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Abstract: We consider the spectrum of the Fibonacci Hamiltonian for small values of
the coupling constant. It is known that this set is a Cantor set of zero Lebesgue measure.
Here we study the limit, as the value of the coupling constant approaches zero, of its
thickness and its Hausdorff dimension. We prove that the thickness tends to infinity
and, consequently, the Hausdorff dimension of the spectrum tends to one. We also show
that at small coupling, all gaps allowed by the gap labeling theorem are open and the
length of every gap tends to zero linearly. Moreover, for a sufficiently small coupling,
the sum of the spectrum with itself is an interval. This last result provides a rigorous
explanation of a phenomenon for the Fibonacci square lattice discovered numerically
by Even-Dar Mandel and Lifshitz. Finally, we provide explicit upper and lower bounds
for the solutions to the difference equation and use them to study the spectral measures
and the transport exponents.
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1. Introduction

1.1. Background and motivation. It is always exciting to obtain a new connection
between two different areas of mathematics. Here we prove several new results concern-
ing the spectral properties of the discrete Schrödinger operator with Fibonacci potential,
the so-called Fibonacci Hamiltonian, using methods from the modern theory of dynam-
ical systems (uniformly hyperbolic and normally hyperbolic dynamics).

The Fibonacci Hamiltonian is a central model in the study of electronic properties of
one-dimensional quasicrystals. It is given by the following bounded self-adjoint operator
in ℓ2(Z):

[HV,ωψ](n) = ψ(n + 1) + ψ(n − 1) + Vχ[1−α,1)(nα + ω mod 1)ψ(n),

where V > 0, α =
√

5−1
2 , and ω ∈ T = R/Z.

This operator family has been studied in many papers since the early 1980’s and
numerous fundamental results are known. Let us recall some of them and refer the
reader to the survey articles [D00,D07a,S95] for additional information.

The spectrum is easily seen to be independent of ω and may therefore be denoted
by �V . That is, σ(HV,ω) = �V for every ω ∈ T. Indeed, this follows quickly from the
minimality of the irrational rotation by α and strong operator convergence. It was shown
by Sütő that �V has zero Lebesgue measure for every V > 0; see [S89]. Moreover,
it is compact (since it is the spectrum of a bounded operator) and perfect (because the
irrational rotation by α is ergodic). Thus, �V is a zero-measure Cantor set. This result
was recently strengthened by Cantat [Can] who showed that the Hausdorff dimension
of �V lies strictly between zero and one.
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Naturally, one is interested in fractal properties of �V , such as its dimension, thick-
ness, and denseness. While such a study is well-motivated from a purely mathemat-
ical perspective, we want to point out that there is significant additional interest in
these quantities. In particular, it has recently been realized that the fractal dimension
of the spectrum is intimately related with the long-time asymptotics of the solution
to the associated time-dependent Schrödinger equation, that is, i∂tφ = HV,ωφ; see
[DEGT].

Fractal properties of �V are by now well understood for large values of V . Work
of Casdagli [Cas] and Sütő [S87] shows that for V ≥ 16, �V is a dynamically defined
Cantor set. It follows from this result that the Hausdorff dimension and the upper and
lower box counting dimension of �V all coincide; let us denote this common value by
dim �V . Using this result, Damanik, Embree, Gorodetski, and Tcheremchantsev have
shown upper and lower bounds for the dimension; see [DEGT]. A particular consequence
of these bounds is the identification of the asymptotic behavior of the dimension as V

tends to infinity:

lim
V →∞

dim �V · log V = log(1 +
√

2).

The paper [DEGT] also discusses some of the implications for the dynamics of the
Schrödinger equation; let us mention [DT07,DT08] for further recent advances in this
direction for the strongly coupled Fibonacci Hamiltonian.

By contrast, hardly anything about�V (beyond it having Hausdorff dimension strictly
between zero and one) is known for small values of V . The largeness of V enters the
proofs of the existing results in critical ways. Consequently, these proofs indeed break
down once the largeness assumption is dropped. The purpose of this paper is to fill out
this gap by completely different methods.

We would like to emphasize that quantitative properties of regular Cantor sets such as
thickness and denseness are widely used in dynamical systems (see [N79,N70,PT,Me])
and they have found an application in number theory (see [As00,As01,As02,Cus,Ha,
Hl]), but to the best of our knowledge, these kinds of techniques have never been used
before in the context of mathematical physics.

1.2. Statement of the main results. In this subsection we describe our results for small
coupling V . Clearly, as V approaches zero, HV,ω approaches the free Schrödinger oper-
ator

[H0ψ](n) = ψ(n + 1) + ψ(n − 1),

which is a well-studied object whose spectral properties are completely understood. In
particular, the spectrum of H0 is given by the interval [−2, 2]. It is natural to ask which
spectral features of HV,ω approach those of H0. It follows from Sütő’s 1989 result [S89]
that the Lebesgue measure of the spectrum does not extend continuously to the case
V = 0. Given this situation, one would at least hope that the dimension of the spectrum
is continuous at V = 0.

It was shown by us in [DG09a] (and independently by Cantat [Can]) that �V is a
dynamically defined Cantor set for V > 0 sufficiently small (i.e., the small coupling
counterpart to Casdagli’s result at large coupling). A consequence of this is the equality
of Hausdorff dimension and upper and lower box counting dimensions of �V in this
coupling constant regime. Our first result shows that the dimension of the spectrum
indeed extends continuously to V = 0.



224 D. Damanik, A. Gorodetski

Theorem 1.1. We have

lim
V →0

dim �V = 1.

