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Abstract—A simplified overview of time-domain jitter measure-
ments is presented in this paper. The relationship between the time-
domain jitter measurements and the power spectrum of the phase
jitter is described using fundamental Fourier properties and basic
random variables analysis. This leads to a unifying analysis and the
results are in agreement with commonly accepted understanding of
jitter accumulation in oscillators. The presented analysis also pro-
vides the basis for comparing different jitter measurements.

Index Terms—Absolute jitter, jitter accumulation, jitter mea-
surements, phase jitter, phase locked loop (PLL), phase noise, spec-
tral analysis, time-domain jitter.

I. INTRODUCTION

T HE time-domain phase jitter measurement of an oscillator
can be achieved using a number of different approaches.

There exist a multitude of publications that refer to the various
methods used for the measurement of phase jitter. Some of the
common names/methods used to characterize jitter include “pe-
riod jitter,” “edge-to-edge jitter,” “cycle-to-cycle jitter,” “abso-
lute jitter,” “tracking jitter,” etc. Even though each of these mea-
surement types are important and well understood by groups of
engineers within their applications, the authors find that the dif-
ferences between the various measurements and how they are
related to one another is somewhat confusing and has not been
discussed in a simplified and unifying framework.

In this paper, our goal is to summarize the spectral analysis
of various time-domain jitter measurements that are used by
many oscillator and phase-locked loop (PLL) IC designers. We
will establish a simplified way of looking at relationships be-
tween various time-domain measurements and their spectral re-
lationship to well-known phase jitter power spectrums of both
open-loop (oscillator only) and closed-loop PLLs.

In Section II, we start by reviewing the relationship between
time and frequency domain (radians) phase jitter to voltage
phase noise (dBc—referenced to carrier). In Section III we
present a summary of various jitter measurement terminologies.
In Section IV we briefly summarize the classic second-order
signal and noise transfer functions of a PLL. We follow
this in Section V with the spectral analysis of time-domain
measurements obtained by a self-referenced open-loop PLL
(oscillator only) measurement. In Section VI, we provide
results for a self-referenced closed-loop PLL measurement. An
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example extending the established method for spectral analysis
is described in Section VII. Final remarks and conclusions
follow in Section VIII.

II. REVIEW OF PHASE JITTER AND VOLTAGE PHASE NOISE

In general, phase jitter/noise in the time-domain as
well as its power spectral density in the frequency domain are
discussed in many papers both in the context of open-loop and
closed-loop PLLs [1], [2]. Another commonly used measure
of phase noise isvoltagephase noise, commonly measured at
the output of an oscillator by using a spectrum analyzer. This
measurement is usually expressed in dBc (voltage power in
decibel with respect to the power of the carrier/fundamental
tone). In this section, we want to review the relationship
between time and frequency domain jitter descriptions and
voltage phase noise.

We start by considering a clean periodic ( ) signal
. A “jittery” signal (with phase noise) may be defined as

(1)

where represents the phase noise disturbance of the time
variable inseconds. From the Fourier series expansion of
and ignoring the static dc phase offset, the signalsand
may be defined as

(2)

(3)

In the above representation, describes the phase
noise inradians. As an aside we note that the scaling of the
phase jitter between the fundamental tone and the harmonics is
also clearly seen in : The phase jitter of the second har-
monic 2 is twice as large (2 ) as the jitter of the funda-
mental . This makes sense since the time shift (noise)
in seconds is the same for both the fundamental and the second
harmonic and the period of the second harmonic is half that of
the fundamental.

In order to see the relationship from (and its power spec-
trum) to the voltage phase noise (dBc), let us consider the fol-
lowing phase modulation example. Assume a sinusoidal signal

at frequency of with a single frequency phase jitter

(4)
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Fig. 1. Definitions of period jitter and absolute jitter.

