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in the case where the (1,1) block may be indefinite. These generalise known results for the definite

(1,1) case. We also study the spectral properties of the equivalent augmented formulation, which
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1 Introduction

We consider the matrix

M =

[
A BT

B 0

]

We assume that B is m by n (m ≤ n) and of full row rank, that A is symmetric and

indefinite, and that A is positive definite on the kernel of B. These hypotheses imply that

the matrix M is nonsingular. We also consider the “stabilized” matrix

MC =

[
A BT

B −C

]

where in addition to the hypotheses of A and B, we require that C be symmetric positive

semidefinite.

Problems involving matrices of the form M for which A is symmetric but indefinite

occur throughout (equality-)constrained nonlinear optimization—in this field M is known

as the Karush-Kuhn-Tucker (KKT) matrix [13, §16.1]. To be specific, SQP methods

for finding the smallest value of the objective function f(x) where x is constrained to

satisfy c(x) = 0 build a correction s from a current estimate x by minimizing a quadratic

approximation g(x)Ts+ 1

2
sT As of the related Lagrangian function subject to a linearization

B(x)s+c(x) = 0 of the constraints [13, §18.1]. Here g is the gradient of f , A represents the

Hessian of a Lagrangian function, while B is the Jacobian of the constraints. This direction-

finding subproblem should only be solved if M has “correct” inertia—specifically that A

be sufficiently positive definite on the null-space of B [13, Lem.16.1–Thm.16.3]—and in

this case the desired correction s and an associate vector of Lagrange multipliers y satisfy

the linear system (where for brevity we have dropped the argument x in the right-hand

side functions) [
A BT

B 0

] [
s

y

]
= −

[
g

c

]
.

The assumption that the Hessian should be positive definite on the null-space of the con-

straints is a second-order sufficiency condition for a constrained optima [13, Thm.12.6].

Note that this requirement is in contrast to superficially-similar systems from CFD where

it is often natural to assume that A itself is positive (semi-) definite [6, §5.5].

Problems involving MC with indefinite A but semidefinite C arise when solving inequal-

ity-constrained nonlinear optimization problems using penalty or interior-point methods

(C positive definite) or with a mix of equality and inequality constraints (C positive semi-

definite but singular). Specifically, interior-point methods for minimizing an objective

f(x) constrained by inequalities c(x) ≥ 0 transform the problem into a sequence of un-

constrained optimizations of “barrier” functions φ(x, ν) = f(x) + νΦ(c(x)), where the

parameter ν → 0+ and Φ is finite at strictly feasible x but infinite elsewhere [13, §19.1].

To solve each barrier problem, a correction s from a current estimate x is determined by

minimizing the quadratic Taylor approximation sT∇xφ + 1
2
sT∇xxφs. This problem should
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only be solved if the Hessian ∇xxφ is positive definite, and in this case s satisfies the

Newton equations

∇xxφs = −∇xφ. (1.1)

Generically ∇xφ and ∇xxφ have the form g +JT e and H +JT DJ respectively, where H is

the Hessian of the Lagrangian, g is the gradient of f , e is a vector of Lagrange multiplier

estimates, J is the constraint Jacobian and D is a diagonal matrix of positive weights

some of which converge to zero while the others diverge. Thus ∇xxφ is almost invariably

ill conditioned, and it may be preferable to solve the equivalent

[
H + JT

0 D0J0 JT
∞

J∞ −D−1
∞

] [
s

v

]
= −

[
g + JT

0 e0

e∞

]
(1.2)

involving some auxiliary v, where the subscripts 0 and ∞ refer to the partition of indices

for the components of D which converge and diverge respectively, rather than (1.1) [12,

§6]. Note that there is reason to expect H to be positive definite, but necessarily it will be

so on the null-space of J∞ whenever ∇xxφ is positive definite. Thus the coefficient matrix

of (1.2) is of the form MC with a positive definite C, and although C 6= 0, we do expect

in general that ‖C‖ will be small. It is also most likely in practice that at most m ≤ n of

the (diagonal) components in D diverge.1

If in addition we have explicit equality constraints cE(x) = 0 with Jacobian JE, then

just as in §1, (1.2) becomes




H + JT
0 D0J0

(
JT
∞ JT

E

)
(

J∞

JE

)
−

(
D−1

∞ 0

0 0

)






s(
v

y

)

 = −



g + JT

0 e0(
e∞
cE

)

 , (1.3)

which again has a coefficient matrix of the form MC, but C is now only positive semi-

definite. Once again, it is most likely in practice that m ≤ n from such applications if they

have been properly reformulated.

Another interesting case arises when A itself has (recursive) saddle-point structure [10]

and is thus indefinite.

We note that superficially-similar systems from CFD, specifically from stabilised Stokes

flow, often naturally assume that A is positive (semi-) definite [6, §5.3.2].

Our purpose here is to understand how weakening the requirement that A be everywhere

definite to simply definite in a subspace influences the bounds we may deduce on the

eigenvalues of M and of MC. This is important since quantitative understanding of the

convergence of symmetric iterative methods like MINRES for generic linear systems

[
A BT

B 0

] [
x

y

]
=

[
a

b

]
and

[
A BT

B −C

] [
x

y

]
=

[
a

b

]
(1.4)

1Diverging components correspond to strictly complementary asymptotically active constraints [12, §6].
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is governed by the knowledge of the eigenvalues of the system matrix [6, Thm.6.13]. In

particular, when (as is the case here) the matrix is indefinite and the eigenvalues lie in

intervals [a, b] ∪ [c, d] with a ≤ b < 0 < c ≤ d, better convergence estimates are possible

than by simply knowing the matrix’s condition number. Realistic eigenvalue intervals when

A is definite are often available [15, Lem.2.1]—see the survey article [3] for more details—

but our aim is to present similar results in our more-general context. We also analyze the

equivalent augmented formulation, where the original linear system is transformed so as

to make the (1,1) block definite. We explicitly show how the spectral properties of the

resulting matrix depend on the augmentation parameter, and provide a sufficient condition

on the parameter so that the (1,1) block is indeed positive definite.

The paper is organized as follows. In Section 2 we provide estimates for the real intervals

containing the spectrum of M, while in Section 2.1 we refine our estimates by including

additional knowledge on the data. In Section 2.2 we derive spectral bounds when the

original problem with M is replaced by an equivalent augmented formulation. In Section

3 we derive interval estimates for the spectrum of MC . In section 4 we briefly discuss

natural generalizations of a known class of preconditioners.

