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SPECTRAL ANALYSIS OF WAVE PROPAGATION THROUGH
ROWS OF SCATTERERS VIA RANDOM SAMPLING AND A

COHERENT POTENTIAL APPROXIMATION∗

LUKE G. BENNETTS† AND MALTE A. PETER‡

Abstract. A method is proposed for determining the modal spectra of waves supported by
arrays, which are composed of multiple rows of scatterers randomly disordered around an underly-
ing periodic configuration. The method is applied to the canonical problem of arrays of identical
small acoustically soft circular cylinders and disorder in the location of the rows. Two different
approaches are adopted to calculate the modes: (i) forming an ensemble average of the modes from
individual realizations (loosely: extract information, then average); and (ii) extracting the modes
from the ensemble average wave field (loosely: average, then extract information). Differences in the
attenuation rates predicted by the two approaches, which cannot be attributed to numerical errors,
are found for problems involving multiple wave directions and large disorder. A form of the coherent
potential approximation (CPA) is also devised. Comparisons of the CPA to the results given by
random sampling show that it gives high accuracy.
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1. Introduction. The investigation reported herein is concerned with multiple
scattering of linear time-harmonic waves in two dimensions. In this context, randomly
disordered multiple-row arrays have been used to model photonic devices (see, e.g.,
McPhedran et al. [5]) and water-wave propagation through fields of floating bodies
(see, e.g., Peter and Meylan [6]). Each row in the array contains an infinite number
of scatterers and satisfies a periodicity condition, i.e., a constant spacing of the scat-
terers. (The rows are referred to as diffraction gratings in some applications.) Wave
interactions between the rows are confined to a finite set of propagating waves by
enforcing a consistent periodicity of the rows in the array. The number of wave direc-
tions is determined by the incident wave field and the periodicity of the rows. Wave
propagation through the arrays can therefore be calculated at a relatively low cost,
while allowing for some directional evolution of the wave with distance into the array.

For the water-wave application, in particular, the quantity of interest is the ex-
pected rate of exponential wave attenuation, which is induced by the disorder. McPhe-
dran et al. [5] and Peter and Meylan [6], e.g., identified a solitary attenuation rate
for each problem from the ensemble average of the transmitted energy, i.e., the sum
over all transmitted wave directions, with respect to the disorder. This is, however,
an oversimplification for problems in which more than one wave direction exists. An
incident wave will excite a number of modes in the array, equal to the number of
wave directions between rows. Each mode attenuates at a different rate, and has an
associated energy flux.
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1614 LUKE G. BENNETTS AND MALTE A. PETER

The modal spectrum is studied here for the canonical problem of an array com-
posed of identical small acoustically soft circular cylinders and disorder in the location
of the rows around an underlying periodic structure. The modes are sought using two
approaches. The first approach is referred to as a localization approach, in reference
to the explanation of the phenomenon given by Berry and Klein [2]. It is closely
related to the approaches adopted in McPhedran et al. [5] and Peter and Meylan [6].
In the localization approach the properties of the modes are calculated as the ensem-
ble averages of properties displayed in individual realizations. The second approach
is to extract average properties from the ensemble average wave field, and is based
on effective media theory. Numerical algorithms are developed to implement the two
approaches, in which the ensembles are approximated via random sampling. Results
obtained using the algorithms indicate that the two approaches predict almost iden-
tical attenuation rates in most cases, but that they diverge from one another for
large disorder when multiple wave directions exist. The inability of the localization
approach to produce a reliable approximation of the energy fluxes of the modes is
also identified. As part of the analysis of the results, the relative performance of the
numerical algorithm for each approach is discussed.

A form of the coherent potential approximation (CPA) is also derived for the
multiple-row problem. The CPA predicts the modes of the disordered array from
an individual cell in the array, which, for the problem under consideration, contains
a single row and the surrounding free space. Use of the CPA is motivated by the
work of Maurel, Martin, and Pagneux [4], who showed that it is accurate for small
perturbations of a one-dimensional periodic array. The CPA derived here differs from
and/or extends that of Maurel, Martin, and Pagneux [4] in two ways. First, it is
applied to problems involving multiple wave directions. Second, it is applied without
any assumption on the magnitude of the disorder, which necessitates the use of a
minimization routine in the solution method. Numerical results are used to validate
the CPA via comparisons to the effective media random sampling approach.

2. Multiple-row problem. Wave propagation is considered in an infinite two-
dimensional domain, which is defined by the Cartesian coordinates (x, y). An infinite
array of scatterers, arranged into rows, occupies the domain. Without loss of general-
ity, the rows are aligned to be parallel to the x-axis. The domain is otherwise occupied
by free space. Under the usual assumptions of linear motions, of a prescribed angular
frequency ω, the velocity field may be obtained as the real part of the (spatial) gradi-
ent of the scalar field φ(x, y)e−iωt. The complex function φ is a velocity potential and
is the principal unknown of the problem. At all points in the domain not occupied
by scatterers, the velocity potential satisfies Helmholtz equation

∇2φ+ k2φ = 0,

where ∇2 ≡ ∂2x+∂
2
y is the Laplacian operator, and k is the wave number of free space.

2.1. Scattering by a row of small acoustically soft cylinders. Each row
in the array consists of an infinite number of identical and evenly spaced scatterers.
The focus of the present investigation is on how interactions between rows affect wave
propagation characteristics. Simple isotropic point scatterers are therefore chosen—
specifically, small acoustically soft circular cylinders. The description “small” is rel-
ative to the wavelength, i.e., ka � 1, where a is the radius of the cylinders. For
the numerical results presented in this investigation, ka = 10−2. It will be shown in
section 3.2 that rows of isotropic point scatterers exhibit an interesting property with
respect to wave attenuation.
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WAVE PROPAGATION THROUGH ROWS OF SCATTERERS 1615

An analytic solution for wave scattering by a single row of acoustically soft cylin-
ders is given by Linton and Martin [3]. The solution for circular cylinders is utilized in
the present work. The far field form of the scattered solution is of particular relevance
for the present study. For a plane incident wave the scattered far field consists of a
finite number of plane waves. Let the row lie on the x-axis with adjacent scatterers
spaced, center to center, by s, and the incident wave, φI , propagating at an angle ψ
with respect to the positive x-axis, i.e., a wave of the form

φI(x, y : ψ) = eik(βx+αy),

where α = sin(ψ) and β = cos(ψ). The directions of the scattered waves, and hence
their number, are determined by the real solutions ψm of

(2.1) ψm = arccos(βm), where βm = β +
2mπ

ks
for m ∈ Z.

