xywp(f) is unbiased, we calculate its expected
value. Similarly to the previous case, the sum in (11) consists of
N identically distributed random variables. The expected value
of each component is

Xiwp(f) = E{a(t) exp(—j2m ft)}
_ / 2(t) exp(—j2n fpwo(B)dt.  (12)

Therefore
1 T
XGo() = 7 [ 2O exp(=2m fyu(o)it = X (1)
" (13)
and
E{Xwp(f)} = Xw(f). (14)

This completes the proof that Xwp(f) is also an unbiased esti-
mator of Xy (f).

IV. ACCURACY OF SPECTRUM ESTIMATION

Lack of bias is an important and sought-after property of any
statistical estimator. However, unbiased estimators can still be
inaccurate. It follows from the Bienayme—Chebyshev inequality
[25] that the size of estimation error is closely related to the
standard deviation of the estimator. In the subsequent analyzes,
we calculate the standard deviation o x of a random variable X
as the square root of its variance 03 = E{|X|?} — [E{X}|.

A. Standard Deviation of the WS Estimator

The variance of Xws(f) is given by

s = E{IXws(NP} = IXw (NP, (15
Now, [Xws (F)?= (/N2 (L o Va? )0 ) + 20y e
{(tn)wtn) exp(—72m ftu) Ha(t)w(te) exp(j2m f)}).

Since the sampling instants bearing distinct indices are inde-
pendent from each other, we can apply (6) and (7) to the formula
above to get

b { st} = (5

XhEh%m%n+£%%BWMﬁf (16)
Note that E{z2(t)w?(t)} = [2_ z?(t)w?(t)pws(t)dt=
(1/T) Jif #(t)w?(t)dt. Therefore

B {a2(0w*(1)} = 7 Bws a7
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where Fyyg is the energy of the windowed signal

T
Ews ﬁ/ ] dt. (18)
0
By combining (16)—(18), we obtain
N —
B{IXws(NF} = Bws + L Xw(DF. 19)
After substituting (19) into (15), we get
TEws — | Xw ()
Ug{ws (f) = WS ]\|f i (f)| (20)
and finally
TEws — | Xw(f)]
o—st(f)z\/ = ]|V wl/L @1

B. Standard Deviation of WP Estimator

The procedure for deriving the variance and standard deviation
of Xwp(f) is similar to what we presented in the previous sub-
section. Therefore, we omit the details of calculations and present
only the final results. The variance of Xwp(f) is given by

AT Ewp — | Xw ()|

e () = i (22)
while its standard deviation is
AT Ewp — | Xw (f)?
Txwe () = \/ A N' wiDI” (23)
The weighted energy Fwp in (22) and (23) is defined by
T
Ewp = / 22(t)w(t)dt. (24)

0

The standard deviations of Xws(f) and Xwp(f) are in-
versely proportional to v/N. This suggests that the estimation
errors decrease at this rate when, for a fixed window length
T, we increase the number of samples. Since | Xw (f)| > 0,
we can use (21) and (23) to formulate the upper bounds for
the appropriate standard deviations: ows(f) < Owsmax =
V(TEws)/N and owp(f) < owpmax = V(AT Ewp)/N.
The bounds ows,max and owp,max indicate the average spec-
trum estimation errors at frequencies where the actual spectrum
of the signal is zero. These white-noise-like errors can be
clearly visible in the estimated spectra, as demonstrated in the
numerical examples in Section VI. The bounds ows max and
OWP,max also allow us to assess the threshold levels below
which the spectral components of the analyzed signals cannot
be detected by straightforward use of the proposed approaches.

