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Spectral and Energy Efficiencies in Full-Duplex

Wireless Information and Power Transfer
Van-Dinh Nguyen, Student Member, IEEE, Trung Q. Duong, Senior Member, IEEE, Hoang Duong Tuan,

Oh-Soon Shin, Member, IEEE, and H. Vincent Poor Fellow, IEEE

Abstract—A communication system is considered consisting of
a full-duplex (FD) multiple-antenna base station (BS) and mul-
tiple single-antenna downlink users (DLUs) and single-antenna
uplink users (ULUs), where the latter need to harvest energy
for transmitting information to the BS. The communication is
thus divided into two phases. In the first phase, the BS uses all
available antennas for conveying information to DLUs and wire-
less energy to ULUs via information and energy beamforming,
respectively. In the second phase, ULUs send their independent
information to the BS using their harvested energy while the
BS transmits the information to the DLUs. In the both phases,
the communication is operated at the same time and over the
same frequency band. The aim is to maximize the sum rate and
energy efficiency under ULU achievable information throughput
constraints by jointly designing beamformers and time allocation.
The utility functions of interest are nonconcave and involved
constraints are nonconvex, so these problems are computationally
troublesome. To address them, path-following algorithms are pro-
posed to arrive at least at local optima. The proposed algorithms
iteratively improve the objectives with converge guaranteed.
Simulation results demonstrate that they achieve fast convergence
rate and outperform conventional solutions.

Index Terms—Energy harvesting, full-duplex radios, full-
duplex self-interference, transmit beamforming, wireless infor-
mation and power transfer.

I. INTRODUCTION

Radio-frequency (RF) energy harvesting (EH) communica-

tion has emerged as a promising cost-effective technology for

supplying power to users [1], [2]. Enabling wireless devices

to harvest energy from RF signals, RF-EH communication is

expected to fundamentally reshape the landscape of power

supply in Internet-of-Things (IoT) [3], [4]. Exploring RF

EH communication allows one to transfer information and

energy over the same RF channel [5], [6]. Various cooperative

schemes with/without built-in batteries for energy storage in
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which multiple transceiver pairs communicate with each other

via EH relays were studied in [7]–[10]. In this regard, transmit

beamforming is used to focus information and/or RF energy

at the desired users [11], [12].

An emerging trend is the development of wireless pow-

ered communication networks (WPCNs), which implement

a downlink wireless energy transfer (DWET) followed by

an uplink wireless information transmission (UWIT) [13].

A base station (BS) first transfers energy to the wireless

powered users, who harvest the energy for transmitting their

independent information to the BS. Time allocation for DWET

and UWIT to optimize the sum information rate subject to

per-user achievable information rate thresholds was considered

in [14]. The joint downlink beamforming and uplink power

allocation under fixed time durations to optimize the worst

achievable information user rate was considered in [15] using

alternating optimization. The optimal time allocation is then

searched at grinding points. A similar optimization problem

for the joint energy weight and power allocation with the BS

of massive antenna array was analyzed asymptotically in [16],

while [17] considered energy efficiency in the case of a single

user. The joint time allocation for DWET, time separation

and power allocation in UWIT for the users in optimizing

the WPCN energy efficiency was proposed in [18]. Very

recently, [19] considered a joint downlink (DL) and uplink

(UL) transmission of K-tier heterogeneous cellular networks

with downlink simultaneous wireless information and power

transfer, where outage probability and ergodic capacity of both

DL and UL have been derived.

Meanwhile, full duplex (FD) radio [20] offers enormous

potential to significantly enhance the spectral efficiency com-

pared to its half duplex (HD) counterpart. Recent studies (see,

e.g., [21] and [22]) showed that FD radio may be deployable

in next-generation networks because it can be implemented

at reasonable cost and without complex radio hardware. The

major challenge in FD radio is the residual self-interference

(SI) from the transmit antennas to the receive antennas, which

are co-located and function at the same time and over the same

frequency band. A wide range of SI mitigation techniques were

addressed in [20], [23] and [24]. More recently, FD multiple-

input multiple-output (MIMO) precoding was studied in the

context of multiuser MIMO (MU-MIMO) to improve the over-

all spectral efficiency of downlink and uplink channels [25]–

[28]. A FD single-antenna architecture for energy-recycling

was proposed in [29]. Beamformer design at the FD relay

for harvesting energy and suppressing loop interference was

considered in [30].
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In this paper, we study the potential of FD radio in WPCNs

to improve both spectral and energy efficiencies. There are

both downlink users (DLUs) and uplink users (ULUs), where

the ULUs need to harvest energy from the BS via DWET by

the BS. The communication operates in two phases in the same

time slot and over the same frequency band. In the first phase,

the BS uses all available antennas to simultaneously transmit

information to DLUs and transfer the energy to ULUs. In the

second phase, the BS operates in FD mode for transmitting

information to DLUs and receiving information from ULUs.

Each ULU uses only the harvested energy in transmitting

information to the BS. We jointly optimize the time allocation

for the phases, the DL information and energy beamforming,

and the UL transmit power allocation subject to the power

budget at the BS and the individual ULU information rate

thresholds. The ULU information rate threshold constraints

are crucial to resolving the so called doubly near-far prob-

lem in WPCNs that discriminates the ULUs by favoring

ones with better channel conditions for both energy transfer

in phase I and information transmission in phase II. The

residual SI and co-channel interference (CCI) from ULUs

to DLUs are taken into account, which potentially offer the

best performance make the optimizations more challenging. In

fact, these problems involve optimization of nonconvex utility

functions subject to nonconvex constraints, for which the

optimal solutions are difficult computationally. Nevertheless,

we propose path-following algorithms to address them. Our

main contributions are summarized as follows:

• We propose a new model for WPCNs to optimize simul-

taneous uplink and downlink information transmission by

exploring FD radio for the BS.

• Assuming perfect channel state information (CSI), we

first develop a path-following algorithm of low complex-

ity for the computational solution of sum rate maximiza-

tion (SRM). The obtained solutions are at least local

optima as they satisfy the Karush-Kuhn-Tucker (KKT)

conditions. Numerical results show fast convergence of

the proposed algorithm and greatly improve the system

performance over the conventional approaches.

• The energy efficiency maximization (EEM) problem is a

difficult nonlinear fraction program since the objective

is not a ratio of a concave and convex function. The

commonly-used Dinkelbach-type algorithms are not ap-

plicable. We develop a novel path-following algorithm

that only invokes one simple convex quadratic program

at each iteration, which again converges at least to a local

optimum.

The rest of this paper is organized as follows. The system

model and problem formulations of SRM and EEM are

described in Section II. We devise the optimal solution to the

SRM and EEM problems in Section III and IV, respectively.

Numerical results are provided in Section V, and Section VI

concludes the paper.

Notation: Bold lower and upper case letters represent vec-

tors and matrices, respectively; XH , XT , X∗, and Trace(X)
are the Hermitian transpose, normal transpose, conjugate, and

trace of a matrix X, respectively. ‖ · ‖ and | · | denote the
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Fig. 1. A WPCN system with WET in the downlink channel and WIT in
both uplink and downlink channels.

Euclidean norm of a matrix or vector and the absolute value

of a complex scalar, respectively. IN represents an N × N
identity matrix. x ∼ CN (η,Z) means that x is a random

vector following a complex circular Gaussian distribution with

mean η and covariance matrix Z. E[·] denotes the statistical

expectation. The notation X � 0 (X ≻ 0, resp.) means

the matrix X is positive semi-definite (definite, resp.). ℜ{·}
represents real part of the argument. The inner product 〈X,Y〉
is defined as Trace(XHY). ∇xf(x) represents the gradient

of f(·) with respect to vector x.