The set of integers for which real solutions of (2.1) exist is denoted by M. The far
field is therefore expressed as

φ(x, y) ∼ φI(x, y) +
∑

m∈M
am±eik(βmx±αmy) (y → ±∞),

where αm = sin(ψm). The elements of the set {ψm : m ∈ M} are referred to as
scattering angles. Note that ψ0 ≡ ψ so that 0 ∈ M. However, any incident angle
ψm (m ∈ M) will generate the same set of scattering angles, and hence the same far
field form. This property allows wave interactions between rows with the same in-row
spacing to be calculated in a straightforward manner. Furthermore, the size of the
set M, M say, increases as the (nondimensional) in-row spacing ks increases, and can
change as the angle ψ is varied.

For small acoustically soft circular cylinders the scattered amplitudes am±(ψ) are

am± =
−2

ksKβm
, K = H0(ka)− 1− 2i

π

(
log

(
ks

4π

)
+C

)
+

∞∑
n=1

{ 2

ksβn
+

2

ksβ−n
+

2i

nπ

}
,

where H0 is the Hankel function of the first kind of order zero and C ≈ 0.5772 is
Euler’s constant. The scattered field is, as expected, symmetric with respect to the
x-axis. Note that the above expression for am± is undefined if βm = 0, i.e., ψm = 0
or π. In this situation the solution method must be modified (see, e.g., Bennetts [1]).
However, the extension is not required for the analysis in the current investigation,
and these isolated points will simply be avoided.

2.2. A recursive solution method for multiple rows. Consider now a full
array composed of a large number of identical rows. A finite number of propagating
waves are excited between each pair of adjacent rows. The waves travel in directions
defined by the scattering angles generated when the rows are in isolation, i.e., {ψm :
m ∈ M}. However, wave interactions between rows also involve an infinite, countable
set of evanescent waves that decay exponentially away from each of the rows. The
decay rates of the evanescent waves are defined by the imaginary solutions of (2.1).

A wide-spacing approximation, in which only interactions between propagating
waves are considered between rows, has been applied to electromagnetic waves by
McPhedran et al. [5] and to water waves by Peter and Meylan [6]. The wide-spacing
approximation will also be adopted here, although it is acknowledged that in certain
situations evanescent waves can have a nonnegligible effect on wave interactions.
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1616 LUKE G. BENNETTS AND MALTE A. PETER

Let the rows be counted according to the point they intersect the y-axis, and
suppose that row i lies on the line y = yi. The wide-spacing approximation of the
wave field between rows i and i+ 1 is

(2.2) φ(x, y) ≈
∑

m∈M
rm,ie

ik(βmx+αm(y−ŷi)) + lm,ie
ik(βmx−αm(y−ŷi)) (yi < y < yi+1),

where rm,i and lm,i are the amplitudes of the waves traveling upward and downward
(with respect to the y-axis). The waves have been normalized to the midpoint between
the rows, ŷi = (yi + yi+1)/2. The interval y ∈ (ŷi−1, ŷi), which contains a single row,
will be termed the ith cell.

The time-averaged energy flux over a contour of constant y is proportional to

(2.3) E(φ, y) =
∑

m∈M
αm

(
|rm,i|2 − |lm,i|2

)
(yi < y < yi+1),

where the constant of proportionality depends on the physical context. In particular,
the direction of energy flux, with respect to the y-axis, is deduced from the sign of E.

It is convenient to introduce matrix and vector notation at this point. Therefore,
expression (2.2) is recast as

φ(x, y) ≈ eikβx
(
eikα(y−ŷi)ri + e−ikα(y−ŷi)li

)
,

using the notation

eikβx = diag{eikβmx : m ∈ M} and e±ikαy = diag{e±ikαmy : m ∈ M},

for the size M ×M diagonal matrices, and

ri = vec{rm,i : m ∈ M} and li = vec{lm,i : m ∈ M}

for the length M vectors.
The scattering properties of the cells will be expressed in terms of reflection

and transmission matrices. For the individual rows the reflection and transmission
matrices are denoted R

(±)
i and T

(±)
i , respectively. These matrices are defined via

li−1 = R
(−)
i ri−1 + T

(+)
i li and ri = T

(−)
i ri−1 +R

(+)
i li.

From section 2.1, the entries of the scattering matrices are

(2.4a)

{R(−)
i }p,q =

−2e−ik(αp+αq)ŷi−1

ksKβp
, {T (−)

i }p,q =
(δp,qksKβp − 2)eik(αpŷi−αq ŷi−1)

ksKβp
,

(2.4b)

{R(+)
i }p,q =

−2eik(αp+αq)ŷi

ksKβp
, {T (+)

i }p,q =
(δp,qksKβp − 2)e−ik(αpŷi−1−αq ŷi)

ksKβp
,

where δp,q is the Kronecker delta.
Similarly, the reflection and transmission matrices for the stack of cells i to j

(i < j) are denoted R
(±)
i,j and T

(±)
i,j , respectively, and are defined via the expressions

li−1 = R
(−)
i,j ri−1 + T

(+)
i,j lj and rj = T

(−)
i,j ri−1 +R

(+)
i,j lj .

D
ow

nl
oa

de
d 

10
/2

1/
13

 to
 1

92
.4

3.
22

7.
18

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WAVE PROPAGATION THROUGH ROWS OF SCATTERERS 1617

Suppose that these matrices are known. Reflection and transmission matrices when
a (j +1)th cell is added to the top of the stack can be calculated using the identities

(2.5a) R
(−)
i,j+1 = R

(−)
i,j + T

(+)
i,j inv

{
I −R

(−)
j+1R

(+)
i,j

}
R

(−)
j+1T

(−)
i,j ,

(2.5b) T
(+)
i,j+1 = T

(+)
i,j inv

{
I −R

(−)
j+1R

(+)
i,j

}
T

(+)
j+1,

(2.5c) R
(+)
i,j+1 = R

(+)
j+1 + T

(−)
j+1inv

{
I −R

(+)
i,j R

(−)
j+1

}
R

(+)
i,j T

(+)
j+1,

(2.5d) and T
(−)
i,j+1 = T

(−)
j+1inv

{
I −R

(+)
i,j R

(−)
j+1

}
T

(−)
i,j ,

where I is the identity matrix of size M ×M . An analogous expression is possible for
the reflection and transmission matrices if, instead, cell i− 1 is added to the bottom
of the stack, i.e., Ri−1,j and Ti−1,j .

Scattering matrices can now be obtained for cells i to j by starting with the
scattering matrices for the bottommost cell i, and using identities (2.5) recursively to
find Ri,n and Ti,n (i < n ≤ j), until the topmost cell j is reached. Alternatively, it is
possible to start with the topmost cell and add cells to the bottom of the stack, using
an analogue of identities (2.5) to find Rn,j and Tn,j (i ≤ n < j), until the bottommost
cell is reached. Both methods are required to recover the set of amplitudes within the
stack, via the identities

rn = inv
(
I − R

(+)
i,n R

(−)
n+1,j

)(
T

(−)
i,n ri−1 +R

(+)
i,n T

(+)
n+1,jlj

)
and ln = inv

(
I −R

(−)
n+1,jR

(+)
i,n

)(
R

(−)
n+1,jT

(−)
i,n ri−1 + T

(+)
n+1,jlj

)
for i ≤ n < j, where ri−1 and lj denote the amplitudes of the waves incident on the
stack from the bottom and top, respectively. The amplitudes of the waves scattered
by the stack, li−1 and rj , are recovered using the reflection and transmission matrices
for the entire stack, via

li−1 = R
(−)
i,j ri−1 + T

(+)
i,j lj and rj = T

(−)
i,j ri−1 +R

(+)
i,j lj .