The presence of unstructured noise in the estimated spectrum
can be explained by the fact that nonuniformly sampled sinu-
soids are usually not orthogonal. Therefore, even when the an-
alyzed signal is a sinusoid, the spectral estimators (5) and (11)
give nonzero results for practically any frequency f. More in-
formation about this topic can be found in [21].
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V. QUALITY COMPARISON FOR SPECTRUM ESTIMATORS

The analysis of the WS and WP estimators that we performed
so far does not give clues about their relative quality. Both esti-
mators are unbiased and the levels of errors they produce are ex-
pressed by similar formulas. In this section, we compare the es-
timators to find out which of them provides more accurate esti-
mates of the spectrum. It follows from (21) and (23) that the sim-
plest way to accomplish this task is to analyze the relation be-
tween Ews and AEwp. If Ews < AFEwp, then O Xws (f) <
oxwe (f),and consequently, WS is more accurate than WP. In the
converse case Fyws > AFwp, we get oxy.(f) > oxyp (),
and WP yields smaller errors than WS. In Section V-A below, we
present two simple examples showing, in turn, that each of the
methods can prevail. Then, in Section V-B, we prove that if the
energy of the signal is uniformly distributed inside the interval
[0, T, then the WP estimator is more accurate than WS.

A. Comparison of Estimators’ Quality for Signals with
Nonuniformly Distributed Energy

In both examples presented in this subsection, we use a trian-
gular window of length 1" = 1 s described by

2, when t € [0,0.5]
w(t) =
2—2t, whent € [0.51].

The average value of w(t) inside the interval [0, 1]is A = 0.5.
Example 1: Consider a signal whose energy is concentrated
in the middle of the interval [0, 1].

“ {1, when t € (0.25,0.75)
€T =
! 0, whent € [0,0.25]U[0.75,1].

Using (18) and (24), we get EVVS = fo os (26)%dt + fo I

2t)%dt = 7/24 and Exyp = [, - 2tdt+f0 ™ (2—2t)dt = 3/8
Hence, AEwp = 3/16, and Ews > AFwp. Therefore in this
case ,WP spectrum estimation is more accurate than WS. A

Example 2: In this example, we select a signal whose energy
is concentrated near the borders of the interval [0, 1].

" {0, when ¢ € (0.25,0.75)
€T =
2 1, whent € [0,0.25]U[0.75,1].

This time EWS = 0- 25(

2t dt—i—f075 2 — 2t)%dt = 1/24
025

2tdt + fi..(2 = 2t)dt = 1/8, and ABwp =
1/16. Hence Fws < AE'WP, and consequently, the WS esti-
mator is more accurate than the WP. A

The main conclusion from this simple analysis is that neither
of the estimators is universally more accurate than the other one.
In general, for windows satisfying assumptions b) and c) from
Section IT, WP estimation tends to be more accurate for signals
with energy concentrated in the central part of the observation
window, whereas the WS approach prevails in the less popular
cases when most of the signal energy is concentrated at the ends
of the window.

Ewp =

B. Comparison of Estimators’ Quality for Signals with
Uniformly Distributed Energy

In this section, we present analysis aimed at comparing the
accuracy of both estimators for signals whose energy is approx-
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imately uniformly distributed inside the observation window. In
order to formalize the idea of uniform distribution of energy,
we select a large integer K and divide the interval [0, 7] into K
short subintervals of length A = 7'/ K. We assume that the en-
ergy of the signal inside each subinterval is approximately the
same, i.e., there exists a constant £ such that
(k+1)A
22(t)dt =~ E (25)

kA

for k € {0,1,---, K — 1}. According to assumption a), w(t)
is a Lipschitz function. Therefore, we can use the following ap-
proximation:

(k+1)A

z2(t)w?

kA

(t)dt = Ew*(kA). (26)

To justify the above statement, we note that for any ¢t €
[kA, (k4 1)A], we have |w(t) —w(kA)| < Clt —kA| < CA.
Since w(t) is a non-negative function, this inequality im-
plies that |w?(t) — w?(kA)| = |[w(t) — w(kA)] +
2w(kA)|x w(t) — w(kA)l < C?A?% + 2CAw(kA)

O(CA). Therefore, w?(kA) — O(CA) < w?(t) ;
w2 (kA)+0(CA), andfkk+1)A 22(8)[w? (kA) — O(CA)|dt<
,gg“m 22w (t)dt< | %’““A 22(t)[w? (kA) + O(CA)]dt.

