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ABSTRACT

Background: Preexisting factors such as age and cognitive performance 

can influence the electroencephalogram (EEG) during general anesthesia. 

Specifically, spectral EEG power is lower in elderly, compared to younger, sub-

jects. Here, the authors investigate age-related changes in EEG architecture 

in patients undergoing general anesthesia through a detailed examination of 

spectral and entropic measures.

Methods: The authors retrospectively studied 180 frontal EEG recordings 

from patients undergoing general anesthesia, induced with propofol/fentanyl 

and maintained by sevoflurane at the Waikato Hospital in Hamilton, New 

Zealand. The authors calculated power spectral density and normalized power 

spectral density, the entropic measures approximate and permutation entropy, 

as well as the beta ratio and spectral entropy as exemplary parameters used 

in current monitoring systems from segments of EEG obtained before the 

onset of surgery (i.e., with no noxious stimulation).

Results: The oldest quartile of patients had significantly lower 1/f character-

istics (P < 0.001; area under the receiver operating characteristics curve, 0.84 

[0.76 0.92]), indicative of a more uniform distribution of spectral power. Analysis 

of the normalized power spectral density revealed no significant impact of age 

on relative alpha (P = 0.693; area under the receiver operating characteristics 

curve, 0.52 [0.41 0.63]) and a significant but weak effect on relative beta power 

(P = 0.041; area under the receiver operating characteristics curve, 0.62 [0.52 

0.73]). Using entropic parameters, the authors found a significant age-related 

change toward a more irregular and unpredictable EEG (permutation entropy: P 

< 0.001, area under the receiver operating characteristics curve, 0.81 [0.71 

0.90]; approximate entropy: P < 0.001; area under the receiver operating char-

acteristics curve, 0.76 [0.66 0.85]). With approximate entropy, the authors could 

also detect an age-induced change in alpha-band activity (P  =  0.002; area 

under the receiver operating characteristics curve, 0.69 [0.60 78]).

Conclusions: Like the sleep literature, spectral and entropic EEG features 

under general anesthesia change with age revealing a shift toward a faster, 

more irregular, oscillatory composition of the EEG in older patients. Age-

related changes in neurophysiological activity may underlie these findings 

however the contribution of age-related changes in filtering properties or the 

signal to noise ratio must also be considered. Regardless, most current EEG 

technology used to guide anesthetic management focus on spectral features, 

and improvements to these devices might involve integration of entropic fea-

tures of the raw EEG.
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EDITOR’S PERSPECTIVE

What We Already Know about This Topic

• Age-related changes in the electroencephalograms of anesthetized 

surgical patients have been explored but not fully characterized

What This Article Tells Us That Is New

• Older age is associated with a shift to a less predictable electro-

encephalogram, which could influence intraoperative monitoring 

approaches

We are experiencing a strong shift in population 

demographics toward an aging society.1 This shift is 

going to result in an increased number of surgeries in geriat-

ric patients.2 Older patients are at higher risk of developing 

adverse outcomes like delirious episodes after surgery with 

general anesthesia.3,4 Electroencephalographic (EEG) mon-

itoring devices may help to estimate the patients’ level of 

neurophysiologic activity and to prevent episodes of exces-

sively high administered doses of anesthesia as characterized 

by EEG burst suppression. The presence of these episodes 

seems to represent an independent risk factor for cognitive 

impairments after anesthesia5,6; however, some controversy 

Copyright © 2020, the American Society of Anesthesiologists, Inc. Unauthorized reproduction of this article is prohibited.<zdoi;. DOI: 10.1097/ALN.0000000000003182>
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exists regarding strategies designed to reduce the duration 

of burst suppression.3,7

Despite these possible advantages, the current genera-

tion of monitoring devices does not account for age-related 

changes in EEG characteristics. In general, EEG characteris-

tics during general anesthesia vary greatly among patients of 

di�erent age and cognitive performance.8–10 Older patients 

exhibit lower EEG amplitudes (and consequently, lower 

power) during wakefulness,11 sleep,12 and general anes-

thesia.8,9 Previous publications have described age-related 

changes in power spectral density under general anesthesia 

to some degree,8,9 but a detailed description of age-related 

di�erences in other aspects of quantitative EEG analysis is 

still missing. We investigated age-related changes in EEGs 

recorded from patients aged 18 to 90 yr under general anes-

thesia with the goal to (1) characterize the EEG of older 

patients in more detail to further understand the neuro-

physiologic changes that occur with advanced age and 

to (2) estimate the in�uence of these changes on current 

EEG-based monitoring systems. We analyzed power spec-

tral density, normalized power spectral density, and the 1/f 

characteristics of the power spectrum, as well as the entro-

pic measures of permutation entropy13 and approximate 

entropy,14 to investigate age-related changes in the EEG 

activity. The 1/f characteristic and information extracted 

from power spectral density and normalized power spec-

tral density analysis help to get a good (more broadband) 

overview of age-related changes. The entropic measures can 

help to identify subtler changes in the EEG. These analytical 

parameters were originally developed to characterize the 

complexity of a time-series signal and are reported as good 

measures to estimate the anesthetic level of a patient.15–17 We 

also used two parameters (beta-ratio18 and spectral entropy19) 

that are incorporated in current monitoring systems to esti-

mate possible impact of age on the index that these systems 

generate to re�ect the (hypnotic) level of anesthesia.

