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Abstract. The aim of this paper is twofold:

(1) On the one hand, the paper revisits the spectral analysis of semigroups

in a general Banach space setting. It presents some new and more general
versions, and provides comprehensible proofs, of classical results such as the

spectral mapping theorem, some (quantified) Weyl’s Theorems and the Krein-

Rutman Theorem. Motivated by evolution PDE applications, the results apply
to a wide and natural class of generators which split as a dissipative part

plus a more regular part, without assuming any symmetric structure on the

operators nor Hilbert structure on the space, and give some growth estimates
and spectral gap estimates for the associated semigroup. The approach relies

on some factorization and summation arguments reminiscent of the Dyson-

Phillips series in the spirit of those used in [87, 82, 48, 81].
(2) On the other hand, we present the semigroup spectral analysis for three

important classes of “growth-fragmentation” equations, namely the cell divi-

sion equation, the self-similar fragmentation equation and the McKendrick-Von
Foerster age structured population equation. By showing that these models

lie in the class of equations for which our general semigroup analysis theory
applies, we prove the exponential rate of convergence of the solutions to the

associated remarkable profile for a very large and natural class of fragmen-

tation rates. Our results generalize similar estimates obtained in [94, 68] for
the cell division model with (almost) constant total fragmentation rate and

in [18, 17] for the self-similar fragmentation equation and the cell division

equation restricted to smooth and positive fragmentation rate and total frag-
mentation rate which does not increase more rapidly than quadratically. It

also improves the convergence results without rate obtained in [79, 34] which

have been established under similar assumptions to those made in the present
work.
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1. Introduction

This paper deals with the study of decay properties for C0-semigroup of bounded
and linear operators and their link with spectral properties of their generator in
a Banach framework as well as some applications to the long time asymptotic of
growth-fragmentation equations.

1.1. Spectral analysis of semigroups. The study of spectral property of (un-
bounded) operators and of C0-semigroups of operators has a long history which goes
back (at least) to the formalization of functional analysis by D. Hilbert [57, 58] at
the beginning of the 20th century for the first issue and surely before the modern
theoretical formalization of C0-semigroups of operators in general Banach spaces
impulsed by E. Hille and K. Yosida [59, 112, 60] in the 1940’s for the second is-
sue. For a given operator Λ on a Banach space X which generates a C0-semigroup
SΛ(t) = etΛ of bounded operators, the two following issues are of major importance:

• describe its spectrum, the set of its eigenvalues and the associated eigenspaces;

• prove the spectral mapping theorem

(1.1) Σ(etΛ)\{0} = etΣ(Λ),

and deduce the asymptotical behaviour of trajectories associated to the semigroup.

Although it is well-known that the first issue can be a complicated task and the
second issue is false in general (see [61] or [33, Section IV.3.a] for some counterex-
amples), there exists some particular classes of operators (among which the class
of compact and self-adjoint operators in a Hilbert space) for which these problems
can be completely solved. In the present paper, motivated by evolution Partial
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Differential Equations applications and inspired by the recent paper [48] (see also
[87, 82, 81]), we identify a class of operators which split as

(1.2) Λ = A+ B,

where A is “much more regular than B” and B has some dissipative property (and
then a good localization of its spectrum) for which a positive answer can be given.
The dissipative property assumption we make can be formulated in terms of the time
indexed family of iterated time convolution operators (ASB)(∗k)(t) in the following
way

(H1) for some a∗ ∈ R and for any a > a∗, ` ≥ 0, there exists a constant Ca,` ∈
(0,∞) such that the following growth estimate holds

(1.3) ∀ t ≥ 0, ‖SB ∗ (ASB)(∗`)(t)‖B(X) ≤ Ca,` eat.

On the other hand, we make the key assumption that some iterate enough time
convolution enjoys the growth and regularizing estimate:

(H2-3) there exist an integer n ≥ 1 such that for any a > a∗, there holds

(1.4) ∀ t ≥ 0, ‖(ASB)(∗n)(t)‖B(X,Y ) ≤ Ca,n,Y eat,

or

(1.5) ∀ t ≥ 0, ‖SB ∗ (ASB)(∗n)(t)‖B(X,Y ) ≤ Ca,n,Y eat,

for some suitable subspace Y ⊂ X and a constant Ca,n,Y ∈ (0,∞).

In assumption (H2-3) we will typically assume that Y ⊂ D(Λζ), ζ > 0, and/or
Y ⊂ X with compact embedding.

Roughly speaking, for such a class of operators, we will obtain the following set
of results:

• Spectral mapping theorem. We prove a partial, but principal, spectral mapping
theorem which asserts that

(1.6) Σ(etΛ) ∩∆eat = etΣ(Λ)∩∆a , ∀ t ≥ 0, ∀ a > a∗,

where we define the half-plane ∆α := {ξ ∈ C; <eξ > α} for any α ∈ R. Although
(1.6) is less accurate than (1.1) it is strong enough to describe the semigroup evo-
lution at first order in many situations. In particular, it implies that the spectral
bound s(Λ) and the growth bound ω(Λ) coincide if they are at the right hand side
of a∗, or in other words

(1.7) max(s(Λ), a∗) = max(ω(Λ), a∗),

and it gives even more accurate asymptotic informations on the semigroup whenever
Σ(Λ) ∩∆a∗ 6= ∅.
• Weyl’s Theorem. We prove some (quantified) version of the Weyl’s Theorem

which asserts that the part of the spectrum Σ(Λ) ∩ ∆a∗ consists only of discrete
eigenvalues and we get some informations on the localization and number of eigen-
values as well as some estimates on the total dimension of the associated sum of
eigenspaces.

• Krein-Rutman Theorem. We prove some (possibly quantified) version of the
Krein-Rutman Theorem under some additional (strict) positivity hypothesizes on
the generator Λ and the semigroup SΛ.
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Let us describe our approach in order to get the above mentioned “spectral
mapping theorem”, this one being the key result in order to get our versions of
Weyl’s Theorem and Krein-Rutman Theorem. Following [87, 82, 48] (and many
authors before!), the spectral analysis of the operator Λ with splitting structure
(1.2) is performed by writing the resolvent factorization identity (with our definition
of the resolvent in (2.1))

(1.8) RΛ(z) = RB(z)−RB(z)ARΛ(z)

as well as

(1.9) RΛ(z) = RB(z)−RΛ(z)ARB(z)

or an iterative version of (1.9), and by exploiting the information that one can
deduce from (1.3), (1.4) and (1.5) at the level of the resolvent operators.

At the level of the semigroup, (1.8) yields the Duhamel formula

SΛ = SB + SB ∗ (ASΛ),

in its classic form, and (1.9) yields the Duhamel formula

SΛ = SB + SΛ ∗ (ASB)

in a maybe less standard form (but also reminiscent of perturbation theory).

On the other hand, iterating one of the above identities, it is well-known since
the seminal works by Dyson and Phillips [31, 96], that SΛ can be expended as the
Dyson-Phillips series

SΛ =

∞∑
`=0

(−1)` SB ∗ (ASB)(∗`),

as soon as the left hand side series converges, and that matter has not an easy answer
in general. The summability issue of the Dyson-Phillips series can be circumvented
by considering the stopped Dyson-Phillips series

(1.10) SΛ =

n∑
`=0

(−1)` SB ∗ (ASB)(∗`) + (−1)n+1 SΛ ∗ (ASB)(∗n).

It is an usual trick in order to establish eventual norm continuity (see [15] and the
references therein) and it has been also recently used in [48, 81] in order to enlarge
or to shrink the functional space where the semigroup SΛ satisfies some spectral
gap estimate.

In the present work, and in the case ∆a∗ ∩ Σ(Λ) = {λ}, λ ∈ C semisimple
eigenvalue and a∗ < a < <eλ in order to make the discussion simpler, our spectral
mapping theorem simply follows by using the classical representation of a semigroup
by means of the inverse Laplace transform of the resolvent as yet established by
Hille in [59], and then writing

SΛ(t) = ΠΛ,λ e
λt +

N∑
`=0

(−1)`SB ∗ (ASB)(∗`)(t)(1.11)

+
i

2π
eat

∫ a+i∞

a−i∞
ezt (−1)N+1RΛ(z) (ARB(z))N dz

for N large enough, in such a way that each term is appropriately bounded, and
where ΠΛ,λ stands for the projector on the (finite dimensional) eigenspace associ-
ated to λ. That formula immediately implies the spectral mapping theorem (1.6),
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and more importantly for us, it generalizes the Liapunov result [70] about the
asymptotic behaviour of trajectories to that class of equations. It is worth empha-
sizing that our result characterizes the class of operators with “separable spectrum”
for which the partial spectral mapping theorem holds (in the sense that we exhibit
a condition which is not only sufficient but also necessary!) and then, in some
sense, we prove for general semigroup the spectral mapping theorem known for
analytic semigroup or more generally eventually continuous semigroup [95, 61] and
for general Banach space the partial spectral mapping theorem in a Hilbert space
framework that one can deduce from the Gearhart-Prüss Theorem [41, 98].

With such a representation formula at hand, the precise analysis of the semigroup
SΛ reduces to the analysis of the spectrum of Λ at the right hand side of a, for any
a > a∗. In other words, the next fundamental issue consists in describing the part
of the spectrum Σ(Λ) ∩∆a in order to take advantage of the information given by
(1.6). The simplest situation is when Σ(Λ) ∩ ∆a only contains eigenvalues with
finite (algebraical) multiplicity which is the situation one gets when one can apply
Weyl’s Theorem [111] (see also [63, Theorem IV.5.35]). In our second main result in
an abstract setting, we recover Voigt’s version [107] of Weyl’s Theorem (for which
we give a comprehensive and elementary proof) and we deduce a characterization of
semigroup in a general Banach space for which the partial spectral mapping theorem
holds with finite and discrete eigenspectrum in ∆a. We must emphasize that our
proof is very simple (it exclusively uses the Fredholm alternative [38] in it most
basic form) and in particular does not use the essential spectrum set. Moreover
we are able to formulate a quantified version of the Weyl’s theorem in the sense
that we provide a bound on the total dimension of the eigenspaces associated to
the discrete eigenvalues which lie in Σ(Λ) ∩∆a.

In order to describe in a more accurate way the part of the spectrum Σ(Λ), one
of the most popular technics is to use a self-adjointness argument for the operator Λ
as a infinite dimensional generalization of the symmetric structure of matrix. That
implies Σ(Λ) ⊂ R, and together with Weyl’s Theorem that leads to a completely
satisfactory description of the spectrum operator and the dynamics of the associ-
ated semigroup. One of the most famous application of that strategy is due to
Carleman [22] who carried on with the study of the linearized space homogeneous
Boltzmann equation initiated by Hilbert and who obtained the spectral gap for the
associated operator by combining Weyl’s Theorem together with the symmetry of
the operator [57] and the regularity of the gain term [58] (see also the works by
Grad [43, 44] on the same issue, and the work by Ukai [103] on the more compli-
cated space non-homogeneous setting). It is worth emphasizing that this kind of
hilbertian arguments have been recently extended to a class of operators, named
as “hypocoercive operators”, which split as a self-adjoint partially coercive operator
plus an anti-adjoint operator. For such an operator one can exhibit an equiva-
lent Hilbert norm which is also a Liapunov function for the associated evolution
dynamics and then provides a spectral gap between the first eigenvalue and the re-
mainder of the spectrum. We refer the interested reader to [104] for a pedagogical
introduction as well as to [56, 53, 88, 54, 55, 105, 29, 28] for some of the original
articles.

In the seminal work [87], C. Mouhot started an abstract theory of “enlargement
of the functional space of spectral analysis of operators” which aim to carry on
the spectral knowledge on an operator Λ and its associated semigroup SΛ in some
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space E (typically a “small Hilbert space” in which some self-adjointeness structure
can be exploited) to another larger general Banach space E ⊃ E. It is worth
emphasizing that the “enlargement of functional spaces” trick for spectral analysis is
reminiscent of several anterior works on Boltzmann equations and on Fokker-Planck
type equations where however the arguments are intermingled with some nonlinear
stability arguments [4, 5, 110] and/or reduced to some particular evolution PDE in
some situation where explicit eigenbasis can be exhibited [14, 40]. While [87] was
focused on the linearized space homogeneous Boltzmann operator and the results
applied to sectorial operators, the “extension theory” (we mean here “enlargement”
or “shrinkage” of the functional space) has been next developed in a the series of
papers [82, 48, 81] in order to deal with non-sectorial operators. A typical result
of the theory is that the set Σ(Λ) ∩∆a does not change when the functional space
on which Λ is considered changes. We do not consider the extension issue, which
is however strongly connected to our approach, in the present work and we refer to
the above mentioned articles for recent developments on that direction.

Let us also mention that one expects that the spectrum Σ(Λ) of Λ is close to
the spectrum Σ(B) of B if A is “small”. Such a “small perturbation method” is an
efficient tool in order to get some informations on the spectrum of an operator Λ
“in a perturbation regime”. It has been developped in [96, 61, 106, 63], and more
recently in [1, 15]. Again, we do not consider that “small perturbation” issue here,
but we refer to [82, 83, 6, 102] where that kind of method is investigated in the
same framework as the one of the abstract results of the present paper.

Last, we are concerned with a positive operator Λ defined on a Banach lattice
X and the associated semigroup SΛ as introduced by R.S. Phillips in [97]. For a
finite dimensional Banach space and a strictly positive matrix the Perron-Frobenius
Theorem [92, 39] state that the eigenvalue with largest real part is unique, real and
simple. Or in other words, there exists a ∈ R such that Σ(Λ) ∩ ∆a = {λ} with
λ ∈ R a simple eigenvalue. In a infinite dimensional Banach space the Krein-
Rutman Theorem [67] establishes the same result for a class of Banach lattices and
under convenient strict positivity and compactness assumptions on Λ. The Krein-
Rutman Theorem is then extended to broader classes of Banach lattices and broader
classes of operator in many subsequent works, see e.g. [46, 47, 3]. We present a very
natural and general version of the abstract Krein-Rutman Theorem on a Banach
lattice assuming that additionally to the precedent splitting structure the operator
Λ satisfies a weak and a strong maximum principle. Our result improves the known
versions of Krein-Rutman Theorem in particular because we weaken the required
compactness assumption made on (the resolvent of) Λ. Moreover, our result is
quite elementary and self-contained.

Let us stress again that our approach is very similar to the “extension of the
functional space of spectral analysis of operators” and that our starting point is
the work by Mouhot [87] where (1.9) is used in order to prove an enlargement of
the operator spectral gap for the space homogeneous linearized Boltzmann equa-
tion. Because of the self-adjointeness structure of the space homogeneous linearized
Boltzmann equation one can conclude thanks to classical arguments (namely the
operator B is sectorial and the remaining term in (1.11) with N = 1 converges, see
[91] or [33, Corollary IV.3.2 & Lemma V.1.9]). Our approach is in fact reminiscent
of the huge number of works on the spectral analysis of operator which attend to
take advantage of a splitting structure (1.2) and then consider Λ as a (compact,
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small) perturbation of B. One of the main difference with the classical approach
introduced by Hilbert and Weyl is that when one usually makes the decomposition

Λ = A0 + B0

where B0 is dissipative and A0 is B0-compact, we remark that A0 = A+Ac with A
“smooth” and Ac small (it is the way that one uses to prove that A0 is compact”)
and we write

Λ = A+ B, B := Ac + B0.

In such a way, we get quite better “smoothing properties” on A (with respect to
A0) without loosing to much on the “dissipative property” of B (with respect to
B0). Of course, the drawback of the method is that one has to find an appropriate
splitting (1.2) for the operator as well as an appropriate space X for which one
is able to prove the estimates (1.3), (1.4) and (1.5). However, the efficiency of
the method is attested by the fact that it has been successfully used for several
evolution PDEs such as the space homogenous and space nonhomogeneous elastic
Boltzmann equations in [87, 48], the space homogenous and space nonhomogeneous
inelastic Boltzmann equations in [82, 102], some Fokker-Planck type equations in
[48, 6, 81, 32], the Landau equation in [23] and the growth-fragmentation equation
in [18, 17].

1.2. Growth-fragmentation equations. The second aim of the paper is to es-
tablish the long time asymptotic for the solutions of some growth-fragmentation
equations as a motivation, or an illustration, of the abstract theory developped in
parallel. We then consider the growth-fragmentation equation

(1.12) ∂tf = Λf := Df + Ff in (0,∞)× (0,∞).

Here f = f(t, x) ≥ 0 stands for the number density of cells (or particles, polymers,
organisms, individuals), where t ≥ 0 is the time variable and x ∈ (0,∞) is the size
(or mass, age) variable. In equation (1.12) the growth operator writes

(1.13) (Df)(x) := −τ(x)∂xf(x)− ν(x) f(x)

where the (continuous) function τ : [0,∞)→ R is the drift speed (or growth rate),
and we will choose τ(x) = 1 or τ(x) = x in the sequel, and the function ν :
[0,∞) → [0,∞) is a damping rate. The drift and damping term D models the
growth (for particles and cells) or the aging (for individuals) and the death which
can be represented by the scheme

{x} e−ν(x)−→ {x+ τ(x) dx}.

In the other hand, the fragmentation operator F is defined by

(1.14) (Ff)(x) :=

∫ ∞
x

k(y, x)f(y)dy −K(x)f(x)

and the fragmentation kernel k is relied to the total rate of fragmentation K by

(1.15) K(x) =

∫ x

0

k(x, y)
y

x
dy.

The fragmentation operator F models the division (breakage) of a single mother
particle of size x into two or more pieces (daughter particles, offsprings) of size
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xi ≥ 0, or in other words, models the event

(1.16) {x} k−→ {x1}+ ....+ {xi}+ ... ,

in such a way that the mass is conserved

x =
∑
i

xi, 0 ≤ xi ≤ x.

