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Abstract—In this paper, spectral properties of the Fibonacci-class
one-dimensional quasi-periodic structures, FCJ(n), as an important
optical structure are investigated. Analytical relations for description
of the spectral properties of FCJ(n) are used. Fast Fourier Transform
(FFT) for investigation of the spectral properties of these structures
is proposed. FFT spectrum of the Fibonacci-class one-dimensional
quasi-periodic structures contains peaks that are equivalent to photonic
bandgaps or multiband reflection filter. Based on the proposed
relations and FFT simulation results, the optical bandgap and other
properties of these structures are studied. In this paper, the effects
of the optical and geometrical parameters on optical properties of
the Fibonacci quasi-periodic structures are considered. Our proposed
relations show that the spectral contents of the Fibonacci-class one-
dimensional quasi-periodic structures have two main terms including
the low and high frequency parts. Our results illustrate that the high
frequency term depends up on the class order, n, and the width of
the layer B, db, while the low frequency term depends on the width
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of the layer A, da. According to the proposed method, the spectral
contents of FCJ(n) includes multi narrowband peaks multiplied by a
quasi periodic envelope function. The number of multi narrow bands
within a periods of the envelope function can be controlled by varying
db and n and also the number of period of envelope function can be
manipulated by da. Results obtained from our proposed analytical
relations and FFT based simulation results are close together.

1. INTRODUCTION

Advancements in high speed signal processing and data communica-
tions make narrow and multi band optical filters attractive to optical
device engineers and designers. Multilayer structures are the most
suitable alternatives for such devices. However, for designing and fab-
ricating narrowband optical filters, one needs a stack containing a great
number of layers in which the neighboring layers index differences are
exceedingly small. In practice, such structures are hard to fabricate.
Nevertheless, inherent properties of the quasi-periodic structures make
them alternative potentials, to be used in designing narrowband optical
filters.

Quasi-periodic structure was discovered in 1984 [1]. Since
then, a considerable amount of research was carried out, considering
the optical response of such structures, in particular, based on
Fibonacci multilayer [2–14]. Some of these works were focused
on studying the localization of light waves within Fibonacci quasi-
periodic multilayer structures to create photonic bandgaps similar to
those existing in periodic structures [2–5]. It began in 1987, when
Kohmoto et al. introduced the first system based on optical Fibonacci
multilayers capable of localizing photons [2]. Then, Sibilia et al.
have utilized these quasi-periodic structures and demonstrated that
the transmission spectrum, produced by such structures, are dense in
wavelengths, displaying a self-similar pattern [3]. Next, Gellermann et
al. experimentally showed the existence of bandgaps in the spectrum
of these structures [4]. Macia used transfer matrix method (TMM) to
study Fibonacci dielectric multilayers, numerically [6].

Omnidirectional bandgaps, using Fibonacci quasi-periodic struc-
tures, were also reported by Lusk et al. [7]. Peng et al. have observed
resonant transmission of light in a symmetric Fibonacci multilayers,
characterized by many perfect transmission peaks, useful for narrow-
band multiwavelength optical filtering applications [8]. They have also
studied the light transport through the band-edge states, where they
have observed the mode beating and strongly suppressed group veloc-
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ity. Other research teams have realized the second and third harmonic
generations, utilizing such multilayer structures [9] and [10]. Further-
more, complete intensity-dependent switching of pulses were achieved
[9] and [10]. Fibonacci sequences were used either as reflectors or trans-
mitters in designing microcavity structures [6, 11, 12]. Useful mathe-
matical expressions for such devices were derived by others [13–15].

Although the Fourier transform has already been used for spectral
analysis of some periodic waveguide and grating structures [16, 17],
however, so far, we have not seen any published reports on the
dependence of the spectral properties of these multilayer’s on the
physical parameters. In this paper, using the fast Fourier transform
(FFT) method, we have studied the spectral properties of the
Fibonacci quasi-periodic structures of various dimensions and various
refractive index profiles.

Our studies are focused on Fibonacci class FC3(n). Organization
of the paper is as follows. In Section 2, we present the mathematical
model describing the quasi-periodic structures, FC3(n). Then, Fourier
transform of the refractive index profile is taken and the spectral
properties are extracted. Next, we present the simulation results in
Section 3. In Section 4 we describe a few design tools for multiband
filters. Finally, we conclude the paper with Section 5.

2. MATHEMATICAL MODEL

According to the mathematical recursive relations the Fibonacci-class
quasi periodic structures can be generated using the following two main
substitutions that is done for two basic elements A and B [14].

B → Bn−1A and A → Bn−1AB (1)

where, n is a positive integer. Based on the proposed substitutions the
following relations show the recursive relations for a general case.



FC1(n) = S1 = B

FC2(n) = S2 = Bn−1A

FC3(n) = S3 = (Bn−1A)nB
...