By substituting (25) in the above formula, we get E[w?(kA) —

o(CA)] < [EFV22(w(hdi< Elw(kA) + O(CA)),
and consequently, |Ew?(kA) — k(ZH)A () w?(t)dt] <
EO(CA). This relation proves that if C'A is sufficiently small,
then (26) holds. It follows from (18) that

1 (kDA
Ews= ) 22 (H)w?(t)dt. 27)
k=0 KA
By combining (26) and (27), we obtain
K-1
EVVS ~ E Z w2 (28)
k=0

Now, we consider the WP estimator. We use (10) to represent A
as

) K1 (k+1)A
k=0 A
Hence
A K-1 =
A~ — kA) = — kA). 30
Tkzow( ) Kkzzow( ) (30)

We also rewrite FEwp defined by (24) as Ewp =
(+1)A o

k 0 N 2*(t)w(t)dt and approximate it by

(k+1)A

N

K-1
EVVP ~ .’E =F Z w kA (31)
k=0

E
Il

0 ¥a
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Similarly to justification of (26), it can be proven that the error
in the above approximation is proportional to O(CA). Now, we
recall Cauchy’s inequality [25]

K1 2 K—1 K—1
(Zakbk> < (Eh) (Zbi> )
k=0 k=0 k=0

which holds for any sequences of real numbers { ak}kK:_O1 and
{br} 22! By substituting in (22), a;, = 1 and, by, = w(kA),

we get
(5 ).

k=0
Next, we multiply both sides of (33) by £/ K. This yields

(33)

w(k'A)) <K (KE:quZ

k=0

K-1

K-1 1 K-1
(E > w kA)) <E > w(kA)) < (E > wz(kA)) .
k=0 k=0 k=0
(34)
By combining (34) with (28), (30), and (31), we obtain
AEwp < Ews. (35)

The conclusion from this analysis is that when the energy of the
analyzed signal is uniformly distributed inside the observation
window, then the WP method is more accurate than WS.

At this juncture, it is worth to make a comment in relation
to WP method. In [7], Bilinskis postulated that DASP ought
to be used with sampling schemes for which the point density
function is constant. The point density function at time % is de-
fined as ilil’lo P[tofA/Z,tOJ»A/Z]/A’ where P[tofA/Q,t0+A/2] is
the probability that there is a sampling instant inside the interval
[to — A/2,to + A/2]. Clearly, in the WS approach, the point
density function is constant, but in the WP case, the function
changes with time proportionally to w(¢). Despite this fact, we
have constructed an unbiased estimator of the signal spectrum
for the WP case, and even more, we have proven that in many
practical cases, this estimator is more accurate than WS.

VI. NUMERICAL EXAMPLE OF SPECTRAL ANALYSIS

In this section, we present a numerical example of applying the
proposed methods to spectrum estimation. Our goal is to deter-
mine the spectrum of a narrowband signal with unknown spec-
trum support function (SSF). To achieve this, we examine the es-
timates of the signal spectrum in a wide range of frequencies. The
test signal is z3(t) = 2.13 x 10? sinc(2.13 x 10%)—2.11 x
10% sinc(2.11 x 10%¢). Its spectrum is placed between 1.055 and
1.065 GHz. We use a Blackman window of length 7" = 1 ps to
define the smoothed spectrum (3) of the truncated signal. The av-
erage sampling rate is 1 GHz. The spectral analysis of the signal
is carried out between DC and 3.5 GHz. The upper limit has been
selected quite arbitrarily since the analysis can be performed up
to any frequency. Unlike the uniform sampling case, there is no
natural upper limit here. The spectrum of the signal is estimated
using the WS and WP methods. For comparison, we perform
similar analysis of the signal using uniform sampling at the rate
of 1 GHz. The results are shown in Figs. 1-4. Fig. 1 presents