It is worth emphasizing that the above mass conservation at the microscopic level
is rendered by equation (1.15) at the statistical level.

In order to simplify the presentation we will only consider situations where the
size repartition of offsprings is invariant by the size scaling of the mother particle,
or more precisely that there exists a function (or abusing notations, a measure)
℘ : [0, 1]→ R+ such that

(1.17) k(x, y) = K(x)κ(x, y), κ(x, y) = ℘(y/x)/x,

as well as, in order that the compatibility relation (1.15) holds,

(1.18)

∫ 1

0

z ℘(dz) = 1.

Here κ(x, .) represent the probability density of the distribution of daughter par-
ticles resulting of the breakage of a mother particle of size x ∈ (0,∞) and the
assumption (1.17) means that this probability density is invariant by scaling of the
size. As a first example, when a mother particle of size x breaks into two pieces of
exact size σ x and (1− σ)x, σ ∈ (0, 1), the associated kernel is given by

(1.19) κ(x, y) = δy=σx(dy) + δy=(1−σ)x(dy) =
1

σ
δx= y

σ
(dx) +

1

1− σ
δx= y

1−σ
(dx),

or equivalently ℘ = δσ + δ1−σ. In the sequel, we will also consider the case when ℘
is a smooth function. In any cases, we define

(1.20) z0 := inf supp℘ ∈ [0, 1).

The evolution equation (1.12) is complemented with an initial condition

(1.21) f(0, .) = f0 in (0,∞),

and a boundary condition that we will discuss for each examples presented below.
Instead of trying to analyze the most general growth-fragmentation equation,

we will focus our study on some particular but relevant classes of models, namely
the cell division equation with constant growth rate, the self-similar fragmentation
equation and the age structured population equation.

1.2.1. Example 1. Equal mitosis equation. We consider a population of cells
which divide through a binary fragmentation mechanism with equal size offsprings,
grow at constant rate and are not damped. The resulting evolution equation is the
equal mitosis equation which is associated to the operator Λ = D + F , where D is
defined by (1.13) with the choice τ = 1 and ν = 0, and where F is equal mitosis
operator defined by (1.14) with the following choice of fragmentation kernel

k(x, y) = 2K(x) δx/2(dy) = 4K(x) δ2y(dx).(1.22)

Equivalently, k is given by (1.17) with ℘(dz) := 2 δz=1/2. The equal mitosis equation
then writes

(1.23)
∂

∂t
f(t, x) +

∂

∂x
f(t, x) +K(x)f(t, x) = 4K(2x) f(t, 2x),
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and it is complemented with the boundary condition

(1.24) f(t, 0) = 0.

As its name suggests, such an equation appears in the modeling of cells division
when mitosis occurs (see [11, 101, 76, 10] and the references therein for linear
models as well as [51, 10] for more recent nonlinear models for tumor growth) but
also appears in telecommunications systems to describe some internet protocols [7].

We assume that the total fragmentation rate K is a nonnegative C1 function
defined on [0,∞) which satisfies the positivity assumption

(1.25) ∃x0 ≥ 0, K(x) = 0 ∀x < x0, K(x) > 0 ∀x > x0,

as well as the growth assumption

(1.26) K0 x
γ 1x≥x1

≤ K(x) ≤ K1 max(1, xγ),

for γ ≥ 0, x0 ≤ x1 <∞, 0 < K0 ≤ K1 <∞.
There is no law of conservation for the equal mitosis equation. However, by

solving the dual eigenvalue-eigenfunction problem

(1.27) D∗φ+ F∗φ = λφ, λ ∈ R, φ ≥ 0, φ 6≡ 0,

one immediately observes that any solution f to the equal mitosis equation (1.23)
satisfies ∫ ∞

0

f(t, x)φ(x) dx = eλt
∫ ∞

0

f0 φ(x) dx.

The first eigenvalue λ corresponds to an exponential growth rate of (some average
quantity of) the solution. In an ecology context λ is often called the Malthus
parameter or the fitness of the cells/organisms population. In order to go further
in the analysis of the dynamics, one can solve the primal eigenvalue-eigenfunction
problem

(1.28) Df∞ + Ff∞ = λf∞, f∞ ≥ 0, f∞ 6≡ 0,

which provides a Malthusian profile f∞ which is a remarkable solution in the sense
that f(t, x) := eλt f∞(x) is a solution to the the equal mitosis equation (1.23). We
may then expect that (1.28) captures the main features of the model, and more
precisely that

(1.29) f(t, x)e−λt = f∞(x) + o(1) as t→∞.
We refer to [27, 76, 94, 79, 93, 68] (and the references therein) for results about
the existence of solutions to the primal and dual eigenvalue problems (1.27) and
(1.28) as well as for results on the asymptotic convergence (1.29) without rate or
with exponential rate.

1.2.2. Generalization of example 1. Smooth cell-division equation. We
generalize the previous equal mitosis model by considering the case of a general
fragmentation operator (1.14) where the total fragmentation rate K still satisfies
(1.25) and (1.26) and where however we restrict ourself to the case of a smooth size
offsprings distribution ℘, more precisely, we assume

(1.30) ℘′0 :=

∫ 1

0

|℘′(z)| dz <∞.

We will sometimes make the additional strong positivity assumption

(1.31) ℘(z) ≥ ℘∗ ∀ z ∈ (0, 1), ℘∗ > 0,
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or assume the additional monotony condition and constant number of offsprings
condition

(1.32)
∂

∂y

∫ x

0

κ(y, z) dz ≤ 0, nF :=

∫ x

0

κ(x, z) dz > 1, ∀x, y ∈ R+.

Observe that this monotony condition is fulfilled for the equal and unequal mitosis
kernel (1.19) and for the smooth distribution of offsprings functions ℘(z) := cθ z

θ,
θ > −1, see [68].

The smooth cell-division equation reads

(1.33)
∂

∂t
f(t, x) +

∂

∂x
f(t, x) = (Ff(t, .))(x),

and it is complemented again with the boundary condition (1.24) and the initial
condition (1.21). We call the resulting model as the smooth cell-division equation.
While the general fragmentation operator is used for a long time in physics in order
to modelize the dynamics of cluster breakage (and it is often associated to the
coagulation operator which modelizes the opposite agglomeration mechanism, see
[75]) it is only more recently that it appears (in a chemical or biology context)
associated as here with the drift operator D = −τ(x)∂x (see [52]). The general
fragmentation operator is used in order to take into unequal cell-division according
to experimental evidence [64, 90]. In recent years, the above smooth cell-division
equation (1.33) also appears in many works on the modeling of proteins [99, 45, 21,
20].

Concerning the mathematical analysis of the smooth cell-division equation, and
in particular the long time behaviour of solutions, a similar picture as for the equal
mitosis equation is expected and some (at least partial) results have been obtained
in [78, 79, 77, 68, 30, 18, 19, 8].

With the above notations and for latter reference, we introduce the critical ex-
ponent α∗ ≥ 1 uniquely implicitly defined by the equation

(1.34) ℘α∗ = K0/K1 ∈ (0, 1], ℘α :=

∫ 1

0

zα ℘(dz).

1.2.3. Example 2. Self-similar fragmentation equation. We consider now
the pure fragmentation equation associated to power law total fragmentation rate
and then to a fragmentation rate

(1.35) K(x) = xγ , γ > 0, k(x, y) = K(x)℘(y/x)/x,

where ℘ is a continuous function satisfying (1.30). By analogy with the probabilistic
name for the associated Markov process, see e.g. [12], we call that model the “self-
similar fragmentation equation”.

The pure fragmentation model is then obtained for τ = ν ≡ 0 in (1.12) and
therefore reads

∂tg = F̃ g
where F̃ is a temporary notation for the fragmentation operator associated to the
kernel k̃ := k/γ. This equation arises in physics to describe fragmentation processes.
We refer to [37, 113, 13] for the first study and the physics motivations, to [12] and
the references therein for a probabilistic approach

For this equation the only steady states are the Dirac masses, namely x g(t, x) =
ρ δx=0. On the other hand, if g is a solution to the pure fragmentation equation,
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we may introduce the rescaled density f defined by

(1.36) f(t, x) = e−2tg
(
eγ t − 1, xe−t

)
,

which is a solution to the fragmentation equation in self-similar variables (see for
instance [34])

(1.37)
∂

∂t
f = F f − x ∂

∂x
f − 2f.

This is a mass preserving equation with no detailed balance condition. However,
one can show that

Λf∞ = 0, Λ∗φ = 0

with φ(x) = x and for some positive self-similar profile f∞. Equation (1.37) falls
in the class of growth-fragmentation equation with first eigenvalue λ = 0 because
of the conservation of the mass. As for the cell-division equation one expects that
the remarkable (self-similar profile) solution f∞ is attractive and that (1.29) holds
again. Existence of the self-similar profile f∞ and convergence (without rate) to
this one has been established in [34, 79] while a rate of convergence for γ ∈ (0, 2)
has been proved in [18, 17].

1.2.4. Example 3. Age structured population equation. We consider an age
structured population of individuals which age, die and give birth, and which is
described by the density f(t, x) of individuals with age x ≥ 0 at time t ≥ 0. The
very popular associated evolution PDE is

(1.38)
∂

∂t
f +

∂

∂x
(τ(x)f) = −ν(x) f, f(t, x = 0) =

∫ ∞
0

K(y)f(t, y)dy,

and it is communally attributed to A. McKendrik [74] and H. von Foerster [108]
(although the dynamics of age structured population has been anteriorly developed
by A. Lotka and F. Sharpe [72] and before by L. Euler, as well as by P.H. Leslie
[69] in a discrete time and age framework). In the sequel we call that model as the
age structured population equation. Let us also mention that nonlinear versions of
equation (1.38) which take into account possibly overcrowding effect can be found
in the work of Gurtin and MacCamy [50].

In equation (1.38) the function K corresponds to the birth rate, the function ν
to the death rate and the function τ to the aging rate (so that τ ≡ 1). Notice that
the age structured population equation can be seen as a particular example of the
growth-fragmentation equation (1.12)–(1.14) making the following choice for k :

(1.39) k(x, y) = K(x) [δ(y = x) + δ(y = 0)],

which corresponds to the limit case σ = 0 in (1.19). In order to simply the presen-
tation we make the assumptions

(1.40) τ = ν = 1, 0 ≤ K ∈ C1
b (R+) ∩ L1(R+), ‖K‖L1 > 1.

The expected longtime behaviour of solutions to the age structured population
equation is the same as the one described for a general growth-fragmentation equa-
tion, in particular the long time converge (1.29) with exponential rate is known
to hold. Here, the mathematical analysis is greatly simplified by remarking that
the offsprings number satisfies a (Volterra) delay equation (the so-called renewal
equation) which in turns can be handled through a direct Laplace transform as
first shown by W. Feller [35], and developped later in [36, 109, 76, 62]. Let us also
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mention that the long time converge (1.29) can also be obtained by entropy method
[84, 79].

1.2.5. Main result. Let us introduce the functional spaces in which we will work.
For any exponent p ∈ [1,∞] and any nonnegative weight function ξ, we denote by
Lp(ξ) the Lebesgue space Lp(R+; ξ dx) or Lp(R; ξ dx) associated to the norm

‖u‖Lp(ξ) := ‖u ξ‖Lp ,
and we simply use the shorthand Lpα for the choice ξ(x) := 〈x〉α, α ∈ R, 〈x〉2 :=

1 + |x|2, as well as the shorthand L̇pα for the choice ξ(x) := |x|α, α ∈ R.

Theorem 1.1. Consider the growth-fragmentation equations with the correspond-
ing structure assumption and boundedness of coefficients as presented in the pre-
ceding sections and define the functional space X as follows:

(1) Cell-division equation: take X = L1
α, α > α∗, where α∗ ≥ 1 is defined in

(1.34);

(2) Self-similar fragmentation equation: take X = L̇1
α ∩ L̇1

β, 0 ≤ α < 1 < β;

(3) Age structured population equation: take X = L1.

There exists a unique couple (λ, f∞) with λ ∈ R and f∞ ∈ X solution to the
stationary equation

(1.41) Ff∞ − τ∂xf − νf∞ = λ f∞, f∞ ≥ 0, ‖f∞‖X = 1.

There exists a∗∗ < λ and for any a > a∗∗ there exists Ca such that for any
f0 ∈ X, the associated solution f(t) = eΛtf0 satisfies

(1.42) ‖f(t)− eλt ΠΛ,λf‖X ≤ C eat ‖f0 − eλt ΠΛ,λf0‖X ,
where ΠΛ,λ is the projection on the remarkable solutions line vect(f∞) which is
given by

ΠΛ,λh = 〈φ, h〉 f∞
where φ ∈ X ′ is the unique positive and normalized solution to the dual first eigen-
value problem

(1.43) F∗φ+ τ∂xf − νφ = λφ, φ ≥ 0, 〈φ, f∞〉 = 1.

Moreover, an explicit bound on the spectral gap λ− a∗∗ is available for

(i) the cell-division equation with constant total fragmentation rate K ≡ K0 on
(0,∞), K0 > 0, and a fragmentation kernel which satisfies the monotony
condition and constant number of offsprings condition (1.32);

(ii) the self-similar fragmentation equation with smooth and positive offsprings
distribution in the sense that (1.30) and (1.31) hold.

Let us make some comments about the above result.

Theorem 1.1 generalizes, improves and unifies the long time asymptotic conver-
gence with exponential rate results which were known only for particular cases of
growth fragmentation equation, namely for the cell division model with (almost)
constant total fragmentation rate and monotonous offspring distribution in [94, 68]
and the for the self-similar fragmentation equation and the cell division equation
restricted to smooth and positive fragmentation rate and total fragmentation rate
which does not increase more rapidly than quadratically in [18, 17]. The rate of
convergence (1.42) is proved under similar hypothesizes as in [79, 34] where such a
convergence is established without rate. While it has been established in [94, 68] a
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similar L1 decay as (1.42) when the initial datum is bounded for a stronger norm
than the L1 norm, and it was conjectured that the additional boundedness on the
initial datum is necessary, Theorem 1.1 shows that it is not the case and that the
additional stronger norm boundedness assumption made in [94, 68] can be removed
(although the norm used in the present paper is different from (and stronger than)
those used in [94, 68] the fundamental point is that the norm measuring the dis-
tance between the solution and its limit is the same for positive time and at initial
time). Let us emphasize that we do not claim that Theorem 1.1 is new for the age
structured population equation. However, we want to stress here that our proof of
the convergence (1.42) is similar for all these growth-fragmentation equations while
the previous proofs of convergence results with rate were very different for the
three subclasses of models. It is also likely that our approach can be generalized to
larger classes of growth operator and of fragmentation kernel as those considered in
[77, 30, 19, 8] for instance. However, for the sake of simplicity we have not followed
that line of research here. It is finally worth noticing that our result excludes the
two “degenerate equations” which are the equal self-similar fragmentation equation
associated to equal mitosis offspring distribution and the age structured population
equation associated to deterministic birth rate K(z) := K δz=L.

Let us make some comments about the different methods of proof which may
be based on linear tools (Laplace transform, Eigenvalue problem, suitable weak
distance, semigroup theory) and nonlinear tools (existence of self-similar profile by
fixed point theorems, GRE and E-DE methods).

• Direct Laplace transform method. For the age structured population equation
a direct Laplace transform analysis can be performed at the level of the associ-
ated renewal equation and leads to an exact representation formula which in turns
implies the rate of convergence (1.42) (see [35, 36, 62]).
• PDE approach via compactness and GRE methods. Convergence results (with-

out rate) has been proved in [84, 34, 79] for a general class of growth-fragmentation
equation which is basically the same class as considered in the present paper thanks
to the use of the so called general relative entropy method. More precisely, once
existence of a solution (λ, f∞, φ) to the primal eigenvalue problem (1.41) and dual
eigenvalue problem (1.43) is established, we refer to [94, 19, 77, 30] where those
problems are tackled, one can easily compute the evolution of the generalized rela-
tive entropy J defined thanks to

J (f) :=

∫ ∞
0

j(f/f∞) f∞ φdx

for a convex and non negative function j : R → R and for a generic solution
f = f(t) to the growth-fragmentation equation. One can then show the (at least
formal) identity

(1.44) J (f(t)) +

∫ t

0

DJ (f(s)) ds = J (f(0)) ∀ t ≥ 0,

where DJ ≥ 0 is the associated generalized dissipation of relative entropy defined
by

DJ (f) :=

∫ ∞
0

∫ ∞
0

k(x∗, x)1x∗≥x [j(u)− j(u∗)− j′(u∗) (u− u∗)] f∞ φ∗ dxdx∗,
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with the notations u := f/f∞ and h∗ = h(x∗). Identity (1.44) clearly implies
that J is a Liapunov functional for the growth fragmentation dynamics which in
turns implies the long time convergence f(t)→ f∞ as t→∞ (without rate) under
positivity assumption on the kernel k or the associated semigroup.
• Suitable weak distance. In order to circumvent the possible weak information

given by DJ in the case of cell-division models when k is not positive (for the equal
mitosis model for instance) an exponential rate of convergence for an (almost)
constant total rate of fragmentation has been established by Perthame and co-
authors in [94, 68] by the mean of the use of a suitable weak distance.
• Entropy - dissipation of entropy (E-DE) method. In the case of the strong

positivity assumption (1.31) an entropy - dissipation of entropy method has been
implemented in [18, 8] where the inequality DJ ≥ cJ is proved for j(s) = (s− 1)2.
The Gronwall lemma then straightforwardly implies a rate of convergence in a
weighted Lebesgue L2 framework.
• Semigroup methods. Semigroups technics have been widely used since the first

works by Metz, Diekmann and Webb on the age structured equation and the equal
mitosis equation in a bounded size setting [109, 76], see also [33] and the refer-
ences therein for more recent papers. For a general fragmentation kernel (including
the smooth cell-division equation and the self-similar fragmentation equation) the
enlargement of semigroup spectral analysis has been used in [18, 17] in order to
extends to a L1 framework some of the convergence (with rate) results proved in
[18] in a narrow weighted L2 framework. Let us conclude that our approach is
clearly a semigroup approach where the novelty comes from the fact that we are
able to prove that the considered growth-fragmentation operator falls in the class
of operators with splitting structure as described in the first part of the introduc-
tion and for which our abstract Kren-Rutmann Theorem applies. Our approach is
then completely linear, very accurate and still very general. The drawback is the
use of the abstract semigroup framework and some complex analysis tool (and in
particular the use of the Laplace transform and inverse Laplace transform at the
level of the abstract (functional space) associated evolution equation).