Materials and Methods

We used frontal EEG records from 180 patients during 

general anesthesia, collected at the Waikato District Health 

Board Hospital in Hamilton, New Zealand. These patients 

gave written informed consent, and had previously contrib-

uted to an earlier observational study.20 The ethical approval 

was speci�cally for the establishment of an anonymous EEG 

database that could be used for various post hoc analyses. We 

selected those patients who had received propofol for induc-

tion and sevo�urane for maintenance of anesthesia. For each 

patient, we selected 10 s of artifact-free, non–burst-suppres-

sion EEG, recorded 5 to 2 min before the onset of surgery, 

which represent a clinical level of general anesthesia with-

out any surgical stimulation. We recorded the EEG with 

either the Bispectral Index ([BIS] Medtronic, Ireland) or the 

Entropy Module (GE Healthcare, Finland) monitors at 128 

and 100 Hz, respectively. Raw EEG from the BIS was then 

resampled to 100 Hz for ease of comparison.

We estimated e�ect-site concentrations of sevo�urane, 

opioid, and propofol using standard pharmacokinetic mod-

els. We calculated the e�ect-site sevo�urane concentra-

tion (in minimum alveolar concentration [MAC]) using 

a simple end-tidal to brain delay model with a di�usion 

half-time constant of 144 s.21 Based on these values, we cal-

culated age-adjusted MAC values (referenced to 1 MAC 

in a 40-yr-old, i.e., MAC
40

) as described by Mapleson.22 

Opioid concentration (in fentanyl-equivalents; 1 ng/ml of 

fentanyl equals 20 ng/ml of morphine) was calculated using 

the two-compartment model parameters in Mazoit et al.23 

for morphine, and in Shafer and Varve24 for fentanyl. We 

estimated e�ect-site propofol concentrations according to 

the model and parameters described by Wiczling et al.25

EEG Analysis

Spectral Analysis. We calculated the power spectral density 

using Thompson multitaper power spectral density estimate. 

We used the MATLAB R2015a (MathWorks Inc., USA) 

pmtm function (default settings and NFFT = 256). Based 

on power spectral density, we calculated the power in the 

0.5 to 30 Hz range, the alpha-band power (7.8 to 12.5 Hz), 

and the beta-band power (12.5 to 25 Hz), as well as the 

lower frequency delta-band (0.4 to 3.9 Hz) and theta-band 

(3.9 to 7.8 Hz). We also computed a normalized power 

spectral density by dividing the power spectral density by 

the sum from 0.4 to 30.5 Hz. We used the Python-based 

�tting oscillations & one over f toolbox using the provided 

MATLAB wrapper26 to identify periodic activity, as well as 

the aperiodic component of the EEG. The �tting oscillations 

& one over f algorithm decomposes the power spectral den-

sity into periodic components, as well as an aperiodic com-

ponent that re�ects 1/f like characteristics. The aperiodic 

component is �tted according to L=b-log(Fa) with b being 

the (broadband) o�set, F being the frequency vector, and 

a being the slope. We did not consider a “knee” parameter 

and therefore used the “�xed model” as described in the 

original publication.26 We de�ned the range to detect pos-

sible oscillatory components from 1 to 30 Hz and focused 

on the detection of these peaks in the alpha range.

Furthermore, we obtained the relative alpha- and beta-

band power by dividing the sum of power spectral density 

in the 8 to 12 Hz (alpha) or 12 to 25 Hz range (beta) by the 

sum of power spectral density in the 0.4 to 30.5 Hz range.

Entropy Analysis. Entropic measures constitute a straightfor-

ward, time-domain approach to evaluate EEG features. We 

individually calculated approximate entropy and permuta-

tion entropy for the EEG 0.5 to 30 Hz range, the EEG 

alpha-band, and the EEG beta-band. We applied an adaptive 

�ltering routine (Butterworth �lter, order 3 to 5) using the 

MATLAB �lt�lt functions that preserves the phase of the 

signal. So as not to include edge e�ects caused by �ltering, 

we applied the �lter to a 30-s EEG segment and used the 

central 10 s to calculate the entropies for the di�erent fre-

quency ranges.

Copyright © 2020, the American Society of Anesthesiologists, Inc. Unauthorized reproduction of this article is prohibited.
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For approximate entropy we used a custom routine and 

for permutation entropy we adapted the my_permutation_

entropy function from MATLAB Central. We chose an 

embedding dimension m = 3 and a time delay τ = 1 for 

permutation entropy,15 and m = 2 / τ = 1 together with tol-

erance r = 0.2 SD for approximate entropy.27 These param-

eter settings are commonly used for EEG analyses.15,16,27,28 A 

detailed description of how to calculate the parameters can 

be found in the papers initially presenting the methods by 

Steven M. Pincus for approximate entropy,14 and Bandt and 

Pompe for permutation entropy.13 Approximate entropy 

searches for similar amplitude patterns (of length m) in the 

EEG and calculates the probability of the patterns remain-

ing similar if it is extended to a length of m+1. Similar, in 

this context, means that the amplitude values between the 

patterns do not di�er by more than the de�ned tolerance 

r. Permutation entropy, as an ordinal measure, codes small 

segments of length m according to their ranks, with the 

highest amplitude in the segment having the highest rank. 