TARCZYNSKI AND ALLAY: SPECTRAL ANALYSIS OF RANDOMLY SAMPLED SIGNALS

10.5
of e
0 1 2 3 105 1.06 1.07 1.08
Frequency (GHz) Frequency (GHz)
(@ (b)
Fig. 1. Magnitude of X3y (f) (continuous line) and of its ten WS estimates

Xsws(f) (broken lines). (a) Overall view. (b) Plot zoomed around 1.06 GHz.

0.5 0.5

10
2 1.05 1.06 1.07 1.08
Frequency (GHz) Frequency (GHz)
(a) (b)

Fig. 2. Magnitude of X 3w (f) (continuous line) and of its ten WP estimates
Xswp(f) (broken lines). (a) Overall view. (b) Plot zoomed around 1.06 GHz.

or ' ' ¥ '

-100

_1 50 1 1 1 1 1 1
0 0.5 1 15 2 25 3 3.5
Frequency (GHz)
Fig.3. Magnitude of X3y (f) (continuous line) and of its DFT-based estimate

Xsprr(f) (broken line).

the magnitude of the signal spectrum | X3y (f)| and ten different
WS estimates | X 3w s(f)|. Similar results for WP estimation are
shown in Fig. 2. Fig. 3 shows the results of spectrum estima-
tion when uniform sampling is used. Owing to aliasing, these re-
sults can only be used if the SSF of the analyzed signal is known
precisely enough to eliminate spurious components of the esti-
mated spectrum. Fig. 4 shows the standard deviations ows(f)
and owp(f). We also show the plots of RMS errors of the esti-
mated spectra. Each of these errors was obtained by processing
results from 1000 independent simulations. Fig. 4 confirms that
there is a good match between the theoretical predictions and the
outcomes of simulations. It is clear from Fig. 1, 2, and 4 that the
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011 a
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1 1 Il 1 1
1.05 106 1.07 108 109 11

Frequency (GHz)

Il 1
1.03 1.04

Fig. 4. Magnitude of spectrum estimation errors; RMS WS error (top broken
line), ows(f) (top continuous line), RMS WP error (bottom broken line), and
owe(f) (bottom continuous line).

WS and WP methods provide reasonable spectrum estimation
at frequencies with strong signal components. At the remaining
frequencies, the estimated spectra look like white noise signals
whose power densities are determined by the standard deviations
of the estimators. According to (21) and (23), these densities can
be diminished by increasing the number of samples used in spec-
tral analysis. Plots in Fig. 4 along with (21) and (23) indicate that
the WS and WP methods can provide good estimates of the com-
plex spectrum. Therefore, they can be used to approximate not
only the magnitude of the spectrum but its phase as well. The
above example backs up our claim that the WP approach pro-
duces more accurate results than WS. It also confirms that prop-
erly used nonuniform sampling eliminates aliasing from digital
signal processing.

VII. EFFECT OF SAMPLING INSTANT JITTER ON
ACCURACY OF ESTIMATORS

The analyses performed in the previous sections of this paper
were based on the assumption that signal z(¢) was sampled ex-
actly at the time instants selected by the random number gener-
ator. This assumption is usually not fully satisfied. Every hard-
ware implementation of a sampler suffers from imperfections
that result in small time differences between the time instants
T, when the signal samples are actually taken and the nominal
sampling instants ¢,,. We refer to these differences as sampling
instant jitter, or shortly jitter, and denote them by €,, = 7,, — t,.
The effect of jitter on the results of DSP has been studied before
[7], [26]. Although the qualitative description of the effects of
jitter in those publications is similar to the conclusions we derive
here, the quantitative measures cannot be directly applied to our
case. These are clearly dependent on the way data is collected
and processed, as well as on the objectives to be attained. We
show that jitter has at least two undesired effects on spectrum
estimation. First, because of jitter, the approximations (5) and
(11) are no longer unbiased estimators of Xyy (f). Fortunately,
in many cases, the bias can be removed almost completely. The