The outline of the paper is as follows. In the next section, we establish the partial
spectral mapping theorem in an abstract framework. In section 3, we establish two
versions of the Weyl’s Theorem in an abstract framework and we then verify that
they apply to the growth-fragmentation equations. The last section is devoted to
the proof of the Krein-Rutman Theorem and to the end of the proof of Theorem 1.1.

Acknowledgment. The first author would like to thank O. Kavian for his
encouragement to write the abstract part of the present paper as well as for his
comments on a first proof of Theorem 2.1 which had led to many simplifications
on the arguments. The first author also would like to thank C. Mouhot for the
many discussions of the spectral analysis of semigroups issue. We also would like to
acknowledge M. Doumic and O. Diekmann for having pointing out some interesting
references related to our work.

2. Spectral mapping for semigroup generators

2.1. Notations and definitions. There are many textbooks addressing the the-
ory of semigroups since the seminal books by Hille and Philipps [60, 61] among
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them the ones by Kato [63], Davies [26], Pazy [91], Arendt et al [3] and more re-
cently by Engel and Nagel [33] to which we refer for more details. In this section
we summarize some basic definitions and facts on the analysis of operators in a
abstract and general Banach space picked up from above mentioned books as well
as from the recent articles [48, 80]. It is worth mentioning that we adopt the sign
convention of Kato [63] on the resolvent operator (which is maybe opposite to the
most widespread convention), see (2.1). For a given real number a ∈ R, we define
the half complex plane

∆a := {z ∈ C, <e z > a}.
For some given Banach spaces (E, ‖ · ‖E) and (E , ‖ · ‖E) we denote by B(E, E) the
space of bounded linear operators from E to E and we denote by
‖ · ‖B(E,E) or ‖ · ‖E→E the associated norm operator. We write B(E) = B(E,E)
when E = E . We denote by C (E, E) the space of closed unbounded linear oper-
ators from E to E with dense domain, and C (E) = C (E,E) in the case E = E .
We denote by K (E, E) the space of compact linear operators from E to E and
K (E) = K (E,E) in the case E = E .

We denote by G (X) the space of generators of a C0-semigroup. For Λ ∈ G (E)
we denote by SΛ(t) = etΛ, t ≥ 0, the associated semigroup, by D(Λ) its domain,
by N(Λ) its null space, by

M(Λ) = ∪α≥1N(Λα)

its algebraic null space, and by R(Λ) its range. For any given integer k ≥ 1, we
define D(Λk) the Banach space associated with the norm

‖f‖D(Λk) =

k∑
j=0

‖Λjf‖E .

For Λ ∈ G (E), we denote by Σ(Λ) its spectrum, so that for any z ∈ C\Σ(Λ) the
operator Λ− z is invertible and the resolvent operator

(2.1) RΛ(z) := (Λ− z)−1

is well-defined, belongs to B(E) and has range equal to D(Λ). We then define the
spectral bound s(Λ) ∈ R ∪ {−∞} by

s(Λ) := sup{<e ξ; ξ ∈ Σ(Λ)}
and the growth bound ω(Λ) ∈ R ∪ {−∞} by

ω(Λ) := inf{b ∈ R; ∃Mb s.t. ‖SΛ(t)‖B(X) ≤Mb e
bt ∀ t ≥ 0},

and we recall that s(Λ) ≤ ω(Λ) as a consequence of Hille’s identity [59]: for any
ξ ∈ ∆ω(Λ) there holds

(2.2) −RΛ(ξ) =

∫ ∞
0

SΛ(t) e−ξt dt,

where the RHS integral normally converges.
We say that Λ is a-hypo-dissipative on X if there exists some norm ||| · |||X on X

equivalent to the initial norm ‖ · ‖X such that

(2.3) ∀ f ∈ D(Λ), ∃ϕ ∈ F (f) s.t. <e 〈ϕ, (Λ− a) f〉 ≤ 0,

where 〈·, ·〉 is the duality bracket for the duality in X and X∗ and F (f) ⊂ X∗ is
the dual set of f defined by

F (f) = F|||·|||(f) :=
{
ϕ ∈ X∗; 〈ϕ, f〉 = |||f |||2X = |||ϕ|||2X∗

}
.
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We just say that Λ is hypo-dissipative if Λ is a-hypo-dissipative for some a ∈ R.
From the Hille-Yosida Theorem it is clear that any generator Λ ∈ G (X) is an
hypo-dissipative operator and that

ω(Λ) := inf{b ∈ R; Λ is b-hypo-dissipative}.

A spectral value ξ ∈ Σ(Λ) is said to be isolated if

Σ(Λ) ∩ {z ∈ C, |z − ξ| ≤ r} = {ξ} for some r > 0.

In the case when ξ is an isolated spectral value we may define ΠΛ,ξ ∈ B(E) the
spectral projector by the Dunford integral

(2.4) ΠΛ,ξ :=
i

2π

∫
|z−ξ|=r′

RΛ(z) dz,

with 0 < r′ < r. Note that this definition is independent of the value of r′ as the
application

C \ Σ(Λ)→ B(E), z → RΛ(z)

is holomorphic. It is well-known that Π2
Λ,ξ = ΠΛ,ξ so that ΠΛ,ξ is effectively a pro-

jector, and its range R(ΠΛ,ξ) = M(Λ− ξ) is the closure of the algebraic eigenspace
associated to ξ.

We recall that ξ ∈ Σ(Λ) is said to be an eigenvalue if N(Λ−ξ) 6= {0}. The range
of the spectral projector is finite-dimensional if and only if there exists α0 ∈ N∗
such that

N(Λ− ξ)α = N(Λ− ξ)α0 6= {0} for any α ≥ α0,

so that

M(Λ− ξ) = M(Λ− ξ) = N((Λ− ξ)α0) and N(Λ− ξ) 6= {0}.
In that case, we say that ξ is a discrete eigenvalue, written as ξ ∈ Σd(Λ). For any
a ∈ R such that

Σ(Λ) ∩∆a = {ξ1, . . . , ξJ}
where ξ1, . . . , ξJ are distinct discrete eigenvalues, we define without any risk of
ambiguity

ΠΛ,a := ΠΛ,ξ1 + . . .ΠΛ,ξJ .

For some given Banach spaces X1, X2, X3 and some given functions

S1 ∈ L1(R+; B(X1, X2)) and S2 ∈ L1(R+; B(X2, X3)),

we define the convolution S2 ∗ S1 ∈ L1(R+; B(X1, X3)) by

∀ t ≥ 0, (S2 ∗ S1)(t) :=

∫ t

0

S2(s)S1(t− s)ds.

When S1 = S2 and X1 = X2 = X3, we define recursively S(∗1) = S and S(∗`) =
S ∗ S(∗(`−1)) for any ` ≥ 2.

For a generator L of a semigroup such that ω(L) < 0 we define the fractional
powers L−η and Lη for η ∈ (0, 1) by Dunford formulas [65, 66], see also [33, section
II.5.c],

(2.5) L−η := c−η

∫ ∞
0

λ−ηRL(λ) dλ, Lη := cη

∫ ∞
0

λη−1 LRL(λ) dλ,

for some constants cη, c−η ∈ C∗. The operator L−η belongs to B(X) and, denoting
Xη := R(L−η), the operator Lη is the unbounded operator with domain D(Λη) =
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Xη and defined by Lη = (L−η)−1. We also denote X0 = X and X1 = D(L).
Moreover, introducing the J-method interpolation norm

‖f‖X̃η := inf
{

sup
t>0
‖t−η J(t, g(t))‖X ; g such that f =

∫ ∞
0

g(t)
dt

t

}
with J(t, g) := max(‖g‖X , t‖Lg‖X) and the associated Banach space X̃η which
corresponds to the interpolation space S(∞,−η,X0;∞, 1 − η,X1) of Lions and
Peetre [71] defined by

X̃η := {f ∈ X; ‖f‖X̃η <∞},
the following inclusions

(2.6) Xη ⊂ X̃η ⊂ Xη′

hold with continuous embedding for any 0 < η′ < η < 1. Let us emphasize that
the first inclusion follows from the second inclusion in [66, Proposition 2.8] and
[66, Theorem 3.1] while the second inclusion in (2.6) is a consequence of the first
inclusion in [66, Proposition 2.8] together with [66, Theorem 3.1] and the classical
embedding S(∞,−θ,X0;∞, 1−η,X1) ⊂ S(1,−θ′, X0;∞, 1−θ′, X1) whenever X1 ⊂
X0 and 0 < θ′ < θ < 1.

2.2. An abstract spectral mapping theorem. We present in this section a
“principal spectral mapping theorem” for a class of semigroup generators Λ on a
Banach space which split as a hypodissipative part B and a ”more regular part” A
as presented in the introduction. In order to do so, we introduce a more accurate
version of the growth and regularizing assumption (H2-3), namely

(H2) there exist ζ ∈ (0, 1] and ζ ′ ∈ [0, ζ) such that A is Bζ′ -bounded and there
exists an integer n ≥ 1 such that for any a > a∗, there holds

(2.7) ∀ t ≥ 0, ‖SB ∗ (ASB)(∗n)(t)‖B(X,D(Λζ)) ≤ Ca,n,ζ eat

for a constant Ca,n,ζ ∈ (0,∞).

Theorem 2.1. Consider X a Banach space, Λ the generator of a semigroup
SΛ(t) = etΛ on X, two real numbers a∗, a′ ∈ R, a∗ < a′, and assume that the
spectrum Σ(Λ) of Λ satisfies the following separation condition

(2.8) Σ(Λ) ⊂ ∆c
a∗ ∪∆a′ .

The following growth estimate on the semigroup

(1) there exists a projector Π ∈ B(X) satisfying ΛΠ = ΠΛ, Λ1 := Λ|X1
∈

B(X1), X1 := RΠ, Σ(Λ1) ⊂ ∆a∗ and for any real number a > a∗ there
exists a constant Ca such that

(2.9) ∀ t ≥ 0,
∥∥∥etΛ(I −Π)

∥∥∥
B(X)

≤ Ca ea t,

is equivalent to the following splitting structure hypothesis

(2) there exist two operators A,B ∈ C (X), such that Λ = A+B and hypothe-
sizes (H1) and (H2) are met.

Moreover, under assumption (2), for any a > a∗ there exists a computable con-
stant M = M(a,A,B) such that

(2.10) Σ(Λ) ∩∆a ⊂ B(0,M).
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Remark 2.2. (a) Theorem 2.1 gives a characterization (and thus a criterium
with the conditions (H1) and (H2)) for an operator Λ to satisfy a par-
tial (but principal) spectral mapping theorem under the only additional
assumption that the spectrum satisfies a separation condition.

(b) Hypothesis (H1) holds for any ` ∈ N when it is true for ` = 0 (that is (B−a)
is hypodissipative in X for any real number a > a∗) and A ∈ B(X).

(c) As a consequence of point (b), the implication (1)⇒ (2) is just immediate
by taking n := 1, A := ΛΠ, B := Λ−A.

(d) We believe that the implication (2) ⇒ (1) is new. It can be seen as a
condition under which a “spectral mapping theorem for the principal part
of the spectrum holds” in the sense that (1.6) holds. Indeed, defining Λ0 :=
Λ(I − Π), for any a > a∗ there holds Σ(Λ) = Σ(Λ0) ∪ Σ(Λ1), Σ(etΛ) =
Σ(etΛ0) ∪ Σ(etΛ1), Σ(etΛ1) = etΣ(Λ1) (because Λ1 ∈ B(X1)), Σ(Λ0) ⊂
∆a (by hypothesis) and Σ(etΛ0) ⊂ ∆eat (from the conclusion (2.9)). In
particular, under assumption (2) the spectral bound s(Λ) and the growth
bound ω(Λ) coincide if they are at the right hand side of a∗, or in other
words (1.7) holds.

(e) When a∗ < 0 the above result gives a characterization of uniformly ex-
ponentially stable semigroup (see e.g. [33, Definition V.1.1]) in a Banach
space framework. More precisely, when assumption (2) holds with a∗ < 0,
there holds

SΛ is uniformly exponentially stable iff s(Λ) < 0.

That last assertion has to be compared to the Gearhart-Prüss Theorem
which gives another characterization of uniformly exponential stability in
a Hilbert framework, see [41, 98, 3] as well as [33, Theorem V.1.11] for a
comprehensive proof.

(f) Although the splitting condition in (2) may seem to be strange, it is in fact
quite natural for many partial differential operators, including numerous
cases of operators which have not any self-adjointness property, as that can
be seen in the many examples studied in [87, 82, 83, 48, 6, 18, 17, 23, 32,
102, 24]. It is also worth emphasizing that our result does not require any
kind of “regularity” on the semigroup as it is usually the case for spectral
mapping theorem. In particular, we do not require that the semigroup is
eventually norm continuous as in [61] or [33, Theorem IV.3.10].

(g) For a sectorial operator B, hypothesis (H1) holds for any operator A which
is B-bounded. More precisely, in a Hilbert space framework, for a “hypo-
elliptic operator B of order ζ” and for a Bζ′ -bounded operator A, with
ζ ′ ∈ [0, ζ), in the sense that for any f ∈ D(B)

(Bf, f) ≤ −a ‖Bζf‖2 + C‖f‖2 and ‖Af‖ ≤ C (‖Bζ
′
f‖+ ‖f‖),

then (H1) holds and (H2) holds with n = 0. A typical example is B = −∆
and A = a(x) · ∇ in the space L2(Rd) with a ∈ L∞(Rd). In that case,
Theorem 2.1 is nothing but the classical spectral mapping theorem which
is known to hold in such a sectorial framework. We refer to [91, section
2.5] and [33, Section II.4.a] for an introduction to sectorial operators (and
analytic semigroups) as well as [33, Section IV.3.10] for a proof of the
spectral mapping theorem in that framework.
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(h) Condition (H2) is fulfilled if A and B satisfy (H1) as well as

t 7→ ‖(ASB)(∗n)(t)‖B(X,D(Λζ)) e
−at ∈ Lp(0,∞)

for any a > a∗ and for some p ∈ [1,∞].

Proof of Theorem 2.1. We only prove that (2) implies (1) since the reverse impli-
cation is evident (see remark 2.2-(c)).
Step 1. Let us fix a ∈ (a∗, a′). From classical complex analysis arguments (see [48,
Proof of Theorem 2.13] or [91, Chapter 1]) for any f ∈ D(Λ) and t ≥ 0, we have

(2.11) SΛ(t)f = SΛ1
(t) Πf + T (t)f,

where

(2.12) T (t) := lim
M ′→∞

i

2π

∫ a+iM ′

a−iM ′
eztRΛ(z) dz,

and the term T (t)f might be only defined as a semi-convergent integral. From the
splitting Λ = A+ B, we have

RΛ(z) = RB(z)−RΛ(z)ARB(z)

on the open region of C where RΛ and RB are well defined functions (and thus
analytic functions), and iterating the above formula, we get

(2.13) RΛ(z) =

N∑
`=0

(−1)`RB(z) (ARB(z))` +RΛ(z)(−1)N+1(ARB(z))N+1

for any integer N ≥ 0. Gathering (2.11), (2.12) and (2.13), we obtain the represen-
tation formula

SΛ(t)f = SΛ1
(t) Πf +

N∑
`=0

(−1)`SB ∗ (ASB)(∗`)(t)f(2.14)

+ lim
M ′→∞

i

2π

∫ a+iM ′

a−iM ′
ezt (−1)N+1RΛ(z) (ARB(z))N+1f dz

for any f ∈ D(Λ) and t ≥ 0.

Step 2. In order to conclude we have to explain why the last term in (2.14) is
appropriately bounded for N large enough. We define

(2.15) U(z) := RB(z)− · · ·+ (−1)nRB(z) (ARB(z))n

and

(2.16) V(z) := (−1)n+1(ARB(z))n+1

where n ≥ 1 is the integer given by assumption (H2). With N = n, we may rewrite
the identity (2.13) as

(2.17) RΛ(z)(I − V(z)) = U(z),

and then deduce

(2.18) W(z) := RΛ(z) (ARB(z))N+1 = U(z)

∞∑
`=0

V(z)` (ARB(z))N+1,

under the condition that the RHS series converges.
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Step 3. We recall the notations Xs = D(Λs). On the one hand, from (2.7) we
deduce that

‖RB(z) (ARB(z))n‖X→Xζ ≤ C ′a,n
for any a > a∗, for any z ∈ ∆a and a constant C ′a,n. As a consequence, writing

RB(z)1−ε (ARB(z))n = (B − z)ε [RB(z) (ARB(z))n],

we get

(2.19) ‖RB(z)1−ε (ARB(z))n‖X→Xζ−ε ≤ Ca,n
for any ε ∈ [0, ζ].