FCj(n) = Sj = Sn
j−1Sj−2

(2)

For the purpose of illustration, an explicit form of the proposed
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general relation for the Fibonacci class FC J(n) (for J = 3) is

S3 = Sn
2 S1 = (Bn−1A)nB =

n︷ ︸︸ ︷
(BBB . . . B︸ ︷︷ ︸

n−1

A) . . . (BBB . . . B︸ ︷︷ ︸
n−1

A)B (3)

Now, for realization of the Fibonacci class in the optical domain,
we assume that A and B are two optical dielectric layers with constant
indices of refractions na and nb and thicknesses da and db, respectively.
So, the index of refraction profile for a one dimensional FC3(n)
multilayer structure can be written as,

n(z) =




nb 0 < z ≤ (n − 1)db

na (n − 1)db < z ≤ (n − 1)db + da

nb (n − 1)db + da < z ≤ 2[(n − 1)db + da]
...

...
nb (n−1)(n−1)db+(n−1)da <z≤n(n−1)db+(n−1)da

na n(n − 1)db + (n − 1)da < z ≤ n[(n − 1)db + da]
nb n[(n − 1)db + da] < z ≤ n[(n − 1)db + da] + db

(4)

where z is the coordinate along which the light propagates.
Now, we take the Fourier transform of the refractive index profile,

N(k) =
1
2π

∫ L

0
n(z) exp(jkz)dz, (5)

where, k is the wave number in the medium and L is the total structure
length. Inserting Eq. (4) into Eq. (5) leads us to

N(k) =
∫ (n−1)db

0
nb exp(jkz)dz+

∫ (n−1)db+da

(n−1)db

na exp(jkz)dz

+
∫ 2(n−1)db+da

(n−1)da

nb exp(jkz)dz + · · ·

+
∫ n(n−1)db+(n−1)da

(n−1)(n−1)db+(n−1)da

nb exp(jkz)dz

+
∫ n[(n−1)db+da]

n(n−1)db+(n−1)da

na exp(jkz)dz

+
∫ n[(n−1)db+da]+db

n[(n−1)db+da]
nb exp(jkz)dz (6)
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Performing the integrations and applying some algebraic manip-
ulations, we can rewrite N(k) as,

N(k) =
−nb

jk
+

1
jk

N ′(k), (7)

where N ′(k) is given by

N ′(k) = (nb − na)
n∑

i=1

{exp(jk[i(n−1)db])×(exp(jk[(i−1)da])

−exp(jk[ida]))}+nb{(exp(jk[n(n−1)+1]db))×(exp(jknda))}
(8)

Notice that N ′ is also a function of the geometric parameters of
the structure, n, da and db. By varying these parameters, we will study
the effect of each parameter on the spectral properties of the structure.

3. SIMULATION RESULTS

In this section we first consider a 1-D periodic structure illustrated
in Fig. 1 and use FFT to obtain its spectral behavior, for the sake
of comparison. Next, we simulate the spectral behavior of a quasi-
periodic structure based on Eq. (4). Then, by varying the parameters
n, da and db, we study the effects of these parameters on both the FFT
spectrum and the optical property of the structure.

Figure 1. Schematic diagram of a 1-D periodic structure.

3.1. FFT Spectrum of a 1-D Periodic Multilayer Structure

For the structure illustrated in Fig. 1, we have assumed a 1-D periodic
multilayer structure with periodicity of Λ = da + db composed of two
different materials with thicknesses da = 1µm and db = 1µm and the
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corresponding refractive indices of na = 1.5 and nb = 2.5, respectively.
When the Bragg condition for a photon of wavevector kBR is satisfied;
i.e., kBR = π/Λ a band-gap forms which is equivalent to a dip in the
transmission spectrum of the structure about the angular frequency
ωBR = c · kBR, known as the Bragg frequency, where c is the speed
of light in free space. We note the existence of the dominant Fourier
component at kBR = π/Λ.

Here, the real-space and the reciprocal space variables are all
assumed to be the appropriate optical quantities. The optical
response of the 1-D periodic structure using FFT is illustrated
in Fig. 2. The peaks in the spectrum occur at kBR = mπ/Λ,
where m = 1, 3, 5, . . . , is a positive and odd integer. The largest
amplitude in the spectrum occurs at m =1. The FFT spectrum
of a 1-D periodic structure gives a qualitative determination of the
spectral transmission/reflection characteristics of electromagnetic wave
propagating through the structure. It is evident that ωBR = c · kBR

is the frequency at which the dip/peak in the transmission/reflection
occurs. We anticipated a similar behavior from the FFT spectra of the
quasi-periodic structures, which can be utilized as optical band pass
filters.