2 Estimates for the eigenvalues of M
Here we analyze the location of the spectrum of M.

We start with a general inertia-characterization result—the inertia of a matrix M ,

In(M), is the triple (m+, m−, m0), where m+, m− and m0 are the numbers of positive,

negative and zero eigenvalues of M , respectively.

Proposition 2.1. [4, 11]. Suppose that the columns of Z provide an orthonormal basis

for the null-space of A. Then In(M) = In(ZT AZ) + (m, m, 0).

Now assume that A is positive definite on the kernel of B. In this case, ZT AZ is

positive definite, and Proposition 2.1 shows that M has precisely n positive and m negative

eigenvalues. We note that the leftmost eigenvalue of ZT AZ satisfies

λZ

min = min
06=x∈N (B)

xT Ax

xT x
.

Proposition 2.2. Assume that A is positive definite on the kernel of B, so that the left-

most eigenvalue of ZT AZ, λZ

min > 0. Let λA

min, λ
A

max be the leftmost (perhaps negative)

and rightmost eigenvalues of A, and let σmin, σmax be the smallest nonzero and largest sin-

gular values of the full rank matrix B. Then the eigenvalues µ of M are contained in

I− ∪ I+ ⊂ R with

I− =

[
1

2

(
λA

min −
√

(λA

min)
2 + 4σ2

max

)
,
1

2

(
λA

max −
√

(λA

max)
2 + 4σ2

min

)]
⊂ R

−

I+ =

[
γ,

1

2

(
λA

max +
√

(λA

max)
2 + 4σ2

max

)]
⊂ R

+
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where γ < λZ

min is the smallest positive root of the cubic equation

µ3 − µ2(λZ

min + λA

min) + µ(λZ

minλ
A

min − ‖A‖2 − σ2
min) + λZ

minσ
2
min = 0.

In particular,

γ ≥





λZ

minσ
2
min

|λZ

minλ
A

min − ‖A‖2 − σ2
min|

if λZ

min + λA

min ≤ 0

λZ

minλ
A

min − ‖A‖2 − σ2
min

2(λZ

min + λA

min)
+

√(
λZ

minλ
A

min − ‖A‖2 − σ2
min

2(λZ

min + λA

min)

)2

+
λZ

minσ
2
min

λZ

min + λA

min

otherwise.

If m = n, we have instead

I+ =

[
1

2

(
λA

min +
√

(λA

min)
2 + 4σ2

min

)
,
1

2

(
λA

max +
√

(λA

max)
2 + 4σ2

max

)]
⊂ R

+.

Proof. Let [x; y] be an eigenvector corresponding to an eigenvalue µ. We first

consider the case that y = 0. Then Ax = µx and Bx = 0, so that λZ

min ≤ µ ≤ λA

max.

The same is true if Bx = 0, as then y = 0. Furthermore since B is full rank, x 6= 0,

since otherwise this would also imply y = 0. So henceforth, we assume that none of

these special cases occur.

We proceed by evaluating the extremes of I−. For µ 6= 0, substituting the second

equation into the first one and reordering terms yields

µ2x − µAx − BT Bx = 0. (2.5)

Multiplying by the left by xT we obtain

µ2‖x‖2 − µxT Ax − ‖Bx‖2 = 0. (2.6)

Since µ < 0, we have −µxT Ax ≥ −µλA

min‖x‖2. Using also −‖Bx‖2 ≥ −σ2
max‖x‖2 we

get the inequality

µ2 − µλA

min − σ2
max ≤ 0,

from which the left extreme follows. To proceed with the right extreme of I− we let

x = x0 + x1, with x0 ∈ N (B) and 0 6= x1 ∈ Range(BT ). We multiply the equation

(2.5) by xT
1 and by xT

0 . Using the fact that Bx = Bx1, we obtain

µ2‖x1‖2 − µxT
1 Ax1 − µxT

1 Ax0 − ‖Bx1‖2 = 0 (2.7)

µ2‖x0‖2 − µxT
0 Ax1 − µxT

0 Ax0 = 0. (2.8)

Subtracting the second from the first equation and recalling that µ < 0 and xT
0 Ax0 > 0

we get

0 = µ2‖x1‖2 − µ2‖x0‖2 + µxT
0 Ax0 − µxT

1 Ax1 − ‖Bx1‖2

≤ µ2‖x1‖2 − µxT
1 Ax1 − ‖Bx1‖2

≤ (µ2 − µλA

max − σ2
min)‖x1‖2.
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For x1 6= 0 the required negative upper bound follows.

We next determine the extremes of I+ keeping in mind that µ > 0. We use (2.8) and the

facts that xT Ax ≤ λA

max‖x‖2 and ‖Bx‖ ≤ σmax‖x‖ to get µ2 − µλA

max − σ2
max ≤ 0, from

which the stated upper bound follows. When m = n, we also have λA

min‖x‖2 ≤ xT Ax

and σmin‖x‖ ≤ ‖Bx‖ which with (2.8) give µ2 − µλA

min − σ2
min ≥ 0, from which the left

bound results.

When m < n, the left bound, γ, is more delicate. We write x = x0 + x1 as before. We

next assume that µ < λZ

min, otherwise λZ

min is the sought-after extreme. From equation

(2.8) we see that

xT
0 Ax1 = µ‖x0‖2 − xT

0 Ax0 ≤ (µ − λZ

min)‖x0‖2, xT
0 Ax1 ≥ −‖A‖ ‖x1‖ ‖x0‖.

Using µ−λZ

min < 0, the two inequalities above also imply that ‖x0‖ ≤ −‖A‖ ‖x1‖/(µ−
λZ

min), so that −xT
0 Ax1 ≤ ‖A‖ ‖x1‖ ‖x0‖ ≤ −‖A‖2‖x1‖2/(µ − λZ

min). Therefore, we can

bound (2.7) as

0 = µ2‖x1‖2 − µxT
1 Ax1 − µxT

1 Ax0 − ‖Bx1‖2

≤ (µ2 − µλA

min + µ‖A‖2/(λZ

min − µ) − σ2
min)‖x1‖2,

which, as x1 6= 0, is equivalent to

φ(µ) ≡ µ3 − µ2(λZ

min + λA

min) + µ(λZ

minλ
A

min − ‖A‖2 − σ2
min) + λZ

minσ
2
min ≤ 0.

Note that φ(λZ

min) = −λZ

min‖A‖2 < 0, and thus the required bound γ < λZ

min. Since

µ3 > 0 we bound the left expression from below as

−µ2(λZ

min + λA

min) + µ(λZ

minλ
A

min − ‖A‖2 − σ2
min) + λZ

minσ
2
min ≤ 0.