More precisely, there are constants C1,C2 > 0 such that

1 − C1V ≤ dim �V ≤ 1 − C2V

for V > 0 sufficiently small.

We get Theorem 1.1 as a consequence of a connection between the Hausdorff dimen-
sion of a Cantor set and its denseness and thickness, along with estimates for the latter
quantities. Since these notions and connections may be less familiar to at least a part
of our intended audience, let us recall the definitions and some of the main results; an
excellent general reference in this context is [PT].

Let C ⊂ R be a Cantor set and denote by I its convex hull. Any connected component
of I\C is called a gap of C . A presentation of C is given by an ordering U = {Un}n≥1
of the gaps of C . If u ∈ C is a boundary point of a gap U of C , we denote by K the
connected component of I\(U1 ∪ U2 ∪ . . . ∪ Un) (with n chosen so that Un = U ) that
contains u and write

τ(C,U , u) =
|K |
|U |

.

With this notation, the thickness τ(C) and the denseness θ(C) of C are given by

τ(C) = sup
U

inf
u
τ(C,U , u), θ(C) = inf

U
sup

u
τ(C,U , u),

and they are related to the Hausdorff dimension of C by the following inequalities
(cf. [PT, Sect. 4.2]),

log 2

log(2 + 1
τ(C)

)
≤ dimH C ≤

log 2

log(2 + 1
θ(C)

)
.

Due to these inequalities, Theorem 1.1 is a consequence of the following result:

Theorem 1.2. We have

lim
V →0

τ(�V ) = ∞.

More precisely, there are constants C3,C4 > 0 such that

C3V −1 ≤ τ(�V ) ≤ θ(�V ) ≤ C4V −1

for V > 0 sufficiently small.

Bovier and Ghez described in their 1995 paper [BG] the then-state of the art concern-
ing mathematically rigorous results for Schrödinger operators in ℓ2(Z) with potentials
generated by primitive substitutions. The Fibonacci Hamiltonian belongs to this class;
more precisely, it is in many ways the most important example within this class of mod-
els. One of the most spectacular discoveries is that, in this class of models, the spectrum
jumps from being an interval for coupling V = 0 to being a zero-measure Cantor set
for coupling V > 0. That is, as the potential is turned on, a dense set of gaps opens
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Fig. 1. The set {(E, V ) : E ∈ �V , 0 ≤ V ≤ 2}

immediately (and the complement of these gaps has zero Lebesgue measure). It is natu-
ral to ask about the size of these gaps, which can in fact be parametrized by a canonical
countable set of gap labels; see [BBG92]. These gap openings were studied in [B] for a
Thue-Morse potential and in [BBG91] for period doubling potential. However, for the
important Fibonacci case, the problem remained open. In fact, Bovier and Ghez write
on p. 2321 of [BG]: It is a quite perplexing feature that even in the simplest case of all,

the golden Fibonacci sequence, the opening of the gaps at small coupling is not known!1

Our next result resolves this issue completely and shows that, in the Fibonacci case,
all gaps open linearly:

Theorem 1.3. For V > 0 sufficiently small, the boundary points of a gap in the spectrum

�V depend smoothly on the coupling constant V . Moreover, given any one-parameter

continuous family {UV }V>0 of gaps of �V , we have that

lim
V →0

|UV |
|V |

exists and belongs to (0,∞).

Figure 1 shows a plot of the spectrum for small coupling:
The plot illustrates the results contained in Theorems 1.1–1.3. It also suggests that

the limit limV →0
|UV |
|V | depends on the chosen family of gaps. We have more to say about

the value of the limit in Theorem 1.6 below. It will turn out that its size is related to the
label assigned to it by the gap labeling theorem.

Our next result concerns the sum set

�V + �V = {E1 + E2 : E1, E2 ∈ �V }.

This set is equal to the spectrum of the so-called square Fibonacci Hamiltonian. Here,
one considers the Schrödinger operator

[H
(2)
V ψ](m, n) = ψ(m + 1, n) + ψ(m − 1, n) + ψ(m, n + 1) + ψ(m, n − 1)

+V
(
χ[1−α,1)(mα mod 1) + χ[1−α,1)(nα mod 1)

)
ψ(m, n)

1 There is a perturbative approach to this problem for a class of models that includes the Fibonacci Ham-
iltonian by Sire and Mosseri; see [SM89] and [OK,Si89,SM90,SMS] for related work. While their work
is non-rigorous, it gives quite convincing arguments in favor of linear gap opening; see especially [SM89,
Sect. 5]. It would be interesting to make their approach mathematically rigorous.
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in ℓ2(Z2). The theory of tensor products of Hilbert spaces and operators then implies
that σ(H

(2)
V ) = �V +�V , see Sect. 6. This operator and its spectrum have been studied

numerically and heuristically by Even-Dar Mandel and Lifshitz in a series of papers
[EL06,EL07,EL08] (a similar model was studied by Sire in [Si89]). Their study sug-
gested that at small coupling, the spectrum of �V + �V is not a Cantor set; quite on the
contrary, it has no gaps at all.

Our next theorem confirms this observation:

Theorem 1.4. For V > 0 sufficiently small, we have that σ(H
(2)
V ) = �V + �V is an

interval.

Certainly, the same statement holds for the cubic Fibonacci Hamiltonian (i.e., the
analogously defined Schrödinger operator in ℓ2(Z3) with spectrum �V + �V + �V ).

