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S U M M A R Y  
The  five independent components r,,, TVz ,  rzz ,  r,, - rYY, and  r,, of the gravity 
tensor are measurable by gradiometers. When grouped into { r z z } ,  {r,,, rPz} and 
{r, - rvy, 2rxY}, and expanded into an  infinite series of pure-spin spherical 
harmonic tensors, simple eigenvalue connections can be derived between these 
three sets and the  spherical harmonic expansion of the  gravity potential. The  three 
eigenvalues a re  ( n  + l ) ( n  + Z), - (n  + 2 ) v m  and v ( n  - l ) n (n  + l ) ( n  + 2). 
This result permits an easy analytical incorporation of all measurable tensor 
components into a spectral signal and noise analysis of gravity quantities on a 
sphere. Analogous relations also exist for a 2-D Fourier (flat earth) expansion of 
these three sets. An additional advantageous feature of the  set {rxr - T,,, 2rr,}, 
besides the  simple eigenvalue relation, is its invariance with respect t o  small position 
uncertainties, e.g. ,  of the  trajectory of the  satellite or airplane carrying the 
gradiometer. Hence a complete framework exists in terms of the  eigenvectors of all 
operators connecting the  zeroth, first, and  second derivatives of the gravitational 
potential. At the same time t h e  results facilitate t he  planning of gradiometer 
missions and  their data analysis. 

Key words: geodesy, gravity gradiometry , gravity tensor, tensor spherical 
harmonics. 

1 INTRODUCTION 

Despite the large amount of gravity material available nowadays the current knowledge of the Earth’s gravity field still is far 
from sufficient. Geopotential models, i.e. sets of spherical harmonic coefficients as derived from the analysis of satellite orbits, 
cover only the long wavelength part of the field with a spatial resolution of typically lo00 km. Terrestrial gravity measurements 
are missing for large parts of the Earth’s surface, and altimetric data do not cover the polar areas of the oceans. Plans exist to 
improve this situation during the coming decade by means of satellite and airborne gradiometry. Gravity gradiometry is the 
measurement of the second derivatives of the gravity potential. A global, detailed picture of the gravity field will improve the 
understanding of the structure, composition and dynamics of the solid earth and in conjunction with other new methods for 
probing the Earth’s interior, provide a more accurate three-dimensional model, cf. Geophysical and Geodetic Requirements 
(1987), Lambeck (1990), or Solid Earth Science in the 1990s (1991). 

The gravity tensor consists of nine components, the nine second derivatives of the gravitational potential V :  

i, j =  1 ,  2, 3. (1) 
a2 V rll = ~ 

axi 3x1 ’ 

In this context the derivatives are 

taken with respect to the local spherical, orthonormal triad e,, where e , , ,  = ex points north, e,=, = e, points east, and e,=, = e, 
is directed radially outwards. Since the components r,) can be viewed as gradients of the gravity vector components 
g, = 3V/ax‘ ,  their measurement is commonly referred to as gradiometry. Thus gradiometry is the measurement of r,,, either of 
all nine components, or of some of them, or of a specific linear combination. In case the measurements are taken on the 
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Earth's surface, the effect of the Earth's rotation has to  be taken into account, which means the gravitational potential V has to 
be replaced by W ,  the sum of V and the centrifugal potential Z .  

Terrestrial gradiometer measurements are very much affected by density variations and topographic features in the 
immediate vicinity of the observation point. This makes them very suitable for exploration geophysics, cf. Jung (1961). 
However, since the torsion balance, the traditional gradiometric instrument, requires very laborious field and reduction work, 
and more efficient modern measurement devices d o  not exist, terrestrial gradiometry is basically not applied anymore. Much is 
expected, on the other hand, from the development of aerial and satellite gradiometers, see e.g. Paik (1981), Spaceborne 
Gravity Gradiometers (1983), Balmino et af. (1984), and Jekeli (1988), because by gradiometric measurements, taken at a 
certain altitude above the Earth's surface, the natural gravity attenuation with increasing distance from the Earth's mass 
distribution is compensated for a great deal. This point shall be illustrated by an example, considering the second radial 
derivative r,, = a2V/dr2. 