Permutation entropy presents the Shannon entropy29 of the 

probability distribution of the possible patterns (here 6, if 

m = 3). A graphical explanation for approximate entropy 

and permutation entropy can be found in the article by 

Kreuzer.30

Phase-randomized Surrogate Analysis. In order to clearly 

delineate the speci�c contribution of extracting informa-

tion from the entropic measures versus the spectral measures 

of a signal, we used phase-randomized surrogate data. We 

calculated 200 phase-randomized surrogates for each of the 

180 EEG episodes and compared the entropic measures to 

the spectral EEG band powers. For surrogate generation we 

used a modi�ed version of the surrogate function for phase 

randomization of the PhysioNet Toolkit.31 We modi�ed 

this function such that no amplitude transformation, only 

a phase randomization, was performed. We then calculated 

the approximate entropy and permutation entropy for the 

alpha and beta range, as well as the relative alpha- and beta-

band power for the surrogates.

Parameters for Comparison to Available Monitors. In order to 

estimate the in�uence of age on available monitoring sys-

tems like the BIS and Entropy module we calculated the 

beta ratio = log(sum[power spectral density 
30-47 Hz

] / sum[power  

spectral density 
11-20 Hz

]) as proxy for the subparameter 

BetaRatio of the BIS.32 We further calculated the spectral 

entropy of the normalized power spectral density for set-

tings mimicking the state entropy (to 32 Hz) and response 

entropy (47 Hz) for di�erent lower band limits of 0.8 and 

1.1 Hz.19 We also had BIS indices available for 168 of 180 

patients. In order to evaluate the in�uence of age on BIS, 

we used the last index value displayed within the 10-s anal-

ysis window used for spectral and entropic analysis.

Statistical Analysis. Because of the retrospective nature of 

our investigation, no statistical power calculation was con-

ducted before the study and the sample size was based on the 

available number of patient EEG recordings. Our spectral 

analyses (except the spectral entropy with the 1.1 Hz lower 

limit) were a priori and the entropic analyses (approximate 

entropy, permutation entropy) were post hoc analyses after 

evaluating di�erent parameter settings.

Regression Analyses. We generated models using the least 

squares method for linear regression analysis for each 

dependent variable with respect to age. For each linear 

model, we generated the regression curve and performed 

a one-sample t test comparing the slope coe�cient against 

a slope of zero. Additionally, we determined the strength of 

the correlation, or rather the �t of the model, as an R2 value.

Evaluation of Interaction between Sevoflurane Concentration 

and EEG Parameters. In order to evaluate if the EEG param-

eters (i.e., permutation entropy and approximate entropy) 

di�er signi�cantly based on an interaction between age and 

age-adjusted MAC at a 5% signi�cance level, we calculated 

the linear model interaction terms using the MATLAB �tlm 

function.

Comparison of Youngest versus Oldest Quartiles. For each 

parameter, we compared the youngest 25% (n = 46; �rst 

quartile) and the oldest 25% (n = 46; fourth quartile) of 

patients using a Mann–Whitney U test at a con�dence level 

of 95% together with the area under the receiver operating 

characteristics curve (AUC) and 10,000-fold bootstrapped 

95% CIs as e�ect size. We used the MATLAB-based MES 

toolbox for AUC and 95% CI calculation.33 By including 

all subjects of a certain age our youngest and oldest quartiles 

each contained 46 subjects (not 45). Our excluded middle 

age range (44- to 72-yr-old) contained 88, instead of the 

expected 90, subjects. According to the traditional academic 

point system, AUC values can be interpreted as “excellent” 

(AUC between 1 and 0.9); “good” (AUC less than 0.9, but 

greater than or equal to 0.8); “fair” (AUC less than 0.8, but 

greater than or equal to 0.7); “poor” (AUC less than 0.7, but 

greater than or equal to 0.6); or “fail” (AUC less than 0.6). 

For the (normalized) power spectral density comparison, 

we only de�ned signi�cant results if at least two neighbor-

ing frequencies showed signi�cant di�erences between the 

young and old group. This procedure has been applied for 

similar studies, by other groups.34

All tests applied were two-tailed tests and we considered 

P < 0.05 to be signi�cant.

Results

Of 234 patients undergoing surgical intervention with 

propofol induction and sevo�urane maintenance, 54 

patients were excluded from analysis due to missing EEG 

or incomplete volatile anesthetic concentrations data in 

the period before surgery onset, resulting in 180 patients 

being included in the �nal analysis. The subject ages ranged 

from 18 to 90 yr ([mean ± SD] 56.7 ± 18.4 yr). The age 

range for the youngest 25% was from 18 to 43 yr and for 

the oldest 25% from 73 to 90 years. Figure  1 presents a 

�ow chart of patient and group selection. The results of all 

Copyright © 2020, the American Society of Anesthesiologists, Inc. Unauthorized reproduction of this article is prohibited.
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linear regressions as well as all the comparisons between the 

youngest 25% and the oldest 25% are presented in table 1.