Notice that Theorem 1.4 is a consequence of Theorem 1.2 and the famous Gap
Lemma, which was used by Newhouse to construct persistent tangencies and generic
diffeomorphisms with an infinite number of attractors (the so-called “Newhouse phe-
nomenon”), see Subsect. 6.2 for details:

Gap Lemma (Newhouse [N79,N70]). If C1,C2 ⊂ R
1 are Cantor sets such that

τ(C1) · τ(C2) > 1,

then either one of these sets is contained entirely in a gap2 of the other set, or C1∩C2 �= ∅.

Let us turn to the formulation of results involving the integrated density of states,
which is a quantity of fundamental importance associated with an ergodic family of
Schrödinger operators. We first recall the definition of the integrated density of states.
Denote the restriction of HV,ω to some finite interval � ⊂ Z with Dirichlet boundary
conditions by H�

V,ω. We denote by N (E, ω, V,�) the number of eigenvalues of H�
V,ω

that are less than or equal E . The integrated density of states is given by

N (E, V ) = lim
n→∞

1

n
N (E, ω, V, [1, n]). (1)

We will comment on the existence of the limit and some of its basic properties in Sect. 4.
One of the most important applications of the integrated density of states is the so-called
gap labeling. That is, one can identify a canonical set of gap labels, that is only associ-
ated with the underlying dynamics (in this case, an irrational rotation of the circle or the
shift-transformation on a substitution-generated subshift over two symbols), in such a
way that the value of N (E, V ) for E ∈ R\�V must belong to this canonical set. In the
Fibonacci case, this set is well-known (see, e.g., [BBG92, Eq. (6.7)]) and the general
gap labeling theorem specializes to the following statement:

{N (E, V ) : E ∈ R\�V } ⊆ {{mα} : m ∈ Z} ∪ {1} (2)

for every V �= 0. Here {mα} denotes the fractional part of mα, that is, {mα} = mα −
⌊mα⌋. Notice that the set of gap labels is indeed V -independent and only depends on the
value of α from the underlying circle rotation. Since α is irrational, the set of gap labels
is dense. In general, a dense set of gap labels is indicative of a Cantor spectrum and hence

2 For the purpose of this lemma, we also consider the two unbounded gaps in addition to the bounded gaps
considered above, that is, the connected components of the complement of the convex hull of the Cantor set
in question.
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a common (and attractive) stronger version of proving Cantor spectrum is to show that
the operator “has all its gaps open.” For example, the Ten Martini Problem for the almost
Mathieu operator is to show Cantor spectrum, while the Dry Ten Martini Problem is to
show that all labels correspond to gaps in the spectrum. The former problem has been
completely solved [AJ], while the latter has not yet been completely settled. Indeed, it
is in general a hard problem to show that all labels given by the gap labeling theorem
correspond to gaps and there are only few results of this kind. Here we show the stronger
(or “dry”) form of Cantor spectrum for the weakly coupled Fibonacci Hamiltonian and
establish complete gap labeling:

Theorem 1.5. There is V0 > 0 such that for every V ∈ (0, V0], all gaps allowed by the

gap labeling theorem are open. That is,

{N (E, V ) : E ∈ R\�V } = {{mα} : m ∈ Z} ∪ {1}. (3)

Complete gap labeling for the strongly coupled Fibonacci Hamiltonian was shown
by Raymond in [Ra], where he proves (3) for V > 4. We conjecture that (3) holds for
every V > 0.

Let us return to the existence of the limit in Theorem 1.3. As was pointed out there,
the value of the limit will depend on the family of gaps chosen. Now that the gap labeling
has been introduced, we can refine the statement. For m ∈ Z\{0}, denote by Um(V ) the
gap of �V where the integrated density of states takes the value {mα}.

Theorem 1.6. There is a finite constant C∗ such that for every m ∈ Z\{0}, we have

lim
V →0

|Um(V )|
|V |

=
Cm

|m|

for a suitable Cm ∈ (0,C∗).

Our final set of results concerns the spectral measures and transport exponents asso-
ciated with the operator family. We will give precise definitions and statements of our
results in Sect. 5 and limit ourselves to a brief description here. The ultimate goal of
any analysis of a given Schrödinger operator is always an understanding of the associ-
ated unitary group, which then allows one to understand the dynamics of the associated
time-dependent Schrödinger equation. The standard transport exponents capture the
spreading of the quantum state in space. Most approaches to a study of these transport
exponents proceed via (time-independent) spectral theory and link continuity properties
of the spectral measure, associated to the initial state of the time evolution via the spec-
tral theorem, to lower bounds for the transport exponents. In one space dimension, these
continuity properties can in turn be investigated via an analysis of the solutions of the
time-independent Schrödinger equation. Our goal is to carry this out for the weakly cou-
pled Fibonacci Hamiltonian. Indeed, results of this kind are known, but the dependence
of the quantities entering the estimates on the coupling constant had not been optimized.
We revisit these approaches here and improve them to yield the best possible quanti-
tative estimates at small coupling that can be obtained with current technology. Our
results in Sect. 5 are likely not optimal and in particular do not approach the (known)
zero-coupling values. We regard it as an interesting open problem to either prove or
disprove that the dimension estimates for the spectral measures and the lower bounds
for the transport exponents approach the values in the free (zero coupling) case as the
coupling approaches zero.