The gravitational potential V is a harmonic function outside the Earth's surface (say, outside a sphere S with radius R, the 
mean radius of the Earth). Thus it can be expanded into an infinite series of solid spherical harmonics q,, , , (P) = 
(R/r)"+'Y,,,,,(8, A) with coefficients u,,,, and r > R. Yfl,(8, A) are  the surface spherical harmonics 

- 
and P,, the fully normalized associated spherical harmonics. The second radial derivative yields for r = R 

Comparison of the original potential function V with r,, shows a multiplication of the coefficients u,,, by a factor 
(n + l)(n + 2 )  = n'. Since the degree n corresponds approximately to  a spatial wavelength A = 2nR/n  the high sensitivity of r,, 
to local density contrasts is explained. Repeating the same consideration at  altitude h ( r  = R + h )  above the Earth's surface, we 
find 

Hence one sees that the attentuation effect (R/(R + /I))"+' is, to  a certain extent, compensated by the 'differentiation effect' 

This feature as well as the high attainable data rate, both regionally and globally, have led in recent years to considerable 
activity in the field of spaceborne gradiometry. However, the idea of spaceborne gradiometry has been pursued for more than 
twenty years (Rummel 1986a). During all these years the fundamental characteristics of spaceborne gradiometry, in terms of 
gravity field determination, are commonly explained employing spectral analysis as applied to  spherical harmonic expansions, 
analogous to the example shown above, cf. Meissl (1971). Glaser & Sherry (1972), Balmino (1974) and Rummel (1975,1979). 
If a spectral model of the measurement noise is introduced as well, fairly realistic estimates of the expected signal and noise 
propagation and of the attainable spatial resolution and accuracy can be derived; we refer to  Kaula (1969), Jekeli & Rapp 
(1980), Rummel (1979). or Rapp (1989). 

So far spectral analysis of gradiometry has been confined to  the second radial derivative rzz. The purpose of this article is 
to show that it can be applied to  all independent components of the gravity tensor. In Section 2 spherical harmonic vectors and 
second-rank tensors will be discussed. The latter type is used in Section 3 to  evaluate the signal and noise propagation of 
satellite gradiometry. Section 4 contains a short discussion on the effect of orbit errors. In Section 5 spectral analysis of the 
gravity gradients shall be applied using two-dimensional Fourier expansions. Section 6 contains the conclusions. 

(n + l ) (n  + 2) .  

2 EXPANSION INTO SPHERICAL H A R M O N I C  VECTORS A N D  TENSORS 

Since the gravitational potential field V is harmonic outside of S and irrotational (V x VV = 0) it follows for the gravity tensor 

3 2 rii = o (traceless), 
i =  I 

and 

Tt, = r,l and i # J (symmetric). (5b) 
Consequently only five components are independent, e.g. r,, ryy,  r r , ,  r,,, and rzx. O n  S(0, R )  the five components are 
regarded as continuous and continuously differentiable functions. O n  S the solid spherical harmonics qnm form a complete set 
of orthonormal base functions of a separable Hilbert space with v,,,,, = Y,,,, for r = R. This allows V and r,, with equation (3) 
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where p = GM is the gravitational constant times the mass of the Earth. 
Equation (3) can be regarded as the eigenvalue expansion of the linear self-adjoint operator R2a,, with eigenvalues 

A, = (n + l)(n + 2). On S the self-adjoint operators are isotropic, as explained in Meissl's (1971) discussion of the global 
covariance function on the sphere. Meissl also extends his theory from scalar to tangent vector functions. Let the surface 
gradient operator Grad be defined as: Grad = rV, = (-a/%, sin-' 8 i?/aA)'., and the surface divergence as: Div = (rV;) = 
(-a/aR, sin-' 0alaA). Then we have: 

Grad Ynrn(P) = m-X,, , , (P) ,  (8) 

with X,, the orthonormal set of tangent vector spherical harmonics denoted U,,,, by Meissl (1971). For the adjoint operator we 
find 

DivX,,(P) = - q m  Y,,(P). (9) 

An immediate consequence is the surface Laplace equation: 

Div Grad Y,,,,,(P) = Lap Yn,,,(p) = -n(n + l)Y,,,(l'), (10) 

with Lap the surface Laplace operator, compare e.g. Heiskanen & Moritz [1967, eq. (1-44)]. By Green's identities it can be 
shown that the X,,,(P) form a complete, orthonormal system of eigenfunctions on S for tangent, spherical vector fields. Then 

l=xnm(p) .  xkC(p) d Q P  

1 
Grad Y n r n ( P ) .  Grad Y,,(P) dQ 

1 - 

where Q is the unit sphere Q(0, 1) and d Q  = sin 0 dA do. Meissl applied the vector spherical harmonics to the expansion of the 
deflections of the vertical, see also Groten & Moritz (1964). 