II. SYSTEM MODEL AND OPTIMIZATION PROBLEM

FORMULATIONS

A. Signal Model

We consider a WPCN as illustrated in Fig. 1, which con-

sists of a BS, K DLUs and L ULUs. The BS is equipped

with M receive and N transmit antennas, while all the

users are equipped with a single antenna. Denote by D ,

{D1,D2, · · · ,DK} and U , {U1,U2, · · · ,UL} the sets of

DLUs and ULUs, respectively. All channels are assumed to

follow independent quasi-static flat fading, i.e., remaining con-

stant during a communication time block, denoted by T , but

change independently from one block to another. Without loss

of generality, the time block T is set as 1. Following [13]–[18],

all ULUs Uℓ ∈ U are assumed to harvest energy from the RF

signal transmitted by the BS and then transmit information to

BS as illustrated in Fig. 2. During the first fraction 0 < α < 1
of the time block, the BS simultaneously transmits information

to all DLUs Dk and transfers energy to all ULU Uℓ. In the

remaining fraction (1−α), the BS operates in FD mode, i.e.,

it uses N antennas for transmitting information to the DLUs

and M antennas for receiving information from ULUs.

With all M +N antennas used in phase I, more degrees of

freedom are added to the BS and all ULUs Uℓ’s are expected

to harvest more energy from the RF signal. The complex

baseband transmitted signal at the BS in phase I is then
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αT (1− α)T

DL information transfer: BS −→ Dk

BS −→ UℓDL energy transfer:

DL information transfer: BS −→ Dk

UL information transfer: Uℓ −→ BS

Fig. 2. The harvest-and-then-transmit protocol.

expressed as

x1 =

K∑

k=1

w1,kxk + ve (1)

where w1,k ∈ C
(N+M)×1 denotes the k-th information

beamforming vector, xk with E{|xk|2} = 1 is the message

intended for DLU Dk. The energy beam vector ve whose

elements are zero-mean complex Gaussian random variables,

is assumed ve ∼ CN (0,VVH), where V ∈ C
(N+M)×L̃ with

L̃ ≤ min
(
(N +M), L

)
. The received signal at DLU Dk and

ULU Uℓ in phase I is, respectively, expressed as

yDk
= hH

Dk
w1,kxk +

K∑

i=1,i 6=k

hH
Dk

w1,ixi + hH
Dk

ve + nDk
, (2)

and

yUℓ
=

K∑

k=1

gH
Uℓ
w1,kxk + gH

Uℓ
ve + nUℓ

(3)

where hDk
∈ C

(N+M)×1 and gUℓ
∈ C

(N+M)×1 are the

channel vectors from the BS to DLU Dk and ULU Uℓ,

respectively. They can be explicitly written as

hDk
= [ĥDk,1, · · · , ĥDk,N
︸ ︷︷ ︸

h̃Dk

, ĥDk,(N+1), · · · , ĥDk,(N+M)]
T , (4)

gUℓ
= [ĝUℓ,1, · · · , ĝUℓ,N , ĝUℓ,(N+1), · · · , ĝUℓ,(N+M)

︸ ︷︷ ︸

g̃Uℓ

]T (5)

where ĥDk,i ∈ C and ĝUℓ,i ∈ C, ∀i = 1, · · · , N +M, denote

the baseband channels from the i-th antenna at the BS to

DLU Dk and ULU Uℓ, respectively; nDk
∼ CN (0, σ2

k) and

nUℓ
∼ CN (0, σ̂2

ℓ ) represent the additive white Gaussian noise

(AWGN) at DLU Dk and ULU Uℓ, respectively. The harvested

energy at ULU Uℓ is defined by

EUℓ
(w1,V, α) = ηαE

{
|yUℓ

|2
}

= ηα
( K∑

k=1

|gH
Uℓ
w1,k|2 + ‖gH

Uℓ
V‖2

)

(6)

where w1 , [wT
1,1, · · · ,wT

1,K ]T ∈ C
(N+M)K , and η denotes

the energy conversion efficiency at the receiver. In (6), the

receive noise can be neglected since it will be negligible

compared to energy transfer from the BS in practice. We can

see that the harvested energy in (6) is also contributed by the

DL information beams. We will show in Section V that the

energy beam ve is very beneficial when the ULUs are far from

the DLUs.

From (2), the signal-to-interference-plus-noise ratio (SINR)

at DLU Dk in phase I can be expressed as

γ1,k(w1,V) =
|hH

Dk
w1,k|2

∑K
i=1,i 6=k |hH

Dk
w1,i|2 + ‖hH

Dk
V‖2 + σ2

k

. (7)

In phase II, the BS uses N antennas for transmitting infor-

mation to the DLUs and M antennas for receiving information

from the ULUs. The received signal at DLU Dk and the BS

can be, respectively, written as

ỹDk
= h̃H

Dk
w2,kx

′
k +

K∑

i=1,i 6=k

h̃H
Dk

w2,ix
′
i

+

L∑

ℓ=1

pℓgℓkvℓ + nDk
, (8)

and

yU =

L∑

ℓ=1

pℓhUℓ
vℓ +

√
ρ

K∑

k=1

GH
I w2,kx

′
k + nU (9)

where h̃Dk
∈ C

N×1, w2,k ∈ C
N×1 and x′k with E{|x′k|2} = 1

are the transmit channel vector, information beam for DLU Dk

and the message intended for DLU Dk in phase II. pℓ ∈ C,

hUℓ
∈ C

M×1 and vℓ with E{|vℓ|2} = 1 are the transmit

power, the receive channel vector, and the message of ULU

Uℓ, respectively. nU ∼ CN (0, σ̃2I) denotes the receive AWGN

at the BS. Since the channel remains unchanged during a

transmission block time, h̃Dk
corresponds to first N elements

of hDk
in (4). We also assume the reciprocity for UL and

DL links, i.e., hUℓ
= g̃Uℓ

, ∀ℓ, where g̃Uℓ
is defined in (5).

Note that the term
√
ρ
∑K

k=1 G
H
I w2,kxk in (9) represents

the FD SI left over from the so called analog-circuit domain

SI cancellation [24], where GI is a fading loop channel and

0 ≤ ρ ≤ 1 is used for modeling the degree of SI propagation

[20]. The CCI from ULU Uℓ to DLU Dk is denoted by gℓk.

From (8), the SINR at DLU Dk in phase II is

γ2,k(w2,p) =
|h̃H

Dk
w2,k|2

∑K
i=1,i 6=k |h̃H

Dk
w2,i|2 +

∑L
ℓ=1 p

2
ℓ |gℓk|2 + σ2

k
(10)

where w2 , [wT
2,1,w

T
2,2, · · · ,wT

2,K ]T ∈ C
NK and p ,

[p1, p2, · · · , pL]T . The achieved SR of DL transmission is thus

RD

(
w1,w2,V,p, α

)
= α

K∑

k=1

ln
(

1 + γ1,k
(
w1,V

))

+
(
1− α

)
K∑

k=1

ln
(

1 + γ2,k
(
w2,p

))

. (11)

For simplicity, we adopt the minimum mean square error and

successive interference cancellation (MMSE-SIC) receiver at

the BS to maximize the received SINR of Uℓ in (9). Assuming

that the decoding order follows the ULU index order, the

resultant SINR in decoding Uℓ’s information is [31]

γℓ(w2,p) =p
2
ℓh

H
Uℓ

(
L∑

j>ℓ

p2jhUj
hH
Uj

+ ρ

K∑

k=1

GH
I w2,kw

H
2,kGI + σ̃2I

)−1

hUℓ
. (12)

Then, the achieved SR of UL transmission is

RU(w2,p, α) =
(
1− α

)
L∑

ℓ=1

ln
(

1 + γℓ
(
w2,p

))

. (13)
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B. Optimization Problem Formulations

Our main goal is to maximize both the total SR and EE of

the system by jointly deriving the time allocation (for two

phases), the DL beamformers, and the UL transmit power

allocation under the ULU rate thresholds.