3330

second effect has more serious implications on the practical ap-
plicability of the proposed approach. Jitter deteriorates the ac-
curacy of spectrum estimation. This deterioration worsens with
increasing frequency. Therefore, for a given level of jitter, there
is a practical limitation on how far one can stretch spectral anal-
ysis in the frequency domain.

To analyze the above mentioned effects, we note that in the
presence of jitter, the WS, and WP spectrum estimators (5) and
(11) are replaced with

Xws(f) = 2(7n )w(tn) exp(—j2m fin)
2ty + en)w(ta) exp(—j2n ft)  (36)
and

>

T(tn + €n) exp(—j2m ft,)

Tn) exp(—J2m fty,)
37

respectively. In the remainder of this section, we assume that
the values ¢,, are random variables independent from each other
and from the nominal sampling instants ¢,,, n = 1,---, N. We
also assume that all PDFs of ¢,, are identical and given by some
pe(e).

We start our analysis by calculating the expected values of
estimators Xys(f) and Xwp(f) and demonstrating that both
are biased. Next, we discuss how the bias can be minimized by
constructing modified estimators Xws(f) and Xwp(f) that are
practically bias-free. Then, we turn our attention to the variance
and standard deviation of Xyws(f) and Xwp(f). We conclude
this section with practical guidelines on how the size of the jitter
limits the range of frequencies within which one may estimate
the spectrum of the signal.

To calculate E{Xws(f)}, we note that the sum in (36) is
composed of N identically distributed random variables. The
expected value of each such component, taken with respect to
the sampling instant ¢ and time jitter ¢, is given by

X§s(f) =B {a(t + e)w(t) exp(—j2m ft)}

1
X exp(—jQWft)Tpg(g)dtds. (38)
By substituting t = 7 — ¢, we get
6C 1 b .
Xws(f) = T pe(e) exp(j2m fe)
B T+e
X / z(T)w(T —e)exp(—j2r fr)drde. (39)
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Further analysis of (39) is performed under the following
assumptions.
d) Jitter € is significantly smaller than the length of the
observation window 7.
e)  The window w(t) = 0 in the close neighborhood of
t=0andt =T
As a consequence of assumptions a)—c) from Section II and
d) above, we accept that w(t) satisfies w(r — ¢) ~ w(r). If
we apply this relation to (39), the inner integral can be repre-
sented in the following form: |~ (e, fdr= fEO r(r, f)dr +
Jo f)dr + JT+E (1, f)dr, where r(7, f) = z(7)w(7)
exp( J27r f7). It follows from assumptions d) and e) above that
the following relations hold: |f0r(7', fHdr| < |f0T r(7, f)dr]
and | jT+5 . )d7'| L | fgr )d7'| These inequalities

imply that fg T, f)dr ~ fo fdr = fo Yw(T)
exp(—j27rf7)d7 = XW(f) Hence, (39) simplifies to

x(27f)
T

X§s(f) ~ Xw(f) (40)
where x(w) = [7°_p.(e) exp(jwe)de is the characteristic func-
tion [25] of the random variable . Now, we use (36), (38), and

(40) to calculate the expected value of X ws(f)

B{fws(h)} ~ X (Hx(2rf). (1)

Itis visible from (41) that Xws (f) is a biased estimator of signal
spectrum. The bias can be approximately removed by replacing
X\zvs(f) with X\zvs(f), which is defined by

n) exp(—j2m ft,,). (42)

We can perform similar analysis for the WP estimators. The
expected value of a single component in summation (37) is given
by