If λZ

min + λA

min > 0 then we rewrite

µ2(λZ

min + λA

min) − µ(λZ

minλ
A

min − ‖A‖2 − σ2
min) − λZ

minσ
2
min ≥ 0,

from which the stated value of γ follows. If conversely λZ

min + λA

min ≤ 0 then µ2(λZ

min +

λA

min) ≤ 0 and we obtain

µ(λZ

minλ
A

min − ‖A‖2 − σ2
min) + λZ

minσ
2
min ≤ 0.

Since λZ

minλ
A

min − ‖A‖2 − σ2
min ≤ 0, the value of γ for λZ

min + λA

min ≤ 0 follows. �

By way of contrast, when A is positive definite the following result is known.

Proposition 2.3. [15, Lem.2.1] Assume that A is positive definite, let λA

min, λ
A

max be the

smallest (positive) and largest (positive) eigenvalues of A, and let σmin, σmax be the smallest

nonzero and largest singular values of the full rank matrix B. Then the eigenvalues µ of

M are contained in I− ∪ I+ ⊂ R with

I− =

[
1

2

(
λA

min −
√

(λA

min)
2 + 4σ2

max

)
,
1

2

(
λA

max −
√

(λA

max)
2 + 4σ2

min

)]
⊂ R

−

I+ =

[
λA

min,
1

2

(
λA

max +
√

(λA

max)
2 + 4σ2

max

)]
⊂ R

+.
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We see that the only difference in the positive definite and indefinite cases is how the

smallest positive eigenvalue of M is constrained by that of A in the former case, while it

is the interaction between that of A and ZT AZ which plays a role in the latter.

The bounds in Proposition 2.2 appear to be quite sharp, as shown by the following

examples (all reported computed numbers are exact to the first few decimal digits).

Example 2.4. We consider the matrices

A =

[
1 −3

−3 2

]
, BT =

[
0

0.1

]
.

The corresponding matrix M has eigenvalues

µ1 = −1.5441, µ2 = 0.0014257, µ3 = 4.5427,

which belong to the intervals obtained in Proposition 2.2, cf. Table 2.1. Note in particular

the sharpness of the right extreme of I+ and of the left extreme of I−.

Example 2.5. We consider the matrices

A =

[
0.1 2

2 0.1

]
, BT =

[
0

1

]
.

Then µ(M) = {−2.1465, 0.020026, 2.3264}, while the bounding intervals are reported in

Table 2.1. Note the sharpness of the left extreme of I+.

Example 2.6. We consider the matrices

A =

[
0.01 3

3 −0.01

]
, B = [0, 3].

In this case, µ(M) = {-4.2452, 5.0 ·10−3, 4.2402}. Note once again the sharpness of the

left extreme of I+.

Example 2.7. We consider the matrices

A =




1 −4 0

−4 −1 0

0 0 2


 , BT =




0 1

1 0

0 0


 .

Then µ(M) = {−4.3528,−0.22974, 0.22974, 2, 4.3528}, while the bounding intervals are

reported in Table 2.1. Note the sharpness of both extremes of I− and of the right extreme

of I+.
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case λA

min λA

max λZ

min σmin, σmax I− I+

Ex. 2.4 -1.5414 4.5414 1.0 0.1, 0.1 [-1.5478, -0.0022] [0.0004, 4.5436]

Ex. 2.5 -1.9000 2.1000 0.1 1, 1 [-2.3293, -0.40000] [0.017857, 2.50]

Ex. 2.6 -3.0000 3.0000 0.01 3, 3 [-4.8541, -1.8541] [ 4.9917 ·10−3, 4.8541]

Ex. 2.7 -4.1231 4.1231 2.0 1, 1 [-4.3528, -0.22974] [0.0762, 4.3528]

Table 2.1: Spectral information and bounds for the examples in section 2.

2.1 Specialized results

We can improve on the eigenvalue bounds given in Proposition 2.2 if we make further

assumptions on the data. Recall that we are assuming that B is of full rank. In this case,

we may decompose B(Y Z) = (L 0), where (Y Z) is orthogonal and L is nonsingular—an

LQ factorization is one possibility. Note that B and L have the same (nonzero) singular

values. In this case, M is similar to




ZT AZ ZT AY 0

Y T AZ Y T AY LT

0 L 0


 . (2.9)

This leads directly to the following result.

Proposition 2.8. Let σmin, σmax be the smallest nonzero and largest singular values of the

full rank matrix B, and suppose that B(Y Z) = (L 0), where (Y Z) is orthogonal and

L is nonsingular. Suppose further that ZT AZ has extreme eigenvalues λZ

min ≤ λZ

max, that

Y T AY has extreme eigenvalues λY

min ≤ λY

max and that ZT AY = 0. Then the eigenvalues µ

of M are contained in

[
1

2

(
λY

min −
√

(λY

min)
2 + 4σ2

max

)
,
1

2

(
λY

max −
√

(λY

max)
2 + 4σ2

min

)]

∪
[
1

2

(
λY

min +
√

(λY

min)
2 + 4σ2

min

)
,
1

2

(
λY

max +
√

(λY

max)
2 + 4σ2

max

)]

∪ [λZ

min, λ
Z

max].

Proof. Since M is similar to (2.9) and as by assumption ZT AY = 0, it follows

immediately that n−m of the eigenvalues of M are those of ZT AZ, while the remainder

are those of

[
Y T AY LT

L 0

]
. (2.10)

Applying Proposition 2.2 to (2.10) for the square (“m = n”) case gives the remaining

eigenvalue intervals. �

If we drop the assumption that ZT AY = 0, we may derive slightly weaker bounds.
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Proposition 2.9. Let σmin, σmax be the smallest nonzero and largest singular values of the

full rank matrix B, and suppose that B(Y Z) = (L 0), where (Y Z) is orthogonal and

L is nonsingular. Suppose further that A has extreme eigenvalues λA

min ≤ λA

max, ZT AZ is

positive definite with extreme eigenvalues 0 < λZ

min ≤ λZ

max and that Y T AY has extreme

eigenvalues λY

min ≤ λY

max. Then the eigenvalues µ of M are contained in
[
1

2

(
λA

min −
√

(λA

min)
2 + 4σ2

max

)
,
1

2

(
λY

max −
√

(λY

max)
2 + 4σ2

min

)]

∪
[
1

2

(
λY

min +
√

(λY

min)
2 + 4σ2

min

)
,
1

2

(
λA

max +
√

(λA

max)
2 + 4σ2

max

)]

∪ [γ, λZ

max].

where γ < λZ

min is the smallest positive root of the cubic equation

µ3 − µ2(λZ

min + λA

min) + µ(λZ

minλ
A

min − ‖A‖2 − σ2
min) + λZ

minσ
2
min = 0.