2.3. Periodic problem. If the spacing of the rows in the array is constant,
d say, the scattering matrices for the individual cells, defined in (2.4), are identical.
The subscripts that identify the matrices to a particular cell will thus be dropped, i.e.,

R(±) ≡ R
(±)
i and T (±) ≡ T

(±)
i for all i. Without loss of generality, the row locations

are set as yn = nd.
In the periodic setting, the wave modes supported by the array are determined

from the scattering properties of a single cell. A transfer matrix method is used here.
Let P be the transfer matrix that relates amplitudes on either side of a cell, i.e.,

(2.6)

(
ri+1

li+1

)
= P

(
ri
li

)
.

The transfer matrix is calculated from the reflection and transmission matrices via

(2.7) P =

(
T (−) −R(+)inv(T (+))R(−) R(+)inv(T (+))

−inv(T (+))R(−) inv(T (+))

)
.
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1618 LUKE G. BENNETTS AND MALTE A. PETER

It follows from (2.6) that amplitudes in any locations in the array are related to one
another through the transfer matrix, with

(2.8)

(
rj
lj

)
= P j−i

(
ri
li

)
.

A diagonalization of the transfer matrix is used to interpret relation (2.8). It
can be shown that the eigenvalues of the transfer matrix appear in reciprocal and
conjugate pairs. Therefore the diagonalization has the form P = XeiKX−1, where

(2.9)

X = [x1+, . . .xM+,x1−, . . .xM−] and eiK = diag{eiK1 , . . . , eiKM , e−iK1, . . . , e−iKM}.

The quantities ±Km are array wave numbers that determine how their corresponding
amplitudes xm± vary through the array. The local wave number k still controls the
wavelengths in the intervals of free space between adjacent rows. The real parts of
±Km produce phase changes. Note that the real parts are only defined up to an
integer multiple of 2π. The imaginary parts of ±Km induce exponential attenuation.
The energy flux for a particular mode, E = Em± say, can be obtained by using
the entries of the relevant vector of amplitudes, xm±, on the right-hand side of (2.3).
Modes appearing in plus/minus pairs simply indicate that for every mode propagating
and/or attenuating from bottom to top of the array, there is an equivalent mode that
propagates and/or attenuates from top to bottom. The pairs xm± are therefore related
via

xm∓ = Ixm± (m = 1, . . . ,M), where I =

(
0 I
I 0

)
.

The entries of the transfer matrix, and hence the properties of the array, vary
with the (nondimensional) row spacing kd. Porter and Porter [7] numerically studied
the paths of the eigenvalues of the transfer matrix in the complex plane versus kd
for a related water-wave problem. Their findings are representative of the current
problem and are briefly summarized here. The eigenvalues typically traverse the unit
circle, i.e., Km ∈ R for m = 1, . . . ,M . The corresponding modes do not attenuate
through the array. However, as a pair of eigenvalues approach one another they
temporarily depart the unit circle. One eigenvalue moves inside the unit circle and
one outside. The imaginary component of the wave numbers induces attenuation of
the corresponding modes. After this brief departure the eigenvalues rejoin the unit
circle and continue on their original paths.

When only a single wave direction exists (M = 1) there are two eigenvalues,
e±iK1 . The only point at which these eigenvalues may meet is on the real axis. When
they depart the unit circle, reciprocity restricts the eigenvalues to the real axis, i.e.,
±K1 ∈ iR or ±K1 ∈ π + iR. The wave numbers ±K1 are therefore only capable of
producing a phase change or a change in magnitude. However, when more than one
wave direction exists (M > 1), eigenvalues may meet on the unit circle away from the
real axis. Note that an identical eigenvalue interaction will occur simultaneously in
the top and bottom halves of the complex plane. When the eigenvalues depart the
unit circle they are not bound to the real axis. The wave numbers Km may, hence,
possess a real and an imaginary part, in which case they produce a phase change and
a change in magnitude. The intervals over which eigenvalues depart the unit circle
are located near the points αp + αq = 2π/kd (p, q ∈ M), where p = q = 1 can be
identified as classical Bragg resonance.
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WAVE PROPAGATION THROUGH ROWS OF SCATTERERS 1619

2.4. Disordered problem and approximation via random sampling. Dis-
order in the separation of the rows is introduced through the random parameters
εn ∈ (−0.5, 0.5), with the location of row n shifted to yn = (n + εn)d. Values of εn
for all rows in the array are randomly selected from a prescribed distribution. Cal-
culations presented in this study use a uniform distribution of width ε ∈ [0, 1), i.e.,
εn ∈ U(−ε/2, ε/2). The case ε = 0 reproduces the periodic problem.

The effect of disorder on the modes supported by the array will be investigated
using two distinct approaches. First, an approach based on localization theory. It
is expected that disorder will induce exponential attenuation. In problems involving
only a single wave direction the logarithm of transmitted energy is self-averaging,
and hence the modes excited in almost all realizations of sufficiently large stacks
will display the same attenuation rate (Berry and Klein [2]). The expected rate of
attenuation can therefore be estimated numerically as the mean attenuation rate of
a sample of individual wave fields for randomly generated realizations of large finite
stacks. However, in problems involving multiple wave directions, individual wave fields
are composed of more than one mode, each with a different attenuation rate. A more
complete numerical method is proposed below to capture the different attenuation
rates. The associated phase changes are also considered as part of the method.

The second approach is based on effective media theory. The effective or coher-
ent wave modes are extracted from the ensemble average wave field, with respect to
all possible realizations of the disorder. Maurel, Martin, and Pagneux [4] provide
illustrative graphical examples of coherent waves in one-dimensional problems. They
also describe how a coherent wave, composed of only a single mode, can be estimated
numerically. As in the localization approach, the method relies on calculating individ-
ual wave fields for a sample of randomly generated realizations of large finite stacks.
The numerical method is extended here to allow for effective wave fields composed of
multiple modes.