As represents the amplitude of phase noise in radians, if
(the “narrow-band” FM approximation)

(5)

Given the narrow-band approximation, the power spectrum of
the oscillator with a single tone phase noise consists of the car-
rier and two side tones each offset from the carrier by the phase
jitter frequency . The dBc value of each of the two side tones
is . From this, we see the direct relationship be-
tween the phase jitter (and the frequency domain spectrum
of phase jitter which is an impulse function of weight

at ) and the representative voltage phase noise in dBc.
This is valid only given the narrow-band approximation. With
out the narrow-band assumption, Bessel functions of the first
kind describe the spectrum [3]. Exact analysis involving Bessel
functions can spread the phase jitter frequency () out further
from the carrier (seemodulation indexof FM). In the analysis
of oscillator/PLL systems and applications, the narrow-band as-
sumption is typically accurate.

In this section, we have shown the relationship between the
phase jitter variable and thevoltagephase noise power
spectrum measured in dBc. This was done to show the trans-
lational equivalence of the two measures and so that the subse-
quent discussions dealing with the phase variable can be
seen to apply to voltage phase noise in dBc as well.

III. JITTER MEASUREMENTTERMINOLOGY

Let us first briefly define the terminology that we will use
in describing various jitter measurements. The two most im-
portant and commonly used definitions, period jitter and abso-
lute jitter, are shown in Fig. 1. This illustration is similar to that
used in [4]. The termperiodjitter, is the variation measured be-
tween one rising edge to the next. The duration measured is the
period of the oscillation. Some have appropriately called this
measureedge-to-edgejitter, cyclejitter and sometimes the term

Fig. 2. PLL system.� is the input phase,� is the output phase, and� is
the phase noise at the output of the VCO.

cycle-to-cyclejitter is used.1 This period jitter measurement is
most commonly quoted in digital applications (e.g., micropro-
cessors) where the high-speed data propagation is critically de-
pendent on proper data latching from one clock edge to the next.

Another commonly quoted jitter measurement is theabsolute
jitter. Sometimes the termtracking jitter is used instead. How-
ever, in the closed-loop PLL, both the absolute jitter and the
tracking jitter measurements are referring to the same jitter. In
a typical lab environment, the absolute jitter measurement of a
closed-loop PLL is obtained by triggering off the input reference
frequency (normally an accurate “jitter-free”2 crystal source)
and measuring the PLL output. Given the resources, one can also
estimate the absolute jitter by obtaining the PLL output clock
edges for a very long period of time and using the average clock
period as the “reference.” The term tracking jitter is intended
to be specific about how this measurement is made, specifically
how well the output of the closed-loop PLL tracks the nearly
ideal input reference. While the absolute jitter means the same
in a closed-loop PLL, the same term can also be used for the
open-loop PLL (oscillator only). The open-loop absolute jitter is
almost never measured (but can be estimated by measurement)
for practical purposes, but the concept is found useful as we
elaborate on this in Section V. Because the term tracking jitter is
less commonly used and the term absolute jitter is more gener-
ally useful, we prefer the term absolute jitter. The absolute jitter
measurement (in closed-loop PLL) is quoted for many (if not
most) applications including data converters and telecommuni-
cation systems. This measure is especially important in digital
communication systems where the bit-error-rate of a transmit to
receive channel is directly affected by the amount of the trans-
mitter clock jitter and by the accuracy (e.g., jitter) of the re-
ceiver’s clock and data recovery (CDR) system.

We note here that one of the most commonly quoted papers
by Maneatis [5] uses the term cycle-to-cycle jitter and tracking
jitter. However, this does not mean that these terms are the norm.
For example, Herzel and Razavi [4] use the term cycle jitter
and long term jitter, and cycle-to-cycle jitter is used to describe
the jitter that represents the difference between two adjacent
periods (see period-to-period jitter in Section VII). When we
use a time-domain jitter measurement terminology in this paper
(Sections V–VII), we make sure to define each measurement by
a simple mathematical expression to avoid any potential con-
fusion. If all jitter measurement definitions are accompanied
by mathematical expressions, we can now generalize the de-
scription of jitter measurements whether we are looking at a

1While the term cycle-to-cycle jitter is used to describe period jitter in [5], it
is also used to describe the “difference between two consecutive periods” in [4].