Proof. Let [z; y; x] be an eigenvector corresponding to an eigenvalue µ of (2.9). Then

ZT AZz + ZT AY y = µz (2.11a)

Y T AZz + Y T AY y + LT x = µy (2.11b)

and Ly = µx. (2.11c)

Since M is nonsingular, µ 6= 0, and hence

Y T AZz + Y T AY y + LT Ly/µ = µy (2.12)

from (2.11b) and (2.11c). Hence forming the inner products of (2.11a) with z and

(2.12) with y, we find

zT ZT AZz + zT ZT AY y = µ‖z‖2 (2.13)

and yTY T AZz + yTY T AY y + ‖Ly‖2/µ = µ‖y‖2. (2.14)

Subtracting (2.13) from (2.14) gives

yT Y T AY y + ‖Ly‖2/µ − µ‖y‖2 = zT ZT AZz − µ‖z‖2. (2.15)

Now suppose that µ ≥ λZ

max > 0. In this case (2.15) implies that

(σ2
min + λY

minµ − µ2)‖y‖2 ≤ ‖Ly‖2 + µyTY T AY y − µ2‖y‖2 ≤ 0

in which case

µ ≥ 1

2

(
λY

min +
√

(λY

min)
2 + 4σ2

min

)
.

By contrast, if µ ≤ 0 ≤ λZ

min, (2.15) implies that

‖Ly‖2/µ + yTY T AY y − µ‖y‖2 ≥ 0
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in which case

(σ2
min + λY

maxµ − µ2)‖y‖2 ≤ ‖Ly‖2 + µyTY T AY y − µ2‖y‖2 ≤ 0

and thus

µ ≤ 1

2

(
λY

max −
√

(λY

max)
2 + 4σ2

min

)
.

The remaining interval bounds follow from Proposition 2.2. �

2.2 Augmenting the (1,1) block

A useful alternative to (1.4) is to note that the solution also satisfies the augmented system
[
A + τBT B BT

B 0

] [
x

y

]
=

[
a + τBT b

b

]

for any scalar τ [8]. Thus the eigenvalues of

M(τ) =

[
A + τBT B BT

B 0

]

may be of interest. It is well known [1, Cor.12.9] that A is positive definite on the kernel

of B if and only if A + τBT B is positive definite for all sufficiently large τ , and hence

saddle-point methods appropriate when the (1,1) block is definite may be applied. We

now estimate how large τ needs be for this to happen.

Lemma 2.10. Let σmin be the smallest nonzero singular value of the full rank matrix

B, and suppose that B(Y Z) = (L 0), where (Y Z) is orthogonal and L is nonsingular.

Suppose further that A is positive definite on the kernel of B, so that the leftmost eigenvalue

of ZT AZ, λZ

min > 0, and the leftmost eigenvalue of Y T AY be λY

min. Then the matrix

A + τBT B is positive definite whenever

τ >
1

σ2
min

(‖A‖2

λZ

min

− λY

min

)
. (2.16)

Proof. It follows immediately that A + τBT B is similar to the matrix
[

ZTAZ ZT AY

Y T AZ Y T AY + τLLT

]
. (2.17)

Therefore, A+τBT B is positive definite if and only if both ZT AZ and Y T AY +τLLT −
Y T AZ(ZT AZ)−1ZT AY are positive definite. Since the first requirement is satisfied by

assumption, we need only verify the second. For w 6= 0, we have

wT Y T AY w + τwT LLT w ≥ (λY

min + τσ2
min)‖w‖2 >

‖A‖2

λZ

min

‖w‖2 (2.18)

≥ wTY T AZ(ZT AZ)−1ZT AY w,

by assumption (2.16). �
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Example 2.11. We consider once again Example 2.6, with ‖A‖ = 3, λY

min = −0.01,

σmin = 3 and λZ

min = 0.01. The condition in Lemma 2.10 requires that

τ >
1

σ2
min

(‖A‖2

λZ

min

− λY

min

)
≈ 100.002.

For τ = 100, which only barely fails to satisfy the condition, we obtain σ(A + τBT B)) =

{−1.1111 ·10−7, 900}. On the other hand, for τ = 101, σ(A+τBT B)) = {9.89 ·10−5, 909},
showing that our condition is sharp.

We can now derive bounds for the spectrum of A + τBT B.

Proposition 2.12. Assume that the hypotheses of Lemma 2.10 hold, that τ satisfies (2.16)
and that additionally the rightmost eigenvalues of ZTAZ and Y T AY and largest singular
value of B are λZ

max, λY

max and σmax respectively. Then the eigenvalues of A + τBT B are
contained in the union of the positive intervals

[λZ

min, λZ

max]
⋃

[ξmin, ξmax]
⋃

[
1

2
(ξmin + λZ

min −
√

(ξ
min

− λZ

min
)2 + 4‖A‖, 1

2
(ξmin + λZ

min +
√

(ξ
min

− λZ

min
)2 + 4‖A‖

] ⋃

[
1

2
(ξmax + λZ

max −
√

(ξmax − λZ
max)

2 + 4‖A‖, 1

2
(ξmax + λZ

max +
√

(ξmax − λZ
max)

2 + 4‖A‖
]
,

where ξmin = λY

min + τσ2
min and ξmax = λY

max + τσ2
max.

Proof. Let λ be an eigenvalue of (2.17) and let [x; y] be the corresponding eigenvector.

Then

ZT AZx + ZT AY y = λx and Y T AZx + (Y T AY + τLLT )y = λy. (2.19)

If y = 0 then λ is an eigenvalue of ZT AZ, and thus λZ

min ≤ λ ≤ λZ

max, which is the first

eigenvalue interval. Similarly, if x = 0 then λ is an eigenvalue of Y T AY + τLLT . In

this case it follows immediately from (2.18) and [9, Thm.8.1.5] that

ξmin‖w‖2 ≤ wT (Y T AY + τLLT )w ≤ ξmax‖w‖2,

which provides the second eigenvalue interval.

Assume now that 0 < λ < λZ

min, so that ZT AZ − λI is positive definite. Therefore,

from the first equation in (2.19) we obtain x = −(ZT AZ − λI)−1ZT AY y which, on

substitution into the second, yields

(Y T AY + τLLT )y − Y T AZ(ZT AZ − λI)−1ZTAY y = λy. (2.20)

Multiplying from the left by 0 6= yT , we obtain

ξmin ≤ λ + (λZ

min − λ)−1‖A‖2, that is λ2 − λ(ξmin + λZ

min) + ξminλ
Z

min − ‖A‖2 ≤ 0.