On the other hand, we claim that

(2.20) ‖RB(z)ε‖X̃ζ−ε→X̃ζ′ ≤ Ca,ε/〈z〉
ε (ζ−ζ′−ε)

for any a > a∗, 0 ≤ ε < ζ − η′, for any z ∈ ∆a and a constant Ca,ε. First, from the
resolvent identity

RB(z) = z−1 (RB(z)B − I),

we have for i, j = 0, 1, i ≥ j,

‖RB(z)‖Xi→Xj ≤ C
1,a
i,j (z) ∀ z ∈ ∆a

with C1,a
0,0 (z) = C1,a

1,1 (z) = C1,a and C1,a
1,0 (z) = C1,a

1,0 /〈z〉, C
1,a
i,j ∈ R+. Next, thanks

to the first representation formula in (2.5), we clearly have

‖RB(z)ε‖X1→X0 ≤ C(a, ε)

∫ ∞
0

λ−ε

〈z〉+ λ
dλ ≤ Cε,a1,0 (z) :=

Cε,a1,0

〈z〉ε
.

Last, thanks to the interpolation theorem [71, Théorème 3.1] we get for 0 ≤ θ <
θ′ < 1

‖RB(z)ε‖X̃θ′→X̃θ ≤ ‖RB(z)ε‖θX1→X1
‖RB(z)ε‖θ

′−θ
X1→X0

‖RB(z)ε‖1−θ
′

X0→X0

from which we conclude to (2.20). Writing now

RB(z) (ARB(z))n = RB(z)ε [RB(z)1−ε (ARB(z))n]

with the optimal choice ε = (ζ − ζ ′)/2, we finally deduce from (2.19), (2.20) and
the inclusions (2.6) that

‖RB(z) (ARB(z))n‖X→Xζ′ ≤
Ca
〈z〉α

, α :=
(ζ − ζ ′)2

8
∈ (0, 1).

Because A is Bζ′ -bounded we conclude with

(2.21) ‖V(z)‖B(X) ≤ Ca
1

〈z〉α
,

and then in particular, for M large enough,

(2.22) z = a+ iy, |y| ≥M ⇒ ‖V(z)‖B(X) ≤
1

2
.

Step 4. In the one hand, defining N := ([1/α]+1)(n+1)−1 and β := ([1/α]+1)α >
1, we get from (2.21) that

(2.23) ‖(ARB(z))N+1‖B(X) ≤ ‖V(z)‖[1/α]+1
B(X) ≤ C

〈y〉β
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for any z = a + iy, |y| ≥ M . In the other hand, we get from (2.22) that the
series term in (2.18) is normally convergent uniformly in z = a + iy, |y| ≥ M . All
together, we obtain

‖W(z)‖B(X) ≤ ‖U(z)‖B(X)

∥∥∥ ∞∑
`=0

V(z)`
∥∥∥

B(X)
‖(ARB(z))N+1‖B(X)

≤ C

|y|β
(2.24)

for any z = a+ iy, |y| ≥M .

In order to estimate the last term in (2.14), we write∥∥∥ lim
M ′→∞

i

2π

∫ a+iM ′

a−iM ′
eztW(z) dz

∥∥∥
B(X)

≤ eat

2π

∫ a+iM

a−iM
‖RΛ(z)‖B(X) ‖(ARB(z))N+1‖B(X) dy

+
eat

2π

∫
R\[−M,M ]

‖W(a+ iy)‖B(X) dy,

where the first integral is finite thanks to Σ(Λ) ∩ [a− iM, a+ iM ] = ∅ and (2.23),
and the second integral is finite because of (2.24). �

We give now two variants of Theorem 2.1 which are sometimes easier to apply.
First, for a generator Λ of a semigroup SΛ with the splitting structure (1.2) we
introduce an alternative growth assumption to (H1), namely

(H1′) for some a∗ ∈ R and for any a > a∗ the operator B − a is hypodissipative
and there exists a constant Ca ∈ (0,∞) such that

(2.25)

∫ ∞
0

e−a s ‖ASB(s)‖B(X) ds ≤ Ca.

Remark 2.3. Estimate (2.25) is reminiscent of the usual condition under
which for a given generator B of a semigroup SB the perturbed operator
A + B also generates a semigroup (see [95], [85], [106, condition (1.1)]).
Here however the condition Ca < 1 is not required since we have already
made the assumption that SΛ exists.

It is clear by writing

SB ∗ (ASB)(∗`) = [SB ∗ (ASB)(∗`−1)] ∗ (ASB)

and performing an iterative argument, that (H1′) implies (H1). We then imme-
diately deduce from Theorem 2.1 a first variant:

Corollary 2.4. Consider X a Banach space, Λ the generator of a semigroup
SΛ(t) = etΛ on X and a real number a∗ ∈ R. Assume that the spectrum Σ(Λ)
of Λ satisfies the separation condition (2.8) and that there exist two operators
A,B ∈ C (X) such that Λ = A + B and hypothesises (H1′) and (H2) are met.
Then the conclusions (2.9) and (2.10) in Theorem 2.1 hold.

Next, for a generator Λ of a semigroup SΛ with the splitting structure (1.2) we
introduce the alternative growth and regularizing assumptions to (H1′) and (H2),
namely
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(H1′′) for some a∗ ∈ R, ζ ∈ (0, 1] and for any a > a∗, ζ
′ ∈ [0, ζ] the operator

B − a is hypodissipative and assumption (H1) or (H1′) also hold with

B(X) replaced by B(D(Λζ
′
));

(H2′′) there exist an integer n ≥ 1 and a real number b > a∗ such that

∀ t ≥ 0, ‖(ASB)(∗n)(t)‖B(X,D(Λζ)) ≤ Cb,n,ζ ebt,

for a constant Cb,n,ζ ∈ (0,∞).

Our second variant of Theorem 2.1 is the following.

Corollary 2.5. Consider X a Banach space, Λ the generator of a semigroup
SΛ(t) = etΛ on X and a real number a∗ ∈ R. Assume that the spectrum Σ(Λ)
of Λ satisfies the separation condition (2.8) and that there exist two operators
A,B ∈ C (X) such that Λ = A + B and hypothesises (H1′′) and (H2′′) are met.
Then the conclusions (2.9) and (2.10) in Theorem 2.1 hold.

Corollary 2.5 is an immediate consequence of Theorem 2.1 or Corollary 2.4 to-
gether with the following simple variant of [48, Lemma 2.15] which makes possible
to deduce the more accurate regularization and growth condition (H2) from the
rough regularization and growth condition (H2′′).

Lemma 2.6. Consider two Banach spaces E and E such that E ⊂ E with dense
and continuous embedding. Consider some operators L, A and B on E such that L
splits as L = A+B, some real number a∗ ∈ R and some integer m ∈ N∗. Denoting
with the same letter A, B and L the restriction of these operators on E, we assume
that the two following dissipativity conditions are satisfied:

(i) for any a > a∗, ` ≥ m, X = E and X = E, there holds

‖(ASB)(∗`)‖B(X) ≤ Ca,` eat;

(ii) for some constants b ∈ R, b > a∗, and Cb ≥ 0, there holds

‖(ASB)(∗m)‖B(E,E) ≤ Cb ebt.

Then for any a > a∗, there exist some constructive constants n = n(a) ∈ N,
Ca ≥ 1 such that

∀ t ≥ 0 ‖(ASB)(∗n)(t)‖B(E,E) ≤ Ca ea t.

Proof of Lemma 2.6. We fix a > a∗ and a′ ∈ (a∗, a), and we note T := (ASB)(∗m).
For n = pm, p ∈ N∗, we write

(ASB)(∗n)(t) = T (∗p)(t)

=

∫ t

0

dtp−1

∫ tp−1

0

dtp−2 . . .

∫ t2

0

dt1 T (δp) . . . T (δ1)

with

δ1 = t1, δ2 = t2 − t1, . . . , δp−1 = tp−1 − tp−2 and δp = t− tp−1.

For any p ≥ 1, there exist at least one increments δr, r ∈ {1, ..., p}, such that
δr ≤ t/p. Using (ii) in order to estimate ‖T (δr)‖B(E,E) and (i) in order to bound
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the other terms ‖T (δq)‖B(X) in the appropriate space X = E or X = E, we have

‖T (ASB)(∗n)(t)‖B(E,E) ≤

≤
∫ t

0

dtp−1

∫ tp−1

0

dtp−2 . . .

∫ t2

0

dt1C
′
b e
b δr

∏
q 6=r

Ca′,m e
a′ δq

≤ C ′b C
p−1
a′,m e

a′ t eb t/p
∫ t

0

dtp−1

∫ tp−1

0

dtp−2 . . .

∫ t2

0

dt1

= C tp−1 e(a′+b/p) t ≤ C ′ eat,
by taking p (and then n) large enough so that a′ + b/p < a. �

3. Weyl’s Theorem for semigroup generators

3.1. An abstract semigroup Weyl’s Theorem. We present in this section a
version of Weyl’s Theorem about compact perturbation of dissipative generator
in the spirit of the preceding spectral mapping theorem. For that purpose, we
introduce the growth and compactness assumption

(H3) for the same integer n ≥ 1 as in assumption (H2) and with the same
notations, the time indexed family of operators (ASB)(∗(n+1))(t) satisfies
the growth and compactness estimate

∀ a > a∗,

∫ ∞
0

‖(ASB)(∗(n+1))(t)‖B(X,Y ) e
−at dt ≤ C ′′n+1,a,

for some constant C ′′n+1,a ≥ 0 and some (separable) Banach space Y such
that Y ⊂ X with compact embedding.

Theorem 3.1. Consider X a Banach space, Λ the generator of a semigroup
SΛ(t) = etΛ on X and a real number a∗ ∈ R. The following quantitative growth
estimate on the semigroup

(1) for any a > a∗ there exist an integer J ∈ N, a finite family of distinct
complex numbers ξ1, ..., ξJ ∈ ∆̄a, some finite rank projectors Π1, . . . ΠJ ∈
B(X) and some operators Tj ∈ B(RΠj), satisfying ΛΠj = ΠjΛ = TjΠj,
Σ(Tj) = {ξj}, in particular

Σ(Λ) ∩ ∆̄a = {ξ1, . . . , ξJ} ⊂ Σd(Λ),

and a constant Ca such that

(3.1) ∀ t ≥ 0,
∥∥∥etΛ −

J∑
j=1

et Tj Πj

∥∥∥
B(X)

≤ Ca ea t,

is equivalent to the following splitting structure of the generator

(2) there exist two operators A,B ∈ C (X) such that Λ = A+ B and hypothe-
sises (H1), (H2) and (H3) are met.

Remark 3.2. (a) When Σ(Λ) ∩∆a∗ 6= ∅ the above theorem gives a description
of the principal asymptotic behaviour of the C0-semigroup SΛ, namely it
states that it is essentially compact (see e.g. [42, Definition 2.1]). As a
matter of fact, if conditions (H1), (H2) and (H3) hold with a∗ < 0, then
the C0-semigroup SΛ is either uniformly exponentially stable or essentially
compact.
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(b) We adopt the convention {ξ1, . . . , ξJ} = ∅ if J = 0.
(c) In the case when B is sectorial and A is B-compact, Theorem 3.1 is nothing

but the classical Weyl’s Theorem on the spectrum [111] or [63, Theorem
IV.5.35] combined with the spectral mapping theorem, see [33, Section
IV.3.10] for instance.

(d) Assumption (ii) is similar to the definition in [107] of the fact that “A is B-
power compact”, but it is written at the semigroup level rather than at the
resolvent level. Under such a power compact hypothesis, Voigt establishes
a generalisation of Weyl’s Theorem. His proof uses the analytic property
of the resolvent function RΛ(z) obtained by Ridav and Vidav in [100] as
we present here. As a matter of fact, Theorem 3.1 is a simple consequence
of [107, Theorem 1.1] together with Theorem 2.1. However, for the sake of
completeness we give an elementary proof of Theorem 3.1 (which consists
essentially to prove again [107, Theorem 1.1] without the help of [100] and
to applied Theorem 2.1).

Proof of Theorem 3.1. The cornerstone of the proof is the use of the identity

RΛ(z)(I − V(z)) = U(z)

established in (2.17), where we recall that the functions U and V defined by (2.15)
and (2.15) are analytic functions on ∆a∗ with values in B(X). Moreover, we have

(3.2) V(z) ∈ B(X,Y ) ⊂ K (X) ∀ z ∈ ∆a

because of assumption (ii) and

(3.3) ‖V(z)‖B(X) ≤ 1/2 ∀ z ∈ ∆a ∩B(0,M)c

for some M = M(a) thanks to (2.21).

Step 1. We prove that Σ(Λ) ∩∆a is finite for any a > a∗.
Let us fix ξ ∈ ∆a and define C(z) := I−V(z), C0 := C(ξ). Because of (3.2) and

thanks to the Fredholm alternative [38] (see also [16, Theorème VI.6] for a modern
and comprehensible statement and proof), there holds

R(C0) = N(C∗0 )⊥, dimN(C0) = dimN(C∗0 ) := N ∈ N.

If N ≥ 1, we introduce (f1, . . . , fN ) a basis of the null space N(C0) and (ϕ1, . . . , ϕN )
a family of independent linear forms in X ′ such that ϕi(fj) = δij . Similarly, we
introduce (ψ1, . . . , ψN ) a basis of the null space N(C∗0 ) and (g1, . . . , gN ) a family of
independent linear vectors in X such that ψi(gj) = δij . Then defining the projectors
on X

π0 :=

n∑
i=1

fi ϕi and π1 :=

n∑
i=1

gi ψi,

and X1 := π0(X), X0 := (I − π0)(X), Y1 := π1(X), Y0 := (I − π1)(X), we have

X = X0 ⊕X1, X1 = N(C0) = vect(f1, . . . , fN ),

and

X = Y0 ⊕ Y1, Y0 = R(C0), Y1 = vect(g1, . . . , gN ).

On the one hand, C0 : X0 → Y0 is bijective by definition, and the family of linear
mappings

D0(z) := C−1
0 (I − π1)C(z)|X0

: X0 → X0,
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is an analytic function with respect to the parameter z ∈ ∆a and satisfies D0(ξ) =
IX0 . We deduce that D0(z) is also invertible for z belonging to a neighbourhood
B(ξ, r0(ξ)) of ξ, r0(ξ) > 0, and then

(3.4) (I − π1)C(z)|X0
: X0 → Y0 is invertible for any z ∈ B(ξ, r0(ξ)).

On the other hand, the family of linear mappings

D1(z) := π1 C(z)|Y1
: Y1 → Y1,

is an analytic function with respect to the parameter z ∈ ∆a and D1(z) is invertible
for any z ∈ ∆a ∩ B(0,M ′)c for M ′ large enough, because V(z) → 0 as =mz → ∞
from (2.21). Since Y1 is finite dimensional we may define z 7→ det(D1(z)), which is
an analytic function on ∆a and satisfies det(D1(z)) 6= 0 for any z ∈ ∆a∩B(0,M ′)c.
As a consequence, z 7→ det(D1(z)) has some isolate zeros and since det(D1(z0)) = 0
there exists a neighbourhood B(ξ, r1(ξ)) of ξ, r1(ξ) > 0, so that det(D1(z)) 6= 0 for
any z ∈ B(z0, r1(ξ))\{ξ} from which we deduce

(3.5) π1 C(z)|Y1
: Y1 → Y1 is invertible for any z ∈ B(ξ, r1(ξ))\{ξ}.

Gathering (3.4) and (3.5), we get that C(z) : X → Y0 ⊕ Y1 = X is surjective for
any z ∈ B(ξ, r(ξ))\{ξ}, r(ξ) := min(r0(ξ), r1(ξ)) > 0, and then bijective thanks to
the Fredholm alternative.

By compactness of the set ∆̄a ∩ B(0,M ′), we may cover that set by a finite
number of balls B(ξj , r(ξj)), 1 ≤ j ≤ J , so that C(z) = I − V(z) is invertible for
any z ∈ Ω := ∆a\{ξ1, ..., ξJ}. As a consequence, the function

W(z) := U(z) (I − V(z))−1

is well defined and analytic on Ω and coincide with RΛ(z) on the half plane ∆b,
where b = ω(Λ) is the growth bound of SΛ. These facts immediately imply that
RΛ =W on Ω and then

Σ(Λ) ∩∆a ⊂ {ξ1, ..., ξJ} = ∆a\Ω.

Step 2. We prove that Σ(Λ) ∩∆a∗ ⊂ Σd(Λ). Indeed, for any ξ ∈ Σ(Λ) ∩∆a∗ , we
may write with the notations of step 1

ΠΛ,ξ(I − π1) =

∫
|z−ξ|=r(ξ)/2

RΛ(z)(I − π1)

=

∫
|z−ξ|=r(ξ)/2

U(z) (I − V(z))−1(I − π1) = 0,

where in the last line we have used that I − V(z) : X0 → Y0 is bijective for any
z ∈ B(ξ, r(ξ)) so that (I−V(z))−1(I−π1) is well defined and analytic on B(ξ, r(ξ)).
We deduce that

ΠΛ,ξ = ΠΛ,ξπ1,

and then

dimR(ΠΛ,ξ) ≤ dimR(π1) = N.

That precisely means ξ ∈ Σd(Λ).

Step 3. The fact that SΛ satisfies the growth estimate (3.1) is an immediate
consequence of Theorem 2.1. �
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3.2. A quantified version of the Weyl’s Theorem. We present now a quanti-
fied version of Weyl’s Theorem 3.1.

