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Spectral and Pseudo Spectral Methods

for Advection Equations*

By Joseph E. Pasciak

Abstract.   Spectral and pseudo spectral methods for advection equations are investi-

gated.   A basic framework is given which allows the application of techniques used

in finite element analysis to spectral methods with trigonometric polynomials.   Error

estimates for semidiscrete spectral and pseudo spectral as well as fully discrete expli-

cit pseudo spectral methods are given.   The approximation schemes are shown to con-

verge with infinite order.

1.  Introduction.   Spectral and pseudo spectral methods have become popular in

approximating solutions of advection equations arising in many sciences.  Christensen

and Prahm have developed spectral models for dispersion of atmospheric pollutants [4].

Gazdag proposes spectral methods for advection equations and Burger's equation [6].

Gottlieb and Orzag present many spectral applications in [7].  Numerical evidence sup-

porting spectral type approximations is abundant in the literature, see for example [4],

[5], [6], [7], [11].  Numerical tests indicate that spectral methods outperform finite

difference methods for many hyperbolic problems [7].  The general consensus among

users is that spectral methods work well whenever they are stable.

Recently there have been many theoretical advances in the understanding of

these methods.  Results on stability of semidiscrete spectral type methods have been

given in [5], [9], [10].  Investigations into mollifying the method for nonsmooth ini-

tial data have appeared in [9], [10].  Error estimates are implied in the above litera-

ture, however, the explicit dependence of convergence on smoothness of initial data is

not always given.   Also, the compatibility requirements on the initial data at the bound-

ary necessary for convergence are not stated.

In this paper a basic framework is given which allows the application of techniques

used in finite element theory to spectral and pseudo spectral methods with trigonomet-

ric polynomials.  The spectral method is just a Galerkin projection and usual finite ele-

ment analysis leads to error estimates.  Unfortunately, the matrices corresponding to

the spectral methods are not sparse and any implementation is costly.  Pseudo spectral
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1082 JOSEPH E. PASCIAK

methods involve collocation projections instead of L2 projections.  Using a result given

in [9], the finite element analysis carries over for pseudo spectral methods.  Further-

more, by use of the fast Fourier transform (FFT) algorithms, implementation of expli-

cit pseudo spectral schemes can be accomplished economically.

For simplicity, the analysis in this paper only deals with advection equations with

coefficients which are constant in time. Extensions of the methods and analysis to prob-

lems with coefficients that vary with time or to nonlinear problems are possible.

It is illustrated in this paper that spectral techniques can lead to rapidly convergent

approximations to evolution equations. A necessary condition for rapid global conver-

gence is that the solution of the equation can be approximated accurately in the finite-

dimensional subspace of trigonometric polynomials. The domain under consideration

will always be rectangular and periodic boundary conditions will be imposed. In addition,

assumptions on smoothness and compatibility of initial data and coefficients of the ad-

vection equation shall be made.

The rest of the paper is broken into four parts.   In Section 2, the advection equa-

tion is defined and "a priori" regularity estimates for its solutions are proven.   In Sec-

tions 3 and 4 spectral and pseudo spectral approximations are introduced, and error

estimates are established for the corresponding semidiscrete schemes.  The convergence

for the semidiscrete spectral and pseudo spectral approximation is of order s for com-

patible initial data in the Sobolev space of order s + 1.  In Section 5, conditions for

stability and convergence of fully discrete explicit pseudo spectral schemes are given,

and error estimates for the explicit pseudo spectral method are proven.

2.   Regularity for the Advection Equation.  We shall consider advection equations

on rectangles in «-dimensional Euclidean space R" with periodic boundary conditions.

By changing variables, we may assume, without loss of generality, that the rectangle is

the unit rectangle

a= [o, i]" = [o, i] x [o, i] x ••• x [o, i].

A function / defined on R" is periodic if f(x + z) = f(x) for every point x in 12 and

every multi-integer z in Z".  The space Cp(£l) is the set of infinitely differentiable

periodic functions defined on R".   Let || || denote the L2 norm on Í2.