One may suspect that for the expansion of the second derivatives of V, i.e. of the gravity tensor components, also an 
orthonormal in this case, a tensorial system exists on S. It is given in Regge & Wheeler (1957) and discussed in more detail in 
Zerilli (1970). In the case of a second-rank, trace free and symmetric tensor, compare equations (Sa, b), the group of the five 
components is irreducible and belongs to the representation 9('). We refer to Rose (1957, chapter 17), Joshi (1978, chapter 
6.5.3), or Jones (1985, chapter 3.2). For our purpose, three kinds of tensor spherical harmonics are needed, denoted ZrA, 
ZcL, and Z?L. They suffice to represent the three kinds of tensor components {rZZ( = -rxx - rY-")}, {r,,, r,,}, and 
(rxx - ryy, 2rxy}. In the local spherical triad e, they consist of a tangential and a radial part. The tensor spherical harmonics, 
given here for r = R, are defined by the following eigenvalue expansions: 

\ * *  0 /  \* * 0 
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a2 
-2- 0 \  

n 2  ax2 ay' axey 

R 2 9 ( 2 ) ~ n m  = 
ay2 ax2 " / 

' 0  0 0' 

(the asterisk indicating symmetry of the component with respect to the main diagonal). 
The tensor spherical harmonics ZrL, ZFA, and Z!,: are, apart from the scale factor, essentially identical to the pure-spin 

tensor harmonics TLo*nm, TElVnm , and TE2.""', respectively, of Thorne (1980) or anm, b,,, and fnm of Zerilli (1970). They are 
applied in mathematical physics. There they are used for example for the representation of gravitational radiation. However, 
whereas the latter are expressed as co- and contravariant components with respect to the curvilinear coordinates 8 and A, we 
prefer to give them as Cartesian components with respect to the local spherical triad ei. Consequently they provide a more 
direct connection to the gradiometric observables. With the tensor components indicated by i and j the orthonormality 
relationship of these tensor spherical harmonics is 

where (Y and /3 = 0, 1, 2 and [ . I i j  denote the tensor components. 

components {rzz}, {r,,, 
The operators of equations (12) applied to the gravitational potential (6) give the expansions of the measurable 

and {rxx - ryy, 2r,,} expressed here as the three second-rank tensors r(('), r(l) and 1'(2): 

Thus the expansion coefficients of three spherical tensors are related to those of the potential V by the spectral connection 
(eigenvalues) of Table 1. [Remember: the coefficients of the spherical tensor (or vector) expansions are scalars!] Conversely, 

Table 1. Eigenvalues connecting the potential coefficients u,,, with 
those of the irreducible second-rank, spherical tensors containing 
{I-==}, {rrz, r,,), and Ir,, - r,,, 2rxv},  respectively. 

""rn 
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from the orthogonality relations (13) the components can be determined by 

Hence the spectral expressions for all five independent tensor components are derived, in complete analogy to the scalar and 
vector gravity functionals on the sphere. We close this section with three remarks. 

(1) The only non-zero component of I?") is Tzz. Its eigenvalues, equation (15a), are identical to those derived in equation 
(3). Thus we see that Tzz can be treated as a scalar function on S as well. Similarly, the combination {ril, r,,=}, contained in 
r(') could be interpreted as components of a tangent spherical vector field by means of (8) and (9). This has been done by 
Meissl (1971). 

(2) r(') contains the elements r,, - r,,,, and 2rX.". These are the well-known observables of a torsion balance, cf. SelCnyi 
(1953) or Jung (1961), and of the rotating spaceborne gradiometer discussed, e.g. in Spaceborne Gravity Gradiometers (1983) 
or Rummel (1986b). 

(3) If the gravitational potential V is to be determined from the observable tensors rcO), r(') or r(') individually, a 
singularity emerges in the case of r(') for degree n = 0, and in the case of r(2) for degrees n = 0 and n = 1, compare Table 1. 