1) SRM Problem Formulation: The SRM problem of jointly

designing w1, w2, V, p, and α can be expressed as

maximize
w1,w2,V,p,α

RD(w1,w2,V,p, α) +RU(w2,p, α) (14a)

s.t. (1− α) ln
(
1 + γℓ(w2,p)

)
≥ r̄u, ∀ℓ = 1, · · · , L, (14b)

p2ℓ ≤ pehUℓ
(w1,V, α), ∀ℓ = 1, · · · , L, (14c)

pℓ ≥ 0, ∀ℓ = 1, · · · , L, (14d)

α
(

‖w1‖2 + ‖V‖2
)

+ (1− α)‖w2‖2 ≤ PBS, (14e)

0 < α < 1 (14f)

where without loss of generality the same rate threshold r̄u
for all ULUs is set, PBS is the maximum transmit power at

the BS, and

pehUℓ
(w1,V, α) =

EUℓ
(w1,V, α)

(1− α)

=
ηα

1− α

( K∑

k=1

|gH
Uℓ
w1,k|2 + ‖gH

Uℓ
V‖2

)

. (15)

The optimization problem in (14) is known as the spectral

efficiency maximization problem. The constraints in (14b)

impose a quality-of-service (QoS) requirement for ULU Uℓ,

i.e., the achievable information decoding rate should be not

less than a given threshold r̄u to prevent the FD to maximize

RD only in maximizing the objective value in (14), leading

to an extremely low QoS for ULUs. More importantly, they

cognitively rule out the doubly near-far occurrence of favoring

ULUs with better channel conditions. According to (6) and

(11), the ULUs with better channel conditions are advanta-

geous in both harvesting energy in phase I and transmitting

information in phase II. The constraints (14c) merely mean

that each ULU Uℓ utilizes its energy harvested from phase I

to transmit information to the BS, as illustrated in Fig. 2. The

constraint in (14e) is the power constraint at the BS, which

differs from the following one that was studied previously

[15]:

‖w1‖2 + ‖V‖2 + ‖w2‖2 ≤ PBS. (16)

However, in contrast to the left-hand side (LHS) of (14e),

which is the total transmit power at the BS, the LHS of (16)

is a sum of power rates so the constraint (16) is meaningless.

Note that (16) is much stricter than (14e), i.e., by using

(16), the BS does not use all allowable power and thus

the corresponding performance is not optimal. This will be

elaborated in the next sections.

2) EEM Problem Formulation: Another performance met-

ric of interest is to maximize EE of the system. Energy

consumption in green wireless networks has attracted much

attention of both academia and industry recently [17], [32],

[33]. In this paper, the power consumed by the BS and ULUs

is taken into account.

Power consumption model: A linear power model [34] is

adopted in this paper, where the total power consumption at

the BS is modeled as

PDL =
1

ǫ

(

α(‖w1‖2 + ‖V‖2) + (1− α)‖w2‖2
)

+ αMP dyn
BS +NP dyn

BS + P sta
BS (17)

where ǫ ∈ (0, 1] is the power amplifier efficiency, P dyn
BS is the

dynamic power consumption associated to the power radiation

of all circuit blocks in each active radio frequency chain, and

P sta
BS is the static power consumed by cooling system, power

supply, etc. Similarly, the total power consumption of all users

in the UL channel is given by

PUL = (1− α)
L∑

ℓ=1

P dyn
Uℓ

+

L∑

ℓ=1

P sta
Uℓ
. (18)

Note that the formulation in (18) does not include a power

consumed by sending data by ULUs as it is already incor-

porated in (17). For notational simplicity, we denote P0 ,

NP dyn
BS +P sta

BS +
∑L

ℓ=1 P
sta
Uℓ

as the circuit power of the system,

which is independent from the optimization variables. The

EEM problem is thus

maximize
w1,w2,V,p,α

RD(w1,w2,V,p, α) +RU(w2,p, α)

χ(w1,w2,V, α) + P0
(19a)

s.t. (14b), (14c), (14d), (14e), (14f) (19b)

where χ(w1,w2,V, α) , 1
ǫ

(

α
(
‖w1‖2 + ‖V‖2

)
+ (1 −

α)‖w2‖2
)

+ αMP dyn
BS + (1− α)

∑L
ℓ=1 P

dyn
Uℓ

.

Naturally, the reciprocity for UL and DL links in time

duplex division (TDD) mode is adopted for small cell systems

as those considered in this paper, under which CSI is easily

obtained by requesting all DLUs and ULUs to send their pilots

to the BS and thus can be assumed perfectly available. The

performance under perfect CSI also serves as a benchmark for

the achievement of the FD systems. Moreover, our proposed

algorithms can be further adjusted to robust optimization

problems in dealing with the worst case of imperfect CSI.

III. SUM RATE MAXIMIZATION

Finding an optimal solution to the SRM problem (14) is

challenging due to the non-concavity of its objective function

and nonconvexity of its feasible set. In this section, we propose

a path-following computation procedure to obtain a local

optimum.

The following inequalities, whose proofs are given in the

Appendix A, will be frequently used in the paper:

ln
(

1 +
|x|2
y

)

≥ ln
(

1 +
|x̄|2
ȳ

)

− |x̄|2
ȳ

+ 2
ℜ{x̄∗x}

ȳ

− |x̄|2(|x|2 + y)

ȳ(ȳ + |x̄|2) , (20)

|x|2
y

≥ 2
x̄∗x

ȳ
− |x̄|2

ȳ2
y, (21)

∀x ∈ C, x̄ ∈ C, y > 0, ȳ > 0.
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As the first step, we use the additional variables τ and β,

which satisfy the convex constraints

ατ ≥ 1 and (1− α)β ≥ 1 (22)

to equivalently express (14) as

maximize
w1,w2,V,p,α,τ,β

K∑

k=1

ln
(
1 + γ1,k(w1,V)

)

τ

+

K∑

k=1

ln
(
1 + γ2,k(w2,p)

)

β
+

L∑

ℓ=1

ln
(
1 + γℓ(w2,p)

)

β
(23a)

s.t. ln
(
1 + γℓ(w2,p)

)
≥ r̄u/(1− α), ∀ℓ = 1, · · · , L, (23b)

p2ℓ
α

≤ η
φehℓ (w1,V)

1− α
, ∀ℓ = 1, · · · , L, (23c)

‖w1‖2 + ‖V‖2 + ‖w2‖2 −
‖w1‖2 + ‖V‖2

β

− ‖w2‖2
τ

≤ PBS (23d)

(14d), (14f), (22), (23e)

with

φehℓ (w1,V) =

K∑

k=1

|gH
Uℓ
w1,k|2 + ‖gH

Uℓ
V‖2.

Note that the objective (23a) is nonconcave and (23b)-(23d)

are also nonconvex constraints. Let us treat the nonconcave

objective (23a) first. As observed in [35], (7) can be equiva-

lently replaced by

γ1,k(w1,V) =

(
ℜ{hH

Dk
w1,k}

)2

ϕDk
(w1,V)

(24)

with the additional linear constraint

ℜ
{
hH
Dk

w1,k

}
≥ 0 (25)

where

ϕDk
(w1,V) =

K∑

i=1,i 6=k

|hH
Dk

w1,i|2 + ||hH
Dk

V||2 + σ2
k.