Some of the results of this paper were announced in [DG09b].
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1.3. Overview of the paper. Let us outline the remaining parts of this paper. In Sect. 2
we give some necessary background information and recall how the trace map arises in
the context of the Fibonacci Hamiltonian and some of its basic properties. Moreover,
since our aim is an understanding of weak coupling phenomena, we discuss the case
of zero coupling. Section 3 is the heart of the paper. Here we regard the weak coupling
scenario as a perturbation of zero coupling and study the dynamics of the trace map and
consequences thereof for the structure of the spectrum as a set. Section 4 considers the
integrated density of states and proves complete gap labeling at weak coupling and our
quantitative version of the linear gap opening result. Spectral measures and transport
exponents are studied by means of solution estimates in Sect. 5. Higher-dimensional
models generated by a product construction are discussed in Sect. 6, where we con-
firm some predictions of Even-Dar Mandel and Lifshitz. Since their model is based on
the off-diagonal Fibonacci Hamiltonian and the main body of this paper (and most of
the other mathematical works on the Fibonacci Hamiltonian) considers the diagonal
Fibonacci Hamiltonian, we develop all the basic results for the off-diagonal model in
Appendix A and explain there how our work indeed confirms the predictions for the
original Even-Dar Mandel-Lifshitz product model.

To assist the reader in locating the proofs of the theorems from the previous sub-
section, here is where they may be found: We prove Theorem 1.2 (which implies The-
orem 1.1) in Subsect. 3.4, Theorem 1.3 in Subsect. 3.1, Theorem 1.4 in Subsect. 6.3,
Theorem 1.5 in Subsect. 4.2, and finally Theorem 1.6 in Subsect. 4.3.

2. Preliminaries

2.1. Description of the trace map and previous results. The main tool that we are using
here is the so-called trace map. It was originally introduced in [Ka,KKT]; further use-
ful references include [BGJ,BR,HM,Ro]. Let us quickly recall how it arises from the
substitution invariance of the Fibonacci potential; see [S87] for detailed proofs of some
of the statements below.

The one step transfer matrices associated with the difference equation HV,ωu = Eu

are given by

TV,ω(m, E) =
(

E − Vχ[1−α,1)(mα + ω mod 1) −1
1 0

)
.

Denote the Fibonacci numbers by {Fk}, that is, F0 = F1 = 1 and Fk+1 = Fk + Fk−1 for
k ≥ 1. Then, one can show that the matrices

M−1(E) =
(

1 −V

0 1

)
, M0(E) =

(
E −1
1 0

)

and

Mk(E) = TV,0(Fk, E) × · · · × TV,0(1, E) for k ≥ 1

obey the recursive relations

Mk+1(E) = Mk−1(E)Mk(E)

for k ≥ 0. Passing to the variables

xk(E) =
1

2
TrMk(E),
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Fig. 2. The surface S0.01

this in turn implies

xk+1(E) = 2xk(E)xk−1(E) − xk−2(E).

These recursion relations exhibit a conserved quantity; namely, we have

xk+1(E)2 + xk(E)2 + xk−1(E)2 − 2xk+1(E)xk(E)xk−1(E) − 1 =
V 2

4

for every k ≥ 0.
Given these observations, it is then convenient to introduce the trace map

T : R
3 → R

3, T (x, y, z) = (2xy − z, x, y).

The following function3

G(x, y, z) = x2 + y2 + z2 − 2xyz − 1

is invariant under the action of T , and hence T preserves the family of cubic surfaces4

SV =
{
(x, y, z) ∈ R

3 : x2 + y2 + z2 − 2xyz = 1 +
V 2

4

}
.

Plots of the surfaces S0.01 and S0.5 are given in Figs. 2 and 3, respectively.

3 The function G(x, y, z) is called the Fricke character, or sometimes the Fricke-Vogt invariant.
4 The surface S0 is called the Cayley cubic.
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Fig. 3. The surface S0.5

It is of course natural to consider the restriction TV of the trace map T to the invariant
surface SV . That is, TV : SV → SV , TV = T |SV

. Denote by �V the set of points in SV

whose full orbits under TV are bounded. A priori the set of bounded orbits of TV could
be different from the non-wandering set5 of TV , but our construction of the Markov par-
tition and our analysis of the behavior of TV near singularities show that here these two
sets do coincide. Notice that this is parallel to the construction of the symbolic coding
in [Cas].

Let us recall that an invariant closed set � of a diffeomorphism f : M → M is
hyperbolic if there exists a splitting of the tangent space Tx M = Eu

x ⊕ Eu
x at every point

x ∈ � such that this splitting is invariant under D f , the differential D f exponentially
contracts vectors from the stable subspaces {E s

x }, and the differential of the inverse,
D f −1, exponentially contracts vectors from the unstable subspaces {Eu

x }. A hyperbolic
set� of a diffeomorphism f : M → M is locally maximal if there exists a neighborhood
U of � such that

� =
⋂

n∈Z

f n(U ).

We want to recall the following central result.

Theorem 2.1 ([Cas,DG09a,Can]). For V �= 0, the set �V is a locally maximal hyper-

bolic set of TV : SV → SV . It is homeomorphic to a Cantor set.

5 A point p ∈ M of a diffeomorphism f : M → M is wandering if there exists a neighborhood O(p) ⊂ M

such that f k (O) ∩ O = ∅ for any k ∈ Z\0. The non-wandering set of f is the set of points that are not
wandering.
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Denote by ℓV the line

ℓV =
{(

E − V

2
,

E

2
, 1

)
: E ∈ R

}
.

It is easy to check that ℓV ⊂ SV .
The second central result about the trace map we wish to recall was proven by Sütő

in [S87].

Theorem 2.2 (Sütő 1987). An energy E belongs to the spectrum of HV,ω if and only

if the positive semiorbit of the point ( E−V
2 , E

2 , 1) under iterates of the trace map T is

bounded.