The two approaches may be loosely summarized, respectively, as follows: (i) ex-
tract the required information from the individual wave fields and then average; and
(ii) average the individual wave fields and then extract the required information. The
difficulty in extending the numerical methods to implement either of the two ap-
proaches is best described by returning to the periodic problem, where no averaging
is required. A wave field is forced by an incident wave, which, without loss of general-
ity, originates at the far field beneath the stack (y → −∞). For simplicity, consider a
case in which all of the array wave numbers, ±Km, have an imaginary component, so
that the wave field must attenuate through the stack. Numerical calculations require
the stack to be of finite length, consisting of, say, rows 1 to N + 1. Let N be large
enough to ensure the wave field will attenuate sufficiently by the end of the stack that
the wave reflected by that boundary is negligible. The wave amplitudes within the
stack are therefore

(2.10)

(
rn
ln

)
=

M∑
m=1

cmeiKmnxm+ (n = 1, . . . , N)

for some constants cm (m = 1, . . . ,M). The primary problem is now to obtain the
array wave numbers, Km, from the amplitudes on the left-hand side of (2.10). If the
problem is one-dimensional, i.e., M = 1, the single mode is automatically uncoupled,
and the wave number can be recovered using a simple linear regression. However, if
multiple waves exist, i.e., M > 1, the various modes are coupled in the amplitudes.
The most slowly attenuating mode will eventually dominate, and can, in theory, be
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1620 LUKE G. BENNETTS AND MALTE A. PETER

estimated by cutting off a band of the bottommost rows. However, the number of
rows cut off is problem dependent and is therefore difficult to implement numerically.
It also does not give information on the spectrum of array wave numbers.

With the simple example above acting as motivation, attention now returns to the
disordered problem. For each randomly generated realization of the stack, a set of 2M
linearly independent incident waves (r0, lN+1) = (r0,m±, lN+1,m±) (m = 1, . . . ,M) is
used, where

[r0,1−, . . . , r0,M−] = [lN+1,1+, . . . , lN+1,M+] = I

and [r0,1+, . . . , r0,M+] = [lN+1,1−, . . . , lN+1,M−] = 0.

The corresponding amplitudes within the stack are denoted (rn, ln) = (rn,m±, ln,m±)
(n = 1, . . . , N). To follow the localization approach, ansatzes of the form

(2.11)(
rn,m−
ln,m−

)
=

2M∑
j=1

cj,m−eiQ
(l)
j nv

(l)
j and

(
rN+1−n,m+

lN+1−n,m+

)
=

2M∑
j=1

cj,m+e
−iQ

(l)
j nv

(l)
j

for n = 1, . . . , N and m = 1, . . . ,M are assumed. The quantities Qj are array wave
numbers, and vj are the corresponding vectors of amplitudes. The subscript (l) is
used, when necessary, on these quantities to distinguish them from the corresponding
quantities obtained from effective media theory. For the uniform distributions con-
sidered in this work, Qj and vj are functions of ε, as well as of the properties of the
rows and incident wave field. It is expected that symmetry, in terms of the distribu-
tion of disorder, will allow the wave numbers to be ordered such that Qj ≈ −QM+j

(j = 1, . . . ,M), and, similarly, the amplitude vectors such that vj ≈ IvM+j .
The wave fields produced by the independent incident waves are used to separate

the different modes. The two components of (2.11) are combined to produce the
matrix expression

An = V eiQ
(l)ninv(V ),

where

V = [v1, . . . ,v2M ] ,

eiQn = diag{eiQ1n, . . . , eiQ2Mn},
and An = An,N+1inv(A0,N+1−n),

where

Ap,q =

(
rp,1−, . . . , rp,M−, rq,1+, . . . , rq,M+

lp,1−, . . . , lp,M−, lq,1+, . . . , lq,M+

)
.

Linear regression is applied to the eigenvalues of matrices An (n = 1, . . . , N) to
produce the array wave numbers Qj (j = 1, . . . , 2M). The final approximation is
obtained by averaging the wave numbers Qj over a large number of simulations.

Although the above algorithm is seemingly straightforward, the combination of
exponential growth and decay, and of different rates of the growth/decay creates
numerical difficulties. The structure of the matrix system adopted here is motivated
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WAVE PROPAGATION THROUGH ROWS OF SCATTERERS 1621

by numerical stability. Using symmetry of the eigenvalues and eigenvectors would
undoubtedly improve stability further, but it is unclear how this may be implemented.

The ansatzes contained in (2.11) are not applied for the effective media approach.
Equivalent ansatzes are instead assumed for the ensemble average of the amplitudes
over the different realizations. The ansatzes are expressed as

(2.12)(
〈〈rn,m−〉〉
〈〈ln,m−〉〉

)
=

2M∑
j=1

cj,m−eiQ
(e)
j nv

(e)
j ,

(
〈〈rN+1−n,m+〉〉
〈〈lN+1−n,m+〉〉

)
=

2M∑
j=1

cj,m+e
−iQ

(e)
j nv

(e)
j

for n = 1, . . . , N and m = 1, . . . ,M , where the double angled brackets 〈〈·〉〉 denote
the ensemble average with respect to all realizations of the random disorder. The
ensemble averages of the amplitudes are approximated as the mean values of a large
number of simulations. The method of decomposing the average wave field into the
spectrum of modes follows the algorithm used for the individual simulations in the
localization approach.

To conclude, the quantities averaged are the modal wave numbers in the local-
ization approach and the amplitudes of waves between adjacent rows in the effective
media approach.

3. Numerical results: Analysis using random sampling.

3.1. Single wave direction (M = 1). Figure 3.1 shows examples of an indi-
vidual wave field and a coherent wave which have been decomposed into the modes
supported by the array. The problem under consideration has in-row spacing ks = π,
mean row spacing kd = 2.5π, and propagating waves traveling only in the direction
perpendicular to the rows, i.e., an angle π/2 with respect to the x-axis. The under-
lying periodic medium has array wave numbers ±K1 = ±0.4214π, which defines a
pass-band state. The level of disorder in the row spacing is set at ε = 10−0.5.

The wave fields are evaluated at the midpoints between the rows of the underlying
periodic medium, ŷn = nd for n = 1, . . . , N . The natural logarithms of the wave fields
are shown. These are the signals used to extract estimates of the array wave numbers
Q1 and Q2 ≈ −Q1. The top panels show the imaginary parts of the wave fields,
and the bottom panels show the negative of the real part of the wave fields. These
quantities correspond, respectively, to the real and imaginary parts of the array wave
numbers, i.e., the phase changes and attenuation rates.

The left-hand panels of Figure 3.1 show wave fields for a single randomly generated
realization of the disorder. Variations in the distance between the rows produce noise
in the individual wave fields. The noise is clearly visible in the attenuation of the
wave fields shown in the bottom panel. The straight-line fits used to extract the
imaginary parts of the array wave numbers are hence also included. However, noise
is not evident on the scale of the phase changes shown in the top panel, which are
dominated by the underlying periodic structure.