The extremes of the third spectral interval follow from this last inequality, and by

noticing that ξminλ
Z

min − ‖A‖2 > 0 because of (2.16).
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Finally, assume that λ > λZ

max, so that ZT AZ−λI is negative definite. As before (2.20)

holds, but now gives

λ ≤ ξmax + (λ − λZ

max)
−1‖A‖2, that is λ2 − λ(ξmax + λZ

max) + ξmaxλ
Z

max − ‖A‖2 ≤ 0.

Since ξmaxλ
Z

max − ‖A‖2 ≥ ξminλ
Z

min − ‖A‖2 > 0, it follows that λ lies in the last of our

eigenvalue intervals. �

Armed with these bounds, it is trivial (but not especially edifying) to obtain eigenvalue

interval bounds for M(τ) for τ satisfying (2.16) using Proposition 2.3; simply replace

λA

min and λA

max with the smallest and largest interval bounds from Proposition 2.12. More

sophisticated bounds may be obtained from Propositions 2.8 and 2.9 if in addition we

replace λY

min and λY

max by ξmin and ξmax. All of these illustrate, as one might expect, the

separation of the eigenvalue intervals into sub-intervals which grow asymptotically linearly

with τ and those which are independent of τ , and thus the worsening conditioning if τ is

picked too large.

3 Non-zero (2,2) blocks

We now turn our attention to the “stabilized” saddle-point matrix

MC =

[
A BT

B −C

]
,

where we assume that C is symmetric and positive semi-definite. In the case where A is

positive definite the following result is known.

Proposition 3.1. [16, Lem.2.2] Assume that A is positive definite, let λA

min, λ
A

max be the

smallest (positive) and largest (positive) eigenvalues of A, let σmin, σmax be the smallest

nonzero and largest singular values of the full rank matrix B, and let C be positive semi-

definite with largest eigenvalue λC

max. Then the eigenvalues µ of MC are contained in

I− ∪ I+ ⊂ R with

I− =

[
1

2

(
λA

min − λC

max −
√

(λA

min + λC
max)

2 + 4σ2
max

)
,
1

2

(
λA

max −
√

(λA
max)

2 + 4σ2
min

)]
⊂ R

−

I+ =

[
λA

min,
1

2

(
λA

max +
√

(λA
max)

2 + 4σ2
max

)]
⊂ R

+.

For the more general case when A is indefinite, care is needed. In particular a naive

application of the well-know eigenvalue perturbation lemma gives the following result.

Proposition 3.2. Assume that A is positive definite on the kernel of B, so that the left-

most eigenvalue of ZT AZ, λZ

min > 0. Let λA

min, λ
A

max be the leftmost (perhaps negative)

and rightmost eigenvalues of A, let σmin, σmax be the smallest nonzero and largest singular
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values of the full rank matrix B, and let C be positive semi-definite with largest eigenvalue

λC

max. Furthermore let γ < λZ

min be the smallest positive root of the cubic equation

µ3 − µ2(λZ

min + λA

min) + µ(λZ

minλ
A

min − ‖A‖2 − σ2
min) + λZ

minσ
2
min = 0,

and suppose that γ > λC

max. Then the eigenvalues µ of MC are contained in I− ∪ I+ ⊂ R

with

I− =

[
1

2

(
λA

min −
√

(λA

min)
2 + 4σ2

max

)
− λC

max,
1

2

(
λA

max −
√

(λA

max)
2 + 4σ2

min

)]
⊂ R

−

I+ =

[
γ − λC

max,
1

2

(
λA

max +
√

(λA

max)
2 + 4σ2

max

)]
⊂ R

+

Proof. This follows immediately by applying, e.g., [9, Thm.8.1.5] to the results in

Proposition 2.2. �

Note here the requirement γ > λC

max which is needed to ensure that the eigenvalue

intervals do not include the origin. Although this bound is most-likely pessimistic, it is

clear that some bound on the size of C relative to A and B is needed to prevent singularity;

for instance the 2 by 2 matrix formed when A = −1 = C, B = 1 is singular.

In the optimization context as we have seen, if C is non-singular, it is realistic to expect

that A+BT C−1B will be positive definite, and that its smallest eigenvalue will be bounded

away from zero [12]. As a consequence, necessarily we will have that A will be positive

definite on the null space of B, but this may be far from sufficient.

To improve upon Proposition 3.2, we have the following result.

Proposition 3.3. Assume that A is positive definite on the kernel of B, so that the left-

most eigenvalue of ZT AZ, λZ

min > 0. Let λA

min, λ
A

max be the leftmost (perhaps negative)

and rightmost eigenvalues of A, let σmin, σmax be the smallest nonzero and largest singular

values of the full rank matrix B, and let C be positive semi-definite with largest eigenvalue

λC

max. Suppose furthermore that

λC

max <
λZ

minσ
2
min

‖A‖2 − λA

minλ
Z

min

. (3.21)

Then the eigenvalues µ of MC are contained in I− ∪ I+ ⊂ R with

I− =

[
1

2

(
λA

min − λC

max −
√

(λA

min
+ λC

max)
2 + 4σ2

max

)
,
1

2

(
λA

max −
√

(λA
max)

2 + 4σ2
min

)]
⊂ R

−

I+ =

[
γC ,

1

2

(
λA

max +
√

(λA
max)

2 + 4σ2
max

)]
⊂ R

+,

where γC < λZ

min is the smallest positive root of the cubic equation

µ3 − µ2(λZ

min + λA

min − λC

max) − µ(‖A‖2 − λA

minλ
Z

min + λC

maxλ
Z

min + λC

maxλ
A

min + σ2
min)

+λC

maxλ
A

minλ
Z

min − λC

max‖A‖2 + λZ

minσ
2
min = 0.
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In particular,

γC ≥





λC

maxλ
A

minλ
Z

min − λC

max‖A‖2 + λZ

minσ
2
min

−λZ

minλ
A

min + ‖A‖2 + σ2
min + (λC

max)
2

if λZ

min + λA

min − λC

max ≤ 0

χ +

√

χ2 +
−λC

max‖A‖2 + λC

maxλ
A

minλ
Z

min + λZ

minσ
2
min

λZ

min + λA

min − λC

max

otherwise,

where

χ =
λZ

minλ
A

min − ‖A‖2 − σ2
min − λC

max(λ
Z

min + λA

min)

2(λZ

min + λA

min − λC

max)
.

If m = n, we have instead

I+ =

[
1

2

(
λA

min − λC

max +
√

(λA

min
+ λC

max)
2 + 4σ2

min

)
,
1

2

(
λA

max +
√

(λA
max)

2 + 4σ2
max

)]
⊂ R

+.