2The source has jitter that is low enough so that it is effectively nonexistent
compared to that which is being measured.
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(a) (b)

Fig. 3. PLLs-domain transfer functions. (a)H(s) = (� (s))=� (s). (b)H (s) = (� (s))=� (s).

Fig. 4. Absolute jitter in the time domain.

single period variation (edge-to-edge, cycle-to-cycle), variation
of multiple periods/edges/cycles, variation of period measure-
ments adjacent to one another (period-to-period jitter in Sec-
tion VII), or any other possible combination.

IV. SECOND-ORDER PLL

In the following, we briefly summarize the-domain transfer
functions of a classic second-order PLL. The presented block
diagram and transfer functions are a result of rudimentary math
that is familiar to the reader, but we present it here since the
discussions in the following sections will refer to these funda-
mentals.

When the PLL loop filter is an ordinary first-order filter
(second-order PLL loop), , the input to
output closed-loop transfer function of Fig. 2 becomes

(6)

where the effective phase-detector gain is . This
example is consistent with a series resistance–capacitance
RC loop filter used in a typical charge-pump PLL [6] with a
charge-pump current ( is a constant for a given system).
The effect of a commonly used “ripple bypass capacitor” is
omitted in this discussion for simplicity. The resulting input

to output transfer function can be compared to the standard
two-pole system transfer function

(7)

where and . This
transfer function is shown in Fig. 3(a) for a mildly overdamped
system ( with two closely separated real poles). This
mildly overdamped example is once again chosen for sim-
plicity. In the same PLL system, the transfer function from
the output-referred voltage-controlled oscillator (VCO) phase
noise (from open-loop) to the output of the PLL (closed-loop),
as shown in Fig. 2, yields

(8)

The resulting transfer function is again plotted for closely sep-
arated poles (mildly overdamped) in Fig. 3(b). The discussions
in the following sections will refer to this classic two-pole PLL
system.

V. SELF-REFERENCEDMEASUREMENT OF ANOPEN-LOOPPLL

The phase noise properties (jitter characteristics) of an
open-loop PLL (VCO) are well understood and the explanation
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Fig. 5. Open-loop self-referenced jitter measurement.

of the source of phase noise in integrated oscillators has
received much attention [1], [7]–[11]. In the following analysis,
we will start from an assumed phase noise power spectrum.

Given that an open-loop PLL does not have a fixed
phase/clock reference, let us first assume that measurements
can be collected over a very large (infinite) time window. Then
we can develop a mathematical model such that the absolute,
sampled phase jitter is defined by the discrete time-domain
function . As graphically shown in Fig. 4, is the
rising-edge deviationfrom the ideal phase/clock reference. This
ideal phase reference is the infinite time averaged frequency
clock, which in reality can not be measured. The power spec-
trum of such an open-loop phase noise is discussed in
a number of papers [1], [7], [9], [12], where
for white noise.

The period deviation may be defined as
. This is the self-referenced measurement of one pe-

riod delay and as mentioned above is commonly referred to as
the period jitter. The expression for implies that if the
phase jitter (or phase deviation) is the same in two consecutive
edges, the period deviation for that cycle is zero. The period
jitter is here described in terms of the sampled absolute phase
jitter .

To obtain the power spectrum of the period jitter , or
more generally, the jitter of a self-referenced measurement with

-periods delay, define

(9)

The discrete-time Fourier transform of is given by

(10)

Accordingly, the power spectrum of is

(11)

Equation (11) describes the power spectral density of the self-
triggered measurement with cycle/period delays. If
then (11) describesperiod jitter. To compute the time-domain
variance, we can integrate the power spectrum [13]

(12)

Recall that for the open-loop case and further-
more, to avoid having to express thesampledabsolute phase
noise in the frequency-domain properly (including the aliasing
effects), , (12) may be rewritten as

(13)

This integral is identical to (12) and fully describes the spectral
density of the self-referenced jitter measurements that may now
be analyzed numerically.