In fact, as also shown by Sütő in [S87], the trace map can be used to generate canonical
approximations of the spectrum, �V . Namely, consider the following sets:

�
(n)
V = {E ∈ R : for (xn, yn, zn) = T n( E−V

2 , E
2 , 1), we have min{|xn|, |yn|} ≤ 1}.

Then, we have �
(n)
V ⊇ �

(n+1)
V → �V , that is,

�V =
⋂

n∈Z+

�
(n)
V .

Figure 4 shows a plot of the sets {(E, V ) : E ∈ �
(n)
V , 0 ≤ V ≤ 3

4 } for values of n

up to 20.6 These plots illustrate nicely both the linear gap opening and the fact that the
size of a gap depends on its label; compare Theorems 1.3 and 1.6. To further document
linear gap opening through numerics, Fig. 5 zooms into a portion of Fig. 4 near a point
(E, 0) for an energy E where a gap opens; we have chosen E ≈ 0.7248.

2.2. Properties of the trace map for V = 0. We will regard the case of small V as a
small perturbation of the case V = 0. This subsection is devoted to the study of this
“unperturbed case.”

Denote by S the part of the surface S0 inside the cube {|x | ≤ 1, |y| ≤ 1, |z| ≤ 1}.
The surface S is homeomorphic to S2, invariant, smooth everywhere except at the four
points P1 = (1, 1, 1), P2 = (−1,−1, 1), P3 = (1,−1,−1), and P4 = (−1, 1,−1),
where S has conic singularities, and the trace map T restricted to S is a factor of the
hyperbolic automorphism of T

2 = R
2/Z2 given by

A(θ, ϕ) = (θ + ϕ, θ) (mod 1).

The semiconjugacy is given by the map

F : (θ, ϕ) �→ (cos 2π(θ + ϕ), cos 2πθ, cos 2πϕ).

The map A is hyperbolic, and is given by the matrix A =
(

1 1
1 0

)
, which has eigenvalues

μ =
1 +

√
5

2
and − μ−1 =

1 −
√

5

2
.

6 This is also how the plot in Fig. 1 was obtained. In fact, what is shown there is the set {(E, V ) : E ∈
�
(20)
V

, 0 ≤ V ≤ 2}.
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Fig. 4. The sets {(E, V ) : E ∈ �
(n)
V

, 0 ≤ V ≤ 3
4 } through n = 20

Let us denote by vu, vu ∈ R
2 the unstable and stable eigenvectors of A:

Avu = μvu, Avs = −μ−1vs, ‖vu‖ = ‖vs‖ = 1.

Fix some small ζ > 0 and define the stable (resp., unstable) cone fields on R
2 in the

following way:

K s
p = {v ∈ TpR

2 : v = vuvu + vsvs, |vs | > ζ−1|vu |},
(4)

K u
p = {v ∈ TpR

2 : v = vuvu + vsvs, |vu | > ζ−1|vs |}.

These cone fields are invariant:

∀ v ∈ K u
p Av ∈ K u

A(p),

∀ v ∈ K s
p A−1v ∈ K s

A−1(p)
.



The Weakly Coupled Fibonacci Hamiltonian 233

Fig. 5. The sets {(E, V ) : E ∈ �
(n)
V

} near (0.7248, 0) for n = 15, 20, 25, 30

Also, the iterates of the map A expand vectors from the unstable cones, and the iterates
of the map A−1 expand vectors from the stable cones:

∀ v ∈ K u
p ∀ n ∈ N |Anv| >

1√
1 + ζ 2

μn|v|,

∀ v ∈ K s
p ∀ n ∈ N |A−nv| >

1√
1 + ζ 2

μn|v|.

The families of cones {K s} and {K u} invariant under A can be also considered on T
2.

The differential of the semiconjugacy F sends these cone families to stable and
unstable cone families on S\{P1, P2, P3, P4}. Let us denote these images by {Ks} and
{Ku}.

Lemma 2.3 (Lemma 3.1 from [DG09a]). The differential of the semiconjugacy DF

induces a map of the unit bundle of T
2 to the unit bundle of S\{P1, P2, P3, P4}. The
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Fig. 6. The Markov partition for the map A

derivatives of the restrictions of this map to fibers are uniformly bounded. In particular,

the sizes of the cones in the families {Ks} and {Ku} are uniformly bounded away from

zero.

Finally, consider the Markov partition for the map A : T
2 → T

2 that is shown in
Fig. 6 (and which had already appeared in [Cas]; for more details on Markov parti-
tions for two-dimensional hyperbolic maps see [PT, App. 2]). Its image under the map
F : T

2 → S is a Markov partition for the pseudo-Anosov map T : S → S.

3. The Spectrum as a Set

It is not hard to see that the line ℓV is transversal to the stable manifolds of the hyperbolic
set �V for small values of V (see, e.g., [DG09a, Lemma 5.5]). Therefore the intersec-
tion of ℓV and W s(�V ) (and, hence, �V ) is a dynamically defined Cantor set (see,
for example, [T]). In this section we study the properties of this one-parameter family
of Cantor sets. Namely, in Subsect. 3.1 we prove that the size of a given gap in the
Cantor set tends to zero linearly as the coupling constant (the parameter) tends to zero.
In Subsect. 3.2 we use normally hyperbolic theory to introduce a normalizing coordinate
system in a neighborhood of a singularity. Then in Subsect. 3.3 the order of the gaps that
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Fig. 7. S0.1 and Per2(T ) near (1, 1, 1)

is related to the dynamics is chosen. Roughly speaking, the longer it takes for a gap to
leave the union of the elements of the Markov partition, the higher is the order of the gap.
Next, in Subsect. 3.5 this normalizing coordinate system is used to study the distortion
properties of the transitions through a neighborhood of a singularity. Finally, in the last
three subsections we bring all the pieces together and prove the distortion property that
immediately implies Theorem 1.2.