3 SPECTRAL ANALYSIS  O N  T H E  S P H E R E  

The expected average signal power of the gravitational potential V ,  or of the disturbance potential T ,  i.e. of the remaining part 
of V after subtracting a known reference field U ,  is expressed by the dimensionless signal degree variances c,:  

+ n  

c, = c vf,. 
m = - n  

The expected average size of the individual coefficient is given by the 'degree-order' variance: 

1 1 
c,, = - c, = - c vf,. 

2 n + 1  2 n + 1 ,  

Both variances can be determined either from the coefficients up to the maximum degree of one of the available geopotential 
models or from a degree variance model, e.g. that of Tscherning & Rapp (1978). From it the degree variances of I-(('), r(') and 
r(') are determined by the propagation law of covariances, cf. Meissl (1971) or Moritz (1980). With (15) we have 

C,(r(")) = (A?))'cn(T) = ( n  + 1)'(n + 2)2cn(T),  

C n ( r ( l ) )  = ( A ; ) ) ~ ~ , , ( T )  = n(n + I ) ( ~  + 2 ) 2 c , , ( ~ ) ,  

cn(rC2)) = ( a ? y c n ( T )  = (n - I ) ~ ( ~  + i)(n + ~ ) c , ( T ) .  

(18a) 

( 1 @J) 

( 18c) 
Hence we observe that basically all three types of gradients are related to T by a factor == n4. Their spectra are almost 
identical. On a first inspection this seems somewhat surprising, as we generally have the idea, that the radial component Tzz 
has a higher sensitivity to short wavelength features in the gravity spectrum. 

The error spectrum is determined by a spherical harmonic expansion of the error covariance function. If we assume for 
each gradiometer component slightly correlated white noise of constant variance ui over S, the degree-order error variance 
&, becomes (cf. Heiskanen & Moritz 1967. chapter 7-7): 

where S' represents the integral (volume) of the covariance function on S .  It is the model of a band-limited white noise. For 
example, for the case of uncorrelated equal area blocks of size R2 As and variance 0: (see, Jekeli & Rapp 1980) it is 
S' = $8' As and therefore 

For spaceborne experiments, several ways are discussed in the literature on how to determine S' from the available samples 
and their along- and cross-track distribution, cf. Migliaccio & Sanso (1989). Let us now assume that each of the five 
independent gradiometer components can be described independently with the same error model, e.g., unbiased, band-limited 
white noise of variance uz = lop4 E2 Hz-' (1E = lop9 S-'). For the component TI,, two cases shall be distinguished. 

Case (1) rxy is derived from two independent observations: r ,=~ [ (xy )+ (yx ) ]  [with (xy) and ( y x )  denoting the 
measured components]; and 

Case (2) only rx,, is measured. 
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Figure 1. Signal degree-order variances cnnl (equation 17b) at 200 km altitude based on the geopotential model OSU89 up to degree and order 
360 and noise degree-order variances assuming a standard deviation of lo-' E / f i  for each gradient component, see equation (20). The noise 
spectra refer to rzz,  {r,,, ryz }  and {rAx - r,,, 2rrv}, the latter under the assumption of case ( 1 )  and case (2). respectively. 

Then straightforward error propagation yields for the ratios of the degree-order variances: 

Hence we see that the error standard deviation of r") is a factor of 2, or in case (2) even higher than that of r(") because of 
the number of involved tensor components. Hence the superiority of {rZ,) above the combinations {r,,, rv2}  or 
{rx.r - r;,,, 2r,."} stems not from a higher signal content in the short wavelengths but from the lower noise level and is-hardly 
significant. 

In Fig. 1 the signal and noise degree-order spectra are displayed for a satellite altitude of 200 km. The noise spectrum is 
computed assuming a measurement standard deviation of lo-' E / f i  for each component, a mission duration of 6 months 
and an integrated sample interval of 4s.  The signal degree variances were computed with the OSU89 geopotential model of 
Rapp & Pavlis (1990). We see the signal spectrum, which is practically the same for r(()), r(') and r('), and the white noise 
spectra. The noise level of r(l) is slightly higher than that of r'"), and that of r(2) (cases 1 and 2) slightly higher than that of 
r('). As a consequence the attainable resolution, defined by a signal-to-noise ratio of one, is n = 248 for r(')), n = 240 for r(l) 
and n = 228 or 223 for r(*), respectively. For the same case, the predicted worldwide geoid (and gravity anomaly) precision 
would be 8 cm (3.1 mGal), 9 cm (3.3 mGal), and 10 or 11 cm (3.6 or 3.7 mGal), respectively, The mutual differences are 
practically irrelevant. This means that with all three versions, r(''), r(') or  I.(*), a worldwide, high resolution (-100 km) geoid 
or gravity anomaly field can be determined in a few months time by satellite gradiometry. 