The expression inside the integral of (13) is plotted in
Fig. 5 for one period delay ( ) and for 40 period delays
( ). In this figure, the dashed line represents the absolute
open-loop jitter and the solid lines represent
the expression inside the integral of (13) for (thick line)
and (thin line).

From (13), we can deduce that the variance () is propor-
tional to the number of period delaysfor self-referenced mea-
surements. This can be observed by using the Fourier transform
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Fig. 6. Closed-loop self-referenced jitter measurement.

relationship between and functions and applying Par-
seval’s relation for the equality

rect (14)

The numerical integration result of (13) is also shown in
Fig. 7. The thick solid line is the variance of the self-referenced
open-loop phase jitter, increasing linearly with the time delay
( ). This is a well-known behavior that is discussed by Mc-
Neill in [9] and elsewhere. While an intuitive explanation for
this behavior is provided by McNeill, our results confirm this
behavior using straightforward mathematics. This result also
demonstrates that our analysis provides a sound mathematical
support of previously known observations.

VI. SELF-REFERENCEDMEASUREMENT OFCLOSED-LOOPPLL

In thissection,wewilluseanapproachsimilar to thatof thepre-
vious section to derive the jitter characteristics for a closed loop
PLL. The main distinction is that the absolute closed-loop jitter is
not proportional to , rather, due to the PLL feedback in oper-
ation, theabsolute jitterhasa finitemagnitudeover the loopband-
width of the PLL. The power spectral density of the closed-loop
absolute jitter is simply a filtered version of the open-loop abso-
lute jitter ( ). The filtering transfer function was discussed in
Section IV and summarized in Fig. 3. A mildly overdamped PLL
with a first-order loop filter ( ) was used
in this example [6], [14]. For changes in the order of the loop and
the loop filter characteristics, one can calculate the closed-loop
phase noise power spectrum by evaluating the transfer function
to the output of the PLL. The conclusions that are made in the fol-
lowing remain true in either case.

The closed-loop equivalent of (13) for the closed-loop self-
referenced measurement withnumber of periods delay is

(15)

Shown in Fig. 6 is a plot of the power spectrum of the expres-
sion inside this integral. The dashed line approximates the abso-
lute closed-loop jitter (a normalized bandwidth that is
1/100 of the oscillation frequency is assumed) of a mildly over-
damped second-order PLL system summarized in Section IV
and the solid lines represent the expression inside the integral
of (15) for (thick line) and (thin line). The
difference from the open-loop case stems from the fact, as men-
tioned above, that is not proportional to for the
closed-loop case.

As mentioned in [9], we would expect the variance
to approach twice the absolute variance as N increases.
McNeill [9] presents a simple and intuitive explanation for this
behavior in the context of establishing open- and closed-loop
relationships. Here the spectral analysis of the open-loop and
closed-loop PLLs leads to the same conclusion. The added
value of the discussions here is the familiar mathematical
understanding of spectral reshaping and the integral of the
phase jitter measurements. A normalized variance plot from the
numerical calculations of (15) is shown in Fig. 7. The thin solid
line in the figure shows how this closed-loop self-referenced
jitter variance approachestwo timesthe closed-loop absolute
jitter (dashed line) as increases.

VII. EXTENDING THE ANALYSIS TO PERIOD-TO-PERIOD JITTER

In this section, we illustrate how to extend the analysis of the
previous sections to other jitter measurements. We do this by
analyzing what we callperiod-to-periodjitter.