Medications. Despite the lack of any prescribed anes-

thetic protocol, the delivered sevo�urane concentration 

was lower in the older patients. We could eliminate this 

trend by age-adjusting the MAC according to Mapleson.22 

Similarly, the estimated propofol concentration decreased 

with age. By contrast, our data did not reveal any age-re-

lated di�erence in the opioid concentrations, measured 

in fentanyl equivalents. Figure S1 in the Supplemental 

Digital Content (http://links.lww.com/ALN/C254) pres-

ents the details and corresponding plots for describing the 

drug dose to age relationships. While the relationships for 

propofol and sevo�urane and age were statistically signi�-

cant, the R2 values were rather low (R2 less than or equal to 

0.06), indicating substantial contribution by other unmea-

sured factors. These results may re�ect that the providers 

in our study consider age in their titration of dosages of 

propofol and sevo�urane, but other nuanced factors go 

into decisions of opioid administration (e.g., surgery type, 

hemodynamic changes).

Older Patients Exhibit More Uniform Distribution of Relative 

Spectral Power. We obtained very similar age-to-power 

spectral density relationships, as presented in a previous 

study,9 and provide the results and the corresponding plots 

in the Supplemental Digital Content (�gs. S2 [http://

links.lww.com/ALN/C255] and S3 [http://links.lww.

com/ALN/C256]). The normalized power spectral den-

sity showed signi�cant di�erences only in the low (0.5 

to 5 Hz) and high (greater than 21 Hz) frequency ranges 

when comparing the youngest 25% versus the oldest 25% of 

patients (�g. 2A). Figure 2B presents exemplary traces from 

the youngest 25% and the oldest 25% groups.

We did not �nd signi�cant di�erences between the 

youngest 25% and the oldest 25% in normalized power 

spectral density in the EEG alpha range (P = 0.693; AUC, 

0.52 [0.42 to 0.63]; [�g. 3A]), but a “poor” and signi�cant 

e�ect (P = 0.041; AUC, 0.62 [0.52 to 0.73]) in the EEG 

beta range (�g.  3B), as we did not observe a linear rela-

tionship of age with relative alpha and beta power and the 

di�erence in relative beta power. We take these results as 

evidence that age induces a change in the EEG, but that 

these changes may not be reliably detected by using the 

power in the classical frequency ranges. The evaluation of 

the relative power in the lower frequency delta and theta 

band did not show any age induced e�ects as well (�g. 

S4, Supplemental Digital Content, http://links.lww.com/

ALN/C257).

The �tting oscillations & one over f analysis revealed that 

in 174 of 180 patients (97%), at least one oscillatory com-

ponent in the 8 to 12 Hz alpha range could be observed. 

Because the six patients without such a periodic compo-

nent were distributed over the age range, we decided to 

keep these patients included. The parameters of the aperi-

odic component of the normalized power spectral density 

changed with age (�g. 3C). For the comparison between 

the youngest 25% and the oldest 25% the exponent was 

a�ected signi�cantly and strongly (P < 0.001, AUC, 0.84 

[0.76 to 0.92]) by age as was the o�set (P < 0.001, AUC, 

0.81 [0.71 0.89]. Figure  2C shows the more uniform 

Fig. 1. Flow chart of the excluded patients and groups defined for analysis. EEG, electroencephalogram.

Copyright © 2020, the American Society of Anesthesiologists, Inc. Unauthorized reproduction of this article is prohibited.
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distribution of the aperiodic 1/f component of the power 

spectral density in the old patients.

Age-related Changes Can Be Observed Using Entropy-based 

Analyses. Permutation entropy increased with age in the 

0.5 to 30 Hz range, as well as in the EEG beta range, but not 

in the EEG alpha range EEG (�g. 4, A to C). Comparing 

the youngest 25% and the oldest 25%, we found a strong 

and signi�cant (P < 0.001; AUC, 0.81 [0.71 to 0.90]) e�ect 

of age on the (0.5 to 30 Hz) �ltered EEG and a fair and 

signi�cant (P < 0.001; AUC, 0.71 [0.61 to 0.81]) e�ect on 

the beta-band EEG. We found no signi�cant di�erence for 

the alpha band EEG (P = 0.384; AUC, 0.55 [0.43 to 0.67]). 

These results signify that permutation entropy tracks the 

shift toward higher-frequency EEG activity with age.

Approximate entropy of all three frequency ranges 

increased with age (�g.  5, A to C). The comparisons of 

approximate entropy for the youngest 25% and the oldest 

25% patients revealed a signi�cant and moderate to strong 

e�ect of age in the 0.5 to 30 Hz range (P < 0.001; AUC, 

0.76 [0.66 to 0.85]), in the EEG alpha range (P = 0.002; 

AUC, 0.69 [0.60 to 0.78]), as well as in the EEG beta range 

(P = 0.007; AUC, 0.66 [0.55 to 0.77]). The fact that approx-

imate entropy, in contrast to permutation entropy, revealed 

an e�ect on the alpha-band possibly indicates a higher sen-

sitivity of approximate entropy to lower frequencies.

The entropic parameters did not undergo an age-related 

change in the slower dynamics, i.e., when applied to the 

EEG �ltered to the delta and theta ranges. We present the 

detailed statistical parameters in table 1 and the correspond-

ing regression and box plots in �gure S5 of the Supplemental 

Digital Content (http://links.lww.com/ALN/C258).