Proof. The right bound on each interval follows as before by applying, e.g., [9,

Thm.8.1.5] to the results in Proposition 2.2. It remains to establish the left bounds.

As before, let [x; y] be an eigenvector corresponding to an eigenvalue µ. Thus

Ax + BT y = µx (3.22a)

and Bx = (C + µI)y. (3.22b)

We first consider the case µ < 0. Suppose that µ < λA

min. In this case, A−µI is positive

definite, and ‖(A − µI)−1‖ ≤ 1/(λA

min − µ). Furthermore y 6= 0 as otherwise (3.22b)

and the positive definiteness of A− µI would imply that both x and y are zero. Hence

(3.22) and the stated assumptions give

−µ‖y‖2 = yTCy + yTB(A − µI)−1BT y ≤ λC

max‖y‖2 + σ2
max‖y‖2/(λA

min − µ)

which implies

µ ≥ 1

2

(
λA

min − λC

max −
√

(λA

min + λC

max)
2 + 4σ2

max

)
.

Otherwise

µ ≥ λA

min ≥ 1

2

(
λA

min − λC

max −
√

(λA

min + λC

max)
2 + 4σ2

max

)
,

and the combination of the two inequalities gives the lower bound on I−.

Now suppose that 0 < µ < λZ

min, so that C +µI is positive definite. For y = 0 it follows

that η is an eigenvalue of ZT AZ. For y 6= 0, we thus have Bx 6= 0. Substituting y 6= 0

from (3.22b) into (3.22a) yields

Ax + BT (C + µI)−1Bx = µx. (3.23)
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We write x = x0 + x1 as in the proof of Proposition 2.2 where x1 6= 0, and we recall

that for 0 < µ < λZ

min it holds that −xT
1 Ax0 ≤ ‖A‖2‖x1‖2/(λZ

min − µ). We multiply the

equation in (3.23) by xT
1 and obtain

0 = −xT
1 Ax − xT

1 BT (C + µI)−1Bx1 + µ‖x1‖2

≤
(
−λA

min +
‖A‖2

λZ

min − µ
− σ2

min

µ + λC

max

+ µ

)
‖x1‖2.

Since λZ

min − µ and µ + λC

max are both positive and x1 6= 0, we can write

0 ≤ −µ3 + µ2(λZ

min + λA

min − λC

max) + µ(−λA

minλ
Z

min + ‖A‖2 + λC

maxλ
Z

min + λC

maxλ
A

min

+σ2
min) − λC

maxλ
A

minλ
Z

min + λC

max‖A‖2 − λZ

minσ
2
min ≡ −φC(µ).

Note that φC(0) = λC

maxλ
A

minλ
Z

min − λC

max‖A‖2 + λZ

minσ
2
min > 0 by assumption (3.21),

while φC(λZ

min) = −(λZ

min + λC

max)‖A‖2 < 0. Thus the required bound γC we seek is the

smallest positive root of φC(µ) = 0 and γC < λZ

min. Furthermore, since µ3 > 0 we may

bound −φC from above to give

0 ≤ µ2(λZ

min + λA

min − λC

max) + µ(−λA

minλ
Z

min + ‖A‖2 + λC

maxλ
Z

min (3.24)

+λC

maxλ
A

min + σ2
min) − λC

maxλ
A

minλ
Z

min + λC

max‖A‖2 − λZ

minσ
2
min, (3.25)

and if λZ

min + λA

min − λC

max > 0 then γC is obtained as the largest root of the equation

associated with this quadratic inequality. If by contrast λZ

min + λA

min − λC

max ≤ 0, (3.24)

gives

0 ≤ µ(−λA

minλ
Z

min + ‖A‖2 + λC

maxλ
Z

min + λC

maxλ
A

min + σ2
min) − λC

maxλ
A

minλ
Z

min +

λC

max‖A‖2 − λZ

minσ
2
min,

that is,

µ(−λA

minλ
Z

min + ‖A‖2 + λC

max(λ
Z

min + λA

min) + σ2
min) ≥ λC

max(λ
A

minλ
Z

min − ‖A‖2) + λZ

minσ
2
min.

Since λZ

min + λA

min ≤ λC

max we may write

−λA

minλ
Z

min + ‖A‖2 + λC

maxλ
Z

min + λC

maxλ
A

min ≤ −λA

minλ
Z

min + ‖A‖2 + (λC

max)
2,

where the last quantity is positive, and the bound on γC thus follows.

If m = n and µ > 0, (3.23) and the stated assumptions give

0 = xT Ax + xT BT (C + µI)−1Bx − µ‖x‖2 ≥
(

λA

min +
σ2

min

λC

max + µ
− µ

)
‖x‖2,

which leads directly to the stated lower bound in this case. �

Note that for λC

max = 0 we recover the results from Proposition 2.2.
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Example 3.4. We consider once again the data from Example 2.7, and we set C =

diag(0.01, 0.03). The condition of Proposition 3.3 is satisfied, as the largest eigenvalue of C

is less than
λZ

min
σ2

min

‖A‖2−λA
min

λZ
min

≈ 0.07992. The eigenvalues of MC are

{−4.3537,−0.25122, 0.21323, 2.0, 4.3517} and the intervals of Proposition 3.3 are

[−4.3544, −0.22974] ⊂ R
−, [0.047343, 4.3528] ⊂ R

+,

showing a very good agreement of three of the four extremes.

Remark 3.5. Consider the matrix

MC =




λA

min 0 σ

0 λA

max 0

σ 0 −β


 ,

with λA

min < 0, λA

max > 0, σ > 0. If β = −σ2/λA

min then MC is singular.

Proof. It is readily seen that the eigenvalues of MC are

µ1 = λA

max, µ2,3 = λA

min − β ±
√

(β + λA

min)
2 + 4σ2.

Substituting β = −σ2/λA

min in the second expression we obtain µ2 = λA

min + σ2/λA

min +

|λA

min + σ2/λA

min| = 0. �

In our context, the remark above shows that a condition on β, that here plays the role

of the (2,2) block, is required to maintain nonsingularity. It is then remarkable that for

the example in the remark above, if λZ

min = λA

max = ‖A‖ = −λA

min, Proposition 3.2 requires

that

0 ≤ γC

max ≤
1

2

−σ2
min

λA

min

,

which is only half the value that would yield a singular matrix. For this reason, our

condition on γC

max seems to be reasonably sharp.