At a feasible point
(
w

(n)
1 ,V(n)

)
it follows from the inequality

(20) that

ln
(
1 + γ1,k(w1,V)

)
≥

ln
(
1 + γ1,k(w

(n)
1 ,V(n))

)
− γ1,k

(
w

(n)
1 ,V(n)

)

+ 2
ℜ
{
hH
Dk

w
(n)
1,k

}
ℜ
{
hH
Dk

w1,k

}

ϕDk

(
w

(n)
1 ,V(n)

) −
(

ℜ{hH
Dk

w
(n)
1,k}

)2(

ϕDk
(w1,V) +

(
ℜ{hH

Dk
w1,k}

)2
)

ϕDk
(w

(n)
1 ,V(n))

(

ϕDk

(
w

(n)
1 ,V(n)

)
+
(
ℜ{hH

Dk
w

(n)
1,k}

)2
) .(26)

Upon setting

a
(n)
1,Dk

= ln
(
1 + γ1,k(w

(n)
1 ,V(n))

)
−γ1,k

(
w

(n)
1 ,V(n)

)
< 0,

b
(n)
1,Dk

= 2
ℜ{hH

Dk
w

(n)
1,k}

ϕDk

(
w

(n)
1 ,V(n)

) > 0
(
thanks to (25)

)
,

c
(n)
1,Dk

=
(
ℜ{hH

Dk
w

(n)
1,k}

)2

ϕDk

(
w

(n)
1 ,V(n)

)(

ϕDk

(
w

(n)
1 ,V(n)

)
+
(
ℜ{hH

Dk
w

(n)
1,k}

)2
) > 0

(27)

it follows from (26) and the inequality (21) that

ln
(
1 + γ1,k(w1,V)

)

τ
≥
a
(n)
1,Dk

τ
+ b

(n)
1,Dk

ℜ
{
hH
Dk

w1,k

}

τ

− c
(n)
1,Dk

ϕDk
(w1,V) +

(
ℜ{hH

Dk
w1,k}

)2

τ

≥
a
(n)
1,Dk

τ
+ b

(n)
1,Dk

(

2

√

ℜ{hH
Dk

w
(n)
1,k}

√

ℜ{hH
Dk

w1,k}
τ (n)

−
ℜ
{
hH
Dk

w
(n)
1,k

}
τ

(τ (n))2

)

− c
(n)
1,Dk

ϕDk
(w1,V) +

(
ℜ{hH

Dk
w1,k}

)2

τ
(28)

:= f
(n)
1,Dk

(
w1,V, τ

)
. (29)

Note that f
(n)
1,Dk

(
w1,V, τ

)
is concave and is a global lower

bound of ln
(
1 + γ1,k(w1,V)

)
/τ with

f
(n)
1,Dk

(
w

(n)
1 ,V(n), τ (n)

)
=

ln
(

1 + γ1,k
(
w

(n)
1 ,V(n)

))

τ (n)
. (30)

Analogously, (10) can be equivalently replaced by

γ2,k(w2,p) =

(
ℜ{h̃H

Dk
w2,k}

)2

ψDk
(w2,p)

(31)

with the additional linear constraint

ℜ
{
h̃H
Dk

w2,k

}
≥ 0 (32)

where

ψDk
(w2,p) =

K∑

i=1,i 6=k

|h̃H
Dk

w2,i|2 +
L∑

ℓ=1

p2ℓ |gℓk|2 + σ2
k.

At a feasible point
(
w

(n)
2 ,p(n), β(n)

)
it can be shown in a

similar manner that

ln
(
1 + γ2,k(w2,p)

)

β
≥
a
(n)
2,Dk

β

+ b
(n)
2,Dk

(

2

√

ℜ{h̃H
Dk

w
(n)
2,k}

√

ℜ{h̃H
Dk

w2,k}
β(n)

−
ℜ
{
h̃H
Dk

w
(n)
2,k

}
β

(β(n))2

)

− c
(n)
2,Dk

ψDk
(w2,p) +

(
ℜ{h̃H

Dk
w2,k}

)2

β
(33)

:= f
(n)
2,Dk

(
w2,p, β

)
(34)
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where

a
(n)
2,Dk

= ln
(
1 + γ2,k(w

(n)
2 ,p(n))

)
− γ2,k

(
w

(n)
2 ,p(n)

)
< 0,

b
(n)
2,Dk

= 2
ℜ
{
h̃H
Dk

w
(n)
2,k

}

ψDk

(
w

(n)
2 ,p(n)

) > 0
(
thanks to (32)

)
,

c
(n)
2,Dk

=
(
ℜ{h̃H

Dk
w

(n)
2,k}

)2

ψDk

(
w

(n)
2 ,p(n)

)(

ψDk
(w

(n)
2 ,p(n)) +

(
ℜ{h̃H

Dk
w

(n)
2,k}

)2
) > 0

(35)

and f
(n)
2,Dk

(
w2,p, β

)
is concave and is a global lower bound

of ln
(
1 + γ2,k

(
w2,p)

)
/β with

f
(n)
2,Dk

(
w

(n)
2 ,p(n), β(n)

)
=

ln
(

1 + γ2,k
(
w

(n)
2 ,p(n)

))

β(n)
. (36)

Next, at the feasible point
(
w

(n)
2 ,p(n)

)
, based on the inequal-

ity (20) the left-hand side (LHS) of (23b) is lower bounded

by

ln
(
1 + γℓ(w2,p)

)
≥ f̃

(n)
ℓ (w2,p) (37)

where f̃
(n)
ℓ (w2,p) is defined as

f̃
(n)
ℓ (w2,p) = a

(n)
ℓ + b

(n)
ℓ pℓ − ϕ

(n)
ℓ (w2,p) (38)

with

a
(n)
ℓ = ln

(
1 + γℓ(w

(n)
2 ,p(n))

)
− γℓ

(
w

(n)
2 ,p(n)

)
< 0,

b
(n)
ℓ = 2p

(n)
ℓ hH

Uℓ
Φ

(n)
ℓ hUℓ

> 0,

ϕ
(n)
ℓ (w2,p) = p2ℓh

H
Uℓ
Ω

(n)
ℓ hUℓ

+

L∑

j>ℓ

p2jh
H
Uj
Ω

(n)
ℓ hUj

+ ρ
K∑

k=1

wH
2,kGIΩ

(n)
ℓ GH

I w2,k + σ̃2Trace
(
Ω

(n)
ℓ

)
,

Φ
(n)
ℓ =

( L∑

j>ℓ

(
p
(n)
j

)2
hUj

hH
Uj

+ ρ

K∑

k=1

GH
I w

(n)
2,k

(
w

(n)
2,k

)H
GI

+ σ̃2
ℓ I
)−1

≻ 0,

Ω
(n)
ℓ = Φ

(n)
ℓ −

((
p
(n)
ℓ

)2
hUℓ

hH
Uℓ

+

L∑

j>ℓ

(
p
(n)
j

)2
hUj

hH
Uj

+ ρ

K∑

k=1

GH
I w

(n)
2,k

(
w

(n)
2,k

)H
GI + σ̃2I

)−1

� 0. (39)

It follows from (37) that f̃
(n)
ℓ

(
w2,p

)
is a concave quadratic

function with

ln
(

1 + γℓ
(
w

(n)
2 ,p(n)

))

= f̃
(n)
ℓ

(
w

(n)
2 ,p(n)

)
. (40)

As a result, the constraint (23b) is innerly approximated by

the following convex quadratic constraint:

f̃
(n)
ℓ (w2,p) ≥ r̄u/(1− α), ∀ℓ = 1, · · · , L (41)

while the last term of the objective (23a) is lower bounded by

ln
(
1 + γℓ(w2,p)

)

β
≥ a

(n)
ℓ

β
+ b

(n)
ℓ

(

2

√

p
(n)
ℓ

√
pℓ

β(n)
− p

(n)
ℓ β

(β(n))2

)

− ϕ
(n)
ℓ

(
w2,p

)

β
(42)

:= f
(n)
ℓ

(
w2,p, β

)
(43)

with the concave function f
(n)
ℓ (w2,p, β) satisfying

ln
(

1 + γℓ
(
w

(n)
2 ,p(n)

))

β(n)
= f

(n)
ℓ

(
w

(n)
2 ,p(n), β(n)

)
. (44)

For the constraint (23c) in (23), note that both of its

sides are convex functions. Thus, at a feasible point
(
w

(n)
1 ,V(n), α(n)

)
, it follows from the inequality (21) that

the function φehℓ (w1,V)/(1 − α) in (23c) is lower bounded

by

φehℓ (w1,V)

1− α
≥ φ

(n),eh
ℓ (w1,V, α)

=

∑K
k=1 2ℜ

{
(w

(n)
1,k )

HgUℓ
gH
Uℓ
w1,k

}

1− α(n)
−

|gH
Uℓ
w

(n)
1,k |2(1− α)

(
1− α(n)

)2

+
2ℜ
{
Trace

(
(V(n))HgUℓ

gH
Uℓ
V
)}

1− α(n)
−

‖gH
Uℓ
V(n)‖2(1− α)

(1− α(n))2
. (45)