Surrogates. The surrogate analysis revealed a lower regres-

sion line for approximate entropy in the alpha and beta-band 

as well as for permutation entropy in the beta-band for the 

original signals. The phase randomization had no in�uence 

on the relative alpha- and beta-band power. Figure S6 of 

the Supplemental Digital Content (http://links.lww.com/

ALN/C259) shows the corresponding plots.

Monitoring Parameters Shows Age-related Changes. We used 

the beta ratio and spectral entropy to estimate a possible in�u-

ence of age on neurophysiologic measures as implemented 

in commonly used monitoring systems. The BIS revealed a 

strong dependence on age, as did the spectral entropy for the 

1.1 to 32 Hz and 1.1 to 47 Hz range (table 1 and �g. S7 of the 

Supplemental Digital Content [http://links.lww.com/ALN/

C260]). The comparison of the youngest 25% and the oldest 

25% revealed signi�cant and fair e�ects of age on beta ratio (P 

< 0.001; AUC, 0.73 [0.63 to 0.82]) and spectral entropy (1.1 

to 32 Hz: P < 0.001; AUC, 0.79 [0.70 to 0.87]; 1.1 to 47 Hz: 

P < 0.001; AUC, 0.80 [0.71 to 0.88]). For 0.8 Hz to 32 Hz 

A B C

Fig. 2. Normalized power spectral density exemplary raw electroencephalogram (EEG) traces, and the aperiodic (1/f) component from young 

and old patients. (A) Median (± median absolute deviation) normalized power spectral density plots of EEG derived from the Y25 (blue) and 

O25 (orange) patients of the data set. power spectral density is presented with corresponding area under the receiver operating characteris-

tics curve (AUC) values and bootstrapped 95% CIs. The relative power spectral density indicated a more uniform distribution of the EEG from 

the old group with lower relative power at low frequencies (0.5 to 5 Hz) and higher relative power at high frequencies (greater than 21 Hz). (B) 

Exemplary raw EEG traces from patients in the Y25 group (blue) and O25 group (orange). These traces highlight the age-induced differences 

on the EEG, especially fewer slow oscillations and an increased amount of high frequent activity. (C) Median (± median absolute deviation) of 

the exponential fit of the aperiodic (background) 1/f component between the Y25 (blue) and O25 (orange) patients. In addition, the AUC values 

and 95% bootstrapped CIs are presented. In general, the aperiodic component of the power spectral density was more uniformly distributed 

in the old patients. Filled circles indicate a significant difference, between Y25 and O25 evaluated by AUC CIs, excluding 0.5. The areas of light 

colors indicate the median absolute deviation.

Copyright © 2020, the American Society of Anesthesiologists, Inc. Unauthorized reproduction of this article is prohibited.
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(P = 0.202; AUC, 0.58 [0.47 to 0.68]) or 47 Hz (P = 0.161; 

AUC, 0.58 [0.47 to 0.69]), we could not observe a signi�cant 

di�erence with age. These results indicate an in�uence of age 

on the (sub-) parameters that are used to track neurophysi-

ological changes in EEG-based monitoring systems, which 

seems strongly dependent on the frequency range. For the 

sample of 168 patients we could observe an increase of the 

recorded BIS with age (linear regression: P > 0.001; t-statistic, 

3.84; youngest 25% vs. oldest 25%: P =  0.026; AUC, 0.65 

[0.52 to 0.76]; �g. S6 of the Supplemental Digital Content, 

http://links.lww.com/ALN/C259).

Discussion

Our results show that age-dependent changes in EEG char-

acteristics during general anesthesia extend beyond a mere 

decrease in EEG amplitude. Our demonstrable changes 

in power spectral density of the EEG recorded under 

A

B

C

Fig. 3. Linear regression and box plots of the youngest versus the oldest quartile for (A) the relative (normalized) electroencephalogram 

(EEG) alpha power, (B) the relative EEG beta power, and (C) the slope of the aperiodic 1/f component with corresponding box plots. (A) 

Relative power in the alpha-band EEG did not significantly (P = 0.176; t-statistic, −1.36) change with age. There was no significant difference 

(P = 0.693; AUC, 0.52 [0.42 to 0.63]) in relative alpha power between Y25 (0.10 [0.08 to 0.17]) and O25 (0.10 [0.07 to 0.17]). (B) Relative EEG 

beta power did not significantly (P = 0.077; t-statistic, 1.78) change with age, but there was a significant difference (P = 0.041) in relative 

beta power between Y25 (0.03 [0.02 to 0.04]) and O25 (0.04 [0.02 to 0.06]). The AUC, 0.62 [0.52 to 0.73] as effect site indicated a “poor” 

effect. (C) The slope of the aperiodic 1/f component derived by the fitting oscillations & one over f algorithm significantly decreased with age 

(P < 0.001; t-statistic, −8.14). The box plot indicates a significant flatter (P < 0.001) slope in O25 patients (2.00 [1.89 to 2.16]) compared to 

the Y25 (2.36 [2.19 to 2.60]). AUC, 0.84 [0.76 to 0.92] at effect site indicated a “good” effect. In the regression plots, the yellow dots represent 

the single patients and the blue line represents the linear fit. AUC, area under the receiver operating characteristics curve; O25, oldest 25%; 

Y25, youngest 25%; yr, year.