Example 3.6. We consider the matrices A and B from Example 2.6 for which the bound

from the left extreme of I+ of Proposition 2.2 was sharp. Now consider C = 8 · 10−4 . The

eigenvalues of MC are (exact to the first few decimal digits)

{−4.2454, 0.00460, 4.2400}

and ‖A‖ = |λA

min| ≈ 3 + 0.012/6, λZ

min = 0.01, σmin = 3. We note that the value of λC

max is

significantly smaller than λZ

minσ
2
min/(‖A‖2−λA

minλ
Z

min) ≈ 0.00996. Here λZ

min+λA

min−λC

max ≈
−2.9908 < 0 so that γC ≈ 0.00459098, which is a very sharp lower bound of the smallest

positive eigenvalue of MC .
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Recently Bai, Ng and Wang [2] have established qualitatively similar bounds for MC

based on extreme eigenvalues of BT C−1B and A+BT C−1B rather than those of A and of

ZT AZ, and the singular values of B. As here there is no assumption of definiteness of A.

Significantly, in [2] the authors do not require that B be of full rank; rather they require that

C be nonsingular. In the motivating (optimization) applications we are concerned with,

the rightmost eigenvalues of BT C−1B and A + BT C−1B may be huge so that cancellation

in the bounds involving these [2, Thm.2.1] may be significant. Nonetheless Bai, Ng and

Wang’s bounds provide a useful alternative to those we have established.

The bounds above for the spectrum of MC may be specialized following the lines of

those in §2.1. To limit the proliferation of cumbersome estimates we omit their explicit

derivation.

The assumption that B be of full rank in MC is of course a limitation. In some cases,

such as from the optimization application illustrated in (1.3), B and C are of the form

B =

[
B1

B2

]
and C =

[
C1 0

0 0

]
,

with positive definite C1. The natural assumption in this case is that A+BT
1 C−1

1 B1 should

be definite on the null space of the full-rank B2. In this case,

MC =




(
A BT

1

B1 −C1

) (
BT

2

0

)

(
B2 0

)
0


 .

This may then be interpreted as a matrix of the form M whose “structured” (1,1) block

is of the form MC . One can thus obtain eigenvalue intervals by applying Proposition 2.2

to the saddle point matrix using estimates for the eigenvalues of its structured (1,1) block

using, e.g., [2, Thm.2.1].

Unfortunately there are examples [14] for which the relationship between rank-deficient

B and singular C is less explicit, at least from an algebraic viewpoint. If A and C + BBT

are positive definite, it is still possible to compute useful eigenvalue intervals for MC [14,

Prop.3.1]. But when A is indefinite, although one can write abstract conditions for the

eigen-problem in terms of representations of the range space of B, they do not seem to us

to be particularly illuminating.

4 A first look at preconditioning strategies

The efficient solution of large saddle point linear systems involving M or MC strongly calls

for preconditioners. Ideally these should take into account both the nature of the problem

and its algebraic structure. Our setting is particularly challenging because of the indefi-

niteness of A. For simplicity, we only consider symmetric block diagonal preconditioners

which take the form

P =

[
PA O

O PC

]
(4.26)
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for some symmetric PA and PC . In this section we present some preliminary results ob-

tained when either PA and/or PC are ideal approximations to their target matrices. A

more general analysis for a larger class of diagonal blocks is beyond the scope of this pa-

per, and deserves a specialized study. In addition, because of the indefiniteness of A, other,

not necessarily block diagonal, preconditioners may be more suitable; see, e.g., [2, 5, 7].

Hence, this will be the topic of future investigation.

4.1 Indefinite block-diagonal preconditioners

Here we restrict our attention to block diagonal preconditioners of the form

P± =

[
Ã O

O ±S̃

]

where Ã ≈ A (in fact, we use Ã = A), and S̃ ≈ C + BÃ−1BT .

The following result generalizes well known spectral properties of P for C = 0 to the

case of indefinite but nonsingular A. The proof is the same as in the definite case.

Proposition 4.1. The following results hold.

1. Let P+ = blkdiag(A, BA−1BT ). Then

σ(P−1
+ M) ⊂

{
1,

1

2
(1 +

√
5),

1

2
(1 −

√
5)

}
⊂ R;

2. Let P− = blkdiag(A,−BA−1BT ). Then

σ(P−1
− M) ⊂

{
1,

1

2
(1 + i

√
3),

1

2
(1 − i

√
3)

}
⊂ C

+.

Similar although less clean results may be obtained for C 6= 0, as shown in the next

proposition.

Proposition 4.2. Let C be symmetric and positive semidefinite, and let θ be the finite

eigenvalues of the pair (C + BA−1BT , C). Then the following results hold.

1. Let P+ = blkdiag(A, C + BA−1BT ). Then

σ(P−1
+ M) ⊂

{
1,

1

2
(1 ±

√
5),

1

2θ
(θ − 1 ±

√
(1 − θ)2 + 4θ2)

}
⊂ R.

2. Let P− = blkdiag(A,−C − BA−1BT ). Then

σ(P−1
−

M) ⊂
{

1,
1

2
(1 + i

√
3),

1

2
(1 − i

√
3),

1

2θ
(θ + 1 ±

√
(1 + θ)2 − 4θ2)

}
⊂ C

+.
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Proof. From the first equation in

Ax + BT y = µAx, Bx − Cy = µ(C + BA−1BT )y,

we obtain (µ − 1)x = A−1BT y. Either µ = 1 or x = A−1BT y/(µ − 1). Substituting

this into the second equation and collecting terms we obtain µCy = (µ − µ2 + 1)(C +

BA−1BT )y. For y 6= 0, either Cy = 0, so that (µ− µ2 + 1) = 0 (the Schur complement

is nonsingular), from which the eigenvalues (1 ±
√

5)/2 follow, or we can write (C +

BA−1BT ) = θCy, with θ = µ/(µ − µ2 + 1), from which the remaining expressions for

the eigenvalues follow.

In the second case, following the same steps we arrive at the equation µCy = (−µ +

µ2 + 1)(C + BA−1BT )y and the conclusions follow with similar reasonings. �

In the case when C = 0, we next extend this setting to the case when S̃ is only an

approximation to the Schur complement BA−1BT . We were not able to obtain similarly

explicit results for C 6= 0.

Proposition 4.3. Let P± = blkdiag(A,±S̃) with A, S̃ nonsingular. Then

σ(P−1
± M) ⊂ {1, (1 +

√
1 + 4ξ)/2, (1 −

√
1 + 4ξ)/2} ⊂ C,

where the ξ’s are the (possibly complex) eigenvalues of the pair (BA−1BT ,±S̃).