Therefore, (23c) is innerly approximated by the convex con-

straint

p2ℓ
α

≤ ηφ
(n),eh
ℓ (w1,V, α), ∀ℓ = 1, · · · , L. (46)

By using the inequality (21), the nonconvex constraint (23d)

is innerly approximated by

‖w1‖2 + ‖V‖2 + ‖w2‖2 +
(
‖w(n)

1 ‖2 + ‖V(n)‖2
)
β

(
β(n)

)2

− 2
ℜ
{(

w
(n)
1

)H
w1

}

+ ℜ
{

Trace
(
(V(n))HV

)}

β(n)

− 2
ℜ
{
(w

(n)
2 )Hw2

}

τ (n)
+

‖w(n)
2 ‖2τ

(τ (n))2
≤PBS. (47)

From the above discussions, at (n+1)-th iteration, we solve

the following convex problem:

maximize
w1,w2,V,p,α,τ,β

K∑

k=1

(

f
(n)
1,Dk

(
w1,V, τ

)
+ f

(n)
2,Dk

(
w2,p, β

))

+
L∑

ℓ=1

f
(n)
ℓ

(
w2,p, β

)
(48a)

s.t. (14d), (14f), (22), (25), (32), (41), (46), (47). (48b)

To find a feasible point of (14) to initialize the computational

procedure, we consider the following nonconvex optimization

subject to the convex constraints:

max
w1,w2,V,p,α,τ,β

min
ℓ=1,··· ,L

min
{

ln
(
1 + γℓ(w2,p)

)
− r̄u

1− α
,

η
φehℓ (w1,V)

1− α
− p2ℓ
α

}

(49a)

s.t. (14d), (14f), (22), (47). (49b)
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Algorithm 1 Path-following algorithm for the SRM problem

(14)

Initialization: Set n := 0 and solve (50) to generate an initial

feasible point
(
w

(n)
1 ,w

(n)
2 ,V(n),p(n), α(n), τ (n), β(n)

)

1: repeat

2: Solve (48) to obtain the optimal solutions:
(
w⋆

1,w
⋆
2,V,p

⋆, α⋆, τ⋆, β⋆
)
.

3: Update: w
(n+1)
1 := w⋆

1, w
(n+1)
2 := w⋆

2 , V(n+1) :=
V⋆, p(n+1) := p⋆, α(n+1) := α⋆, τ (n+1) := τ⋆ and

β(n+1) := β⋆.

4: Set n := n+ 1.
5: until Convergence

Initialized by any feasible
(
w

(0)
1 ,w

(0)
2 ,V(0),p(0), α(0),

τ (0), β(0)
)

to the convex constraints (14d), (14f), (22), and

(47), we solve the following convex optimization at the n-th

iteration:

max
w1,w2,V,p,α,τ,β

min
ℓ=1,...,L

{

f̃
(n)
ℓ (w2,p)−

r̄u
1− α

,

ηφ
(n),eh
ℓ (w1,V, α)−

p2ℓ
α

}

(50a)

s.t. (14d), (14f), (22), (47). (50b)

and stops upon reaching

min
ℓ=1,...,L

{

f̃
(n)
ℓ

(

w
(n+1)
2 ,p(n+1)

)

− r̄u
1− α(n+1)

,

ηφ
(n),eh
ℓ

(

w
(n+1)
1 ,V(n+1), α(n+1)

)

−
(
p
(n+1)
ℓ

)2

α(n+1)

}

≥ 0.(51)

In Algorithm 1, we summarize our proposed path-following

optimization algorithm to solve the SRM problem (14). After

solving (48), we update the involved variables for the next

iteration until convergence, which is stated the following

proposition.

Proposition 1: Algorithm 1 generates a sequence{(
w

(n)
1 ,w

(n)
2 ,V(n),p(n), α(n), τ (n), β(n)

)}

of improved

points of (23) and (14), which converges to a KKT point.

Proof: See Appendix B.

Complexity Analysis: The convex optimization problem (48)

involves ñ = (3N + M)K + (N + M)L̃ + 2L + 4 scalar

real variables and m̃ = 2K + 3L + 4 quadratic and linear

constraints, so the per-iteration computational complexity of

solving (48) is O(ñ2m̃2.5 + m̃3.5).

IV. ENERGY EFFICIENCY MAXIMIZATION

We now consider the EEM problem (19), which is also

nonconvex and more computationally difficult than the SRM

problem (14). Again, we use the additional variables τ and β
which satisfy the convex constraint

√
τ ≥ 1/α and

√

β ≥ 1/(1− α). (52)

Also introduce the new variable

λ > 0 (53)

to tackle the consumed power which satisfies the constraint

‖w1‖2 + ‖V‖2 + ‖w2‖2
ǫ

− ‖w1‖2 + ‖V‖2
ǫ
√
β

− ‖w2‖2
ǫ
√
τ

+MP dyn
BS α+

( L∑

ℓ=1

P dyn
Uℓ

)

(1− α) + P0 ≤
√
λ. (54)

Accordingly, the constraint (14e) is written as

‖w1‖2 + ‖V‖2 + ‖w2‖2 −
‖w1‖2 + ‖V‖2√

β
− ‖w2‖2√

τ
≤ PBS.

(55)

With above settings, we rewrite the EEM problem (19) by

maximize
w1,w2,V,p,α,τ,β,λ

K∑

k=1

ln
(
1 + γ1,k(w1,V)

)

√
τλ

+

K∑

k=1

ln
(
1 + γ2,k(w2,p)

)

√
βλ

+

L∑

ℓ=1

ln
(
1 + γℓ(w2,p)

)

√
βλ

(56a)

s.t. (14d), (14f), (23b), (23c), (52), (53), (54), (55). (56b)

Like (23), the problem (56) is highly nonconvex. However,

we will show in the following that the convex inner approxi-

mation approach to SRM can be extended to EEM.

To handle the objective of (56a), in the same manner to

(29), we derive its lower bound as

ln
(
1 + γ1,k(w1,V)

)

√
τλ

≥
a
(n)
1,Dk√
τλ

+ b
(n)
1,Dk

ℜ{hH
Dk

w1,k}√
τλ

− c
(n)
1,Dk

ϕDk
(w1,V) +

(
ℜ{hH

Dk
w1,k}

)2

√
τλ

≥
a
(n)
1,Dk√
τλ

+ b
(n)
1,Dk

(

2

√

ℜ{hH
Dk

w
(n)
1,k}

√

ℜ{hH
Dk

w1,k}
√
τ (n)λ(n)

−
ℜ{hH

Dk
w

(n)
1,k}τ

2(τ (n))3/2
√
λ(n)

−
ℜ{hH

Dk
w

(n)
1,k}λ

2(λ(n))3/2
√
τ (n)

)

− c
(n)
1,Dk

ϕDk
(w1,V) +

(
ℜ{hH

Dk
w1,k}

)2

√
τλ

(57)

:= f̂
(n)
1,Dk

(w1,V, τ, λ) (58)

where a
(n)
1,Dk

, b
(n)
1,Dk

, and c
(n)
1,Dk

are defined in (27). Similarly to

(34)

ln
(
1 + γ2,k(w2,p)

)

√
βλ

≥

a
(n)
2,Dk√
βλ

+ b
(n)
2,Dk

(

2

√

ℜ{h̃H
Dk

w
(n)
2,k}

√

ℜ{h̃H
Dk

w2,k}
√

β(n)λ(n)

−
ℜ{h̃H

Dk
w

(n)
2,k}β

2(β(n))3/2
√
λ(n)

−
ℜ{h̃H

Dk
w

(n)
2,k}λ

2(λ(n))3/2
√

β(n)

)

− c
(n)
2,Dk

ψDk
(w2,p) +

(
ℜ{h̃H

Dk
w2,k}

)2

√
βλ

(59)

:= f̂
(n)
2,Dk

(w2,p, β, λ) (60)
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where a
(n)
2,Dk

, b
(n)
2,Dk

, and c
(n)
2,Dk

are defined in (35). Next, simi-

larly to (42), we have

ln
(
1 + γℓ(w2,p)

)

√
βλ

≥ f̂
(n)
ℓ (w2,p, β, λ) (61)

where

f̂
(n)
ℓ (w2,p, β, λ) =

a
(n)
ℓ√
βλ

+ b
(n)
ℓ

(

2

√

p
(n)
ℓ

√
pℓ

√

β(n)λ(n)
−

p
(n)
ℓ β

2(β(n))3/2
√
λ(n)

− p
(n)
ℓ λ

2(λ(n))3/2
√

β(n)

)

− ϕ
(n)
ℓ (w2,p)√

βλ
(62)

with a
(n)
ℓ , b

(n)
ℓ , and ϕ

(n)
ℓ (w2,p) are defined in (39).