Copyright © 2020, the American Society of Anesthesiologists, Inc. Unauthorized reproduction of this article is prohibited.
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general anesthesia have been reported by other groups.8,9 

The absolute power decreases with age in every frequency 

range. After normalization, we found that delta oscillations 

contributed less to total power with age, while (high) beta 

oscillations contributed more. The change in the 1/f char-

acteristics as revealed by the �tting oscillations & one over f 

analysis con�rm this �nding. We did not observe a signi�-

cant change in the relative power in the speci�c bands, but 

the additional usage of entropic parameters revealed that 

these parameters are capable of tracking subtler changes 

in the oscillatory composition of the EEG that are not 

detected by power spectral density based approaches, also 

in the alpha- and beta-band. The entropic parameters seem 

to analyze additional content in the signal as shown by sur-

rogate analysis. The higher entropies in the surrogates point 

toward a loss in deterministic signal properties, as has also 

been reported previously.35 The monitoring parameters 

BIS, BetaRatio, and spectral entropy were also a�ected by 

A

B

C

Fig. 4. Permutation entropy (m = 3, τ = 1): Linear regression and box plots of the youngest versus the oldest quartile for the (A) 0.5 to 30 

Hz range, (B) the alpha range, and (C) the electroencephalogram (EEG) beta range. (A) Permutation entropy of the 0.5 to 30 Hz filtered EEG 

significantly increased (P < 0.001; t-statistic, 7.04) with age. Age had a “good” and significant (P < 0.001; AUC, 0.81 [0.71 to 0.90]) effect on 

permutation entropy as depicted in the comparison between Y25 (2.02 [1.98 to 2.07]) and O25 (2.11 [2.06 to 2.15]). (B) Permutation entropy 

of the alpha-band EEG showed no significant age-related effect (P = 0.489; t-statistic, 0.69) and the AUC for the comparison between Y25 

and O25 indicated no effect (P = 0.384; AUC, 0.55 [0.43 to 0.67]). (C) Permutation entropy of the beta-band EEG significantly (P > 0.001; 

t-statistic, 4.95) increased with age. Age had a “fair” and significant (P < 0.001; AUC, 0.71 [0.61 to 0.80]) effect on permutation entropy as 

depicted in the comparison between Y25 (2.24 [2.20 to 2.27]) and O25 (2.27 [2.24 to 2.29]). In the regression plots, the yellow dots represent 

the single patients and the blue line represents the linear fit. In the boxplots, the circles indicate outliers as defined by the MATLAB plotting 

routine. They were not excluded from analysis. AUC, area under the receiver operating characteristics curve; O25, oldest 25%; Y25, youngest 

25%; yr, year.

Copyright © 2020, the American Society of Anesthesiologists, Inc. Unauthorized reproduction of this article is prohibited.
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age, a �nding that highlights that age adjustments should 

be considered for monitoring.

Influence of Age on EEG Amplitude and Power Spectral 

Density. Reductions in grey matter, including cortical 

thinning,36–40 or a decrease in skull conductance41 with 

age, cause a decrease in EEG amplitude, and hence lower 

power spectral density. Furthermore, the EEG amplitude 

also depends somewhat on neuronal synchrony, but it is 

unknown at present to what extent this is altered by aging.42

Age Influences EEG Spectral Power. Our power spectral den-

sity analyses are in line with previously published �ndings 

(i.e., power spectral density decreases with age).9 The body 

of knowledge we can add to these results is the more uni-

formly distributed normalized power spectral density that 

B

A

C

Fig. 5. Approximate entropy (m = 2; r = 0.2 SD; τ = 1) versus age and corresponding youngest versus oldest quartile box plot for the (A) 

0.5 to 30 Hz electroencephalogram (EEG) range, (B) the EEG alpha range, (C) and the EEG beta range. (A) Approximate entropy of the 0.5 to 

30 Hz filtered EEG significantly (P < 0.001; t-statistic, 4.87) increased with age. Age had a “fair” and significant (P < 0.001; AUC, 0.76 [0.66 

to 0.85]) effect on approximate entropy as depicted in the comparison between Y25 (0.83 [0.77 to 0.89]) and O25 (0.93 [0.84 to 0.99]). (B) 

Approximate entropy of the alpha-band EEG significantly (P < 0.001l; t-statistic, 4.18) increased with age. Age had a “poor”/”fair” and sig-

nificant (P = 0.002; AUC, 0.69 [0.60 to 0.78]) effect on approximate entropy as depicted in the comparison between Y25 (0.57 [0.56 to 0.59]) 

and O25 (0.60 [0.57 to 0.62]). (C) Approximate entropy of the beta-band EEG significantly increased with age (P = 0.015; AUC, 0.66 [0.55 to 

0.77]). Age had a “fair” and significant effect on approximate entropy as depicted in the comparison between O25, (1.08[1.03 to 1.12]) and 

Y25, (1.05 [1.00 to 1.08]) of the data set. In the regression plots, the yellow dots represent the single patients and the blue line represents the 

linear fit. In the boxplots, the circles indicate outliers as defined by the MATLAB plotting routine. They were not excluded from analysis. AUC, 

area under the receiver operating characteristics curve; O25, oldest 25%; Y25, youngest 25%; yr, year.