XWp(f) ZE{w(t + &) exp(—j2m f1)}

7/Txt+s
—o0 0 w®)

X exp(— j27rft)ﬁp (e)dtde. (43)

By performing calculations similar to those in the WS case, we
obtain

£Gn(h) ~ X0 (). (44)
Therefore
E{Xwe(f)} = Xw(f)x(2rS). (45)
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An approximately unbiased WP estimator can be constructed as
follows:

AT X
x(2rf)N 2

Xwe(f) = 2(7y) exp(—j27 ft,).  (46)

The above analysis shows that in the presence of sampling
instant jitter, our original spectrum estimators are biased. The
bias can be approximately removed if the jitter is small in com-
parison with the length of the window and if the characteristic
function of the jitter x(w) is known.

__Now, we analyze the accuracy of the modified estimators
Xws(f) and Xwp(f). To this end, we calculate their variance
and standard deviation. We show that the size of jitter is a major
factor limiting the bandwidth of spectral analysis when using
WS or WP approach.

~First, we calculate 5§(WS (f), which is the variance of
Xws(f). The calculations are based on the assumption that
both sides of (41) are equal. We start with

ol = B{[Tws(n[ ] - w0 @
Using (42), we get
- 2
E{‘st(f)‘ }
T2
[x(27 f)|* N2
X Z Z E{z*(r,)w’(tn)}
A;m
+ E{x(m)w(t,) exp(—j27 ft, }
x E{x(m)w(ty) exp(j2r ftr}).  (48)

We apply (38) and (40) to (48) and obtain

p{[Fs]} = s (e o)

# e M X))
Note that
-
E{z*(t+e)w _1 /ps(s)/xZ(t+6)w2(t)dtds.
- (50)

It follows from assumptions a)—e) that fOT 22 (t + e)w?(t)dt =~
fOT 2?(T)w?(7)dT = Ews. Hence

E{z’(t+e)w’(t)} ~ Bws / pe(e)de = %
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After substituting this relation into (49), we get

> 2 . N -1 2 T FEws
E{’st(f)‘ }—T|Xw(f)| +W- (52)

By combining (52) with (47), we obtain the variance of Xws ()

- TE Xy (f)|°
2 E W
5 - _ (53)
S PN TN
and its standard deviation
npsE = [Xw ()
Fws(f) = \/ " SRR
The variance 0% _ (f) is related to 0% _(f) as follows:
TEws 1 - |x(2rf)|”
J%{yv5 (f) = O—A%(VVS (f) + N . (55)

x(2r f)I*

Derivation of the variance and standard deviation of )?Wp( )
can be done in a similar manner. We start with

T () = (56)

p{[Fwr(n[ } - Pxwior

It follows from (46) that

E{’)N(Wp(f)r}

272
x(2 f)* N?

N

Z ZE{:E ) } + E{z(r,) exp(—j2m ft,}

K7n

x E{z(m)exp(j2r ftr}). (57)
By using (43) and (44), we get
~ 2
E{‘pr(f)‘ }
B A%T? 9 9
= XN (E {et+ )} + @)
W o IXw(f)|2> BN
Note that E{z*(t + €)} = (1/AT) [ fo

e)w(t)dtde = (Ewp/AT). After substltutmg thls relatlon 1nto
(58), we have E{| Xwe(/)E}= (N — 1)/N)|Xuw (f)P +
(AT Ewp/|x(2n f)[*N). The combination of this formula and
(56) yields the variance of Xwp(f)