3.1. Linear gap opening as the potential is turned on. Here we prove Theorem 1.3.
Consider the dynamics of T in a neighborhood of P1 = (1, 1, 1). Due to the symme-

tries of the trace map this will also provide information on the dynamics near the other
singularities. Take r0 > 0 small and let Or0(P1) be an r0-neighborhood of the point
P1 = (1, 1, 1) in R

3. Let us consider the set Per2(T ) of periodic points of T of period
2; compare Figs. 7 and 8.

Lemma 3.1. We have

Per2(T ) =
{
(x, y, z) : x ∈ (−∞,

1

2
) ∪ (

1

2
,∞), y =

x

2x − 1
, z = x

}
.

Proof. Direct calculation. ⊓⊔

Notice that in a neighborhood U1 of P1, the intersection I ≡ Per2(T )∩U1 is smooth
curve that is normally hyperbolic with respect to T (see, e.g., App. 1 in [PT] for the formal
definition of normal hyperbolicity). Therefore, the local center-stable manifold W cs

loc(I )

and the local center-unstable manifold W cu
loc(I ) defined by

W cs
loc(I ) =

{
p ∈ Or0(P1) : T n(p) ∈ Or0(P1) for all n ∈ N

}
,

W cu
loc(I ) =

{
p ∈ Or0(P1) : T −n(p) ∈ Or0(P1) for all n ∈ N

}
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Fig. 8. S0.2 and Per2(T ) near (1, 1, 1)

are smooth two-dimensional surfaces. Also, the local strong stable manifold W ss
loc(P1)

and the local strong unstable manifold W uu
loc(P1) of the fixed point P1, defined by

W ss
loc(P1) =

{
p ∈ W cs

loc(I ) : T n(p) → P1 as n → ∞
}
,

W uu
loc(P1) =

{
p ∈ W cu

loc(I ) : T −n(p) → P1 as n → ∞
}
,

are smooth curves.
The Markov partition for the pseudo-Anosov map T : S → S can be extended to

a Markov partition for the map TV : SV → SV for small values of V . Namely, there
are four singular points P1 = (1, 1, 1), P2 = (−1,−1, 1), P3 = (1,−1,−1), and
P4 = (−1, 1,−1) of S. The point P1 is a fixed point of T , and the points P2, P3, P4
form a periodic orbit of period 3. For small V , on the surface SV near P1 there is a
hyperbolic orbit of the map TV = T |SV

of period 2, and near the orbit {P2, P3, P4} there
is a hyperbolic periodic orbit of period 6. Pieces of stable and unstable manifolds of these
8 periodic points form a Markov partition for TV : SV → SV . For V �= 0, the elements
of this Markov partition are disjoint. Let us denote these six rectangles (the elements of
the Markov partition) by R1

V , R2
V , . . . , R6

V . Let us also denote RV = ∪6
i=1 Ri

V .
It is convenient now to consider T 6

V : SV → SV since for T 6
V , each of the eight

periodic points that were born from singularities becomes a fixed point. Due to the sym-
metries of the trace map, the dynamics of T 6 is the same in a neighborhood of each of
the singularities P1, P2, P3, and P4.

The set of fixed points of T 6 in a neighborhood U1 of P1 is a smooth curve
Fix(T 6, Or0(P1)) = Per2(T ) ∩ Or0(P1); see Lemma 3.1 above. Each of the fixed
points has one of the eigenvalues equal to 1, one greater than 1, and one smaller than 1
in absolute value. Therefore the curve Fix(T 6, Or0(P1)) is a normally hyperbolic mani-
fold, and its stable set W s(Fix(T 6, Or0(P1))) is a smooth two dimensional surface; see
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[HPS]. The strong stable manifolds form a C1-foliation of W s(Fix(T 6, Or0(P1))); see
[PSW, Theorem B].

If pV and qV are two fixed points of T 6
V in Or0(P1), then these points form the

intersection of the curve Fix(T 6, Or0(P1)) with SV and can be found from the system
⎧
⎨
⎩

y = x
2x−1

z = x

x2 + y2 + z2 − 2xyz = 1 + V 2

4 .

If we parameterize Fix(T 6, Or0(P1)) as {x = t + 1, z = t + 1, y = t+1
2t+1 }, we get

(t + 1)2 +
t + 1

2t + 1
+ (t + 1)2 − 2(t + 1)2 t + 1

2t + 1
= 1 +

V 2

4
,

or

4t4 + 10t3 + 9t2 + 4t + 1

(2t + 1)2 = 1 +
V 2

4
.

Since for the function f (t)= 4t4+10t3+9t2+4t+1
(2t+1)2 , we have f (0)= 1, f ′(0)= 0, f ′′(0) > 0,

the distance between the points pV and qV is of order |V | for small values of V .

Lemma 3.2. Let W ⊂ R
3 be a smooth surface with a C1-foliation on it. Let ξ ⊂ W be a

smooth curve transversal to the foliation. Fix a leaf L ⊂ W of the foliation, and denote

P = L ∩ ξ . Take a point Q �= P, Q ∈ L, and a line ℓ0 ⊂ R
3, Q ∈ ℓ0, tangent to W

at Q, but not tangent to the leaf L. Suppose that a family of lines {ℓV }V ∈(0,V0) is given

such that ℓV → ℓ0 as V → 0, each line ℓV , V > 0, intersects W at two points pV and

qV , and pV → Q, qV → Q as V → 0.