Copyright © 2020, the American Society of Anesthesiologists, Inc. Unauthorized reproduction of this article is prohibited.
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is re�ected by a �atter (aperiodic) 1/f slope. Schultz et 

al.8 reported changes in relative band power for propofol 

anesthesia and other groups for non–rapid eye movement 

sleep.12,43 Age-related cortical activation during non–rapid 

eye movement sleep seems to increase relative beta power,12 

a scenario that sounds plausible for our �ndings under gen-

eral anesthesia as well. Further, older women had lower rel-

ative EEG delta-band and higher beta-band power during 

wakefulness and rapid eye movement sleep compared to the 

middle-aged group.44 In general, there may be a number 

of potential explanations that cause the observed shift in 

the relative power spectrum. An increase of neural noise 

may be one of them. Older test subjects had a �atter 1/f 

slope during visual tasks, due to increased neural noise.42,45 

This increase does not have to represent a more aroused 

brain state since recent research found increased higher beta 

frequencies to be associated with poorer memory test out-

comes in geriatric women.46 Volunteers with eyes closed 

exhibited higher beta-coherence with age, indicative of 

higher synchrony in this frequency range.47 But, besides a 

possible increase in neural noise, the changes in spatiotem-

poral �ltering properties may be due to age-related, physi-

ologic changes a�ecting the cortex40 (e.g., the extracellular 

space, which can act as 1/f �lter).48 Further, age and the 

decline in EEG power also reduce the signal to noise ratio, 

as shown in experiments with event-related potentials.49 

Our �ndings may either re�ect increased cortical neural 

noise (i.e., spiking not correlated to oscillatory activity in 

the elderly brain), the age-induced change of physiological 

1/f �ltering properties, changes in the signal to noise ratio 

of the EEG with age, or a combination of these factors. Our 

observational study was not designed to closely investigate 

the cause for the �atter slope. The results further showed 

that the relative alpha- and beta-band power was not 

a�ected by age. This information could become important 

for the design of future monitoring devices, but also leads 

to questions about the use of this approach to investigate 

age-related changes. Entropic measures in the time domain, 

like approximate entropy and permutation entropy, provide 

information separate from spectral features.15–17,27 An under-

standing of both spectral and entropic features may broaden 

our clinical model of estimations regarding consciousness in 

patients under general anesthesia.

Older Patients Express Higher Signal Entropy. Our �ndings 

showed increasing approximate entropy and permutation 

entropy (except in the alpha-band) values with age. The 

results of approximate entropy and permutation entropy 

di�er to some degree because both parameters may tar-

get di�erent EEG characteristics.50 Permutation entropy is 

regarded as superior to approximate entropy in distinguish-

ing conscious from unconscious EEG,16,17,51 while approx-

imate entropy performs better than permutation entropy 

in tracking di�erent levels of anesthesia.17 These di�erences 

are in accordance with the strong e�ect of age on permu-

tation entropy in the high frequencies (beta-band), as well 

as the ability of approximate entropy to identify di�erences 

in the alpha-band, where permutation entropy showed 

no contrast. The age-related increase in entropic measures 

seem to apply to other vigilance states and encephalo-

graphic modalities as well: in a magnetoencephalography 

study, permutation entropy increased with age in volunteers 

that were awake with their eyes closed.52 In general, the 

increase of entropic measures with age probably re�ects the 

e�ect on the 1/f slope by indicating a more uniform distri-

bution of ordinal EEG patterns (permutation entropy), and 

a decreased signal predictability (approximate entropy) in 

the elderly. In this regard, an association between permu-

tation entropy (for m = 3) and the spectral centroid of the 

(weighted) power spectral density was recently described.53 

This proposition may eventually add a general link between 

spectral analytical approaches and permutation entropy, 

such that ordinal irregularity may become usable as a proxy 

for changes in the oscillatory EEG composition. Admittedly, 

this link is still missing for approximate entropy, though. 

But these measures seem to track deterministic properties 

in the signal, in contrast to power spectral density mea-

sures. Although other settings of permutation entropy could 

have tracked age-related changes with higher precision, we 

do not know the underlying cause for that and hence we 

refrained from presenting the results in this article. Since 

using lags of τ > 1 could lead to unintended distortions in 

the signal,53 we chose to apply permutation entropy with 

τ = 1 to EEG �ltered to the di�erent frequency bands. In 

any case, our analyses demonstrate the sensitivity of entro-

pic measures to subtle changes in the EEG.

Reasons for Altered EEG Characteristics. There is evidence 

that the aged brain reacts to general (sevo�urane) anesthesia 

di�erently than the young brain. In young brains, usually, a 

peak in the EEG alpha range develops under general anes-

thesia34 as a marker of adequate anesthesia. This peak in the 

EEG alpha-band, as well as strong interhemispheric EEG 

alpha-band coherence,34 most probably is associated with 

thalamocortical pacemaker cells and their activity spread-

ing to the cortex.54 Older and cognitively impaired patients 

express lower alpha power and alpha coherence during 

general anesthesia.9,10,55 We did not observe an in�uence of 

age using the relative alpha-band power, a �nding that is 

in line with Schultz et al., who found age-related di�er-

ences in relative alpha power only at very profound levels 

of propofol anesthesia.8 Hence, the described decrease in 

alpha power may be due to the general decrease in EEG 

amplitude with age.