and r,, 
have been determined from the OSU89 set of potential coefficients on a global 0.25" X 0.7" grid. Then by spherical harmonic 
analysis the coefficients of each of these components have been computed up  to degree and order 240. From them the signal 
degree variances c,, of each component have been determined. What should be their expected average size? Since according to  
equation (18) c,(r(")) = c,(r(')) = c,(T'") = n"c,,(T),  it can be expected that the signal variance level of the individual 

Relation (21) has been checked by the following experiment. The gradiometer components r,,, r,,,, TZz, r,", 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/111/1/159/554940 by guest on 21 August 2022



Gravity tensor 165 

9 ,  
0 

0 -  

9 
7 1 I 1 1 

- 

I I 1 

a! 
0 

N 
N 
I- 

L 
d 

fX 
aJ 
% 
0 a 

d l  I 
d 

I 

Figure 2. Root mean square (rms) spectra per degree relative to rzz of (from top to bottom) c,,(xz) + c , ( y z ) ,  c, , (xx) + c , ( y y ) ,  c , (xz) ,  c , ( y z )  
(dashed line), c,(xx),  c , ( y y )  (dashed line), and c,(xy).  The straight lines indicate the theoretically expected values. 

component becomes 

cn ( r x z )  = ~ n ( r v z )  = i c n  (rzz 1 s  
and 

c,,(r,,) = fcx,,) = &(rzx) = icn(rzz).  

This is in essence the inverse reasoning followed for (21a) and (21b), where starting from the same noise level for each 
gradiometer component that of the composed quantities I?'), r(') and r(*) was deduced. From the above the following root 
mean square (rms) average signal ratios per degree follow: 

rmsn { r z z  I - rmsn { r z z  1 - 1 
rmsn { r x z  I - rmsn { r y z  1 - fi ' 

rmsn { r z z  1 - 1 , 

rmstl{rx.,} - 2 f i  

The rms, spectra relative to Tzz are displayed in Fig. 2. They confirm equation (22) ,  and consequently (21), see also Rummel, 
Koop & Schrama (1989). 

4 THE EFFECT OF T H E  ORBIT U N C E R T A I N T Y  

In all experiments the observation location is only known approximately. Thus, not only have the coefficients of the 
gravitational field got to be determined, but the unknown point coordinate corrections (Ax, Ay, Az) enter as well. In the case 
of terrestrial observations they are highly irregular and related to the terrain, in satellite applications they describe the 
difference between a chosen reference and the actual orbit and can be described by orbit dynamics. In Rummel & Colombo 
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(1985) a linear gradiometric model has been derived in spherical approximation: 

Hereby the anomalous quantities Arjl represent the difference between a measurable gradiometric component and the 
corresponding component expressed in a chosen reference gravity field and evaluated at  the approximate location. The 
represent the second derivatives of the unknown disturbance potential. In a least-squares adjustment they are  expanded into 
series of spherical harmonics with unknown coefficients u,,,,,. If from the Ar, ,  the anomalous tensors A r ( = )  are formed, 
analogous to (14), we observe that A r ( 2 ) ,  containing Ar,, - Aryy  and 2 A r x y ,  becomes invariant with respect t o  displacements 
Ax, Ay and Az.  Thus not only does this combination possess simple spectral properties, it also turns out to  be, in spherical 
approximation, insensitive to small displacements, independent of whether they refer to  a terrestrial point or an aerial or 
satellite trajectory. 

5 ISOTROPIC E I G E N V A L U E S  OF 2-D FFT R E P R E S E N T A T I O N  

In this section it shall briefly be shown that analogous isotropic spectral relations, as derived for r(m) in terms of spherical 
harmonics, hold true for 2-D Fourier expansions too. In recent years representation of the local gravity field in terms of 2-D 
Fourier series received increasing attention. The reason for this is that, on the one hand, better and better geopotential models 
became available which properly take care of the global, long wavelength part of the gravity field and that, on the other hand, 
the computational efficiency of FFT makes this approach very attractive. The spectral theory of the gravity field in terms of 
Fourier expansion is reviewed, for example, by Jordan (1978), Hofmann-Wellenhof & Moritz (1986) or recently by Schwarz, 
Sideris & Forsberg, (1990). See also Dorman & Lewis (1974). 