AT Ewp | X (f) |2

2 _ _
T

(59)
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TABLE 1
CHARACTERISTIC FUNCTIONS OF SOME RANDOM VARIABLES WITH ZERO-SYMMETRIC PDFS
Jitter PDF - p,(¢) o, xQ2r) Z(fs)
Pe(€)
Binary 05 0.5 a cos(2nfa) cos(27f,)
» P(€)
. 24,
Trinary 1-p2 | (I-p)2 a\1-p | p+(-p)cos2afa) | p+(-p) cos[ z ]
I vi-p
-a a
P(€)
Uniform osial a sin(27fa) sin(2371,)
1 1. V3 2nfa 2037,
-a a
P:(€)
la ) € . 2 . 2
Triangular - {ﬂ} {M}
NN 6 fa Ve,
-a a
Normal 1 e 207 o o 2oy o 2.
o227
and its standard deviation _ 1
Il 3
s — 1 Xw () ®
- x@2=f)F ~ oW
T (f) = || 2O L0 08 5 -
6Q
&
The variance 0%, (f) is related to 0% (f) as follows: <5
0.6 N
_ ATEwp 1 - [x(2r f)[° S
O-A%(VVP (f) = O'g(w'p (f) + N 2 (61) 6Q/
Ix(27 f)] «®
0.4t Q .
One of the elementary properties of the characteristic function
x(w) is that its magnitude never exceeds one [25]. Therefore, uniform
it follows from (55) and (61) that Xws(f) and Xwp(f) have 0.2 .
larger variance and standard deviation than those of Xws(f)
and Xwp(f). triangular Normeg,
Similarly to the jitter-free case, we can determine for each 00 071 sz 03 of 7 05
method the maximum value of the variance. In the WS case, we P
have °
" " ) 1 T Evws Fig. 5. Magnitude of (£, ) for selected types of sampling instant jitter.
OWSs f < OWS,max f = (62)
) D@V w | - | |
) can be described by their partial Taylor series expansion [25]
while for the WP method X(f,) ~ 1 — 272 f2. As long as this approximation holds, the
B B ) 1 AT Ewp bias introduced by jitter can be compensated whenever o, is
owp(f) < owp max(f) = (27 /)] N (63)  known. Detailed knowledge of the PDF is no longer needed. It

In order to better understand how jitter deteriorates the quality
of spectrum estimation, we present Table I, which contains char-
acteristic functions of some random variables with zero-sym-
metric PDFs. These functions are then modified to relate them
to “standardized frequency” f, = fo., where o. is the stan-
dard deviation of the jitter. The modified version is defined by
X(fs) = x(27f,/oc). Fig. 5 shows the plots of the magni-
tudes of X(f,). It is clear from the plot that for small values
of the standardized frequency (say f, < 0.1), the functions
X(fs) do not differ very much from each other. In fact, they

should be noted that the above simplification does not hold in
the case of impulsive jitter—occasional bursts of relatively large
jitter followed by quiet periods of small jitter. In such cases, our
second-order polynomial approximation of x( f, ) remains valid
in an extremely narrow range of frequencies around DC, and the
biased estimators cannot be compensated without knowledge of
X(w) or higher order moments of the jitter.

Formulas (54) and (60) provide a basis for determining the
bandwidth analysis of spectrum estimation that uses the WS
and WP approaches. It is clear from Fig. 5 that deterioration of
standard deviations of WS and WP estimators caused by jitter
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Fig. 6. WS spectrum estimation with jitter: Spectrum of the continuous-time
signal |X 4w (f)| (dotted line, circles), the average of 200 uncompensated
WP estimates |X4ws(f)| (thick continuous line, squares), the average of 200
compensated WS estimates | X4 s(f)| (thin continuous line, triangles), and

Ows,max(f)/V200 (broken line).

is not very significant, as long as the standardized frequency is
small. The influence of the | Xy (f)|? component on the values
of the standard deviations o x,(f) and o x,, (f) is often neg-
ligible. Therefore, & x (f) and & x (f) can be considered to
be inversely proportional to |x(2x f)|. If we conservatively de-
mand that, e.g., [x(27 f)| > 0.8, then it follows from Fig. 5 that
fo < 0.1, and the bandwidth of spectral analysis becomes di-
rectly related to the standard deviation of jitter: fy,ax = 0.1/0..
Note that this limit is only indicative and does not constitute a
definite boundary for spectral analysis.