The values of the array wave numbers obtained from the simulation shown in
the left-hand panels of Figure 3.1 are Q1 ≈ −0.4237π + 0.028i and Q2 ≈ 0.4163π −
0.043i. A large number of these wave numbers are averaged to produce the localization
approximation of the array wave numbers for the random medium. In comparison,
the wave fields themselves are averaged to find the effective media approximation
of the wave numbers. An example of an effective wave field is shown in the right-
hand panels of Figure 3.1. The wave field is calculated as the average of 5 × 103
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Fig. 3.1. Examples of an individual wave field (left-hand panels) and a coherent wave field
(right) for a single-wave problem, and disorder level ε = 10−0.5. The black curves in the left-hand
panels are the spectral components of the wave field for a single realization of the disorder. The gray
curves on the bottom left-hand panel are the straight-line fits of the attenuation rates. The curves
in the right-hand panels are the spectral components of the coherent wave.
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Fig. 3.2. Comparisons of array wave numbers produced by the localization approach (gray-dotted
curves) and effective media approach (black curves), as functions of disorder level, for a single-wave
problem. The underlying periodic problem is in a pass-band state (left-hand panels) and a stop-
gap state (right). The distribution of the real part of the array wave numbers are superimposed
on the top left-hand panel. The real parts of the array wave numbers associated to the upward
and downward local waves are superimposed on the top right-hand panel. One standard deviation
confidence intervals of the imaginary part of the array wave numbers are included in the bottom
left-hand panel. The broken curves on the bottom panels denote the Berry and Klein [2] limit.

randomly generated simulations. The coherent wave field matches ansatzes (2.12) to
the extent that overlaying the straight-line fits on the panels is unnecessary. The
noise visible from approximately 120 rows onwards in the bottom panel is attributed
to accumulation of rounding errors in the exponentially small values produced by
attenuation.

Approximations, obtained from the localization and effective media approaches,
of the array wave number Q1, with positive energy flux and/or attenuating in the
positive y-direction, are compared in Figure 3.2. The wave numbers are shown as
functions of the disorder parameter ε. The real and imaginary parts of Q1, i.e.,
the phase changes and attenuation rates, are shown in the top and bottom panels,
respectively. The results shown in the left-hand panels are for the array considered
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WAVE PROPAGATION THROUGH ROWS OF SCATTERERS 1623

in Figure 3.1, for which the underlying periodic problem is in a pass-band state.
For the results shown in the right-hand panels the mean row spacing is changed to
kd = 4.1π. The array wave numbers for the underlying periodic problem in this case
are ±K1 ≈ ±0.230i, which defines a stop-gap state.

Additional data on the ensemble used in the localization approach for selected
values of disorder level are provided in the panels. The bars on the bottom left-hand
panel denote one standard deviation confidence intervals of the attenuation rates. The
bar graphs on the top left-hand panel represent the logarithmically scaled distribution
of the phase changes in the ensemble. The gray curves with pluses and crosses in the
top right-hand panel are the phase changes for the amplitudes of the local waves
traveling upward, rm,i, and downward, lm,i, respectively, when the only mode excited
is that attenuating from bottom to top of the array.

The two approaches produce almost identical approximations of the attenuation
rates for both problems. However, the approximations diverge from one another as the
disorder decreases for the problem with the underlying pass-band state. The difference
is attributed to numerical difficulties in capturing small attenuation rates using the
localization approach. Loss of accuracy in the localization approach is indicated in the
results by deviation from the linear log-log relationship between attenuation rate and
disorder. (Further, note that the relative magnitude of the standard deviation to the
attenuation rate increases as the attenuation rate decreases.) Accuracy is improved
by increasing the number of rows in the array. For this reason N = 750 rows were
used for the problem with the underlying pass-band state, in comparison to N = 250
rows for the problem with the underlying stop-gap state. The number of rows that
may be used in practice is, however, bounded by numerical constraints. Consequently,
differences in the attenuation rates predicted by the two approaches are observed close
to pass-band states throughout the results presented in section 3.

For large disorder, the convergence of the effective media approach is generally
slower than that of the localization approach with respect to the ensemble size. This
can be inferred from the greater noise present in the effective media approximations,
which is most clear in the bottom right-hand panel. Rapid convergence of the attenu-
ation rate with respect to ensemble size for the localization approach is expected due
to the self-averaging property referred to in section 2.4.

The attenuation rates for both problems settle to the same value as the magnitude
of the disorder is increased. The attenuation rate predicted for large disorder is
consistent with the expression derived by Berry and Klein [2] for a stack of transparent
plates. This attenuation rate is − ln |τ |, where τ is the transmission coefficient for a
single scatterer in the array, which, in the present setting, is a single row. The
expected limit for the problems used in Figure 3.2 is − ln |τ | ≈ 0.029, and is shown
by the chained curve in the bottom panels. The derivation of the limit assumes
that wave interactions between adjacent scatterers range over all phases, which here
requires that εkd ≥ π. The corresponding value of the disorder is log10 ε � −0.398 in
the left-hand panels, and log10 ε � −0.613 in the right-hand panels. Berry and Klein
[2] did not, however, consider a perturbed periodic geometry. It is noted that the
predicted attenuation rates for εkd ≥ π display small amplitude oscillations around
the limit − ln |τ |.

The top panels demonstrate that the localization and effective media approaches
do not predict the same phase changes beyond small disorder. Numerical investi-
gations indicate that the approximation given by the localization approach is often
unrepresentative of the waves supported by the array. This assertion appears to con-
tradict the top left-hand panel of Figure 3.1, in which the phase changes of individual
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1624 LUKE G. BENNETTS AND MALTE A. PETER

wave fields are shown to be consistent with ansatzes (2.11). The behavior is partially
explained with reference to the problem with the underlying stop-gap state, where
the modes are automatically uncoupled in the individual simulations for all levels of
disorder. The phase changes associated to the upward traveling local waves match
those of the mode it shares its attenuation rate with, i.e., Q1, whereas the phase
changes associated to the downward waves match those of the mode that attenuates
in the opposite direction, i.e., Q2 ≈ −Q1. As the level of disorder is increased, the
magnitude of the incoherent part of the wave fields becomes comparable to that of the
coherent part. The attenuation rate, which is a global property, is unaffected, but the
phase change, which is a local property, no longer resembles one of the coherent wave
modes. The curves and bar graphs in the top left-hand panel show a case in which
the phase changes of the individual wave fields transition from being dominated by
the upward waves to being dominated by the downward waves as the level of disorder
is increased. Unfortunately, no obvious method exists to decouple the phase changes
in the individual wave fields when multiple modes are excited.

3.2. Multiple wave directions (M ≥ 2). For symmetric configurations of
wave directions, i.e., problems in which for every nonzero βm (m ∈ M) there exists
a βj such that βj = −βm, the periodic problem possesses at least two array wave
number/eigenvector pairs that are unaffected by disorder. One of the modes in each
pair propagates up the array. The corresponding eigenvector contains nonzero entries
only for amplitudes of local waves that travel up the array. Disorder then merely
changes the phase at which these waves interact with the rows. As no reflected
component will be excited, the destructive interference that causes attenuation (Berry
and Klein [2]) does not occur. The second mode is simply the equivalent wave traveling
down the array. Any incident wave that is not orthogonal to these modes will therefore
not fully attenuate with distance through the array.