Turning attention to the constraints in (56b), we see that the

nonconvex constraints (23b) and (23c) were innerly approxi-

mated by convex constraints (41) and (45), respectively. Then,

we need to deal with the two last nonconvex constraints (54)

and (55), which are innerly approximated in the same manner

to (47) by

‖w1‖2 + ‖V‖2 + ‖w2‖2
ǫ

+
‖w(n)

1 ‖2 + ‖V(n)‖2
2ǫ
√

β(n)

+
‖w(n)

2 ‖2
2ǫ
√
τ (n)

− 2
ℜ
{
(w

(n)
1 )Hw1

}
+ℜ
{
Trace

(
(V(n))HV

)}

ǫ
√

β(n)

+

(
‖w(n)

1 ‖2 + ‖V(n)‖2
)
β

2ǫ(β(n))3/2
− 2

ℜ
{
(w

(n)
2 )Hw2

}

ǫ
√
τ (n)

+
‖w(n)

2 ‖2τ
2ǫ(τ (n))3/2

+MP dyn
BS α+

( L∑

ℓ=1

P dyn
Uℓ

)

(1− α) + P0 ≤
√
λ (63)

and

‖w1‖2 + ‖V‖2 + ‖w2‖2 +
‖w(n)

1 ‖2 + ‖V(n)‖2
2
√

β(n)
+

‖w(n)
2 ‖2

2
√
τ (n)

−2
ℜ
{
(w

(n)
1 )Hw1

}
+ℜ
{
Trace

(
(V(n))HV

)}

√

β(n)

+

(
‖w(n)

1 ‖2 + ‖V(n)‖2
)
β

2(β(n))3/2
− 2

ℜ
{
(w

(n)
2 )Hw2

}

√
τ (n)

+
‖w(n)

2 ‖2τ
2(τ (n))3/2

≤ PBS. (64)

In summary, at the (n + 1)-th iteration we solve the

following innerly approximated problem for (56):

maximize
w1,w2,V,p,α,τ,β,λ

K∑

k=1

(

f̂
(n)
1,Dk

(w1,V, τ, λ) + f̂
(n)
2,Dk

(w2,p, β, λ)
)

+

L∑

ℓ=1

f̂
(n)
ℓ (w2,p, β, λ) (65a)

s.t. (14d), (14f), (25), (32), (41), (45), (52), (53), (63), (64).(65b)

To find an initial feasible point to (19), we solve the

following convex optimization problem:

max
w1,w2,V,p,α,τ,β

min
ℓ=1,··· ,L

{

f̃
(n)
ℓ (w2,p)−

r̄u
1− α

,

ηφ
(n),eh
ℓ (w1,V, α)−

p2ℓ
α

}

(66a)

s.t. (14d), (14f), (52), (64). (66b)

Algorithm 2 Path-following algorithm for EEM (19)

Initinalization: Set n := 0 and solve

(66) to generate an initial feasible point
(
w

(n)
1 ,w

(n)
2 ,V(n),p(n), τ (n), β(n), λ(n)

)
.

1: repeat

2: Solve (65) to obtain the optimal solutions:
(
w⋆

1,w
⋆
2,V,p

⋆, τ⋆, β⋆, λ⋆
)
.

3: Update: w
(n+1)
1 := w⋆

1, w
(n+1)
2 := w⋆

2,V
(n+1) :=

V⋆,p(n+1) := p⋆, α(n+1) := α⋆, τ (n+1) := τ⋆,
β(n+1) := β⋆, and λ(n+1) := λ⋆.

4: Set n := n+ 1.
5: until Convergence

and stop upon reaching

min
ℓ=1,...,L

{

f̃
(n)
ℓ

(

w
(n+1)
2 ,p(n+1)

)

− r̄u
1− α(n+1)

,

ηφ
(n),eh
ℓ

(

w
(n+1)
1 ,V(n+1), α(n+1)

)

−
(
p
(n+1)
ℓ

)2

α(n+1)

}

≥ 0. (67)

We outline the proposed iterative method in

Algorithm 2. Analogously to Proposition 1, it can

be shown that Algorithm 2 generates a sequence{(
w

(n)
1 ,w

(n)
2 ,V(n),p(n), α(n), τ (n), β(n), λ(n)

)}

of

improved points of (19), which converges to a

KKT point. The optimization problem (65) involves

ñ = (3N +M)K +(N +M)L̃+2L+5 scalar real variables

and m̃ = 2K+3L+6 quadratic and linear constraints, so that

the per-iteration cost of solving (65) is O(ñ2m̃2.5 + m̃3.5).
Remark 1: We have observed in our numerical experi-

ments that solving (50) and (66) requires no more than three

iterations to generate a feasible initial point of (14) and (19)

in all cases.

V. NUMERICAL RESULTS

This section evaluates the numerical performance of the

proposed algorithms. The used convex solver is MOSEK

[36] in the MATLAB environment. The simulation results are

derived by averaging over 10000 runs. The channel vectors

from the BS to a user and from ULU to DLU are assumed

to undergo the path loss model for line of sight (LOS) and

non-line-of-sight (NLOS), respectively [26], [28]. Namely, the

channel vector from the BS to DLU Dk is modeled by hDk
=

√
~Dk

h̄Dk
, where the entries of h̄Dk

are independent circularly

symmetric complex Gaussian (CSCG) random variables with

zero means and unit variances, and ~Dk
= 10(−σLOS/10) rep-

resents the path loss. The channels gUℓ
and gℓk are generated

similarly as gUℓ
=
√
~Uℓ

ḡUℓ
and gℓk =

√
~ℓkḡℓk, where

the entries of ḡUℓ
and ḡℓk are independent CSCG random

variables with distribution CN (0, 1), and their path losses are

~Uℓ
= 10(−σLOS/10) and ~ℓk = 10(−σNLOS/10). The entries of

the fading loop channel GI are independently drawn from the

CSCG distribution CN (0, 1) [20]. Unless stated otherwise, the

parameters given in Table I follow those studied in [11], [12],

[15], [32]. The bandwidth of the system was omitted in the

previous sections to simplify the notation without affecting the
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solution because it is a constant. In Table I, d (d̃, resp.) is the

distance between the BS and a user (between ULU and DLU,

resp.). We simulate small-cell scenarios, so 5 ≤ d ≤ 30 m.

To emphasize the effectiveness of using all available antennas

in simultaneous information transmission and energy transfer

in phase I, we also compare the performance of our proposed

FD system with other two options:

• The BS uses N antennas for transmitting information to

DLUs and M antennas for transferring energy to ULUs

in phase I. We call this option “conventional FD”.

• The BS uses all available antennas for transferring energy

to ULUs in phase I only, i.e., w1 = 0 is set. We call this

option “no downlink WIT (DWIT) in phase I”.