VIII. NUMERICAL ANALYSIS OF THE EFFECTS OF JITTER

Simulation results presented in this section illustrate how the
sampling instant jitter affects the bandwidth within which spec-
tral analysis can be effectively performed. The test signal used
here is a zero-mean nonsymmetric square wave of frequency
fo = 160 MHz defined by

J;4(t) = { 1_‘3?27
where P = 1/ fy is the period of z4(¢). We define the spectrum
(3) of x4(t) with the use of a Blackman window. The results of
spectrum estimation with the WS method are shown in Fig. 6
and with the WP method in Fig. 7. In each case, we show the
magnitude of the target spectrum and of the estimated spectra
with and without jitter compensation. These results of spectrum
estimation are averaged over 200 independent experiments.
We also plot 5wsymax(f)/\/m and 5wp7max(f)/\/m.
The scaling factor /200 was introduced to show the standard
deviation of the averaged estimations. The sampling frequency
used for WS and WP estimation was 250 MHz, and the length

of the observation window was 1 pus. The PDF of the sampling
instant jitter in these experiments was distributed uniformly in

when mod(¢, P) € [0,0.1P]

when mod(¢, P) € (0.1P, P] 64
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10 T T

Frequency (GHz)

Fig. 7. WP spectrum estimation with jitter: Spectrum of the continuous-time
signal | X 4w ()| (dotted line, circles), the average of 200 uncompensated WP
estimates |X'4W ()l (thick continuous line, squares), the average of 200
compensated WP estimates |X 4w p(f)| (thin continuous line, triangles), and

owp,max(f)/ V200 (broken line).

the interval [—4 x 10719 4 x 10719]s. Note that without jitter
compensation, the bias of spectrum estimation can be ignored
only at low frequencies. At higher frequencies, the estimated
spectrum tends to be weaker than the true one, whereas the
noise-resembling component of the estimated spectrum re-
mains unchanged. This can be interpreted as deterioration of
the signal-to-noise ratio with increasing frequency. When jitter
is compensated, the bias disappears, but the poor signal-to-noise
ratio at high frequencies is not affected by this compensation.
This observation confirms that jitter imposes a practical limit
on the bandwidth of spectral analysis.

IX. CONCLUSIONS

The proposed WS and WP algorithms allow digital alias-free
estimation of signal spectrum. These algorithms use specific
probability density functions to randomly select sampling in-
stants. The estimates of the spectrum are calculated using sum-
mation formulas similar to the nonuniform DFT. These formulas
are appropriately adjusted to match the sampling scheme used
by each method. The theoretical and experimental studies have
shown that both methods provide unbiased estimates of signal
spectrum. Two factors imposing limits on the use of the pro-
posed methods have been investigated in this paper: the level of
the spectrum estimation error and the sampling instant jitter.

For each method, the spectrum estimation error resembles a
wideband noise. Its power density is practically constant except
at frequencies at which the analyzed signal is strong. At these
places, the power density of the noise is slightly lower. The ad-
verse effect of the noise is that the spectral components of the
analyzed signal whose spectrum does not exceed its level are
masked and can hardly be detected by the proposed methods.

The second limiting factor (the jitter) introduces bias to
spectrum estimation. In many cases, this bias can be almost
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completely removed. The side effect of this operation is
increased level of spectrum estimation errors at higher frequen-
cies. This phenomenon effectively limits the bandwidth within
which spectral analysis can be performed. A simple analysis
shown here suggests that the bandwidth of spectral estimation
is limited by approximately 10% of the inverse of the standard
deviation of the jitter. It should be noted that in practical im-
plementation of the proposed methods, other limiting factors
might emerge. For example, if all the sampling instants created
by the pseudorandom generator are multiples of some small
number AT, then the limit of 0.5/AT Hz is also imposed on
the bandwidth.
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