Denote by L pV
and LqV

the leaves of the foliation that contain pV and qV , respec-

tively. Denote pV = L pV
∩ ξ and qV = LqV

∩ ξ . Then there exists a finite non-zero

limit

lim
V →0

dist(pV , qV )

dist(pV ,qV )
.

Proof. Since ℓ0 is not tangent to the leaf L , there exists a curve ξ̃ ⊂ W tangent to ℓ0,
transversal to the foliation, and such that Q ∈ ξ̃ .

Set p̃ = L pV
∩ ξ̃ , q̃ = LqV

∩ ξ̃ . Since the foliation is C1, there exists a finite non-zero
limit

lim
V →0

dist(pV ,qV )

dist(̃pV , q̃V )
�= 0. (5)

Let us consider a plane � tangent to W at Q, and let π : W → � be an orthogonal
projection (well defined and smooth in a neighborhood of Q). It is clear that

lim
V →0

dist(π(̃pV ), π(̃qV ))

dist(̃pV , q̃V )
= 1. (6)

Also, since ℓV → ℓ0 as V → 0, we have

lim
V →0

dist(π(pV ), π(qV ))

dist(pV , qV )
= 1. (7)
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Finally, since π sends the C1-foliation of W to a C1-foliation on �, the projection along
this foliation from π(ℓV ) to ℓ0 is C1-close to isometry. In particular,

lim
V →0

dist(π(pV ), π(qV ))

dist(π(̃pV ), π(̃qV ))
= 1. (8)

The statement of Lemma 3.2 follows now from (5)–(8). ⊓⊔

Proof of Theorem 1.3. Pick any bounded gap in the spectrum and the corresponding
gap O in ℓV \W s(�V ). The boundary points pV and qV of O belong to stable mani-
folds of two fixed points near one of the singularities P1, P2, P3, or P4. Without loss
of generality assume that those fixed points are pV and qV in a neighborhood of P1.
The surface W = W s(Fix(T 6, Or0(P1))) is C1-foliated by strong stable manifolds of
fixed points from Fix(T 6, Or0(P1)), and the curve ξ = Fix(T 6, Or0(P1)) is transversal
to this foliation. Therefore Lemma 3.2 implies that there exists a finite non-zero limit
limV →0

dist(pV ,qV )
dist(pV ,qV )

, and, since dist(pV ,qV ) is of order |V | for small values of V , this
implies Theorem 1.3. ⊓⊔

3.2. Choice of a coordinate system in a neighborhood of a singular point. Due to the
smoothness of the invariant manifolds of the curve of periodic points of period two
described in Sect. 3.1, there exists a smooth change of coordinates � : Or0(P1) → R

3

such that �(P1) = (0, 0, 0) and

• �(I ) is a part of the line {x = 0, z = 0};
• �(W cs

loc(I )) is a part of the plane {z = 0};
• �(W cu

loc(I )) is a part of the plane {x = 0};
• �(W ss

loc(P1)) is a part of the line {y = 0, z = 0};
• �(W uu

loc(P1)) is a part of the line {x = 0, y = 0}.

Denote f = � ◦ T ◦ �−1.
In this case,

A ≡ D f (0, 0, 0) = D(� ◦ T ◦ �−1)(0, 0, 0) =

⎛
⎝
λ−1 0 0
0 −1 0
0 0 λ

⎞
⎠ ,

where λ is the largest eigenvalue of the differential DT (P1) : TP1R
3 → TP1R

3,

DT (P1) =

⎛
⎝

2 2 −1
1 0 0
0 1 0

⎞
⎠ , λ =

3 +
√

5

2
= μ2.

Let us denote SV = �(SV ). Then, away from (0, 0, 0), the family {SV } is a smooth
family of surfaces, S0 is diffeomorphic to a cone, contains the lines {y = 0, z = 0} and
{x = 0, y = 0}, and at each non-zero point on these lines, it has a quadratic tangency
with a horizontal or vertical plane.

Due to the symmetries of the trace map, similar changes of coordinates exist in a
neighborhood of each of the other singularities. Denote Or0 = Or0(P1) ∪ Or0(P2) ∪
Or0(P3) ∪ Or0(P4).
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Fix a small constant C > 0 and introduce the following cone fields in R
3:

Ku
p = {v ∈ TpR

3, v = vxy + vz : |vz | > C
√

|z p||vxy |}, (9)

K̃u
p = {v ∈ TpR

3, v = vx + vyz : |vz | > C−1|vxy |}, (10)

Ks
p = {v ∈ TpR

3, v = vx + vyz : |vx | > C
√

|x p||vyz |}, (11)

K̃s
p = {v ∈ TpR

3, v = vz + vxy : |vx | > C−1|vyz |}. (12)

Lemma 3.3. There are r1 ∈ (0, r0) and m0 ∈ N such that the following holds.

1. T m0(ℓ0) ∩ Or1 is a union of two connected curves γ1 and γ2, and �(γi ), i = 1, 2,
is tangent to the cone field K̃u;

2. F−1(T m0(ℓ0 ∩ S)) is tangent to the cone field K u (defined by (4)).

Definition 3.4. We will call the rectangle R6 (the element of the Markov partition) the

opposite to singularities P1 and P3, and we will call the rectangle R5 the opposite to

singularities P2 and P4

Notice that T m0(ℓ0 ∩ S) consists of a curve that connects P1 with a stable boundary
of R6, a finite number of curves ξi that connect two stable sides of an element of the
Markov partition and such that F−1(ξi ) is tangent to the cone field K u , and a curve that
connects some other singularity with a stable boundary of its opposite rectangle.