Although we did not see an in�uence of age in relative 

alpha-band power in our results, approximate entropy of 

the alpha-band revealed a signi�cant change. Because strong 

and synchronous (i.e., low approximate entropy) alpha oscil-

lations may correlate with good cognitive function and bet-

ter outcomes after general anesthesia,10,56,57 this parameter 

may be useful to identify patients with a “frail” brain using 

EEG recordings during general anesthesia in the future. For 

Copyright © 2020, the American Society of Anesthesiologists, Inc. Unauthorized reproduction of this article is prohibited.
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both entropic parameters we observed changes in the EEG 

beta range. This frequency range seems associated with an 

activated cortex and intracortical, as well as corticocortical, 

information processing.54,58 Hence, our �ndings of a �atter 

1/f slope may re�ect a state of higher cortical activation in 

the elderly, or a higher in�uence of noise. During visual 

tasks the �atter 1/f slope may represent a decoupling of 

(cortical) population spiking activity from an oscillatory 

regimen.42 Furthermore, �ndings from sleep research indi-

cate that the EEG of older subjects during sleep may be 

closer to the wake state than in middle-aged to young sub-

jects.44 At the same time, age seems to a�ect thalamocortical 

regulatory mechanisms during sleep, as expressed by lower 

sleep spindle density, duration, and amplitude.59 In general, 

the EEG of older patients may have a smaller dynamic 

range. During the awake state, the EEG is slower in the 

older population8 and shows increased relative beta power 

during general anesthesia. Hence, the aged brain may not be 

capable of expressing activated or synchronized activity to 

the same degree that the young adult brain is capable of. In 

conclusion, a di�erence between chronologic versus func-

tional brain age should be considered to reveal functional 

age-related di�erences in the EEG in more detail. Young 

patients with potential for having a frail brain can express 

EEG activity typical for an old patient.55 Furthermore, 

(mild) cognitive impairments like early-stage Alzheimer 

seem to change the EEG architecture in a fashion similar 

to aging.60

Implications for Titration of Anesthesia. We utilized BIS, 

beta ratio, and spectral entropy to estimate the presumed 

behavior of existing monitoring systems. In general, these 

parameters exhibited an increase with age. Consequently, 

our results hint at a possible in�uence of age on the indices 

of commonly used EEG monitors (BIS and GE Entropy) 

toward a lower dose, but the presented BIS values may not 

correlate with our analyzed EEG segments because of a 

considerable time delay of up to 60 s.61,62 Still, recent �nd-

ings from Ni et al. show higher BIS in older adults, hence 

emphasizing our results.63 At least some of the commercially 

available monitors were developed using data from rather 

young adult subjects.64 A study found that at the propo-

fol-induced loss of consciousness, older patients expressed 

higher BIS and state entropy values, projecting a “more 

awake” EEG by means of the indices.65 These �ndings, and 

our own, imply that future EEG-based “depth of anesthe-

sia” monitoring systems should account for patient age or 

use parameters not a�ected by age. In our data limited to 

EEG during unstimulated unconsciousness, relative alpha 

and beta power did not change with age, but did show con-

siderable variability. Hence, a possible use for monitoring 

purposes has to be investigated more thoroughly.

Limitations. General anesthesia was not conducted by any 

strict protocol but navigated by best clinical practice. For 

sevo�urane, we could overcome a possible limitation of 

age and drug requirement by using age-adjusted MAC 

estimates.22 While we did �nd a decrease in residual propo-

fol concentration with age, lower propofol requirements 

with age have previously been reported.66 Some patients 

also received opioids, but these concentrations did not show 

any age-related trends. We did not evaluate the EEG char-

acteristics during general anesthesia with surgical stimula-

tion. We also cannot make a statement regarding age-related 

EEG changes for other anesthetic drugs, such as ketamine or 

dexmedetomidine, that trigger di�erent EEG patterns and 

have di�erent receptor targets. Although, we did not observe 

any consistent age-related di�erences in the sevo�urane 

MAC and the opioid concentration, we cannot completely 

exclude a complex confounding relationship between age 

and anesthetics or opioids. To tease out these relationships 

would require some speci�c, tightly controlled, prospective 

interventional studies. Another limitation is that we only 

recorded single-channel EEG, thus, we could not evaluate 

the in�uence of age on multivariate parameters, and cannot 

add information to reported changes in spectral coherence 

with age.9 And ultimately, the EEG is a signal originating 

from a large number of (mainly) cortical neurons and trans-

mitted through layers of cerebrospinal �uid, bone, skin, and 

hair.67 Hence, we refrain from drawing mechanistic conclu-

sions on the receptor level. Still, an age-related in�uence on 

inhibitory network activity is highly likely.

In conclusion, we demonstrated that the EEG under 

general anesthesia changes with age toward activity patterns 

of higher frequencies that cause a �atter 1/f slope of power 

spectral density, as well as an increase of entropic measures. 

These changes may be due to changes in neurophysiological 

�ltering properties or the signal to noise ratio, but in gen-

eral, patient age should be taken into account when using 

the EEG. Currently, EEG-based monitoring approaches do 

not seem to correct for it.
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