Figures 3.3 and 3.4 show examples of an individual wave field and a coherent wave
field, decomposed into the modes supported by the array. The figures are equivalent
to Figure 3.1, but for problems involving multiple wave directions. The arrays used for
Figure 3.3 have in-row spacing ks = π sec(π/4), mean row spacing kd = 8π, and two
wave directions, π/2±π/4, with respect to the x-axis. The arrays used for Figure 3.4
have in-row spacing ks = 2π sec(3π/10), mean row spacing kd = 7.9π, and three wave
directions, π/2 + 3mπ/10 (m = 0,±1), with respect to the x-axis. The underlying
periodic media for both problems are in pass-band states, with ±K1 ≈ ±0.343π and
±K2 ≈ ±0.498π for the two-wave problem, and ±K1 ≈ ±0.391π, ±K2 ≈ ±0.124π,
and ±K3 ≈ ±0.338π for the three-wave problem. The row spacing disorder level
is again set at ε = 10−0.5. The coherent waves are calculated using 103 random
realizations for the two-wave problem, and 5× 103 random realizations for the three-
wave problem. Both problems are of the symmetric type discussed at the beginning
of the section. In each problem, two modes will exist that do not attenuate, and this
is confirmed by the bottom panels.

The example wave fields are presented to validate use of ansatzes (2.11) or (2.12)
for problems involving multiple wave directions. Note the large amount of noise in
the attenuation component of the individual wave fields for the three-wave problem,
shown in the bottom left-hand panel of Figure 3.4. This is attributed to the small
attenuation rates of the modes. Noise is also apparent in the corresponding coherent
wave. Further, note in the corresponding phase changes that the plus/minus pairing
symmetry is broken, which is associated to the phenomenon discussed in the final
paragraph of section 3.1 for the single-wave problem.
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Fig. 3.3. As in Figure 3.1, but for a two-wave problem.
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Fig. 3.4. As in Figure 3.1, but for a three-wave problem.

The attenuation rates predicted by the two approaches, as functions of the disor-
der parameter, are compared in Figures 3.5 and 3.6 for problems involving two and
three wave directions, respectively. For reference, the wave numbers are ordered in
ascending magnitude of imaginary component. The results shown in the top left-hand
panel of Figure 3.5 are for the same array used in Figure 3.3. The approximation of
the mode with zero attenuation, Im{Q1} = 0, is omitted for clarity. Results for a
different row spacing, kd = 7.3π, are shown in the top right-hand panel. In this case,
the mode with wave number Q2 is in a stop-gap state for zero disorder. The results
shown in the bottom panels are for arrays composed of the same rows as the top pan-
els, but with scattering angles 0.1π and 0.653π, i.e., the problem is asymmetric with
respect to the y-axis. Both modes therefore vary due to disorder, and approximations
are presented for both. The row spacings are kd = 8π in the bottom left-hand panel,
and kd = 7.5π in the bottom right-hand panel.

The results shown in the left-hand panels of Figure 3.6 are for the same array
used in Figure 3.4. Results for a different row spacing, kd = 7.5π, are shown in
the right-hand panels. As in Figure 3.5, the approximation of the mode with zero
attenuation, again labeled with unit subscript, is omitted. The approximations of
the two remaining wave numbers, Q2 and Q3, are presented in the bottom and top
panels, respectively. One standard deviation confidence intervals for the localization
approach are overlaid on the panels. Note that, for small attenuation rates, in three
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Fig. 3.5. Comparisons of the imaginary parts of the array wave numbers produced by the
localization approach (gray-dotted curves) and effective media approach (black curves), as functions
of disorder level, for two-wave problems. The problem is symmetric with respect to the y-axis in
the top panels, and asymmetric in the bottom panels. In the symmetric case only the array wave
number that varies with the disorder is shown. The broken curves are the averages of the imaginary
parts of the wave numbers for log10 ε ∈ (−0.5, 0).
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Fig. 3.6. Comparisons of the imaginary parts of the array wave numbers produced by the
localization approach (gray-dotted curves) and effective media approach (black curves), as functions
of disorder level, for three-wave problems. The problems are symmetric with respect to the y-axis,
and only the array wave numbers that vary with the disorder are shown. One standard deviation
confidence intervals are also shown.

cases the lower limit of the bar becomes negative, and are hence outside the range of
the ordinate axis.

The following observations are made for the symmetric two-wave problems shown
in the top panels of Figure 3.5.

(i) The attenuation rates are identical for almost all levels of disorder.
(ii) They differ for small attenuation rates, which the localization approach is

unable to capture accurately with the given numerical constraints.
(iii) The attenuation rates settle to an approximately constant value for large

disorder, and the value is independent of the underlying periodic geometry.
These observations are identical to those made for the single wave direction problems.
It is likely that this is due to symmetry of the two wave directions, i.e., there is only a
single local wave number in the y-direction. For problems involving two or more wave
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WAVE PROPAGATION THROUGH ROWS OF SCATTERERS 1627

directions, however, the attenuation limit for large disorder cannot be obtained from
the Berry and Klein [2] formula. Equality of the attenuation rates for large disorder
is instead demonstrated using the mean of the approximate attenuation rates for
log10 ε ∈ (−0.5, 0).

The different approaches also produce similar approximations of the attenuation
rates for the asymmetric two-wave problems and three-wave problems. However, two
fundamental differences are evident for large disorder.

(i) In the two-wave problems, the attenuation rates predicted by both approaches
settle to approximately constant values. The attenuation rates predicted by
the effective media approach are slightly greater than those of the localization
approach.

(ii) In the three-wave problems the attenuation rates of the effective wave modes
continue to increase after the attenuation rates of the individual wave fields
have settled.

The attenuation rates for large disorder are still independent of the underlying peri-
odic medium, i.e., the row spacing. This is indicated for the two-wave problems by
chained lines, which represent the mean attenuation rate predicted by the localiza-
tion approach for log10 ε ∈ (−0.5, 0). Equivalence of the approximations given by the
effective media approach can also be inferred from these values.

The corresponding approximations given by the two approaches, in general, match
for an interval of the disorder parameter. The interval lies above the point where inac-
curacies become apparent in the localization approach, and below the point where the
approximations genuinely begin to differ. Inaccuracies in the localization approach are
naturally more pronounced for wave numbers with smaller imaginary values—these
are the modes that travel the greatest distance through the array before becoming
vanishingly small. In some of the examples shown, namely, Q1 in the bottom left-
hand panel of Figure 3.5 and Q2 in the bottom left-hand panel of Figure 3.6, the
attenuation rates do not agree for any interval of the disorder parameter. It is likely
that this is caused simply by an overlap of the intervals in which inaccuracies are
present in the localization approach and where the attenuation rates genuinely differ.
It is, however, difficult to prove this due to numerical limitations.