Let a = (a,, ..., an) be a multi-integer with nonnegative entries.  Denote |a| =

a, + ••■ + an and define

*  al 5   an
bxx bxn"

For positive integers s, the Sobolev norms on C!°(n) are given by

Ms = ( £ \\Dau\\2\'2.
\\a\<s

We also denote the Sobolev seminorms

M, = ( Z WDau\\2
/2
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SPECTRAL METHODS FOR ADVECTION EQUATIONS 1083

Let //p(f2) be the completion of C"(12) under the norm || ||s.  The space Hsp(Q) is a

Hilbert space under the obvious inner product.  For s > 0, define the space Hs(£l) by

interpolation; see [8].

Define the unbounded operator L on Z,2(12) by

^=|/4^(w
with domain V(L) - //p(12).  We assume for convenience that V£x) is in C~(Í2).   It

follows that multiplication by V¡ is a bounded operator from Hk(ü¡) into Hk(D.).

Hence L is a bounded operator from Hk(ü.) into Hk~x(Q).

The advection problem is defined by

Dtu + Lu = 0,      fix [0, °°),

(2.1) u(x, 0) = u0(x),      x E 12,

u periodic on 912.

Specifically, the boundary condition u periodic on 912 means for smooth u that u(-, t)

is in //„(12) for every t.   The following theorem characterizes the solutions of (2.1).

Theorem 1. Let r> 1 and u0 be in Hr(£l).  There exists a unique function

u(x, t) in C([0, T0], //p(i2)) satisfying (2.1) and a constant C not depending on u0 or

t such that

||w(-,0llr<C||W()|L   fortin [0,T0].

Before proving Theorem 1, we shall give an alternative characterization for the

spaces //p(i2).   Let M = (Mx, ..., Mn) be a multi-integer and define

VMiX) = Exp(2iriM ■ X)    for X in R".

Let

^=l+4rr2 ¿M2.

<pM is an eigenfunction with eigenvalue \M for the elliptic problem

IV - AIV = /   in Í2,       IV periodic on 912,

where A is the Laplace operator 92/9x2 + • • • + 92/9x2.  For r > 0 consider the sum

(2.2) ^   ^mI0a/I2.
Mez"

where ßM = (m, <pM) and (-, •) denotes the L2 inner product on 12 given by

(u, u) = J    wu"c?x.

Let Hr be the set of functions u in Z,2(12) such that the sum in (2.2) is finite.  The
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space Hr has the natural norm

(2.3) \\u\\r=(   Z   *m\$m\2
\M<azn

Lemma 1.   For r > 0, the spaces //p"(12) and Hr coincide and their norms are

equivalent.

Proof.   Let k be an even integer and u be in Hk. Then u is obviously in //fc(12)

and the norm given by (2.3) is equivalent to the usual Sobolev norm.  The partial sums

of the series u = 2       „^m^m exhibit u as an //Ä(i2) limit of functions in C™(12).

Hence Hk is contained in //p(12).

Let « be in //p(12) and g = (/ - A)k/2u.   Then g is in ¿2(12) and the function

(2-4) w=    Z   *iif*/2(& *AfMif

M6Z"

is in Hk and hence Hk(12).  Furthermore (/ - A)fc/2 vv = g.   The operator (/ - A) is an

injective map of //p(12) into //p~2(12) so vv and u are identical.  Hence //p(12) is con-

tained in Hk which proves the lemma for even k.  Since Hr and //p(12) are Hubert

scales, the lemma follows by interpolation [8].

Proof of Theorem 1. The proof of Theorem 1 is essentially a proof given by

Taylor in [12].  We shall indicate the changes in Taylor's proof due to our boundary

conditions.

Define the mollifier Je by

jtU=   Z e-^\u,^M~ypM.
mgz"

By Lemma 1, it is evident that Je is a bounded map of Hk(£l) into Hk+riSl) for any

real r.   Furthermore, for u in HkiQ),

\\Jeu\\k < \\u\\k.

The proof of Theorem 1 continues by exhibiting the solution of (2.1) as a limit of

solutions of the problems

bue
— + JeLJeue = 0,      12x[0,r0],

ueix, 0) = u0ix),      x E 12,

u£ periodic on 912.

From here on the proof proceeds exactly as in Taylor [12] and hence shall be omitted.