We define period-to-period jitter as thechangein two con-
secutive single period jitter (self-referenced with ) mea-
surements. From this, we can deduce that the period-to-period
jitter power spectrum is the period jitter spectrum multiplied by

(differentiation). We may also reach this result by
following the approach we took in the previous sections. Star-
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Fig. 7. Variance (integrated power spectrum) versus period delay.

ting with definition of period-to-period jitter

(16)

and then following the steps taken in (9)–(13) for the open-loop
PLL (oscillator only), it can be shown that

(17)

The ratio of the numerical integration of the above expres-
sion to the numerical integration of (13) was found to be two,
which is anticipated for the open-loop case (oscillator only) as
each time (period) delay is uncorrelated to one another [9]. This
doubling of the variance from the period jitter to period-to-pe-
riod jitter can also be true for a closed-loop PLL when the loop
bandwidth is low. However, as the loop bandwidth increases, the
back-to-back period jitter becomes more correlated and the ratio
varies from two. To ascertain by how much, we considered the
condition where the loop bandwidth is 1/10 of the VCO output
frequency (an extreme condition). In this case, the numerical
computation of the closed-loop period-to-period jitter variance
yielded approximately a 2.5 increase over the period jitter. Thus,
the factor-of-two increase in variance ( ) from period jitter
to period-to-period jitter seems to be a good approximation for
both open-loop and close-loop cases with practical bandwidths.

VIII. C ONCLUSION

We have shown that the various jitter measurements that
are often taken for oscillators, operating either in open-loop
or the closed-loop, can be explained using familiar Fourier
and basic power spectrum properties. The spectral analysis of

phase jitter measurements we have presented has provided an
in-depth (and hopefully insightful) understanding of phase jitter
relationships in the time-domain and frequency-domain. This
spectral analysis also fills in the details for understanding the
phase jitter for a specific number of clock cycle delays () in
any self-referenced measurements. It was demonstrated, using
the period-to-period jitter example, that the presented methods
for understanding phase jitter can be extended to other jitter
measurement definitions.

REFERENCES

[1] A. Demir, A. Mehrotra, and J. Roychowdhury, “Phase noise in oscil-
lators: A unifying theory and numerical methods for characterization,”
IEEE Trans. Circuits Syst. I, vol. 47, pp. 655–674, May 2000.

[2] A. Hajimiri and T. Lee,The Design of Low Noise Oscillators. Norwell,
MA: Kluwer, 1999.

[3] A. Oppenheim, A. Willsky, and I. Young,Signals and Sys-
tems. Engelwood Cliffs, NJ: Prentice-Hall, 1983.

[4] F. Herzel and B. Razavi, “A study of oscillator jitter due to supply and
substrate noise,”IEEE Trans. Circuits Syst. II, vol. 46, pp. 56–62, Jan.
1999.

[5] J. Maneatis, “Low-jitter process-independent DLL and PLL based
on self-biased techniques,”IEEE J. Solid-State Circuits, vol. 31, pp.
1723–1732, Nov. 1996.

[6] F. Gardner, “Charge-pump phase-lock loops,”IEEE Trans. Commun.,
vol. 28, pp. 1849–1858, Nov. 1980.

[7] A. Hajimiri and T. Lee, “Jitter in CMOS ring oscillators,”IEEE J. Solid-
State Circuits, vol. 33, pp. 179–194, Feb. 1998.

[8] B. Kim, T. Weigandt, and P. Gray, “PLL/DLL system noise analysis for
low jitter clock synthesizer design,” presented at the IEEE Int. Symp.
Circuits and Systems, London, U.K., May 30–June 2 1994.

[9] J. McNeill, “Jitter in ring oscillators,”IEEE J. Solid-State Circuits, vol.
32, pp. 870–879, June 1997.

[10] T. Weigandt, B. Kim, and P. Gray, “Analysis of timing jitter in CMOS
ring oscillators,” presented at the IEEE Int. Symp. Circuits Systems,
London, U.K., May 30–June 2 1994.

[11] W. Egan, “Modeling phase noise in frequency dividers,”IEEE Trans.
Ultrason., Ferroelect. Freq. Contr., pp. 307–315, July 1990.