4. Coherent potential approximation. The structure of the coherent poten-
tial approximation (CPA) is closely related to that of the periodic problem considered
in section 2.3. Suppose then, to begin with, that a single cell is isolated in an other-
wise infinite periodic array, which is referred to as the background medium. Without
loss of generality, the cell will be centered on the x-axis. The cell therefore occupies
the interval y ∈ (−d/2, d/2), where d is the row spacing in the periodic background
medium. The row contained within the cell may be positioned on any contour of
constant y in the interval (−d/2, d/2).

Recall that modes supported by the periodic background medium have array wave
numbers ±Km (m = 1, . . . ,M) and corresponding amplitude vectors xm±. Consider
one of these modes propagating and/or attenuating through the background medium,
and incident on the isolated cell. If the row contained in the cell is positioned on
the x-axis, the full array is periodic. The incident mode will therefore continue to
propagate and/or attenuate through the cell in the same manner as through the cells
in the background medium. However, if the row is not located on the x-axis, only a
proportion of the mode will be transmitted by the cell, with the remaining proportion
being reflected.

The interaction of any incident wave mode j (j = 1, . . . ,M) with the cell excites
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1628 LUKE G. BENNETTS AND MALTE A. PETER

all of the other modes in reflection and transmission. Let the position of the row in
the cell be y = ε0d/2, where ε0 ∈ (−1, 1). The excitation of the modes is expressed
using the extended transfer matrix relation

(4.1)

M∑
m=1

eiKmTm,j(ε0)xm+ = P (ε0)

{
xj+ +

M∑
m=1

Rm,j(ε0)xm−

}
for j = 1, . . . ,M.

The above expression assumes an incident mode from below the cell. The expression
for an incident wave from above the cell is analogous. In (4.1) the quantities Rm,j

and Tm,j (m, j = 1, . . . ,M) are, respectively, unknown reflection and transmission
coefficients. Note that these coefficients relate to the wave modes supported by the
array and are distinct from the coefficients that relate to waves supported between
the rows (2.4). The transfer matrix P (ε0) is calculated using expression (2.7), where
the entries of the reflection and transmission matrices, R(±) and T (±), are evaluated
for ŷi−1 = d(1 + ε0)/2 and ŷi = d(1− ε0)/2.

Let reflection and transmission matrices be denoted by R and T , respectively,
with entries {R}m,j = Rm,j and {T }m,j = Tm,j (m, j = 1, . . . ,M). Manipulations
of the transfer matrix relations (4.1) can be used to produce the expression for the
reflection matrix

(4.2a) R = −inv
(
inv(X )N1,2 − inv(Y)M2,1

)(
inv(X )M1,2 − inv(Y)N2,1

)
,

and for the scaled transmission matrix T̂ ≡ eiKT ,

(4.2b) T̂ = inv
(
inv(N1,2)X − inv(M2,1)Y

)(
inv(N2,1)M1,2 − inv(M2,1)N2,1

)
,

which combines the wave numbers Km (m = 1, . . . ,M) and transmission coefficients.
In the above expressions the matrices Mi,j and Ni,j (i, j = 1, 2) are defined by

Mi,j ≡ Pi,iX + Pi,jY and Ni,j ≡ Pi,iY + Pi,jX ,

and the following block matrix notation is used for the transfer matrix, P , and matrix
of eigenvectors, X , defined in (2.9):

P =

(
P1,1 P1,2

P2,1 P2,2

)
and X =

(
X Y
Y X

)
.

The reflection and transmission coefficients Rm,j and Tm,j (m, j = 1, . . . ,M) are
therefore obtained using equations (4.2) for a given value of ε0 from the known prop-
erties of the periodic background medium.

The problem is now altered by replacing the periodic background medium with
a randomly disordered background medium. It is assumed that the random medium
supports modes with array wave numbers ±Qm (m = 1, . . . ,M) and corresponding
amplitude vectors vm±. The form of the transfer matrix relation (4.1) and expressions
for the reflection and transmission matrices (4.2) are still valid. However, the known
wave numbers Km and amplitude vectors xm± are replaced by unknowns Qm and
vm±, respectively. The problem is now (i) nonlinear, and, moreover, (ii) for any given
realization the number of unknowns exceeds the number of equations available. Note
that the reflection and transmission coefficients Rm,j and Tm,j will have different
values for the random background medium, although the same notation is retained.
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The second issue is resolved by taking ensemble averages of the reflection and
transmission coefficients Rm,j and Tm,j over all possible realizations within the cell,
and invoking a CPA-style hypothesis. It is assumed that if the distribution of the
position of the row in the isolated cell is identical to that of the rows in the cells of
the background medium, then, on average, the cell is transparent with respect to the
background medium. The CPA is expressed in terms of the reflection and transmission
coefficients as

〈Rm,j〉 = 0 and 〈Tm,j〉 =
{

1 (m = j),
0 (m �= j)

for m, j = 1, . . . ,M.

Angled brackets 〈·〉 are used here to denote the ensemble average over all possible
positions of the row in the cell, i.e., for the uniform distribution

〈·〉 ≡
∫ ε/2

−ε/2

·(ε0) dε0.

The remaining nonlinear problem is solved numerically. A Nelder–Mead mini-
mization routine (fminsearch in the MATLAB Optimization toolbox) is employed
to calculate the 2M2 entries contained in matrices X and Y from the 2M(M − 1)
conditions of the CPA,

〈Rm,j〉 = 0 (m, j = 1, . . . ,M) and 〈eiQmTm,j〉 = 0 (m, j = 1, . . . ,M ;m �= j),

using the relevant entries of expressions (4.2) and M normalization conditions to
ensure uniqueness of the eigenvectors. A penalty term is also included to force the
minimization routine to seek modes with nonnegative energy flux. The wave numbers
Qm are subsequently found by using the calculated values of X and Y in (4.2b) to

obtain the diagonal elements of T̂ and applying the final M CPA conditions

〈eiQmTm,m〉 = eiQm (m = 1, . . . ,M).

CPA results presented in section 5 are calculated using a homotopy method. The
level of disorder is increased in steps, with the numerical solution for the previous
step used as the initial guess for the minimization routine. The known solution of
the underlying period medium is used as an initial guess for the first step. Residual
errors of the numerical solutions are generally small, and the convergence of the
effective wave modes is satisfactory. However, it is difficult to drive the error to zero
by decreasing the step size and consequently prove that a true solution of the CPA

system exists.

5. Numerical results: Validation of CPA. Properties of the effective wave
modes predicted by the CPA are compared to those obtained using the effective media
random sampling approach in Figures 5.1–5.3. Attenuation rates are shown in the
bottom panels, and the associated energy fluxes are shown in the top panels. Problems
involving up to five wave directions are considered.