3.  The Semidiscrete Spectral Approximation.   Let M be a multi-integer, M =

(M,, ...,Mn)EZ", and define <pMiX) = Expi2niM ■ X) for X in R".   Let

aN={(Mx,...,Mn)\-N+ 1 <Mj<N for j= 1, ...,«}.

1/2
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SPECTRAL METHODS FOR ADVECTION EQUATIONS 1085

The approximation spaces SN are defined to be the span of yM as M varies over 12^.

We note the approximation properties of SN given in [3] :   Let m > / > 0. There

exists a constant C, not depending on vv in //p"(12) or N, such that

(3.1) \\w-PNw\\f<CN¡-m\w\m,

where PN is the L2 projection onto SN. The subspaces SN also have the inverse prop-

erties, for u in SN,

\\u\\k+j<CN'\\u\\k.

The spectral approximation LN is the L2 projection of L into the subspace SN,

that is

(3-2) LNf=PNLf.

The operator LN is obviously skew symmetric on SN.  Since SN is finite dimensional,

LN generates a unique unitary semigroup.   Let UN be the solution to

Dt UN + LNUN = 0,      UN(0) = PNu0.

Error analysis for the semidiscrete approximation UN could proceed by the usual

finite element approach.  We could first prove convergence estimates for (/ + LN)~l

as an approximate to (/ + L)~l.  Then the usual techniques (see [2]) would give rise

to semidiscrete error estimates.  In general, (/ + L)~l is not a smoothing operator and

standard techniques in finite element theory only give that (/ + LN)~l is a subopti-

mal approximation to (/ + L)    .   Thus, any analysis requiring approximation of

(/ + L)~l may lead to inferior convergence estimates.  In the analysis in the rest of

this paper we shall always approximate L.

Theorem 2. Let u0 be in Hp + 1(Sl) and u be the solution of the advection

equation (2.1).   There is a constant C independent of u0 and N satisfying

II"(0 - UN(t)\\0 < CW-*||Uo||i + ,,      tE[0,T0].

Proof   Let X(t) = PNu(t) and v(t) = u(t) - X(t).  Then for 9 in SN

(3.3) (DtX, 9) + (LX, 9) = - (Lv, 9).

Using the definition of LN, we have for 6 in SN

(3.4) (DtUN,9) + (LUN,9) = 0.

Let e = UN - W. Subtracting (3.3) and (3.4) and setting 9 = e gives (Dte, e) + (Le, e)

= (Lv, e). A similar argument shows (e, Dte) + (e, Le) = (e, Lv), and since L is skew

symmetric,

2||c||Df||e|| = £>,||e||2 = 2 Re(e, Lv) < 2||e|| ||Lu||.

Integrating the above equation gives

(3.5) \\e\\<C    sup     ||Lu(0ll.
íe[o,7-0i
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By the approximation properties of SN and Theorem 1

(3.6) ULull < C\\u-PNu\\x < CN-S\\u0\\s + 1.

Combining (3.5) and (3.6) and again using (3.1),

\\u(t) - UN(t)\\ < \\e(t)\\ + um < GV-S||»0||Î + 1,

which completes the proof of the theorem.

Remark.   I suspect that Theorem 2 is not sharp.   Indeed, for V: constant, one

can prove the stronger result that N~s convergence is achieved with initial data in

.fYp(12).  The proof does not generalize to nonconstant V- due to the lack of commu-

tativity between Pn and multiplication by V-.  Numerical tests on a few variable coef-

ficient problems suggest that the stronger result holds.  The numerical results, however,

could be misleading since the cases computed were by no means extensive.

4.  The Semidiscrete Pseudo Spectral Approximation.  The spectral approximation

LN, defined by (3.2), is given by the alternative formula

(4.1) v= t ^(y^fj + a|w)-

That 9/9x- and PN commute is readily seen by expansion in the basis of trigonometric

polynomials. The pseudo spectral approximation to L will be defined by replacing the

L2 projections in (4.1) by collocation projections.

Let h = 1/2N and set x = jh.   Let 12x be the collection of points

U-x = {(xh,...,xJn)\0<ik<W}.