Additionally, we also compare the performance of our pro-

posed FD system with that of an HD system in which the BS

uses all the antennas, i.e., M + N , for communication, and

it uses half time and half power for transmitting information

to DLUs and the remaining half time is for transferring the

energy by half power and then receiving information from

ULUs. Accordingly, there are two separate DL and UL sum

rate optimization problems:

max
w1

R̃DL(w1) ,

1

2

K∑

k=1

ln
(

1 +
|hH

Dk
w1,k|2

∑K
i=1,i 6=k |hH

Dk
w1,i|2 + σ2

k

)

(68a)

s.t.
1

2
‖w1‖2 ≤ PBS/2 (68b)

for communication with DLUs, and

max
V,p,α

R̃UL(V,p, α) , (1/2− α)

×
L∑

ℓ=1

ln
(

1 + p2ℓh
H
Uℓ

(
L∑

j>ℓ

p2jhUj
hH
Uj

+ σ̃2I
)−1

hUℓ

)

(69a)

s.t. (1/2− α) ln
(

1 + p2ℓh
H
Uℓ

(
L∑

j>ℓ

p2jhUj
hH
Uj

+ σ̃2I
)−1

hUℓ

)

≥ r̄u, ∀ℓ = 1, · · · , L, (69b)

p2ℓ ≤ ηα

1/2− α
‖gH

Uℓ
V‖2, ∀ℓ = 1, · · · , L, (69c)

α‖V‖2 ≤ PBS/2, (69d)

0 < α < 1/2, pℓ ≥ 0, ∀ℓ = 1, · · · , L (69e)

for communication with ULUs. Their optimal values are then

summed for the HD SR performance. Next, the EEM problem

for HD system is thus

maximize
w1,V,p,α

R̃DL(w1) + R̃UL(V,p, α)

χHD(w1,V, α) + P sta
BS +

∑L
ℓ=1 P

sta
Uℓ

(70a)

s.t. (68b), (69b), (69c), (69d), (69e) (70b)

where χHD(w1,V, α) , 1
ǫ

(
1
2‖w1‖2 + α‖V‖2

)
+(1/2 +

α)(M +N)P dyn
BS + (1/2− α)

∑L
ℓ=1 P

dyn
Uℓ

.

It is obvious that problems (68) and (69) can be solved by

Algorithm 1 while problem (70) can be solved by Algorithm

2.

TABLE I
SIMULATION PARAMETERS

Parameters Value

System bandwidth 1 [MHz]

Noise variances (σ2

k
, σ̃2) -80 [dBm]

Dynamic power consumptions: P dyn
BS

and P dyn
Uℓ

10 and 7 [dBm]

Static power consumptions: P sta
BS

and P sta
Uℓ

15 and 5 [dBm]

Power amplifier efficiency (ǫ) 0.69

Energy conversion efficiency (η) 1/2

Path loss from the BS to an user (σLOS) 30.18 + 26log(d) [dB]

Path loss from the Uℓ to the Dk (σ̃NLOS) 145.4 + 37.5log(d̃) [dB]

The power budge at the BS, PBS 30 [dBm]
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Algorithm 1 with (14e)
Algorithm 1 with (16)
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(a) Convergence of Algorithm 1 for different numbers of antennas
at the BS.
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(b) Convergence of Algorithm 2 for different numbers of antennas
at the BS.

Fig. 3. Convergence of Algorithms 1 and 2 for different numbers of antennas
at the BS with K = L = 3, ρ = −40 dB, r̄u = 1 Mbits/s.

A. Convergence Results

Figs. 3(a) and 3(b) depict typical convergence behavior of

the proposed Algorithm 1 and Algorithm 2 in the scenario

described in their caption. Both algorithms converge within

tens of iterations. The convergence rate is not sensitive to

the problem size which is proportional to N and M . The

objectives are iteratively improved as expected. Fig. 3 also
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TABLE II
AVERAGE RATIO (IN %) BETWEEN THE POWER USED AND POWER BUDGET

FOR DIFFERENT NUMBERS OF ANTENNAS AT THE BS.

N = M 2 4 6 8 10 12

Algorithm 1 with (16) 43.22 50.85 61.13 69.40 59.72 57.56

Algorithm 1 with (14e) 100.00 100.00 100.00 100.00 100.00 100.00
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Fig. 4. SR versus ρ with N = M = 4,K = L = 3, r̄u = 1 Mbits/s.

shows that at least 95% of the SR and EE values are reached

within 30 iterations. Of course, Algorithm 1 using the real

power constraint (14e) offers better performance compared

to that using the relaxed power constraint (16) as Fig. 3(a)

particularly shows because the BS can use all allowable power

with (14e). In particular, Table II shows that using (16) can

exploit only 69.40% of the allowable power with N =M = 8
while that of (14e) always uses 100% in all cases. This also

supports the statement made in Section II-B, on the use of

(14e) instead of (16).

B. Sum Rate Maximization

Fig. 4 illustrates the effect of FD residual SI. When the SI

degree ρ is relatively small (ρ ≤ −40 dB), the SR of FD

systems is better than that of the HD system by about 59.48%
and 41.92%. The SR of FD is degraded as the residual SI

becomes larger (ρ > −40 dB). The SR of no DWIT in phase

I is seen to yield slightly better SR performance than HD for

ρ ≤ −23 dB, but exhibits performance degradation, which

worsens as ρ > −23 dB. The high transmit power in the

DL transmission in phase II causes severe interference to the

received signals of the ULUs at the BS. Thus, the BS needs

to scale down the transmit power in phase II to meet QoS

for ULUs, compromising the SR of FD. Another interesting

observation is that the gap between the proposed FD and

conventional FD designs increases in ρ. The main reason is

that for such a case, the SR of the DLUs is mostly contributed

by the DL channel in phase I with no effect from ρ. Therefore,

the proposed FD is much more robust against the residual SI

effect. The simulation results in Fig. 4 further confirm that

incorporating transmit and receive antennas at the BS in phase

I is a powerful means to combat the degree-of-freedom (DoF)
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(c) SR of the entire system.

Fig. 5. SR versus the minimum rate requirement for ULUs, with N = M =
4,K = L = 3, ρ = −40 dB.

bottleneck for leveraging multiuser diversity.

The SR versus QoS threshold r̄u ∈ [0.5, 3] Mbits/s is shown

by Fig. 5. Fig. 5(a) shows that (69) is infeasible for r̄u > 2
Mbits/s, i.e., the HD system cannot offer such high QoS to

ULUs. In contrast, the SR of the FD system monotonically

increases even for r̄u > 2 Mbits/s. As QoS r̄u ≤ 2 Mbits/s is

easily met, FD-BS pays less attention to the ULUs. For higher

QoS r̄u > 2 Mbits/s, the FD-BS must pay more attention to

serving ULUs by transferring more power to them in phase

I and scaling down the transmitted power to DLUs in phase

II. This results in a dramatic degradation of the SRs of the

FD systems for the DL channel in Fig. 5(b). Although the

conventional FD system is worse than the HD one when r̄u >
2.6 Mbits/s in terms of the SR, the entire SRs of the former
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(a) Simulation setup for Fig. 6(b) in the 2D
plane.
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Fig. 6. SR versus the distance from the ULU to the DLU with N = M =
4,K = L = 1, ρ = −40 dB, r̄u = 2 Mbits/s.

still outperform that of the latter, as shown in Fig. 5(c).

As mentioned earlier, the harvested energy of the ULUs is

also contributed by the signals intended for DLUs, and it is

of interest to investigate how the energy beam ve affects the

system performance. We set a scenario as in Fig. 6(a) with one

ULU, which is fixed and one DLU, which moves on a circle

with a radius of 10 m. The SRs of the proposed FD design with

and without using an energy beam versus the distance between

the ULU and DLU is shown in Fig. 6(b). Both of them first

increase as the DLU moves further from the ULU and reach

a peak at d̃ = 11.18 m. Increasing d̃ leads to a decrease in the

CCI, which is then enhanced for better SR of the DL channel.

The two curves coincide for d̃ ≤ 11.18 m, where the ULU is

able to harvest sufficient energy from the DL signal and the

energy beam is not really useful. However, they decrease for

d̃ > 11.18 m because the ULU could harvest only a small

amount of energy from the DL signal while the influence of

CCI is negligible, making ULU information throughput at the

BS extremely low. Certainly, the proposed FD system by using

the energy beam achieves better SR than that without it and the

gap between the two is even deeper. Without using the energy

beam, the BS transmits not only the information for the DLU

but also transfers energy to the ULU, which then requires the

beamforming vectors to spread over a wide geographical range
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Fig. 7. CDF of SR with N = M = 4,K = L = 3, ρ = −40 dB, r̄u = 1
Mbits/s.
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Fig. 8. EE versus ρ with N = M = 4,K = L = 3, r̄u = 1 Mbits/s.

causing an SR loss of the FD system. This means that using

the energy beam is necessary when d̃ is relatively large.