Results are shown for two single-wave direction problems in Figure 5.1. The
problems are identical to those used for Figure 3.2. The left-hand panels are for the
problem with an underlying pass-band state, and the right-hand-panels are for the
problem with an underlying stop-gap state.

The attenuation rates and energy fluxes predicted by the CPA and random sam-
pling are almost identical. However, the following features are noted.
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Fig. 5.1. Comparisons of energy fluxes (top panels) and attenuation rates (bottom) produced
by the CPA (black curves) and the effective media random sampling approach (gray dotted) for two
single-wave problems. The underlying periodic media is in a pass-band state (left-hand panels) and
a stop-gap state (right).
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Fig. 5.2. As in Figure 5.1, but for two-wave problems (j = 1, 2, left-hand panels) and three-wave
problems (j = 2, 3, right).

(i) Noise exists in the random sampling approximation of the energy flux for the
problem with an underlying pass-band state. It is attributed to numerical
difficulties in separating modes with small attenuation rates (traveling up
and down the array in the one-dimensional case).

(ii) A fundamental difference in the approximations exists in the problem in-
volving the underlying stop-gap state. Random sampling predicts a smooth
transition between zero energy flux and finite energy flux. Conversely, the
CPA predicts a sharp division between the two states. Around this point,
a small deviation is also observed between the two approximations of the
attenuation rate.

Energy flux is a property of the local wave field, whereas attenuation is an integrated
global property of the array. Predictions of energy fluxes are thus expected to be
more sensitive than attenuation rates to errors in the approximations.

Comparisons are shown for problems involving two to five wave directions in
Figures 5.2 and 5.3. The asymmetric two-wave problem previously considered in the
bottom right-hand panel of Figure 3.5 is used for the left-hand panels of Figure 5.2.
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Fig. 5.3. As in Figure 5.1, but for four-wave problems (j = 3, 4, left-hand panels) and five-wave
problems (j = 3, 4, 5, right). Values are shown for modes that vary with disorder.

The symmetric three-wave problem previously considered in the right-hand panels of
Figure 3.6 are used for right-hand panels. In the three-wave problem, results for the
mode that is insensitive to disorder, labeled with subscript 1, are omitted. For zero
disorder, both problems possess a mode in a pass-band state and a mode in a stop-gap
state.

Results for two problems that have not been considered previously are shown in
Figure 5.3. The mean row spacing of the arrays is kd = 7.5π. In the left-hand panels
there are M = 4 wave directions and ψ0 = 0.1π is the smallest scattering angle. In
the right-hand panels M = 5 and ψ0 = 0.2π. The in-row spacing of the arrays is
ks = (M − 1)π sec(ψ0). Both problems are therefore symmetric with respect to the
y-axis, and both have two pairs of modes that are unaffected by disorder. Values
corresponding to these modes are labeled with subscripts 1 and 2 and are omitted
from the figures.

Pleasing agreement is observed between the two approximations in all of the
multiple-wave problems. Again, the agreement of the attenuation rates is particularly
good. Only slight deviations are seen in the two-wave problems in the intervals where
a mode transitions from zero energy flux to finite energy flux. Differences in the energy
fluxes are typically found in intervals of rapid change, e.g., the oscillations for large
disorder in the two-wave problems. Noise is again evident in the random sampling
approximation of the energy flux when attenuation rates are small. But, unlike the
single-wave problems, noise is evident in the CPA of the energy flux for large disorder.
This is attributed to numerical difficulties in solving for the larger systems created by
multiple wave directions.

6. Summary and discussion. Wave modes supported by randomly disordered
arrays, composed of multiple identical rows of scatterers, were sought using direct
numerical approaches and an approximation. Wave interactions between rows were
limited to a finite number of propagating waves traveling in known directions. The
number of modes supported by the array is equal to the number of wave direc-
tions.

In the absence of disorder the arrays are periodic, and the modes can be calculated
from the transfer matrix for a single cell in the array. Disorder was introduced in
the spacings between the rows. The modal structure of the periodic problem was
imposed on the disordered problem using ansatzes. The properties of the modes,
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in particular the array wave numbers, were approximated using random sampling.
Two different approaches were adopted. First, a localization approach, in which the
properties were calculated as ensemble averages over a large number of randomly
generated realizations. Second, an effective media approach, in which the properties
are extracted from the ensemble average wave field, calculated from a large number
of randomly generated realizations. For both approaches, the modes were decoupled
by combining wave fields produced by linearly independent incident waves.

A coherent potential approximation (CPA) was also developed. The CPA predicts
the modes from the ensemble average of the scattering properties of a single cell in
the array. The CPA assumes that the ensemble average perfectly transmits each of
the modes. A numerical algorithm was devised to implement the CPA.

Numerical investigations were conducted (a) to compare the approximations pro-
duced by the localization and effective media approaches, and (b) to validate the CPA

using random sampling. The key findings and discussions are listed below.
(i) The two approaches produce the same attenuation rates when wave interac-

tions are essentially one-dimensional, i.e., one wave direction or two symmet-
ric wave directions. The localization approach typically requires a smaller
ensemble to achieve convergence for large disorder. Conversely, only the ef-
fective media approach is able to capture small attenuation rates accurately.

(ii) The attenuation rates produced by the two approaches diverge from one an-
other as the disorder level becomes large for problems involving multiple wave
directions. In this regime the coherent wave modes attenuate more rapidly
than the modes of the individual wave fields. This indicates that the coherent
wave fields do not dominate the attenuation process for large disorder. Ev-
ery effort has been made to ensure the authenticity of the numerical results
presented here. The consistency of the differences between the attenuation
rates is a strong indication that the feature is genuine.

(iii) The ensemble average adopted in the localization approach does not repre-
sent phase changes of wave modes supported by the array. For problems
in which modes are automatically uncoupled in the individual simulations,
i.e., problems involving a single wave direction and significant attenuation,
the phase changes associated to local waves traveling up and down the array
match those of the effective wave modes attenuating up and down the array,
respectively. The methods developed in this study are unable to determine if
similar behavior is present when multiple modes are excited.

(iv) The CPA produces attenuation rates and energy fluxes almost identical to
that of the effective media random sampling approach. This indicates that
the CPA is a viable method for capturing the modes of an effective wave field
in problems involving multiple wave directions.

From a practical standpoint, the CPA proved to be far easier to implement than
the random sampling approaches, which are beset with difficulties. The CPA was
also more efficient than random sampling for the numerical results presented in this
investigation. The attenuation rates predicted by the CPA are robust. However, noise
is apparent in the corresponding predictions of energy fluxes for large disorder, which
may be caused by the application of a package minimization routine. Furthermore,
the cost of the minimization routine does not scale well with respect to the number
of wave directions. Therefore, it is unlikely that the CPA algorithm devised here
could be applied to problems involving a large number of wave directions, e.g., the
multiple-row problem considered by Bennetts [1].
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