Proof. From the first equation in

Ax + BT y = µAx, Bx = ±µS̃y,

we obtain (µ−1)x = A−1BT y. Either µ = 1 or x = A−1BT y/(µ−1). Substituting this

latter expression in the second equation we obtain BA−1BT y = ±µ(µ − 1)S̃y. Setting

ξ = µ(µ − 1) the result follows. �

The result above emphasizes that complex eigenvalues may arise, due to the generic

indefinitess of the blocks in the preconditioner. This fact is even more dramatic when an

approximation Ã is used in place of A.

In general, it thus follows that this indefinite block preconditioner cannot be applied

with MINRES, but other possibly nonsymmetric solvers need be employed.

4.2 Positive-definite block-diagonal preconditioners

Since by assumption A is indefinite, the preconditioners considered in §4.1 will not be

definite. If we wish to precondition iterative methods like MINRES, we need to require

that both PA and PC are definite. In this section we analyze such a situation, restricting

our attention to the case where C = 0.
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One possibility is to exploit the augmented structure analyzed in §2.2. For τ sufficiently

large so as to guarantee that A + τBT B is positive definite, using for example (2.16), one

can apply the block-diagonal preconditioner (4.26) with PA ≈ PA(τ) = A + τBT B and

PC ≈ PA(τ) = B(A + τBT B)−1BT to either M or M(τ).

To investigate this further, suppose that P(τ) = blkdiag(PA(τ), PC(τ)). In the ideal

case where we try to precondition M(τ) with P(τ) we have the following simple result.

Proposition 4.4. P(τ)−1M(τ) has eigenvalues 1, (1+
√

5)/2, (1−
√

5)/2 with multiplicity

n − m, m and m, respectively.

Proof. The result is simply a direct application of Proposition 4.1 when A is replaced

by A + τBT B. �

For the case where we try to precondition M with the ideal P(τ), the result is more

complicated.

Proposition 4.5. Suppose that B(Y Z) = (L 0) is of full rank and that ZT AZ and PA(τ)

are positive definite. Then P(τ)−1M has eigenvalues

i) 1, of multiplicity n − m + Nullity(A);

ii) −1, of multiplicity Nullity(A);

iii) (µi ±
√

µ2
i + 4)/2, i = 1, . . . , m − Nullity(A), where µi = ωi/(ωi + τ) and ωi are the

eigenvalues of L−T (Y T AY − Y T AZ(ZT AZ)−1ZT AY )L−1.

Proof. This is based on results from [8, §2.1]. Specifically if λ is an eigenvalue of

P(τ)−1M with eigenvector [x; y],

[
A BT

B 0

] [
x

y

]
= λ

[
PA(τ) 0

0 BP−1
A (τ)BT

] [
x

y

]

from which it follows that

(λ2I − λK − Q)z = 0, (4.27)

where z = P
1

2

A (τ)x,

K = P
− 1

2

A (τ)AP
− 1

2

A (τ) and Q = P
− 1

2

A (τ)BT (BP−1
A (τ)BT )−1BP

− 1

2

A (τ).

Clearly Q is an orthogonal projection matrix of rank m. More significantly, it shares its

eigenvectors with K [8, Lem.2.3] (and of course I). But Q is annihilated by vectors v

in the null-space of B while Kv = v for these (and only these) vectors [8, Lem.2.4(1)].

Hence (4.27) implies that n − m of the required eigenvalues satisfy λ2 − λ = 0 and are

thus take the value 1 since M is non-singular because B is of full rank and ZT AZ is

positive definite.
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The remaining 2m eigenvalues correspond to eigenvectors wi of Q in the range-space

of B for which Qwi = wi, and thus Kwi = µiwi, where µi is one of the m non-unit

eigenvalues of K. It then follows from (4.27) that the remaining eigenvalues are the

roots of

λ2 − µiλ − 1 = 0. (4.28)

But if Kwi = µiwi, it follows immediately that

Aui = µi(A + τBT B)ui, (4.29)

where ui = P
− 1

2

A (τ)wi. Moreover (4.29) and the non-singularity of M imply that µi = 0

if and only if ui lies in the null-space of A—for these (4.28) implies that a further

Nullity(A) of the required eigenvalues have the value 1, while there are Nullity(A)

eigenvalues at −1. Because of (4.29), the remaining nonzero, non-unit eigenvalues µi

of K satisfy

Aui =
τµi

1 − µi

BT Bui.

But the generalised eigenvalue problem Au = ωBTBu is equivalent to

[
Y T AY Y T AZ

ZT AY ZT AZ

] [
s

t

]
= ω

[
LT L 0

0 0

] [
s

t

]
,

where s = Y T u and t = ZT u, and the result follows immediately on eliminating t. �

Notice that as τ increases the eigenvalues of P(τ)−1M cluster around the two values

±1.

We also remark that for P(τ) positive definite, spectral interval bounds may be obtained

for the preconditioned matrix P(τ)−
1

2MP(τ)−
1

2 , by applying the results of sections 2 and

2.1 to the preconditioned blocks.

Example 4.6. Consider the data, A = QDQT , D = diag[−1; 0; 1; 2; 3; 4], Q = I −
2vvT /vTv, vT = [1, 2, 3, 4, 5, 6] and

B =

[
1 0 0.01 0 0 0

0 2 0 0.01 0 0

]
.

Thus A is similar to D (and hence singular with nullity 1). Furthermore A + τBT B is

positive definite for all τ larger than (roughly) 1.075. We see in Table 4.2 the predicted

n − m + Nullity(A) = 5 eigenvalues at 1, Nullity(A) = 1 eigenvalue at -1 and a remaining

pair of eigenvalues which converge to ±1 as τ increases.
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τ eigenvalues

1.075 -2665.05 -1.0 3.75 ·10−4 1.0 1.0 1.0 1.0 1.0

10.75 -1.05707 -1.0 0.94600 1.0 1.0 1.0 1.0 1.0

107.5 -1.00506 -1.0 0.99496 1.0 1.0 1.0 1.0 1.0

1075 -1.00051 -1.0 0.99950 1.0 1.0 1.0 1.0 1.0

Table 4.2: Eigenvalues of P(τ)−1M for increasing values of τ .

5 Conclusions

We have generalised many of the known eigenvalue bounds for saddle-point and stabilized

saddle-point matrices with a definite (1,1) block to the indefinite case. We have given

eigenvalue bounds for the augmented formulation, also giving a sufficient condition for the

(1,1) block to be definite. We have also provided eigenvalue estimates for a number of block

preconditioners, although the cases considered are somewhat idealized in that they assume

inversion of “exact” diagonal blocks. It remains to consider how best to approximate these

blocks while retaining the excellent clustering predicted from the exact case.
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