From the solution of Laplace's equation for the half-plane with z 2 0 (where z is the altitude above the plane representing 
the surface of the earth) the harmonic base functions become 

(24) pln,(p) = e-wze--,(ux+"Y) 

with the condition that 

W 2  = u 2  + 2. (25) 

The gravitational potential V is now expanded either into the infinite series 

2 n  2 n  
with the understanding that u = m - and u = n - , and Ax . A, is a rectangular area in which V is given and is assumed to  be 

A, A" 
continued periodically in x and y ,  or as the double integral 

for lim A,-+m and lim Ay+m. The eigenvalues derived from the various differential operators in x, y and z are listed in 
equation (28), see Table 2. 

Applying the tensor operators to  F,,~, we find: 
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Table 2. Differential operators in x, y and z and corresponding 
eigenvalues. 
operator eigenvalue eq. 

a x  - iu 28. a 

- iv b aY 

-uv 

i uw 

-v2 

ivw 

Y2 

The functions Z g )  are orthonormal systems of tensor eigenfunctions: 

The analogy with the eigenvalue analysis on the sphere is evident, compare with equations (12)-(16). Hence the spectral 
analysis of signal and noise can be applied along the lines of Section 3. 

6 CONCLUSIONS 

In recent years plans for gradiometry projects have become more and more concrete. ESA and NASA are jointly planning the 
Aristoteles mission for the late nineties; for the beginning of the next century a superconducting gravity gradiometer mission 
(SGGM) is envisaged by NASA. Earlier plans to map the global lunar gravity field by gradiometry are  currently under review 
again. Airborne gradiometry, although technically not mature yet, could soon prove important for measuring details of the 
gravity field in selected areas. Aristoteles is designed to measure the tensor components rzz ,  ryz and r,,, with a precision of 
1 O P 2 E / ~ .  With this the global gravity field can be determined in six months time with a precision of 2-5 mGal 
(1 mGal = msC2) in terms of gravity anomalies or 5-10 cm in terms of geoid heights, and with a spatial resolution of 
100 km. SGGM would improve these numbers by almost an order of magnitude with a spatial resolution of 50 km. 

Although the gradiometer concepts designed so far vary considerably, ranging from one component to full tensor 
instruments, from inertial to earth pointing orientations, and from fixed to  rotating sensors, the error simulations are usually 
based on the radial component r,, only. This component has the highest signal strength and allows very simple error 
propagation from the gradiometer component to  any desired gravity quantity, like geoid heights. With the results of this work 
the signal power of all measurable gradiometer components can easily be predicted. In terms of signal 
degree variances the following rule holds: c,,(r,,) = {c,(r,,) = $,,(FAX) = ~c,,(r,,) = &,,(r,,) = &,t(I'zz). For example, the 
signal power of r,, is on average only a of that of rzz. This rule has been confirmed experimentally with one of the available 
geopotential models. 
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Furthermore it has been shown that  the combinations of gradiometer components  r(’)= {rxz, r,,} and r(*)= {rXr - 
r,,, 2rxy} produce the  same signal strength as rzz.  However  due  t o  the  involvement of two measured components in r(’) and 
three (or four) in r(’), in order  t o  reach the same precision and resolution as with rzz ,  their precision must be better by a factor 
of ~ or fi (or 2), respectively. T h e  combination r(’) = - ryy,  2rx,,} is of particular interest. I t  is the combination that, 
in early days, could be measured with a torsion balance. However  modern prototype instruments for airborne and lunar 
experiments also produce this combination. Error simulation for  r(’) and r(2) turns o u t  t o  be  as simple as that for  rzz.  

Finally, with ,I:) and the newly found eigenvalue A:’’, spherical integral formulae can b e  established, comparable in their 
structure to  the Stokes formula,  which convert the measured {r,,, ryz}  or {rxx - ryy,  2r,,,}, given as functions on a sphere 
(e.g. at  satellite altitude), into gravitational potential, geoid height, gravity anomaly or any o the r  desired gravity quantity. This 
aspect will be elaborated in a later paper. T h e  covariance propagation for the gradient components is discussed by Krarup & 
Tscherning (1984). 
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