Theorem 3.3. Consider X a Banach space, Λ the generator of a semigroup
SΛ(t) = etΛ on X, a real number a∗ ∈ R and assume that there exist two oper-
ators A,B ∈ C (X) such that Λ = A + B and the hypothesises (H1), (H2) and
(H3) of Theorem 3.1 are met. Assume furthermore that

(3.6)

∫ ∞
0

‖e−atASB(t)‖B(X,Y ) dt ≤ Ca,

for some constant Ca ∈ R+, and there exists a sequence of N dimensional range
increasing projector πN and a sequence of positive real numbers εN → 0 such that

(3.7) ∀ f ∈ Y ‖π⊥Nf‖X ≤ εN‖f‖Y .

For any a > a∗, there exists a integer n∗ (which depends on a constructive way on
a, (πN ), (εN ) and the constants involved in the assumptions (H1), (H2), (H3)
and (3.6)) such that

(3.8) ](Σ(Λ) ∩∆a) ≤ n∗, dimR(ΠΛ,a) ≤ n∗.

We assume moreover (H1′′) and ‖(SBA)(∗n)‖B(X,D(Λζ))e
−at ∈ L1(0,∞) for any

a > a∗. Then, for any a > a∗, there exists a constant C ′a such that for any Jordan
basis (gi,j) associated to the eigenspace RΠΛ,a there holds

(3.9) ‖gi,j‖X = 1, ‖gi,j‖D(Λζ)∩Y ≤ C ′a.

Proof of Theorem 3.3. Step 1. Let us fix a > a∗ and let us define for any z ∈ ∆a

the compact perturbation of the identity

Φ(z) := I +ARB(z) : X → X.

On the one hand, because of (3.6), we know that there exists a constant Ca such
that

∀ z ∈ ∆a ‖ARB(z)‖B(X,Y ) ≤ Ca,
and then

‖π⊥NARB(z)‖B(X) ≤ εN Ca < 1

for N large enough. We deduce from the above smallness condition that

I + π⊥NARB(z) : Rπ⊥N → Rπ⊥N

is a an isomorphism for any z ∈ ∆a. On the other hand, thanks to the Fredholm
alternative, it is clear that Φ(z) is invertible if, and only if, πNΦ(z) has maximal
rank N .

Step 2. For a given basis (g1, ..., gN ) of RπN we denote by πN,i a projection on
C gi, 1 ≤ i ≤ N , and we define ΦN,i(z) := πN,iΦ(z). For a given i ∈ {1, ..., N} and
if zi ∈ ∆a satisfies ΦN,i(zi) = 0 we have

πN,i + πN,iARB(zi) = 0

and

ΦN,i(z) = πN,i + πN,iA
∞∑
n=0

RB(zi)
n+1 (z − zi)n ∀ z ∈ ∆a ∩B(zi, r),
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with r := ‖RB(zi)‖−1 ≥ C−1
a > 0. From the two last equations, we deduce

ΦN,i(z) = −πN,i
∞∑
n=1

RB(zi)
n (z − zi)n ∀ z ∈ ∆a ∩B(zi, ri)

and we observe that rank ΦN,i(z) = 1 for any z ∈ B(zi, r), z 6= zi. As a consequence,
in any ball B of radius r, rankπNΦ(z) = N for any z ∈ B ∩ ∆a except at most
N points z1, ..., zN ∈ B, and the total dimension of the “defect of surjectivity”
codimR(πNΦ(zi)) = dim ΠΛ,zi is at most N . Covering the region ∆̄a ∩ B(0,M)
by (1 + 2M/r)2 balls of radius r ∈ (C−1

a ,M), we see that (3.8) holds with n∗ :=
(1 + 2MCa)2N .

Step 3. Consider a Jordan basis (gj,m) associated to an eigenvalue ξ ∈ Σd(Λ)∩∆a,
and then defined by

Λgj,m = ξgj,m + gj,m−1.

We write

gj,m = RB(ξ)gj,m−1 −RB(ξ)Agj,m,
and iterating the formula

gj,m =

L−1∑
`=0

(−1)`RB(ξ)(ARB(ξ))`gj,m−1 + (−1)L(RB(ξ)A)ngj,m,

from which we easily conclude that (3.9) holds. �

3.3. The equal mitosis and smooth cell-division equations. In this para-
graph we are concerned with the equal mitosis equation (1.23) and the cell division
equation (1.33) with smooth offsprings distribution, so that we consider the oper-
ator

Λf(x) := − ∂

∂x
f(x)−K(x)f(x) + (F+f)(x)

where K satisfies (1.25) and (1.26) and the gain part F+ of the fragmentation
operator is defined by

(3.10) F+f(x) :=

∫ ∞
x

k(y, x) f(y) dy

with k satisfying (1.17) and ℘ = 2δ1/2 (in the equal mitosis case) or ℘ is a function
which satisfies (1.18) and (1.30) (in the case of the smooth cell-division equation).
We recall that the operator is complemented with a boundary condition (1.24).

We fix α > α∗, with α∗ > 1 defined thanks to equation (1.34), and we define
K ′0 := K0 − ℘αK1 > 0 as well as the critical abscissa a∗ ∈ R when K(0) = 0 or
℘ = 2δ1/2 by

a∗ := −K ′0 if γ = 0, a∗ := −∞ if γ > 0.

When K(0) > 0, the positivity conditions (1.25) and (1.26) imply that there exists
a constant K∗ > 0 such that

(3.11) K(x) ≥ K∗ ∀x ≥ 0.

When K(0) > 0 and ℘ satisfies (1.30), we then define the critical abscissa by

a∗ := −min(K ′0,K∗) if γ = 0, a∗ := −K∗ if γ > 0.
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We perform the spectral analysis of Λ in the Banach space X = L1
α. It is worth

emphasizing that we classically have (and that is also a straightforward consequence
of the following Lemmas)

D(Λ) = {f ∈ L1
α+γ , ∂xf ∈ L1

α, f(0) = 0}.
As a first step in the proof of Theorem 1.1 we have

Proposition 3.4. Under the above assumptions and notations, the conclusions of
Theorem 3.1 hold for the cell-division semigroup in L1

α for any α > α∗ and for
any a > a∗. Moreover the conclusions of Theorem 3.3 hold under the additional
assumptions that K(0) = 0 and ℘ satisfies the smoothness condition (1.30).

In order to establish Proposition 3.4 we will introduce an adequate splitting
Λ = A + B and we prove that A and B satisfy conditions (H1), (H2) and (H3)
(or one of the “prime” variants of them).

Taking one real number R ∈ [1,∞) to be chosen later, we define

KR := K χR Kc
R := K χcR,

where χR(x) = χ(x/R), χcR(x) = χc(x/R), χ being the Lipschitz function defined
on R+ by χ(0) = 1, χ′ = −1[1,2] and χc = 1− χ, as well as

F+
R =

∫ ∞
x

kR(y, x) f(y) dy, F+,c
R =

∫ ∞
x

kcR(y, x) f(y) dy,

and then

A = AR = F+
R , B = BR = − ∂

∂x
−K(x) + F+,c

R

so that Λ = A+ B.

Lemma 3.5. (1) For any 0 ≤ α ≤ 1 ≤ β there holds A ∈ B(L̇1
α, L̇

1
α ∩ L̇1

β).

(2) For the mitosis operator, there holds A ∈ B(W 1,1,W 1,1
α ) for any α ≥ 0. In

particular A ∈ B(D(Λη)) for η = 0, 1;

(3) Under assumption (1.30) on ℘ there holds A ∈ B(L̇1
β−1, Ẇ

1,1
β ) for any β ≥ 0,

where

Ẇ 1,1
β := {f ∈ L1

loc(0,∞); ∂xf ∈ L̇1
β}.

(4) Under assumption (1.30) on ℘ and the additional assumption K(0) = 0,
there holds A ∈ B(L1

α,W
1,1
α ) for any α ≥ 0.

Proof of Lemma 3.5. We split the proof into four steps.
Step 1. Fix 0 ≤ f ∈ L̇1

α as well as α′ ≥ α. We compute

‖Af‖L̇1
α′

=

∫ ∞
0

f(x)

∫ x

0

kR(x, y) yα
′
dy dx

= ℘α′

∫ ∞
0

f(x)KR(x)xα
′
dx

≤ ℘α′ K1 〈R〉γ+α′−α
∫ 2R

0

f(x)xα dx,

so that A ∈ B(L̇1
α, L̇

1
α′).

Step 2. For the mitosis operator, we have

∂xAf = 8 (∂xKR)(2x) f(2x) + 8KR(2x) (∂xf)(2x),
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and similar estimates as above leads to the bound

‖∂xAR f‖L1
α
≤ 4 〈R〉α ‖K‖W 1,∞(0,2R) ‖f‖W 1,1 .

for any α ≥ 0 and f ∈W 1,1, from which (2) follows.
Step 3. Under the regularity assumption (1.30), there holds

∂xAf =

∫ ∞
x

KR(y)℘′(x/y) y−2 f(y) dy −KR(x)℘(1) f(x)/x,

so that

‖∂xAf‖L̇1
β
≤
{
℘(1) + ℘′β

}
K1 〈R〉γ

∫ 2R

0

f(x)xβ−1 dx,

and we conclude with A ∈ B(L̇1
β−1, Ẇ

1,1
β ). �

Step 4. With the assumption of point (4) and recalling that K is C1, there holds
‖K(x)/x‖L∞(0,2R) for any R ∈ (0,∞) and then from the above expression of ∂xAf ,
we get

‖∂xAf‖L1
α
≤

{
℘(1) + ℘′0

}
‖K(x)/x‖L∞(0,2R)‖f‖L1

α

for any f ∈ L1
α and α ≥ 0. �

Lemma 3.6. For any a > a∗ there exists R∗(a) > 0 such that the operator BR is
a-hypodissipative in L1

α for any R ∈ (R∗(a),∞).

Proof of Lemma 3.6. We introduce the primitive functions

(3.12) K(z) :=

∫ z

0

K(u) du, K(z1, z2) := K(z2)−K(z1)

and, for any given a ∈ (a∗, 0], we define the space

E := L1(φ), φ(x) := φ0(x) 1x≤x2
+ φ∞(x) 1x≥x2

,

where

φ0(x) :=
eK(x)+a x

eK(x2)+a x2
, φ∞(x) :=

xα

xα2
,

and where

x2 := max(1, x1, 2α/(a+K ′0)) if γ = 0;(3.13)

x2 := max(1, x1, [3α/(x1K
′
0)]1/γ , [−3a/K ′0]1/γ) if γ > 0.(3.14)

Consider f ∈ D(Λ) a real-valued function and let us show that for any a > a∗

and any R > R∗(a), R∗(a) to be chosen later,

(3.15)

∫ ∞
0

sign(f(x))Bf(x)φ(x) dx ≤ a‖f‖E .

Since the case of complex-valued functions can be handled in a similar way and
since the norm ‖ · ‖E is clearly equivalent to ‖ · ‖L1

α
, that will end the proof.

One the one hand, we have

‖F+,cf‖L1(φ0 1x≤x2 ) =

∫ ∞
R

Kc
R(x) f(x)

∫ x∧x2

0

℘(y/x)φ0(y)
dy

x
dx

≤ η(x2/R)

∫ ∞
R

Kc
R(x) f(x) dx,
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with

η(u) :=
(

sup
[0,x2]

φ0

)(∫ u

0

℘(z) dz
)
,

so that, performing one integration by part, we calculate∫ x2

0

sign(f(x))Bf(x)φ0(x) dx =

=

∫ x2

0

{ −K(x)|f(x)| − ∂x|f(x)| }φ0(x) dx+

∫ x2

0

sign(f) (F+,cf)φ0 dx

≤ −|f(x2)|+ a

∫ x2

0

|f(x)|φ0(x) dx+ η(x2/R)

∫ ∞
R

Kc
R(x) f(x) dx.(3.16)

On the other hand, performing one integration by part again, we compute∫ ∞
x2

sign(f(x))BRf(x)φ∞(x) dx =

≤ |f(x2)|+
∫ ∞
x2

|f(x)| { −Kφ∞ + ∂xφ∞ +Kc
R(x)

∫ x

0

℘(
y

x
)φ∞(y)

dy

x
} dx

≤ |f(x2)|+
∫ ∞
x2

|f(x)| [(℘αK1 −K0)xγ + α/x]φ∞(x) dx

≤ |f(x2)|+
∫ ∞
x2

|f(x)|
{
a+ θ xγ

}
φ∞(x) dx,(3.17)

with θ := −(a + K ′0)/2 if γ = 0 and θ := −K ′0/3 if γ > 0 thanks to the choice of
x2. Gathering (3.16) and (3.17), and taking R∗ large enough in such a way that
η(x2/R

∗)K1 + θ ≤ 0, we get that BR is a-dissipative in E . �

Lemma 3.7. The operator Λ generates a C0-semigroup on L1
α .

Proof of Lemma 3.7. Thanks to Lemmas 3.5 and 3.6, we have that Λ is b-dissipative
in E with b := ‖AR‖B(E) + a. On the other hand, one can show that R(Λ− b) = X
for b large enough and conclude thanks to Lumer-Phillips Theorem ([73] or [91,
Theorem I.4.3]) that Λ generates a C0-semigroup. Equivalently, one can argue as
in [34, Proof of Theorem 3.2] by introducing an approximation sequence of bounded
total fragmentation rates (Kn) and proving that for any fixed initial datum f0 ∈ X
the associated sequence of solutions (fn) (constructed by a mere Banach fixed point
Theorem in C([0, T ]; E), ∀T > 0) is a Cauchy sequence. That establishes that for
any f0 ∈ E there exists a unique solution f ∈ C(R+; E) to the Cauchy problem
associated to the operator Λ and then that Λ generates a C0-semigroup. �

We define

Yr := {f ∈W r,1
α ∩ L1

α+γ+1(R); suppf ⊂ [0,∞)}, r ∈ [0, 1],

as a family of interpolating spaces between Y0 = L1
α+γ+1 ⊃ X and Y1 ⊃ D(Λ).

Lemma 3.8. If ℘ satisfies (1.30) and K(0) = 0, for any a > a∗ there exists a
constant Ca such that

(3.18) ‖ASB(t)‖B(X,Y1) ≤ Ca eat.
If ℘ satisfies (1.30) and K(0) 6= 0, for any a > a∗ and any r ∈ [0, 1) there exists a
constant Ca,r such that

(3.19) ‖(ASB)(∗2)(t)‖B(X,Yr) ≤ Ca,r eat.
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Proof of Lemma 3.8. Extending by 0 a function g ∈ L1(R+) outside of [0,∞), we
may identify L1(R+) = {g ∈ L1(R); supp g ⊂ [0,∞)} and extending k = k(x, y) by
0 outside of {(x, y); 0 ≤ y ≤ x}, we may consider SB(t) and A as operators acting
on L1(R) which preserve the support [0,∞) (they then also act on L1(R+)).

Step 1. Assume first K(0) = 0. From Lemma 3.5-(4) and Lemma 3.6, for any
f ∈ L1

α, we get

‖∂x(ASB(t)f)‖L1
α
≤ C ‖SB(t)f‖L1

α
≤ Ca eat‖f‖L1

α
.

From Lemma 3.5-(1) and Lemma 3.6 we get a similar estimate on ‖ASB(t)‖B(L1
α,L

1
α+γ+1)

and that ends the proof of (3.18).

Step 2. We assume now K(0) 6= 0. We introduce the notations

B0f(x) := − ∂

∂x
f(x)−K(x)f(x)

and then the shorthands Ac := F+,c, U := ASB, U c := AcSB, U0 := ASB0 and
U c0 := AcSB0 , where SB (resp. SB0) is the semigroup associated to the generator
B (resp. B0) complemented with the boundary condition (1.24). Thanks to the
Duhamel formula

(3.20) SB = SB0
+ SB0

∗ AcSB,

we have

(3.21) U = U0 + U0 ∗ U c.

From the explicit representation formula

(3.22) (SB0
(t)f)(x) = e−K(x−t,x)f(x− t) ∀ t ≥ 0, ∀x ∈ R,

where K is the primitive function defining in (3.12), we get

U0(t)f(x) =

∫ ∞
x

kR(y, x) e−K(y−t,y)f(y − t) dy,

so that

∂x[U0(t)f(x)] =

∫ ∞
x

KR(y)℘′(x/y) y−2 e−K(y−t,y)f(y − t) dy

−KR(x)

x
℘(1) e−K(x−t,x)f(x− t).

Using that K(y − t, y) ≥ K∗ t for any y ≥ t, we have

e−K(y−t,y)|f(y − t)| ≤ eat |f(y − t)| ∀ t ≥ 0, ∀ y ∈ R,

and we deduce

‖∂x[U0(t)f ]‖L1
α
≤ ℘(1)

∫ 2R

0

KR(x) 〈x〉α |f(x− t)|
(x− t) + t

dx eat

+

∫ 2R

0

KR(x)

∫ x

0

|℘′(y/x)| 〈y〉α dy
x

|f(x− t)|
(x− t) + t

dx eat

≤
(
℘(1) + ℘′0

)
K1 〈2R〉γ+α e

at

t

∫ 2R

0

|f(x)|dx.
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Since clearly (from the explicit representation formula (3.22) for instance) the same
estimate holds for ‖U0(t)‖B(L1,L1

α+γ+1) we get by interpolation and for any r ∈ [0, 1]

‖U0(t)‖B(L1,Yr) ≤ Ca
eat

tr
.

Thanks to the identity (3.21), the fact that Ac ∈ B(L1
γ , L

1) and Lemma 3.6, we
deduce for r ∈ [0, 1)

‖U(t)f‖Yr ≤ Ca
eat

tr
‖f‖L1 +

∫ t

0

Ca
ea(t−s)

(t− s)r
‖AcSB(s)f‖L1

≤ Ca,r
eat

tr
‖f‖L1

max(α,γ)
.