For any continuous function/on 12, define Pcf to be the function in SN which inter-

polates/on the grid points of 12x.  To see that P  is well defined, we shall introduce

discrete Fourier transforms.   Let Cx be the space of complex-valued functions on 12^

and define the inner product

(fg)x=hn Z f(y)g(y)  forf,gECx.
y^nx

Let CN be the space of complex-valued functions on 12^ and define the inner product

(f,g)N=   Z   f(I)W)    forf,gECN.
ienN

The discrete Fourier transform FN maps Cx onto CN and is defined by

Fjv/(/) = /V    Z   f(y)Exp(-2iriyI).
yenx

h~N is a unitary transformation from Cx onto CN.  The inverse of F^, is given by

F^'/(J)=   Z   /(/) Exp(27Ti> •/).
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We shall see that Pcf is the function g given by

(4.2) g(y)=    Z   Fjv-/(/) Exp(27n> • /).

Indeed, the inversion formula F^1 F^y = / implies that g is a function in SN which

equals / at each point of Í2X.  An easy exercise in linear algebra shows that g is the

unique function in SN assuming the values of / on 12x.  Thus P  is well defined.  We

note that (4.2) gives an algorithm for finding the coefficients of Pcfin the basis of

trigonometric polynomials given the nodal values of /on 12^.  Also note that the inner

product (-, -)x is defined so that Pc is a unitary transformation of Cx onto SN with L2

inner product.  Thus for functions in SN, the (-, -)x inner product and L2 inner prod-

uct and hence their respective norms are interchangeable.

The next theorem is essentially an «-dimensional version of Theorem 3.3 of [9]

and demonstrates that Pc has approximation properties similar to those given by (3.1)

for PN.  We shall give a new proof of Theorem 3 using arguments which are similar to

those used to derive approximation properties for finite element interpolation.

Theorem 3. Let 0 </ < m and m > n¡2.  There exists a constant C, indepen-

dent of vv in //p"(12) and N, such that

\\w-Pcw\\j<CN~m+i\w\m.

Proof. First we introduce the notation for the proof. Let 12 be the rectangle

[0, 2N]". For a function/defined on 12, let / be the function defined on 12 by

f(x) = f(x/2N).   Let SN be the image of SN under the above dilation. We also denote
yv

the seminorms on 12,

\la|=/

2 X1/

L2(ñ),

and the corresponding Sobolev norms

We make the following observations:

(i)  SN is a space of trigonometric polynomials and the interpolation projection

Pc satisfying Pcf(2Nx) = f(2Nx), for all x in 12x, is well defined.

(ii) Pcf=Pcf fox auf in Cx.

(iii)   (Pc - /)/ = 0 for / in V

(iv)  For win//p" (12),

Observations (i), (ii), and (iii) follow easily from the definitions of SN, Pc, Pc and ear-

lier arguments.   For (iv) we first note that a change of variables implies
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(4.3) \f\k=(2N)k-nl2\flkM.

Using (3.1) and (4.3) gives

Wu-í^Kn ñ = ¿ (2AT~2V-/Vw|2
k=0

<C(2N)-2m+n\w\2m =C\w\2m

which proves (iv).

Using (ii) and (iii), we can compute

ft»

Ilw -Pcw\\f < (2N)'-n/2\\w-Pcw\\. ñ

<i2N)1-nl2\\iI-Pc)iw-P¿w)\\jñ.

Using (iv) and (4.3) gives

\\w-Pcw\\f<CN'-nl2\\I-Pc\\     m.      ,      \w\   ñc     ' c L(Hm(ñ),H'(ñ))       m.n

< CN'-m\\I - Pr\\ \w\
C\(Hm(ñ),H'(ñ))m

Thus, the theorem will follow if we can bound the operator norm of Pc in

LiHmià), H'ià)) independently of N.

Let / be in //m(i2), then Sobolev inequalities on the domain Í2 imply

(4.4) Z    \f(2Nx)\2<CZ    ll/O + 2A^)|£ < Cl/H2   ..I2
xen„ xËîi,

By (4.2)

(4.5) Pj(X)=   Z    F^/(/)Expfe-A
r<= o _. Vv //en

Using the fact that fN is an isometry from Cx onto CN and (4.4) gives

■*aW z i/(^)i2Y/2<cii/nmñ.
\x(Enx J

Finally (4.5) implies

^cf\ñ<c\\PJ\\oñ<c\\f\ñ,

which completes the proof of the theorem.