Figure 2. FFT spectrum of a typical periodic structure with da =
db = 1 µm, na = 1.5, nb = 2.5, and Λ =2µm.
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3.2. FFT Spectrum of the FC3(n) Multilayer Structure

Now we start with a quasi-periodic structure whose refractive index
profile is described by Eq. (4). The parameters of the structure are
n = 50, da = 0.75 µm, db = 1 µm, na = 1.5, and nb = 2.5. The
length of the structure is L ≈ 2.48 mm. The FFT spectrum of this
structure is depicted in Fig. 3. A sample spacing of 10−9 was used in
our FFT calculations, which is adequate for such dimensions in a quasi-
periodic structure. As one can see from the figure, here, there are sets
of peaks appearing at equi-distance intervals and are equivalent to sets
of corresponding Bragg frequencies. Generalizing the Bragg conditions
for the Quasi-periodic structure, for electromagnetic waves propagating
through a 1-D quasi-periodic structure, qualitatively, there are sets
of dips/peaks in the spectral transmission/reflection characteristics
corresponding to Bragg frequencies, resulting in sets of narrow band
pass filters. The amplitude of each set decreases with increasing k.
Each peak at a given k, in the spectrum is the same as a photonic
bandgap at that k. Some properties of the Fourier spectrum are
presented in the next section.

Figure 3. FFT spectrum of a FC3(50) with da = 0.75 µm, db = 1µm,
na = 1.5, nb = 2.5 and L ≈ 2.48 mm.

FFT spectrum of the FCJ(n) has sets of peaks located at
the Bragg frequencies. Locations of these peaks depends on the
geometrical dimensions of the layers and also the Fibonacci’s order
— i.e., db, da, and n. Such effects are presented next.
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3.3. Effects of Varying db

As we have seen earlier from Eq. (8), N ′(k) depends on db, as
exp (jk [i(n − 1)db]). Since n is, normally, a large number and any
change in db multiplies this large number. Hence, this term is rapidly
oscillating and could be called the high frequency factor. Each
sinusoidal term appears as a peak, in the FFT domain, while the peak
density is proportional to the size of the argument. Hence, for a given
range in the k domain, the peak density increases with increasing db.

(a)

(b)



Progress In Electromagnetics Research, PIER 75, 2007 77

(c)

Figure 4. FFT spectrum of the index profile of three different FC3(50)
with various db, depicted in a 160 nm wide window centered around
1550 nm, (a) da = 0.75 µm, db = 1µm, na = 1.5, nb = 2.5 and
L ≈ 2.49 mm, (b) da = 0.75 µm, db = 2 µm and L ≈ 4.95 mm, (c)
da = 0.75 µm, db = 3 µm and L ≈ 7.4 mm.

At the first instance, one expects that any variation in db affects the
peak distribution density in a given set of the Bragg frequencies.

With all these, our simulation results demonstrated that the small
changes (in order of 10 nm) in db does not have any considerable effect
on the FFT spectrum, while the results for the large variations (in
order of µm) have demonstrated significant effects. In our simulations,
we have set da = 0.75 µm, db = 1µm and n = 50 as the reference
dimensions, first. Then, by varying db, while keeping the other
two parameters fixed, we have studied the possible variations in the
resulting spectrums and compared them with the reference spectrum.
Fig. 4 compares FFT spectrums of three FC3(50) structures, with
various db (= 1, 2, and 3µm), in a 160 nm wide window centered
around 1550 nm. As we have expected, number of the peaks increases
as db increases, in a linear fashion. Number of the peaks (number
of the equivalent PBGs) for db = 1, 2, and 3µm are 10, 20 and 30,
respectively. Since each peak is equal to a photonic bandgap, hence
the photonic bandgap engineering becomes possible, by varying the
peaks positions and/or numbers.
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3.4. Effects of Varying da

As seen, from Eq. (8), the dependence of N ′(k) on da is determined by
the terms exp (jk [(i − 1)da])− exp (jk [ida]) in the summation. These
terms, contrary to the term determining the dependence of N ′(k) on db,
do not involve the large Fibonacci’s order, n. Hence, in comparison,
this could be called the low frequency term. Therefore, at the first
glance, variations in da do not seem to have any significant effect on
the spectrum.

However, our simulation results demonstrate that a small variation
in da, causes a small shift in each set of the Bragg frequencies, in the
k domain. Fig. 5 illustrates the simulation results for two structures
whose da’s increased by 30 and 60 nm from that for the structure of
Fig. 4(a). A Comparison of the results illustrated in Figs. 5(a) and
5(b) with that depicted in Fig. 4(a), demonstrates that, depending
on whether da increases or decreases, the peaks in the FFT spectrum
will shift to the right or left, correspondingly. As is calculated from
the numerical results, the shift is 1.6 nm in wavelength, for a 30 nm
variation in da. One can take this phenomenon granted as the optical
bandgap tunability. That is, the Bragg frequencies can be tuned by
tuning da. It should be noted that the relation between the variations
in da and the shifts in the peaks position is not linear.