On the other hand, from Lemma 3.5-(1) and Lemma 3.6, we know that

‖U(t)f‖L1
α+γ
≤ ‖A‖B(L1

α,L
1
α+γ) ‖SB(t)f‖L1

α
≤ Caeat‖f‖L1

α
.

These two estimates together imply (3.19). �

Lemma 3.9. For the equal mitosis equation, there holds

(3.23) ‖(ASB)(∗2)(t)‖B(E,Y1) ≤ C t ∀ t ≥ 0

for some constant C which only depends on K through its norm ‖K‖W 1,∞(0,R)

where R is defined in Lemma 3.6.

Proof of Lemma 3.9. Thanks to the Duhamel formula (3.20) and the iterated
Duhamel formula

SB = SB0 + SB0 ∗ AcSB0 + SB0 ∗ AcSB0 ∗ AcSB,
we have

U = U0 + U0 ∗ U c and U = U0 + U0 ∗ U c0 + U0 ∗ U c0 ∗ U c,
from which we finally deduce

(3.24) U∗2 = U∗20 + U∗20 ∗ U c + U0 ∗ U c0 ∗ U + U0 ∗ U c0 ∗ U c ∗ U.
From the explicit representation formula (3.22), we get

(U0(t)f)(x) = 4KR(2x) e−K(2x−t,2x)f(2x− t)
as well as

(U c0 (t)f)(x) = 4Kc
R(2x) e−K(2x−t,2x)f(2x− t).

We then easily compute

(U∗20 (t)f)(x) =

∫ t

0

(U0(t− s)U0(s)f)(x) ds

= 4KR(2x)

∫ t

0

e−K(2x−t+s,2x)(U0(s)f)(2x− t+ s) ds

= 16KR(2x)

∫ t

0

KR(2(2x− t+ s))

e−K(2x−t+s,2x)−K(4x−2t+s,2(2x−t+s))f(4x− 2t+ s) ds

= 16KR(2x)

∫ u1

u0

KR(2u− 4x+ 2t) e−Θ(u)f(u) du(3.25)
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with u0 := (4x− 2t) ∧ (2x− t+R/2), u1 := (4x− t) ∧ (2x− t+R/2) and Θ(u) :=
K(u− 2x+ t, 2x) +K(u, 2u− 4x+ 2t). Similarly, we have

(3.26) (U0 ∗ U c0 (t)f)(x) = 16KR(2x)

∫ u1

u0

Kc
R(2u− 4x+ 2t) e−Θ(u)f(u) du.

The two last terms are clearly more regular (in x) than the initial function f . More-
over, extending by 0 the function f outside of [0,∞), we see thanks to (3.22) that
SB0

(t)f , and then U∗20 (t)f and U0 ∗U c0 (t)f , are well defined as functions in L1(R).
Using the lower bound Θ ≥ 0 and performing some elementary computations, we
easily get from (3.24), (3.25) and (3.26) the estimate

‖∂x[(ASB)(∗2)(t)f ]‖L1(R) ≤ CR t ‖f‖L1 , ∀ t ≥ 0,

which ends the proof of (3.23) since then (ASB)(∗2)(t)f ∈ C(R) and
supp (ASB)(∗2)(t)f ⊂ [0,∞] imply (ASB)(∗2)(t)f(0) = 0. �

With all the estimates established in the above lemmas, we are able to present
the

Proof of Proposition 3.4. We just have to explain why the hypothesis of Theo-
rem 3.1 are satisfied in each cases. Hypothesis (H1) is an immediate consequence
of Lemma 3.5-(1) and Lemma 3.6 together with Remark 2.2-(b). For that last claim

we use that Yr ⊂ D(Λr
′
) for any 0 ≤ r′ < r < 1 thanks to the classical interpolation

theory, see (2.6), [66] and [71].

In the case when ℘ satisfies (1.30), Lemma 3.8 and Remark 2.2-(h) imply that
hypothesises (H2) and (H3) are met with n = 1, ζ = 1 and ζ ′ = 0 in the case
K(0) = 0 and are met with n = 2, ζ ∈ (0, 1) and ζ ′ = 0 in the case K(0) 6= 0. Also
notice that the additional assumptions of Theorem 3.3 are met in the case that
K(0) = 0.

For the equal mitosis equation, Lemma 3.5-(2) and Lemma 3.6 imply that as-
sumption (H1) also holds with B(X) replaced by B(D(Λ)) and B(X,L1

α+1), while
Lemma 3.9 implies that (H2′′) holds with n = 2, ζ = 1, ζ ′ = 0 and any b > 0,
so that we can apply Corollary 2.5 (assumption (H2) holds with n large enough
thanks to Lemma 2.6). Finally, hypothesis (H3) follows from (H2) and the fact
that D(Λ) ∩ L1

α+1 ⊂ X compactly. �

3.4. Quantified Weyl’s Theorem for the self-similar fragmentation equa-
tion. In this paragraph we are concerned with the self-similar fragmentation equa-
tion (1.37), so that we consider the operator

Λf(x) := −x ∂

∂x
f(x)− 2 f(x)−K(x)f(x) + (F+f)(x)

where K(x) = xγ and F+ is defined in (3.10) with k satisfying (1.17), (1.18) and
(1.30).

We perform the spectral analysis of Λ in the Banach space X := L̇1
α ∩ L̇1

β for

0 ≤ α < 1 < β <∞ and we set a∗ := α− 1 ∈ [−1, 0). It is worth emphasizing that

D(Λ) = {f ∈ L̇1
α ∩ L̇1

β+γ , ∂xf ∈ L̇1
α+1 ∩ L̇1

β+1}.

As a first step in the proof of Theorem 1.1 we have
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Proposition 3.10. Under the above assumptions and notations, the conclusions
of Theorem 3.3 hold for the self-similar fragmentation semigroup in L̇1

α ∩ L̇1
β for

0 ≤ α < 1 < β <∞ and for any a > a∗.

In order to establish Proposition 3.10 we will introduce an adequate splitting
Λ = A+ B and we prove that A and B satisfy conditions (H1), (H2), (H3) with
n = 1 as well as (3.6) with Y ⊂ D(Λ).

We introduce the following splitting inspired from [17]. With the notations of
the preceding section, we define

ks(x, y) := k(x, y)χcδ(x)χcε(y)χR(y)

for 0 < ε ≤ δ/2 ≤ 1, R ≥ 2 to be specified latter, and then

kc := kc,1 + kc,2 + kc,3

with kc,1(x, y) = k(x, y)χδ(x), kc,2(x, y) = χcδ(x)χcR(y) and kc,3(x, y) = k(x, y)
χcδ(x)χε(y). We then define

Af(x) =

∫ ∞
x

ks(y, x) f(y) dy, Ac,if(x) =

∫ ∞
x

kc,i(y, x) f(y) dy,

and then

Ac = Ac,1 +Ac,2 +Ac,3, B0 = −x ∂

∂x
− 2−K(x), B = B0 +Ac

so that Λ = A+ B.

Lemma 3.11. For any 0 ≤ α′ ≤ 1 ≤ β′, there holds A ∈ B(L̇1
1, Ẇ

1,1
α′ ∩ Ẇ

1,1
β′ ) and

Ac,i ∈ B(L̇1
α′+γ , L̇

1
α′) for i = 1, 2, 3, with

‖Ac,1f‖L̇1
α′
≤ ℘α′ δ

γ ‖f‖L̇1
α′+γ

,

‖Ac,2f‖L̇1
α′
≤ ℘α′

∫ ∞
R

f(x)xα
′+γ dx,

‖Ac,3f‖L̇1
α′
≤ ‖℘(z) zα

′
‖L1(0,ε/δ) ‖f‖L̇1

α′+γ
,

Proof of Lemma 3.11. For 0 ≤ f ∈ L̇1
α′+γ , we compute

‖Ac,3f‖L̇1
α′

=

∫ ∞
0

f(x)xγ χcδ(x)

∫ x

0

℘(y/x) yα
′
χε(y)

dy

x
dx

≤ ‖℘(z) zα
′
‖L1(0,2ε/δ)‖f‖L̇1

α′+γ
,

and that establishes the last claim. For the other claims we refer to Lemma 3.5
and [17, 3. Proof of the main theorem] where very similar estimates have been
proved. �

Lemma 3.12. For any a > a∗ there exist R, δ, ε > 0 such that the operator B is
a-hypodissipative in X.

Proof of Lemma 3.12. We define the space

E := L1(φ), φ(x) := xα + η xβ , η > 0.

Consider f ∈ D(Λ) a real-valued function and let us show that for any a > a∗ and
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for suitable R ∈ (1,∞), δ ∈ (0, 1), ε ∈ (0, δ/2) to be chosen later,

(3.27)

∫ ∞
0

sign(f(x))Bf(x)φ(x) dx ≤ a‖f‖E .

Since the case of complex-valued functions can be handled in a similar way and
since the norm ‖ · ‖E is clearly equivalent to ‖ · ‖X , that will end the proof.

From the identity∫ ∞
0

sign(f(x))B0f(x)xr dr =

∫ ∞
0

((r − 1)xr − xr+γ) |f | dx

and the following inequality which holds for η > 0 small enough

η (β − 1− a)xβ ≤ 1 + a− α
2

xα + η
1− ℘β

2
xβ+γ ∀x > 0,

we readily deduce∫ ∞
0

sign(f(x))B0f(x)φ(x) dx ≤ a
∫ ∞

0

|f |φdx+

∫ ∞
0

(
α− a− 1

2
xα−η ℘β + 1

2
xβ+γ) |f | dx.

On the other hand, we know from Lemma 3.11 that

‖Acf‖E ≤ ℘αδ
γ ‖f‖E + (

℘α
Rβ−α

+ η ℘β)

∫ ∞
R

xβ+γ |f |

+‖℘(z) zα‖L1(0,2ε/δ) ‖f‖E .

We then easily conclude to (3.27) putting together these two estimates and choosing
R large enough, δ small enough, and then ε/δ small enough. �

Proof of Proposition 3.10. We just have to explain why the hypothesis of Theo-
rem 3.3 are satisfied. Hypothesis (H1) is an immediate consequence of Lemma 3.11-
(1), Lemma 3.12 and Remark 2.2-(b).

We define

Y := {f ∈W 1,1(R); supp f ⊂ [ε, 2R]}
endowed with the norm ‖ · ‖W 1,1 . We also define on X the projection πN on the
2N + 1 dimension subspace

RπN := {1[0,2R] p, p ∈ P2N (R)},

where P2N stands for the set of polynomials of degree less that 2N , thanks to

(πNf)(x) := χcε(x)χ2R(x) (pN,R ∗ f)(x), pN,R(x) := p(x/(4R))/(4R)

where pN stands for the Bernstein polynomial pN (x) := αN (1−x2)N with αN such
that ‖pN‖L1(−1,1) = 1. By very classical approximation arguments, we have

‖f − πNf‖X ≤
CR√
N
‖f‖W 1,1 ∀ f ∈ Y,

so that (3.7) is fulfilled.

Finally, Lemma 3.11-(1) and Lemma 3.12 implies that

‖ASB(t)f‖Y ≤ Ca eat ‖f‖X
for any t ≥ 0, f ∈ X, a > a∗, from which we deduce (H2) with n = 1 thanks to
Remark 2.2-(h) and the fact that Y ⊂ D(Λ), (H3) since Y is compactly embedded
in X and (3.6). �
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3.5. A remark on the age structured population equation. The aim of this
short section is to present a quantified version of the Weyl’s Theorem for the age
structured population equation (1.38) in the simple case when τ = ν = 1 and
K ∈ Cb(R+) ∩ L1(R+). More precisely, we consider the evolution equation

(3.28) ∂tf = Λf = Af + Bf
with A and B defined on M1(R) by

(Af)(x) := δx=0

∫ ∞
0

K(y) f(y) dy

(Bf)(x) := −∂xf(x)− f(x),

and it is worth emphasising that the boundary condition in (1.38) has been equiv-
alently replaced by the term Af involving a Dirac mass in x = 0. We perform the
spectral analysis of Λ in the space L1(R+) as well as in the space X := M1(R) of
bounded measures endowed with the total variation norm. In that last functional
space, the domain is the space BV (R) of functions with bounded variation.

Lemma 3.13. In X = M1(R), the operators A and B satisfy
(i) A ∈ B(X,Y ) where Y = C δ0 ⊂ X with compact embedding;
(ii) SB(t) is −1-dissipative;
(iii) the family of operators SB ∗ ASB(t) satisfy

‖(SB ∗ ASB)(t)‖X→D(Λ) ≤ C e−t ∀ t ≥ 0.

Proof of Lemma 3.13. We clearly have A ∈ B(X,Y ) because K ∈ Cb(R+) and the
−1-dissipativity of SB follows from the explicit formula

SB(t)f(x) = f(x− t) e−t 1x−t≥0.

We next prove (iii). We write

ASB(t)f = δx=0

∫ ∞
0

K(y + t) f(y) dy e−t,

next

(SB ∗ ASB)(t)f =

∫ t

0

SB(s)ASB(t− s)f ds

=

∫ t

0

δx−s=0e
−s 1x−s≥0

∫ ∞
0

K(y + t− s) f(y) dy e−(t−s) ds

= e−t 1x≤t

∫ ∞
0

K(y + t− x) f(y) dy,

and then

∂x(SB ∗ ASB)(t)f = −e−t δx=t

∫ ∞
0

K(y + t− x) f(y) dy

−e−t 1x≤t
∫ ∞

0

K ′(y + t− x) f(y) dy.

As a consequence, we deduce

‖∂x(SB ∗ ASB)(t)f‖M1 ≤ ‖K‖W 1,∞ e−t ‖f‖M1

and a similar estimate for ‖(SB ∗ ASB)(t)f‖M1 . �

As a first step in the proof of Theorem 1.1 for the age structured population
equation, we have
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Proposition 3.14. Under the above assumptions and notations, the conclusions of
Theorem 3.3 hold for the age structured population semigroup SΛ in M1(R) and in
L1(R+) for any a > −1. Moreover, any eigenvalue ξ ∈ Σd(Λ)∩∆−1 is algebraically
simple.

Proof of Proposition 3.14. In order to prove the result inX = M1(R+), we just have
to explain again why the hypothesis of Theorem 3.3 are satisfied . Conditions (H1),
(H3) and (3.6) are immediate consequences of Lemma 3.13-(i) & (ii) together with
Remark 2.2-(b). We refer to [49, 25, 76] and the references therein for the existence
theory in L1(R+) (which extends without difficulty to M1(R+)) for the semigroup
SΛ. Hypothesis (H2) with n = 1 is nothing but Lemma 3.13-(iii). Finally, taking
up again the proof of Theorem 3.3 and using the additional fact that dimY = 1,
we easily get the algebraic simplicity of the eigenvalues ξ ∈ Σ(Λ) ∩∆−1.

We may then extend easily the spectral analysis performed in M1(R+) to the
functional space L1(R+). Indeed, for a function f ∈ L1, Theorem 3.3 implies that

‖etΛf −
J∑
j=1

etξjΠjf‖M1 ≤ Ca eat ‖f‖M1

for any a > −1 and t ≥ 0. Because SΛ is well defined in L1 and the domain of
Λ as an operator in M1(R+) is BV (R+) ⊂ L1(R+), all the terms involved in the
above expression belong to L1 and we can replace the norms ‖.‖M1 by the norms
‖.‖L1 . �

4. positive semigroup and Krein-Rutman Theorem

4.1. The Krein-Rutman Theorem in an abstract setting. In this section we
consider a “Banach lattice of functions” X. We recall that a Banach lattice is a
Banach space endowed with an order denoted by ≥ (or ≤) such that the following
holds:

- The set X+ := {f ∈ X; f ≥ 0} is a nonempty convex closed cone.
- For any f ∈ X, there exist some unique f± ∈ X+ such that f = f+ − f−, we

then denote |f | := f+ + f− ∈ X+.
- For any f, g ∈ X, 0 ≤ f ≤ g implies ‖f‖ ≤ ‖g‖.
We may define a dual order ≥ (or ≤) on X ′ by writing for ψ ∈ X ′

ψ ≥ 0 (or ψ ∈ X ′+) iff ∀ f ∈ X+ 〈ψ, f〉 ≥ 0,

so that X ′ is also a Banach lattice.

We then restrict our analysis to the case when X is a“space of functions”. The
examples of spaces we have in mind are the space of Lebesgue functionsX = Lp(U ),
1 ≤ p < ∞, U ⊂ Rd borelian set, the space X = C(U ) of continuous functions
on a compact set U and the space X = C0(U ) of uniformly continuous functions
defined on an open set U ⊂ Rd and which tend to 0 at the infinity. For any element
(function) f in such a “space of functions” X, we may define without difficulty the
composition functions θ(f) and θ′(f) for θ(s) = |s| and θ(s) = s± as well as the
support suppf as a closed subset of U . Although we believe that our results extend
to a broader class of Banach lattices, by now and in order to avoid technicality, we
will restrict ourself to these examples of “space of functions” without specifying
anymore but just saying that we consider a “Banach lattice of functions” (and we
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refer to the textbook [3] for possible generalisation). As a first consequence of that
choice, we may then obtain a nice and simple property on the generator of a positive
semigroup.

Definition 4.1. Let us consider a Banach lattice X and a generator Λ of a semi-
group SΛ on X.

(a) - We say that the semigroup SΛ is positive if SΛ(t)f ∈ X+ for any f ∈ X+

and t ≥ 0.
(b) - We say that a generator Λ on X satisfies Kato’s inequalities if the inequality

(4.1) ∀ f ∈ D(Λ) Λθ(f) ≥ θ′(f) Λf

holds for θ(s) = |s| and θ(s) = s+.
(c) - We say that −Λ satisfies a ”weak maximum principle” if for any a > ω(Λ)

and g ∈ X+ there holds

(4.2) f ∈ D(Λ) and (−Λ + a)f = g imply f ≥ 0.