[12] D. Leeson, “A simple model of feedback oscillator noise spectrum,”
Proc. IEEE, vol. 54, pp. 329–330, Feb. 1966.

[13] A. Papoulis, Probability, Random Variables and Stochastic Pro-
cesses. New York: McGraw-Hill, 1984.

[14] B. Razavi,Monolithic Phase-Locked Loops and Clock Recovery Cir-
cuits. New York: IEEE Press, 1996.



MOON et al.: SPECTRAL ANALYSIS OF TIME-DOMAIN PHASE JITTER MEASUREMENTS 327

Un-Ku Moon (S’92–M’94–SM’99) received the
B.S. degree from the University of Washington,
Seattle, the M.Eng. degree from Cornell University,
Ithaca, NY, and the Ph.D. from the University
of Illinois, Urbana-Champaign, all in electrical
engineering, in 1987, 1989, and 1994, respectively.

From February 1988 to August 1989, he was a
Member of Technical Staff, AT&T Bell Laboratories,
Reading, PA. From August 1992 to December 1993,
he taught a microelectronics course at the University
of Illinois, Urbana-Champaign. From February 1994

to January 1998, he was a Member of Technical Staff, Lucent Technologies
Bell Laboratories, Allentown, PA. Since January 1998, he has been with
Oregon State University, Corvallis. His past works include highly linear and
tunable continuous-time filters, telecommunication circuits including timing
recovery and analog-to-digital converters, and switched-capacitor circuits.
His research interest has been in the area of analog and mixed analog-digital
integrated circuits.

Karti Mayaram (S’82–M’89–SM’99) received
the B.E. (Honors) degree in electrical engineering
from the Birla Institute of Technology and Science,
Pilani, India, in 1981, the M.S. degree in electrical
engineering from the State University of New
York, Stony Brook, in 1982, and the Ph.D. degree
in electrical engineering from the University of
California, Berkeley, in 1988.

From 1988 to 1992, he was a Member of
Technical Staff in the Semiconductor Process and
Design Center, Texas Instruments, Incorporated,

Dallas. From 1992 to 1996, he was a Member of Technical Staff at Bell Labs,
Allentown, PA. From 1996 to 1999, he was an Associate Professor in the
School of Electrical Engineering and Computer Science, Washington State
University, Pullman. Since January 2000, he has been an Associate Professor in
the Electrical and Computer Engineering Department, Oregon State University,
Corvallis. His research interests are in the areas of circuit simulation, device
simulation and modeling, integrated simulation environments, and analog/RF
design.

Dr. Mayaram received the National Science Foundation (NSF) CAREER
Award in 1997. He is the Editor-in-Chief of IEEE TRANSACTIONS ON

COMPUTER-AIDED DESIGN OFINTEGRATED CIRCUITS AND SYSTEMS.

John T. Stonick (M’94) received the B.S.E.E degree
from Virginia Polytechnic Institute and State Univer-
sity, Blacksburg, in 1984, the M.S.E.E degree from
the University of Pittsburgh, Pittsburgh, PA, in 1985,
and the Ph.D. degree in electrical engineering from
North Carolina State University, Raleigh, in 1992.

From 1993 to 1997, he held a Postdoctoral
Research Position in the Electrical and Computer
Engineering Department at Carnegie Mellon Uni-
versity, Pittsburgh, PA, where he worked on adaptive
data predistortion for amplifier linearization. From

1997 to 2000, he was an Assistant Professor with the Electrical Engineering
Department at Oregon State University, Corvallis, where he also served
as Codirector for the National Science Foundation Center for the Design
of Analog-Digital Integrated Circuits. Since 2000, he has been a Principal
Design Engineer at Accelerant Networks, Beaverton, OR, where he works on
high-speed CMOS backplane transceivers. His research interests include joint
optimization of communications circuits and systems, quantifying system level
degradation caused by circuit level imperfection, and utilizing adaptive signal
processing to compensate for analog distortion in communications ICs.