Next, we study the effects of large variations (∼ µm) in da on the
FFT spectrum. Fig. 6 illustrates and compares the FFT spectrum
for three different structures with various da values. The results
demonstrate that, by doubling or tripling the value of da, the number
of the sets, in a same window, doubles or triples, correspondingly.
Although, the number of the peaks in each set is almost reduced 2 or
3 times but the distance between the neighboring peaks in each set
remains unchanged, for all three cases.

3.5. Effects of Varying n

As one can expect from Eq. (8), the effects of variations in n should be
the same as that for db. An increase in n results in an increase in the
peak density, in any given range in the k domain. Fig. 7 illustrates the
FFT spectrum of a FC3(70) structure, depicted in a 160 nm window
centered around 1550 nm. The rest of the parameters for the structure
are the same as those for the structure of Fig. 4(a). A comparison of
Fig. 7 with Fig. 4(a), demonstrate that as the Fibonacci’s order, n,
increases the number of the peaks in the same window increases in a
linear fashion. As one can see from Fig. 7, there are 14 peaks occurring
at 14 Bragg frequencies, for n=70, while there exist 10 peaks for the
case of n = 50. Similar to the case of db, in this case also by varying
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(a)

(b)

Figure 5. FFT spectrum of the index profile of three different
FC3(50) with with small perturbation in da, depicted in a 160 nm
wide window centered around 1550 nm, (a) da = 0.78 µm, db = 1 µm
and L ≈ 2.49 mm, (b) da = 0.81 µm, db = 1µm and L ≈ 2.48 mm.

n, while keeping the other parameters fixed, the number and position
of the peaks and hence PBGs vary correspondingly. Therefore, by
varying n the photonic band gap engineering becomes possible.
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4. DESIGN TOOLS FOR MULTIBAND FILTERS

In the previous section, we have demonstrated overall optical properties
of FCJ(n) structures and shown that these properties change with
the structures parameters. Here, we are going to use such properties
to design multiband filters with FC3(n) structures. Note that each
Bragg resonance of the set {kBR} acts as a reflecting optical filter.
Furthermore, increasing the number of the Bragg resonances per k will
result narrower band filters. As an example, the bandwidths of the

(a)

(b)
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(c)

Figure 6. FFT spectrum of the profile index of the FC3(50) in the
2.5 × 106 m−1 ≤ k ≤ 5.5 × 106 m−1 with large variations in da, (a)
da = 0.75 µm, db = 1 µm and L ≈ 2.49 mm, (b) da = 1.5 µm, db = 1 µm
and L ≈ 2.53 mm, (c) da = 2.25 µm, db = 1µm and L ≈ 2.56 mm.

Figure 7. FFT spectrum of the index profile of the FC3(70) with
da = 0.75 µm, db = 1µm, na = 1.5, nb = 2.5, and L ≈ 4.88 mm,
depicted in a 160 nm wide window centered around 1550 nm.
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filters resulting from each peak in the case of Figs. 4(a), (b) and (c)
are 4.8, 2.5 and 1.6 nm, respectively. That is, as db is increased, the
bandwidths of the filters have decreased. Separations between adjacent
peaks in the spectra of Figs. 4(a), (b) and (c) are 17, 8.5 and 4.5 nm,
respectively. Also note that the peaks amplitudes appearing in each
figure are almost equal. This shows that the dips/peaks appearing in
the corresponding transmission/reflection spectra are almost equal.

On the one hand, we have seen that by varying either n or db, one
can adjust the number of the Bragg frequencies and hence the number
of filters and the free spectral range (FSR), in a given window, in the
same manner. So, both n and db can be used as design tools. On the
other hand, we have demonstrated that small variations in da cause
small displacements in the center frequency of each band. That is,
introducing small perturbations in da enables one to tune multiband
filters. Besides, different values of da provide window selectivity in
the wavelength domain. Thus, da is also another design tool, for the
multiband filters.

5. CONCLUSION

In this paper, spectral properties of the Fibonacci-class quasi-periodic
structures based on the FFT of the index of refraction have been
analyzed. We have shown that the high frequency term in the spectra
depends on both n (class order) and db (the width of the layer B), while
the low frequency term depends on da (the width of the layer A). The
latter provides envelope functions, which bound the high frequency
multi narrow band peaks. These envelope functions vary in a quasi
periodic manner. Number of the multi narrow bands within each
period of the envelope function can be controlled by varying db and
n. Furthermore, number of the periods of the envelope functions can
be manipulated by varying da.

Based on the proposed analysis, multi band optical filters can
easily be designed.
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