(d) - We say that the opposite of the resolvent is a positive operator if for any
a > ω(Λ) and g ∈ X+ there holds −RΛ(a)g ∈ X+.

Here the correct way to understand Kato’s inequalities is

∀ f ∈ D(Λ), ∀ψ ∈ D(Λ∗) ∩X ′+ 〈θ(f),Λ∗ψ〉 ≥ 〈θ′(f) Λf, ψ〉.
It is well known (see [89] and [2, Remark 3.10] and the textbook [3, Theorems

C.II.2.4, C.II.2.6 and Remark C-II.3.12] ) that the generator Λ of a positive semi-
group SΛ on one of our Banach lattice space of functions satisfies Kato’s inequalities
(4.1). It is also immediate from the Hille’s identity (2.2) that (a) implies (d) and
then (c) in the general Banach lattice framework. For a broad class of spaces X
the properties (a), (b), (c) and (d) are in fact equivalent and we refer again to the
textbook [3] for more details on that topics.

Last, we need some strict positivity notion on X and some strict positivity (or
irreducibility) assumption on SΛ that we will formulate in term of “strong maximum
principle”. It is worth mentioning that we have not assumed that X+ has nonempty
interior, so that the strict positivity property cannot be defined using that interior
set (as in Krein-Rutman’s work [67]). However, we may define the strict order >
(or <) on X by writing for f ∈ X

f > 0 iff ∀ψ ∈ X+\{0} 〈ψ, f〉 > 0,

and similarly a strict order > (or <) on X ′ by writing for ψ ∈ X ′

ψ > 0 iff ∀ g ∈ X ′+\{0} 〈ψ, g〉 > 0.

It is worth emphasising that from the Hahn-Banach Theorem, for any f ∈ X+

there exists ψ ∈ X ′+ such that ‖ψ‖X′ = 1 and 〈ψ, f〉 = ‖f‖X from which we easily
deduce that

(4.3) ∀ f, g ∈ X, 0 ≤ f < g implies ‖f‖X < ‖g‖X .

Definition 4.2. We say that −Λ satisfies a “strong maximum principle” if for any
given f ∈ X and µ ∈ R, there holds

|f | ∈ D(Λ)\{0} and (−Λ + µ)|f | ≥ 0 imply f > 0 or f < 0.

We can now state the following version of the Krein-Rutman Theorem in an
general and abstract setting.



SPECTRAL ANALYSIS AND GROWTH-FRAGMENTATION 39

Theorem 4.3. We consider a semigroup generator Λ on a “Banach lattice of
functions” X, and we assume that

(1) Λ satisfies the assumptions of the semigroup Weyl’s Theorem 3.1 for some
a∗ ∈ R;

(2) there exist b > a∗ and ψ ∈ D(Λ∗) ∩X ′+\{0} such that Λ∗ψ ≥ b ψ;
(3) SΛ is positive (and Λ satisfies Kato’s inequalities);
(4) −Λ satisfies a strong maximum principle.

Defining λ := s(Λ), there holds

a∗ < λ = ω(Λ) and λ ∈ Σd(Λ),

and there exists 0 < f∞ ∈ D(Λ) and 0 < φ ∈ D(Λ∗) such that

Λf∞ = λ f∞, Λ∗φ = λφ, RΠΛ,λ = Vect(f∞),

and then

ΠΛ,λf = 〈f, φ〉 f∞ ∀ f ∈ X.
Moreover, there exist α ∈ (a∗, λ) and C > 0 such that for any f0 ∈ X

‖SΛ(t)f − eλt ΠΛ,λf0‖X ≤ C eαt ‖f0 − ΠΛ,λf0‖X ∀ t ≥ 0.

Remark 4.4. (a) Theorem 4.3 generalises the Perron-Frobenius Theorem [92,
39] for strictly positive matrix Λ, the Krein-Rutman Theorem [67] for ir-
reducible, positive and compact semigroup on a Banach lattice with non
empty interior cone and the Krein-Rutman Theorem variant [3, Corollary
III-C.3.17] (see also [46] for the original proof) for irreducible, positive,
eventually norm continuous semigroup with compact resolvent in a general
Banach lattice framework. We also refer to the recent books [86, 9] and the
references therein for more recent developments on the theory of positive
operators. The main novelty here is that with assumptions (1) and (2) we
do not ask for the semigroup to be eventually norm continuous and we only
ask power compactness on the decomposition A and B of the operator Λ
instead of compactness on the resolvent RΛ.

(b) Condition (2) is necessary because the requirement (1) only implies the
needed compactness and regularity on the iterated operator (ARB(z))n

for z ∈ ∆a∗ . Condition (2) can be removed (it is automatically verified) if
condition (1) holds for any a∗ ∈ R.

(c) In a general Banach lattice framework and replacing the strong maximum
principle hypothesis (4) by the more classical irreducibility assumption
on the semigroup (see for instance [3, Definition C-III.3.1]) Theorem 4.3
is an immediate consequence of Theorem 3.1 together with [3, Theorem
C-III.3.12] (see also [26, 46, 47]). We have no idea whether the strong max-
imum principle and the irreducibility are equivalent assumptions although
both are related to strict positivity of the semigroup or the generator. Any-
way the strong maximum principle for the operator −Λ is a very natural
notion and hypothesis from our PDE point of view and that is the reason
why we have chosen to presented the statement of Theorem 4.3 in that way.
Moreover, the proofs in [3, part C] are presented in the general framework
of Banach lattices and positive or reducible semigroups (no compactness
assumption is required in the statement of [3, Theorem C-III.3.12]) so that
quite abstract arguments are used during the proof. We give below a short,



40 S. MISCHLER, J. SCHER

elementary and somewhat self-contained proof of Theorem 4.3, and thus do
not use [3, Theorem C-III.3.12].

Proof of Theorem 4.3. We split the proof into five steps.

Step 1. On the one hand, let us fix 0 ≤ f0 ∈ D(Λ) such that C := 〈f0, ψ〉 > 0
which exists by definition of ψ. Then denoting f(t) := SΛ(t)f0, we have

d

dt
〈f(t), ψ〉 = 〈Λf(t), ψ〉 = 〈f(t),Λ∗ψ〉 ≥ b 〈f(t), ψ〉,

which in turns implies

(4.4) 〈f(t), ψ〉 ≥ C ebt ∀ t ≥ 0.

On the other hand, from Theorem 2.1 we know that ω(Λ) ≤ max(a∗, λ). As a
consequence, if λ < b for any a ∈ (max(a∗, λ), b) there exists Ca ∈ (0,∞) such that

〈f(t), ψ〉 ≤ ‖ψ‖X′ ‖f(t)‖X ≤ Ca ‖ψ‖X′ eat ‖f0‖X .
That would be in contradiction with (4.4). We conclude that a∗ < b ≤ λ = ω(Λ).

Step 2. We prove that there exists f∞ ∈ X such that

(4.5) ‖f∞‖ = 1, f∞ > 0, Λf∞ = λf∞.

Thanks to the Weyl’s Theorem 3.1 we know that for some a < 0

Σ(Λ) ∩∆a = ∪Jj=1{ξj} ⊂ Σd(Λ), <eξj = λ,

with J ≥ 1. We introduce the Jordan basis V := {g1,1, ..., gJ,LJ} of Λ in the
invariant subspace RΠΛ,a as the family of vectors

gj,` 6= 0, Λgj,` = ξjgj,` + gj,`−1 ∀ j ∈ {1, ..., J}, ∀ ` ∈ {1, ..., Lj},
with the convention gj,k = 0 if k ≤ 0 or k ≥ Lj + 1, as well as the projectors
(associated to the basis V )

Πj,` := projection on gj,`, Πk := projection on Vect(gj,k, 1 ≤ j ≤ J}.
For any fix g ∈ V we write g = g1 − g2 + ig3 − ig4 with gα ≥ 0 and we remark
that there exists α ∈ {1, ..., 4} and k0 ≥ 1 such that Πk0g

α = ΠΛ,ag
α 6= 0. We

then define k∗ = k∗(gα) := max{k; Πkg
α 6= 0}, that set being not empty (since it

contains k0). We may split the semigroup as

eΛtgα =
∑
j

∑
`

eΛt Πj,`g
α + eΛt (I −ΠΛ,a),

with Πj,`g
α = (πj,`g

α) gj,`, πj,`g
α ∈ C, and

eΛt gj,` = eξjtgj,` + ...+ t`−1 eξjtgj,1.

Using the positivity assumption (3) and keeping only the leading order term in the
above expressions, we have thanks to Theorem 3.1

0 ≤ 1

tk∗−1
e(Λ−λ)tgα =

J∑
j=1

(πj,k∗g
α)e(ξj−λ)tgj,1 + o(1).

There exist a sequence (tn) which tends to infinity and some complex numbers
zj ∈ C, |zj | = 1, such that passing to the limit in the above expression, we get

0 ≤
J∑
j=1

(πj,k∗g
α) zj gj,1 =: g∞.
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Because of the choice of α and the fact that the vectors gj,1, 1 ≤ j ≤ J , are
independent, we have then g∞ ∈ RΠΛ,a∩X+\{0}. Making act again the semigroup,
we get

0 ≤ eΛtg∞ =

J∑
j=1

eξjt[(πj,k∗g
α) zj gj,1] ∀ t ≥ 0,

which in particular implies

J∑
j=1

=m
{
eξjt[(πj,k∗g

α) zj gj,1]
}

= 0 ∀ t ≥ 0,

and then πj,k∗g
α = 0 if =mξj 6= 0. As a conclusion, we have proved that there

exists g∞ ∈ N(Λ− λ) ∩X+\{0}. Together with the strong maximum principle we
conclude that f∞ := g∞/‖g∞‖ satisfies (4.5).

Moreover, the above argument for any g = gj,Lj associated to ξj 6= λ and for
any α ∈ {1, ..., 4} such that Πj,Ljg

α 6= 0 implies that πj,k∗g
α = 0, or in other words

(4.6) max
ξj 6=λ

Lj < max
ξj=λ

Lj .

Step 3. We prove that there exists φ ∈ X ′ such that

(4.7) φ > 0, Λ∗φ = λφ.

We define S∗Λ the dual semigroup associated to SΛ and we emphasize that it is not
necessarily strongly continuous (for the norm in X ′) but only weakly continuous
(for the weak topology σ(X ′, X)). However, introducing the splitting

S∗Λ = (SΛ(I −ΠΛ,a))∗ + (SΛΠΛ,a)∗

and observing that

‖(SΛ(I −ΠΛ,a))∗‖B(X) ≤ Ca eat

for some a < λ, the same finite dimension argument as in Step 2 implies that there
exists φ ∈ N(Λ∗ − λ) ∩X ′\{0}.

Let us prove the strict positivity property. For a > s(Λ) and g ∈ X+\{0}, thanks
to the weak and strong maximum principles (3) and (4), there exists 0 < f ∈ X
such that

(−Λ + a)f = g.

As a consequence, we have

〈φ, g〉 = 〈φ, (−Λ + a)f〉
= 〈(a− Λ∗)φ, f〉 = (a− λ) 〈φ, f〉 > 0.

Since g ∈ X+ is arbitrary, we deduce that φ > 0. That concludes the proof of (4.7).

Step 4. We prove that N(Λ−λ) = vect(f∞). Consider a normalized eigenfunction
f ∈ XR\{0} associated to the eigenvalue λ. First we observe that from Kato’s
inequality

λ|f | = λf sign(f) = Λf sign(f) ≤ Λ|f |.
That inequality is in fact an equality, otherwise we should have

λ〈|f |, φ〉 6= 〈Λ|f |, φ〉 = 〈|f |,Λ∗φ〉 = λ〈|f |, φ〉,
and a contradiction. As a consequence, |f | is a solution to the eigenvalue problem
λ|f | = Λ|f | so that the strong maximum principle assumption (4) implies f > 0 or
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f < 0, and without lost of generality we may assume f > 0. Now, we write thanks
to Kato’s inequality again

λ(f − f∞)+ = Λ(f − f∞) sign+(f − f∞) ≤ Λ(f − f∞)+,

and for the same reason as above that last inequality is in fact an inequality. Since
(f − f∞)+ = |(f − f∞)+|, the strong maximum principle implies that either (f −
f∞)+ = 0, or in other words f ≤ f∞, either (f − f∞)+ > 0 or in other words
f > f∞. Thanks to (4.3) and to the normalization hypothesis ‖f‖ = ‖f∞‖ =
1 the second case in the above alternative is not possible. Repeating the same
argument with (f∞−f)+ we get that f∞ ≤ f and we conclude with f = f∞. For a
general eigenfunction f ∈ XC associated to the eigenvalue λ we may introduce the
decomposition f = fr+ifi and we immediately get that fα ∈ XR is an eigenfunction
associated to λ for α = r, i. As a consequence of what we have just established, we
have fα = θαf∞ for some θα ∈ R and we conclude that f = (θr+iθi) f∞ ∈ vect(f∞)
again.

Step 5. We first claim that λ is algebraically simple. Indeed, if it is not the case,
there would exist f ∈ XR such that Λf = λf + f∞ and then

λ〈f, φ〉 = 〈f,Λ∗φ〉 = 〈Λf, φ〉 = 〈λf + f∞, φ〉,

which in turns implies 〈f∞, φ〉 = 0 and a contradiction. With the notations of
step 2 and thanks to (4.6), that implies that for any ξj 6= λ there holds Lj < 1 or
in other words Σ(Λ) ∩ ∆a = {λ}. We conclude the proof by using the semigroup
Weyl’s Theorem 3.1. �

4.2. Krein-Rutman Theorem for the growth-fragmentation equations. .
We start with the cell-division equation for which we apply the Krein-Rutman

Theorem in the Banach lattice L1((x0z0,∞); 〈x〉αdx), α > 1, where z0 is defined
by (1.20), instead of L1

α in order that the operator Λ enjoys a strong maximum
principle.

We have proved (1) in Proposition 3.4. We have Λ∗1 = K(x) (1 − ℘0) ≥ 0
so that (2) holds with b = 0 > a∗. The weak maximum principle (3) is an
immediate consequence of Kato’s inequalities which in turn follows from the fact
that F+θ(f) ≥ θ′(f)F+f a.e for any f ∈ D(Λ), θ(s) = |s| and θ(s) = s+. The
strong maximum principle (4) follows from the fact that the equation

|f | ∈ D(Λ)\{0} and (−Λ + µ)|f | ≥ 0

may be rewritten as

−∂x|f |+ (K(x) + µ)|f | ≥ F+|f | ≥ 0,

and we conclude as in the [79, proof of Theorem 3.1] that the continuous function
|f | does not vanish on (x0z0,∞), so that f > 0 on (x0z0,∞) or f < 0 on (x0z0,∞).

For the self-similar equation the proof is exactly the same by applying the Krein-
Rutman Theorem in the Banach lattice L1(R+; (xα + xβ)dx), 0 ≤ α < 1 < β <∞.
Let us just emphasize that condition (1) has been proved in Proposition 3.10 and
that condition (2) with b = 0 > a∗ follows from the fact that Λ∗φ = 0 for the
positive function φ(x) = x. We refer to [34, Section 3] for the proof of the weak
and strong maximum principle (3) and (4).

Finally, for the age structured population equation we apply the Krein-Rutman
Theorem in the Banach lattice L1(R+). As in [84, Appendix], we observe that,
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denoting by λ > −1 the real number such that∫ ∞
0

K(x) e−(1+λ) x dx = 1

which exists thanks to condition (1.40), the function

ψ(x) := e(1+λ)x

∫ ∞
x

K(y) e−(1+λ) y dx

is a solution to the dual eigenvalue problem

Λ∗ψ = ∂xψ − ψ +K(x)ψ(0) = λψ, 0 ≤ ψ ∈ L∞(R+)

so that in particular (2) holds with λ > a∗ = −1. Condition (1) has been proved
in Proposition 3.14 and the proof of the weak and strong maximum principle (3)
and (4) is classical.

4.3. Quantified spectral gap theorem for the cell division equation with
constant total fragmentation rate. We consider the very particular case of the
cell-division equation with constant total fragmentation rate and fragmentation
kernel which furthermore fulfils condition (1.32) for which we can give an accurate
longtime behaviour asymptotic and answer to a question formulated in [94, 68]. We
then consider the equation

(4.8) ∂tf + ∂xf +K0f = K0

∫ ∞
x

κ(y, x) f(y) dy

with vanishing boundary condition (1.24), where K0 > 0 is a constant and κ sat-
isfies (1.32). In such a situation, we have the following accurate description of the
spectrum.

Proposition 4.5. The first eigenvalue is given by λ = s(Λ) := (nF −1)K0 with nF
defined in (1.32). On the other hand, for any a∗∗ ∈ (−K0, (nF−1)K0) and any α >
α∗, with α∗ large enough (but explicit), Theorem 1.1 holds in L1

α for any a > a∗∗,
which in particular gives an explicit bound on the spectral gap λ− sup<eΣ(Λ)\{λ}.

We use the following extension (shrinkage) of the functional space of the semi-
group decay proved in [81].

Theorem 4.6 (Extension of the functional space of the semigroup decay). Let
E and E be two Banach spaces such that E ⊂ E with dense and continuous em-
bedding, and consider L the generator of a semigroup SL(t) := etL on E, L the
generator of a semigroup SL(t) := etL on E with L|E = L.

We assume that there exist two operators A,B ∈ C (E) such that

L = A+ B, L = A+B, A = A|E , B = B|E ,

and a real number a ∈ R such that there holds:

(i) (B − a) is hypodissipative on E, (B − a) is hypodissipative on E;
(ii) A ∈ B(E), A ∈ B(E);
(iii) there is n ≥ 1 such that∥∥∥(ASB)(∗n)(t)

∥∥∥
B(E,E)

≤ C ′a eat.