We can now define the pseudo spectral approximation to L by replacing PN in

(4.1)byPc:

Lcf^iPc^yi-p^f).

The operator Lc is skew symmetric on SN, indeed, for / g in SN
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*•'•*'tfâw)x-\v,&£;M

= t\^/'PcV,i)-^V^jgJ^-(f,Leg).

As in Section 3, Lc generates a unitary semigroup on SN.  Let i/be the solution to

the problem

(4.6) DtU+LeU=0,      UiO) = Pcu0.

Theorem 4.  Let u0 be in Hs + x(Çl) for s > n/2 and let u be the solution to

the advection equation (2.1).   There exists a constant C independent of u0 satisfying

\\u(t) - U(t)\\ < C*m«olUi,      t E [0, T0].

Theorem 4 can also be viewed as an extension to a theorem given by B. Forn-

berg.   In [5], Fornberg derives estimates for semidiscrete pseudo spectral methods

which bound the errors by norms of certain remainder terms.   Fornberg gives heuristic

arguments to show that these bounding norms are small.  The norms in Fornberg's the-

orem can be estimated using Theorem 1 and Theorem 3.  We give a proof which is

similar to familiar finite element proofs.

Proof of Theorem 4.   Let X and u be defined as in the proof of Theorem 2 and

set e = U - X.   Using the definition of U, we have

iDtU, 9) + (LcU, 9) = 0,

for all 9 in SN.  Subtracting (3.3) and setting 9 = e gives

(Dte, e) + (Lce, e) = (Lv, e) + ((L - LC)X, e).

As in the proof of Theorem 2, it follows that

||e|| < |k(0)|| + T0     sup     {||(£ - Lc)X(t)\\ + \\Lv(t)\\}.
fe[o,r0]

From the proof of Theorem 2,

\\Lv(t)\\<CN-s\\u0\\s + 1.

Also the triangle inequality and Theorem 3 imply

(4.7)

\\(L-LC)X\ < —d-p )vxbxr   rc>r!A
+ v-W**

i=i
<CN-s\\X\\s+l <CN-S\\u0\\s + X.

The last inequality made use of (3.1) and Theorem 1.  Theorem 3 implies

||e(0)|| < CN-s\\uJs.

Combining the above estimates proves Theorem 4.
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5.   Fully Discrete Pseudo Spectral Approximation.   In this section we shall de-

scribe fully discrete explicit pseudo spectral approximations to (2.1).  By taking ad-

vantage of the fast Fourier transform package, the pseudo spectral operator Lc can be

evaluated economically.  Thus fully discrete explicit timestepping procedures will run

efficiently.  To get error estimates, arguments proceed along the lines given by Baker,

Bramble, and Thome'e in [1].  We prove "smooth" data estimates (Lemma 3) and then

expand the discretization error and apply the smooth estimates.   In [1], Baker et al.

expand the discretization error in terms of differences of T and Th.   For advection

equations, expanding the errors in terms of LN - Lc gives rise to better error estimates

because the operator (I + L)~l, corresponding to T in [1], is not a smoothing opera-

tor.

Let Pj(t) be the truncated Taylor series

m = £ ,t-
/=o '■

We shall only consider J such that there exists 5 > 0 satisfying

(5.1) |P/it)| < 1    for real r with |t| < 5.

By expanding \Pj(ir)\ as a function of r, it is easily checked that the values/ = 3, 4,

7, 8 satisfy the above assumption. Inequality (5.1), however, fails to hold for/ = 1,

2, 5 or 6 for all choices of 5.

We approximate the solution of (2.1) by the sequence

(5.2) W°=PcuQ,      W' + l = Pj(-Lck)W>    for/= 0,1,2.

Then IVy approximates uUj) for r;- = kj.   Note that the evaluation of (5.2) requires

only J evaluations of Lc per timestep.   Evaluation of Lc only requires multiplications

and discrete Fourier transforms. Each timestep of (5.2) involves work of order m log(m)

where m is the number of points in 12x.