Fig. 7 plots the cumulative distribution function (CDF) of

the SR of the FD and HD systems. As expected, the proposed

FD design outperforms the conventional FD and HD systems.

Specifically, the proposed FD design reaches 3 Mbits/s and

9.5 Mbits/s of SR higher than the conventional FD system

and HD system, respectively, in about 80% of the simulated

trials.

C. Energy Efficiency Maximization

Fig. 8 shows the comparison of the EE performance between

the FD systems and HD one at different SI levels ρ. The

proposed FD design achieves better EE performance than the

HD design for ρ ≤ −22 dB. However, the former performs

worse than the latter for ρ > −22 dB, where the FD system’s

strong SI hurts the energy efficiency. For whatever SI level,

the EE of the proposed FD system still outperforms the

conventional FD one.

Next, we study EE versus the dynamic power consumption

P dyn
BS and P dyn

Uℓ
for different designs in Fig. 9 under SI level

ρ = −40 dB. The proposed FD design offers better gain

over the conventional FD and HD designs, especially when
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Fig. 9. EE versus P dyn
BS

where we set P dyn
Uℓ

= ξP dyn
BS

, ∀ℓ and ξ = 0.7, with

N = M = 4,K = L = 3, ρ = −40 dB, r̄u = 1 Mbits/s.

2 3 4 5 6 7 8
0.1

0.15

0.2

0.25

Number of transmit antennas at the BS, N

A
v
er

ag
e

E
E

o
f

th
e

sy
st

em
(M

b
it

s/
J)

Proposed FD design
Conventional FD design
HD design

Fig. 10. EE versus N for N + M = 10, with K = L = 3, ρ =
−40 dB, r̄u = 1 Mbits/s.

the dynamic power consumption is relatively small. For small

P dyn
BS and P dyn

Uℓ
, the total power consumption in (17) and

(18) is mostly determined by the beamformer power, i.e.,

α(‖w1‖2+‖V‖2)+(1−α)‖w2‖2, so it is energy-efficient to

use a low transmit power since the BS has more antennas

to transmit the signals in phase I as discussed in Section

II. When the dynamic power consumption becomes large, all

the system designs attain almost equal energy efficiency. The

circuit power consumption suppresses the power consumed by

beamfomers and thus, it significantly impacts the EE of all the

systems.

Finally, EE versus the number of transmit antennas at the

BS, N , for a fixed N +M = 10 is shown in Fig. 10. The

EE of the two FD designs first increases to a certain value

of N and then decreases beyond this value. Intuitively, the

optimal number N of transmit antennas is 5 for the proposed

FD design and 4 for the conventional FD design for this

setting. Of course they may be different in other settings. When

N becomes large, the EE of both FD systems is decreased

because employing more antennas for phase I improves SR but

consumes more the total power consumption, i.e., the dynamic

power consumption. In addition, the gap between two FD

designs is reduced for large N (also a small M ) since the

conventional FD design is nearly the same as the cooperative

FD one. Obviously, the EE of the HD system is unchanged

with varying N since its BS always uses all available antennas

(i.e., N +M , which is fixed) for communication.

Remark 2: Fig. 10 particularly shows that increasing the

number of transmit antennas may degrade the energy effi-

ciency of the FD systems as it leads to increasing the total

power consumption at the BS. Joint beamforming design and

antenna selection for maximizing the energy efficiency is

certainly interesting but beyond the scope of this paper.

VI. CONCLUSION

In this paper, a MIMO FD BS in WPCNs has been studied

in which the users in the UL channel are designed to harvest

energy from the BS before transmitting their information. To

combat the degree-of-freedom bottleneck, a cooperative trans-

mit strategy between the DL and UL transmission has been

proposed. We have developed path-following algorithms for

jointly designing the energy harvesting time and beamforming

to maximize the sum rate and energy efficiency of the FD

system. The proposed algorithms are guaranteed to converge

monotonically to at least local optima of the nonconvex design

problems. Numerical results have been presented to show the

fast convergence rate and demonstrate the advantages of our

proposed algorithms. These observations further confirm the

efficacy of the proposed cooperative transmission in enhancing

system performance, as well as the necessity of optimizing en-

ergy beamforming in order to provide significant performance

improvement compared to the existing solutions.

APPENDIX A

PROOF FOR INEQUALITIES (20) AND (21)

The function f(t) = − ln(1 − t) is obviously convex and

increasing in the domain 0 ≤ t < 1, while the function

g(x, z) = |x|2/z is convex. Therefore, the composite func-

tion f
(
g(x, z)

)
= − ln

(
1 − |x|2/z

)
is convex in the domain

z > |x|2 [37], for which

− ln
(

1− |x|2
z

)

≥ − ln
(

1− |x̄|2
z̄

)

+
〈
∇f
(
g(x̄, z̄)

)
, (x, z)− (x̄, z̄)

〉

= − ln
(

1− |x̄|2
z̄

)

− |x̄|2
z̄ − |x̄|2 + 2

ℜ{x̄∗x}
z̄ − |x̄|2

− |x̄|2z
(z̄ − |x̄|2)z̄ . (71)

By noting

ln
(

1 +
|x|2
y

)

= − ln
(

1− |x|2
y + |x|2

)

(72)

(20) is obtained by applying (71) for z = y + |x|2 and z̄ =
ȳ + |x̄|2.

Furthermore, as g(x, y) = |x|2/y is convex in x ∈ C and

y > 0, it is true that [37]

|x|2
y

≥ |x̄|2
ȳ

+ 〈∇g(x̄, ȳ), (x, y)− (x̄, ȳ)〉

= 2
x̄∗x

ȳ
− |x̄|2

ȳ2
y (73)
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showing (21), and the proof is completed.

APPENDIX B

PROOF OF PROPOSITION 1

For compact representation we use the notation

Ψ and Ψ(n) to refer to
(
w1,w2,V,p, α, τ, β

)
and

(
w

(n)
1 ,w

(n)
2 ,V(n),p(n), α(n), τ (n), β(n)

)
, respectively.

Denote by F(Ψ) and F (n)(Ψ) the objectives of (23) and

(48), respectively. We have

F
(
Ψ
)
≥ F (n)

(
Ψ
)
, ∀Ψ (74)

and

F
(
Ψ(n)

)
= F (n)

(
Ψ(n)

)
. (75)

Therefore,

F
(
Ψ(n+1)

)
≥ F (n)

(
Ψ(n+1))

≥ F (n)
(
Ψ(n)

)

= F
(
Ψ(n)

)
(76)

where the second inequality follows from the fact that Ψ(n+1)

and Ψ(n) are the optimal solution and feasible point of (48),

respectively. This result shows that Ψ(n+1) is a better point

for (23) than Ψ(n). Since the sequence
{
Ψ(n)

}
is bounded, by

Cauchy’s theorem, there is a convergent subsequence
{
Ψ(nν)

}

with a limit point Ψ̄, i.e.,

lim
ν→+∞

[

F(Ψ(nν))−F(Ψ̄)
]

= 0. (77)

For every n there is ν such that nν ≤ n ≤ nν+1, so

0 = lim
ν→+∞

[

F(Ψ(nν))−F(Ψ̄)
]

≤ lim
n→+∞

[

F(Ψ(n))−F(Ψ̄)
]

≤ lim
ν→+∞

[

F(Ψ(nν+1))−F(Ψ̄)
]

= 0 (78)

showing that lim
n→+∞

F(Ψ(n)) = F(Ψ̄). Then, each accumula-

tion point Ψ̄ of the sequence
{
Ψ(n)

}
is a KKT-point according

to [38, Theorem 1]. Proposition 1 is thus proved.
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