The following equivalence holds:
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(1) There exists a finite rank projector ΠL ∈ B(E) which commutes with L and
satisfy Σ(L|ΠL) = {0}, so that the semigroup SL = etL satisfies the growth
estimate

(4.9) ∀ t ≥ 0, ‖SL(t)−ΠL‖B(E) ≤ CL,a e
a t

for any a > a∗ and some constant CL,a > 0;
(2) There exists a finite rank projector ΠL ∈ B(E) which commutes with L and

satisfy Σ(L|ΠL) = {0}, so that the semigroup SL = etL satisfies the growth
estimate

(4.10) ∀ t ≥ 0, ‖SL(t)−ΠL‖B(E) ≤ CL,a e
a t

for any a > a∗ and some constant CL,a > 0.

Proof of Proposition 4.5. Step 1. We recall some fact presented in [94, 68]. We
introduce the rescaled function g(t, x) := f(t, x) e−λt and the associated rescaled
equation

(4.11) ∂tg + ∂xg + nFK0g = K0

∫ ∞
x

κ(y, x) g(y) dy

with vanishing boundary condition (1.24) and initial condition g(0) = f0. We
observe that the number of particles∫ ∞

0

g(t, x) dx

is conserved. One can then show using the Brouwer-Tykonov Theorem that there
exists a steady state f∞ by proceeding exactly as for the self-similar fragmentation
equation [34, Section 3] (see also [94, 68] where other arguments are presented). Ex-
istence of the steady state f∞ is also given by the Krein-Rutman Theorem presented
in section 4.2. This steady sate corresponds to the first eigenfunction associated to
the first eigenvalue (nF − 1)K0 of the cell-division equation (4.8).

Anyway, under assumption (1.32), it has been shown during the proof of [94,
Theorem 1.1] and [68, Theorem 1.1] that the solution g to (4.11) satisfies

‖g(t)− 〈f0〉 f∞‖−1,1 ≤ e−λt‖f0 − 〈f0〉 f∞‖−1,1

where for any f ∈ L1
1 with mean 0 we have defined

‖f‖−1,1 :=

∫ ∞
0

∣∣∣ ∫ x

0

f(y) dy
∣∣∣ dx.

Step 2. For the mitosis equation, we introduce the splitting Λ = A+ B where

A := F+
R , B := −∂x − nF K0 + F+,c

R ,

with the notations of section 3.3. We define E := L1
α, α > 1, and for any f ∈ L1

α

with mean 0 we define

‖f‖−1,α :=

∫ ∞
0

∣∣∣ ∫ x

0

f(y) dy
∣∣∣ 〈x〉α−1 dx,

as well as E the Banach space obtained by completion of L1
α with respected to the

norm ‖ · ‖−1,α. We clearly have that A satisfies (ii) in both spaces E and E and
that B satisfies (i) in the space E for any a > a∗, a∗ := −K0(1 − ℘α) thanks to
Lemma 3.6. We claim that B also satisfies (i) in the space E for any α > log2 3
and any a > a′ := 2K0 (3× 2−α − 1). In order to prove that last claim we proceed
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along the line of the proof of [94, Theorem 1.1]. For any g ∈ E , we introduce the
notations

g(t) := eBtg, G(t, x) :=

∫ x

0

g(t, u) du,

and we compute

∂tG+ ∂xG+ 2K0G = −2K0

∫ ∞
x

χcR(2y) ∂yG(t, 2y) dy

= 2K0χ
c
R(2x)G(t, 2x) + 4K0

∫ ∞
x

(χcR)′(2y)G(t, 2y) dy.

Similarly as in the proof of Lemma 3.6, we define

φ(x) := 1[0,x2] +
xα−1

xα−1
2

1[x2,∞)

and we compute for R ≥ x2

∂t

∫ ∞
0

|G|φ+

∫ ∞
0

|G|φ α− 1

x
1x≥x2

+ 2K0

∫ ∞
0

|G|φ

≤ K0

2α−1

∫ ∞
0

|G|φχcR +
K0

2α−1

∫ ∞
0

|(χcR)′|x |G|φdx

≤ 3
K0

2α−1

∫ ∞
0

|G|φ,

where in the last line we have used that |x (χcR)′| ≤ 2 by definition of χcR. We
conclude by taking x2 = R large enough.

Moreover, we claim that

(4.12)
∥∥∥(ASB)(∗2)(t)

∥∥∥
B(E,E)

≤ C ′ (1 + t) e−µt,

with µ := nFK0 = 2K0. In order to prove estimate (4.12), as in the proof of
Lemma 3.9 and with the same notations, we compute starting from (3.25)

U
(∗2)
0 (t)g(x) = 16K2

0χR(2x) e−µt
∫ u1

u0

χR(2u− 4x+ 2t)g(u) du

= 16K2
0χR(2x) e−µt

{[
χR(2u− 4x+ 2t)G(u)

]u=u1

u=u0

− 2

R

∫ u1

u0

χ′R(2u− 4x+ 2t)G(u) du
}
,

and we get then for any β ≥ 0

‖U (∗2)
0 (t)g‖L1

β
≤ C (1 + t) e−µt ‖G‖L1 .

We have a similar estimate for U0 ∗U c0 and we then obtain (4.12) thanks to formula
(3.24). We conclude by using the shrinkage of functional space result stated in
Theorem 4.6, and we get for possible definition of α∗ the unique real number such
that 3℘α∗ − nF = [a∗∗ − (nF − 1)K0]/K0.

Step 3. For the cell division equation with smooth offsprings distribution ℘ we can
proceed along the line of [68, Theorem 1.1] and of step 2. We introduce the same
splitting as for the mitosis equation and we work in the same spaces. We clearly
have again that A satisfies (ii) in both spaces E and E and B satisfies (i) in E. We
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claim that B also satisfies (i) in the space E for any a > a′ ∈ (−nFK0, 0) and any
α > α′ where α′ > 1 is such that a′/K0 = −nF + 4

α′nF + ℘α′−1. Indeed, we have

∂tG+ ∂xG+ nF K0G = −K0

∫ ∞
x

∫ ∞
y

κcR(z, y) ∂zG(z) dzdy

= −K0

∫ ∞
x

βcR(z, x)G(z) dz,

with

βcR(z, x) := − ∂

∂z

∫ ∞
x

κcR(z, y) dy

= −nF (x/z) (χcR(z))′ + χcR(z)β(z, x),

where

β(z, x) := − ∂

∂z

∫ ∞
x

κ(z, y) dy, nF (u) :=

∫ 1

u

℘(u′) du′,

and where κcR(x, y) = χcR(x)κ(x, y) is defined on R2
+ by extended it to 0 outside of

the set {(x, y) ∈ R2; 0 < y < x}. On the one hand, we have

Φ1(z) :=

∫ z

0

nF (x/z) |(χcR(z))′|φ(x) dx

≤ nF |(χcR(z))′| (x2 + zα/α) ≤ 4

α
nF φ(z)

for any z ≥ 0 if x2 ≤ Rα/α. On the other hand, we have

Φ2(z) :=

∫ z

0

χcR(z)β(z, x)φ(x) dx

≤ χcR(z)
{
η(x2/R) + ℘α−1 φ(z)

}
, η(u) :=

∫ u

0

℘(u′) du′,

for any z ≥ 0. Next, we compute

∂t

∫ ∞
0

|G|φ+

∫ ∞
0

|G|φ α− 1

x
1x≥x2

+ nF K0

∫ ∞
0

|G|φ

≤ K0

∫ ∞
0

{∫ z

0

|βcR(z, x)|φ(x) dx
}
|G(z)| dz

≤ K0

∫ ∞
0

{
Φ1(z) + Φ2(z)

}
|G(z)| dz

≤ K0

{ 4

α
nF + η(x2/R) + ℘α−1

}∫ ∞
0

|G|φdx,

and we take α > 1 large enough and next R/x2 large enough.

We next claim that U0 := ASB0 with B0 := −∂x − µ, µ := nF K0, satisfies

(4.13) ‖U0(t)g‖L1
β
≤ C

(
1 +

1

t

)
e−µt‖g‖−1,1.

Starting from the definition

(U0(t))(x) := e−µtK0

∫ ∞
x

κR(y, x) ∂yG(y − t) dy

= −e−µtK0 κR(x, x)G(x− t)− e−µtK0

∫ ∞
x

∂y[κR(y, x)]G(y − t) dy,
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we compute

‖U0(t)g‖L1
β
≤ K0 e

−µt
∫ ∞

0

χR(x) 〈x〉β ℘(1)
|G(x− t)|
x− t+ t

dx

+K0 e
−µt

∫ ∞
0

∫ y

0

{
|(χR)′| 1

y
℘(
x

y
) + χR(y)

x

y3
|℘′(x

y
)|
}
〈x〉β G(y − t) dy

≤ K0 e
−µt CR,β

(
1 +

1

t

) ∫ ∞
0

|G(z)| dz,

and that ends the proof of (4.13). We introduce the notations E1 := E, E0 := E
and E1/2 as the 1/2 complex interpolation between the spaces E0 and E1. From the
preceding estimates, we have for any a > −µ that

‖U0(t)‖Ej ,Ej+1/2
C t−1/2 eat.

Thanks to (3.24) it is not difficult now to prove that (4.12) holds also in the present
case. We conclude again by using the shrinkage of functional space result stated in
Theorem 4.6. �

4.4. Quantified spectral gap for the self-similar fragmentation equation
with positive kernel. We present a second situation where a very accurate and
quantitative description of the spectrum is possible.

Proposition 4.7. Consider the self-similar fragmentation equation and assume
that the fragmentation kernel satisfies (1.35), (1.30) and (1.31). Then, there exists
a computable constant ε > 0 such that the spectral gap s(Λ)− a∗∗ ≥ ε holds.

Proof of Proposition 4.7. We split the proof into four steps.

Step 1. A priori bounds. We fix a = a∗/2 where a∗ is given by Proposition 3.10.
From Proposition 3.10 and then Theorem 3.3, there exists a constant Ra such that
for any eigenfunction f associated to an eigenvalue ξ ∈ Σ(Λ) ∩∆a which satisfies
the normalization condition

(4.14)

∫ ∞
0

|f(y)| y dy = 1

there holds

(4.15)

∫ ∞
0

|f(y)| 〈y〉2+γ dy ≤ Ra, |ξ| ≤ Ra.

Together with the eigenvalue problem rewritten as

∂x(x2f) = x2 [xγ f + ξ f −F+f ],

we deduce that x2f ∈ BV (R+) ⊂ L∞(R+) and then, iterating the argument, that
for any δ ∈ (0, 1) there exists Cδ such that

(4.16) ‖f‖W 1,∞(δ,1/δ) ≤ Cδ.

Step 2. Positivity. From (4.14) and (4.15) we clearly have

(4.17)

∫ 1/δ

δ

|f(y)| y dy ≥ 1− 2Rδ.

Taking δ1 := 1/(4R), we see that there exists at least one point x1 ∈ (2δ1, 1/(2δ1))
such that

(4.18) |f(x1)| ≥ δ2
1/2.
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Introducing the logarithm function θ defined by f(y) = |f(y)| eiθ(y) which is locally
well defined for any y ∈ (0,∞) such that f(y) 6= 0, we see from (4.18) and (4.16)
that there exists an interval I1 ⊂ (δ1, 1/δ1), x1 ∈ I1, and a computable real number
ε1 := ε(δ1) > 0 such that

(4.19) |I1| ≥ ε1 and <e(f(x) e−iθ(x1)) ≥ δ2
1/4 ∀x ∈ I1,

and better (since cos and |f(x)| are Lipschitz functions)

(4.20) |I1| ≥ ε1 and |f(x)| ≥ δ2
1/4, |θ(x1)− θ(x)| ≤ π/4 ∀x ∈ I1.

On the other hand, we know that ΠΛ,0f = 0 which yields∫ ∞
0

<e
{
f(y) e−iθ(x1)

}
y dy = 0.

From (4.15) again, we deduce that∫ 1/δ

δ

<e
{
f(y) e−iθ(x1)

}
y dy ≤ 2Rδ.

But together with the positivity property (4.19), there exists δ2 < δ1 such that
2Rδ2 < κ2 := ε1 δ

2
1/8 > 0 and for any δ ∈ (0, δ2)∫ 1/δ

δ

(
<e
{
f(y) e−iθ(x1)

})
−
y dy ≥ κ2.

Using the same arguments as above, there exists x2 ∈ (δ2, 1/δ2) such that

|f(x2)| cos(θ(x2)− θ(x1)) ≤ −κ2 δ
2
2/2,

and then there exist an interval I2 ⊂ (δ2, 1/δ2) and some constants ε2, κ2 > 0 such
that

|I2| ≥ ε2 and |f(y)| ≥ κ2 ∀ y ∈ I2,

as well as

cos[θ(y)− θ(x)] ≤ 0 ∀x ∈ I1, ∀ y ∈ I2.

We may assume without lost of generality that x1 > x2.

Step 3. By definition of the growth-fragmentation operator Λ, we clearly have∫ ∞
0

(Λ|f | − (Λf) signf)φ =

∫ ∞
0

∫ y

0

k(y, x) |f(y)|(1− signf(y) signf(x))φ(x) dxdy.

Since

<e{1− signf(y) signf(x)} = 1− cos[θ(y)− θ(x)] ≥ 1 ∀x ∈ I1, ∀ y ∈ I2,

we deduce that

<e
∫ ∞

0

(Λ|f | − (Λf) signf)φ

≥ ℘∗ δγ−1
2

∫
I2

|f(y)|
∫
I1

{
1− cos[θ(y)− θ(x)]

}
x dx

}
dy

≥ ℘∗ δγ−1
2 δ1 ε1 ε2 κ2 =: η.
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Step 4. Conclusion. For any mass normalized eigenvector f ∈ D(Λ) associated to
an eigenvalue ξ ∈ ∆a ∩ Σ(Λ)\{0}, there holds thanks to step 3

<eξ 〈|f |, φ〉 = <e〈ξf signf, φ〉
= <e〈Λf signf, φ〉
≤ 〈Λ|f |, φ〉 − η

and then <eξ ≤ −η. As a consequence, ∆η ∩ Σ(Λ) = {0} and we conclude thanks
to Theorem 3.1. �
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[8] Balagué, D., Cañizo, J. A., and Gabriel, P. Fine asymptotics of profiles and relaxation

to equilibrium for growth-fragmentation equations with variable drift rates. Kinet. Relat.

Models 6, 2 (2013), 219–243.
[9] Banasiak, J., and Arlotti, L. Perturbations of positive semigroups with applications.

Springer Monographs in Mathematics. Springer-Verlag London Ltd., London, 2006.

[10] Basse, B., Baguley, B. C., Marshall, E. S., Joseph, W. R., van Brunt, B., Wake, G.,
and Wall, D. J. N. A mathematical model for analysis of the cell cycle in cell lines derived

from human tumors. J. Math. Biol. 47, 4 (2003), 295–312.

[11] Bell, G., and Anderson, E. Cell growth and division: I. a mathematical model with appli-
cations to cell volume distribution in mammalian suspension cultures. Biophysical Journal

8, 4 (1967), 329–351.

[12] Bertoin, J. The asymptotic behavior of fragmentation processes. J. Eur. Math. Soc.
(JEMS) 5, 4 (2003), 395–416.

[13] Beysens, D., Campi, X., and Pefferkorn, E. Fragmentation phenomena. World Scien-
tific, Singapore (1995).
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von S. Flügge), Bd. 12, Thermodynamik der Gase. Springer-Verlag, Berlin, 1958, pp. 205–

294.



SPECTRAL ANALYSIS AND GROWTH-FRAGMENTATION 51

[44] Grad, H. Asymptotic theory of the Boltzmann equation. II. In Rarefied Gas Dynamics

(Proc. 3rd Internat. Sympos., Palais de l’UNESCO, Paris, 1962), Vol. I. Academic Press,

New York, 1963, pp. 26–59.
[45] Greer, M. L., Pujo-Menjouet, L., and Webb, G. F. A mathematical analysis of the

dynamics of prion proliferation. J. Theoret. Biol. 242, 3 (2006), 598–606.

[46] Greiner, G. Zur Perron-Frobenius-Theorie stark stetiger Halbgruppen. Math. Z. 177, 3
(1981), 401–423.

[47] Greiner, G., Voigt, J., and Wolff, M. On the spectral bound of the generator of semi-

groups of positive operators. J. Operator Theory 5, 2 (1981), 245–256.
[48] Gualdani, M. P., Mischler, S., and Mouthot, C. Factorization of non-symmetric oper-

ators and exponential H-Theorem. hal-00495786.

[49] Gurtin, M. E., and MacCamy, R. C. Non-linear age-dependent population dynamics.
Arch. Rational Mech. Anal. 54 (1974), 281–300.

[50] Gurtin, M. E., and MacCamy, R. C. Some simple models for nonlinear age-dependent
population dynamics. Math. Biosci. 43, 3-4 (1979), 199–211.

[51] Gyllenberg, M., and Webb, G. F. A nonlinear structured population model of tumor

growth with quiescence. J. Math. Biol. 28, 6 (1990), 671–694.
[52] Heijmans, H. J. A. M. On the stable size distribution of populations reproducing by fission

into two unequal parts. Math. Biosci. 72, 1 (1984), 19–50.

[53] Helffer, B., and Nier, F. Hypoelliptic estimates and spectral theory for Fokker-Planck
operators and Witten Laplacians, vol. 1862 of Lecture Notes in Mathematics. Springer-

Verlag, Berlin, 2005.
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