Let the maximum norm over the grid points of 12^ be denoted

\\V\\X„ =   max IFOOI.
yenx

For stability of (5.2) we use the following lemma:

Lemma 2.  Let 9 be an element of SN.   The following esrímate holds:

||¿c0||<C,Am    where Cx =4™    max    \\V\\X„.
¡=l,...,n

Proof.   We clearly have

W9\\x<W\\XtJfi\ix.

Also, for 9 in SN,

< 2*N\\d\\ = 2itN\\e\\x .

The lemma follows immediately from the above estimates and the definition of Lc.

b9_

bxt
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As a consequence of (5.1) and Lemma 2, an obvious eigenfunction analysis gives

that (5.2) is stable in L2 whenever kCxN < S. The following theorem is the main re-

sult of this section.

Theorem 5. Let u be the solution o/(2.1) and W be the solution of (5.2) with

kCxN < 5. Let u0 be in //¿(Í2) where r = max(s + 1, / + 1). For r > n/2 + 1 there

exists a constant C independent of u0 satisfying

HIV" - M(r„)|| < C{N~S + kJ}\\u0\\T   for tn < T0.

As a result of Theorem 4, to prove Theorem 5, it is sufficient to analyze the

error between (5.2) and (4.6).  To accomplish this we shall break the error into pieces

and analyze the pieces.  Introduce the error function EXg) for g in SN defined by

Ej(g) = W> - U(tj) where W> satisfies (5.2) with initial data W° = g and U satisfies

(4.6) with data U(0) = g.   Note that EXg) is a linear function of g and that to prove

Theorem 5 we need to bound EXPcu0).

Since Lc is skew symmetric on a finite-dimensional space, the operator Tc =

(I + LC)~1PN is well defined.  We prove the following approximation result:

Lemma 3.  For kj < T0 and kCxN < 5 the following estimates hold:

(i)  ||£}Qf)||<Cyi,
(Ü)  \\EA??g)\\ < Ckm -' ||*|| for 2 < m <J + 1.

Proof, (i) is just stability in L2 of (5.2) and (4.6). For (ii) we note the follow-

ing recursion

(5.3) E/+lif) = Vji-L^Ejif) + [Vj(-Lck) - Expi-Lck)} ify),

where U is defined by (4.6) with initial data /   By (5.1)

\\?j(-Lck)Ej(f)\\<\\E]{f)\\.

Now for / = T™g, Uit) = T™ U(t) where U satisfies (4.6) with initial data g.   Expand-

ing the second term in (5.3) in the eigenfunctions of Lc implies that

\\[?j(-Lck) - Expi-Lck)} T? Uit)\\ < Ckm\\Uit)\\.

Using the stability of (4.6) and combining the above results gives

11^+1(^)11 < WEß?i)W + Ckm\\g\l

and summing proves Lemma 3.

Proof of Theorem 5.  We note the following identity:   For 9 in SN,

m
(5.4) 6 = Z T>C(LC - LN)Q + LN)i~x9 + V?(I + LN)m9.

7-1

The identity is obvious for m = 1, and validity for all m follows from an easy induc-

tion argument.
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Using (5.4) and the linearity of Em gives

EmiPcH) = 'Z EmiT'ciLc - LN)(I + LNrlPNu0)

+ EmiTi+\l+ LN)J+1PNu0) + EmiPcu0 -PNu0).

As a consequence of (3.1), for / in //p"(12),

(5.5) \\(I+LN)'f\\m_i<C\\f\\m

Lemma 3, the triangle inequality, and (3.1) give

WEm(Pcu0)\\ < Z Cki-x\\(Lc-LN)(I + LNy-'PNu0\\
(5-6) /=2

+ C\\(LC - LN)PNu0\\ + CkJ\\uJJ + x + CN~s\\u0\\s.

By estimates similar to those given on (4.7), the inverse properties of SN, and (5.5)

(5.7)   \\(Lc-LN)(I+LNy-lPNu0\\ < CN-s\\PNu0\\s+i < CN~s+i-1\\u0\\s + l.

Combining (5.6) and (5.7) with the inequality kNCx < § proves the theorem.
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