Now let us take r2 ∈ (0, r1) so small that ∪3
i=−3T i (Or2) ⊂ Or1 .

For small V , denote by SV,Or2
the bounded component of SV \Or2 . The family

{SV,Or2
}V ∈[0,V0) of surfaces with boundary depends smoothly on the parameter and has

uniformly bounded curvature. For small V , a projection πV : SV,Or2
→ S is defined.

The map πV is smooth, and if p ∈ S, q ∈ SV,Or2
, and πV (q) = p, then TpS and Tq SV

are close. Denote by Ku
V (resp., Ks

V ) the image of the cone Ku (resp., Ks) under the
differential of π−1

V .
Denote FV = π−1

V ◦ F, FV : F−1(S\Or2) → SV . Denote also �V = � ◦ FV .
Compactness and Mean Value Theorem type arguments imply the following statement.

Lemma 3.5. There are V0 > 0 and C̃ > 0 such that the following holds. Suppose that

a, b ∈ T
2\F−1(Or2), va ∈ TaT

2, vb ∈ TbT
2. Then the following inequalities hold for

all V ∈ [0, V0]:

dist(FV (a), FV (b)) ≤ C̃ dist(a, b),

dist(a, b) ≤ C̃ dist(FV (a), FV (b)),

∠(DFV (va), DFV (vb)) ≤ C̃(∠(va, vb) + dist(a, b)),

∠(va, vb) ≤ C̃(∠(DFV (va), DFV (vb)) + dist(FV (a), FV (b))).

Moreover, if �V (a) and �V (b) are defined, then

dist(�V (a),�V (b)) ≤ C̃ dist(a, b),

dist(a, b) ≤ C̃ dist(�V (a),�V (b)),

∠(D�V (va), D�V (vb)) ≤ C̃(∠(va, vb) + dist(a, b)),

∠(va, vb) ≤ C̃(∠(D�V (va), D�V (vb)) + dist(�V (a),�V (b))).
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Finally, notice that if C and V0 are taken sufficiently small, then the cone fields K u on
T

2 and Ku, K̃u respect each other in the following sense. Suppose that a ∈ T
2\F−1(Or2)

is such that �V (a) is defined for V ∈ [0, V0], and va ∈ K u
a . Lemma 2.3 implies that

D�V (va) ∈ Ku
�V (a).

On the other hand, if b ∈ T
2\F−1(Or2) is such that �V (b) is defined and D�V (vb) ∈

K̃u
�V (b), then

vb ∈ K u
b .

3.3. Ordering of the gaps. To estimate the thickness of a Cantor set from below (or the
denseness from above), it is enough to consider one particular ordering of its gaps. Here
we choose a convenient ordering of gaps in ℓV ∩ W s(�V ) (which is affine equivalent
to �V ).

The trace map TV , V �= 0, has two periodic points of period 2, denote them by P1(V )

and P ′
1(V ), and six periodic points of period 6, denote them by P2(V ), P ′

2(V ), P3(V ),

P ′
3(V ), P4(V ), and P ′

4(V ). In Sect. 3.1 we showed that the distance between Pi (V ) and
P ′

i (V ) is of order |V |.
We can choose the notation (swapping the notation for P1(V ) and P ′

1(V ), and/or for
P2(V ) and P ′

2(V ) if necessary) in such a way that the following lemma holds.

Lemma 3.6. If V is small enough, the line ℓV contains points B1(V ) ∈ ℓV ∩W ss(P1(V ))

and B2(V ) ∈ ℓV ∩ W ss(P2(V )) such that every point of the line which is not between

B1(V ) and B2(V ) tends to infinity under iterates of TV .

Denote by lV the closed interval on ℓV between the points B1(V ) and B2(V ). It is
known that the set of points on lV with bounded positive semiorbits is a dynamically
defined Cantor set; see [DG09a,Can]. We would like to estimate the thickness of this
Cantor set.

Lemma 3.7. There are m0 ∈ N, 0 < C1 < C2 and V0 > 0 such that for all V ∈ [0, V0]
the following holds:

1. T
m0
V (lV ) ∩ Or1 is a union of two connected curves γ1(V ) and γ2(V ), and

�(γi (V )), i = 1, 2, is tangent to the cone field K̃u;

2. F−1
V (T m0(lV )\Or2) is tangent to the cone field K u;

3. T
m0
V (lV ) consists of a curve that connects W ss

loc(P1) with a stable boundary of R6, a

finite number of curves ξi (V ), each of which connects two stable sides of an element

of the Markov partition and is such that F−1
V (ξi ) is tangent to the cone field K u , a

curve that connects W ss
loc(Pi ), i ∈ {2, 3, 4}, with a stable boundary of an opposite

rectangle to Pi , and some “gaps” between the curves mentioned above. The length

of these “gaps” is between C1V and C2V for all small enough V .

Proof. The statement holds for V = 0 (see Lemma 3.3). For V positive but small enough
Properties 1 and 2 hold by continuity, and Property 3 follows from the fact that the dis-
tances between finite pieces of strong stable manifolds of points pV and qV is of order
V , and these strong stable manifolds form the stable parts of boundary of the Markov
partition for TV . ⊓⊔
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We will call the preimages (under T
m0
V ) of the gaps defined in Lemma 3.7 the gaps

of order 1.

Definition 3.8. A smooth curve γ ⊂ SV is tangent to an unstable cone field if

F−1
V (γ \Or2) is tangent to K u , and �(γ ∩ Or1) is tangent to Ku .

Definition 3.9. A curve is of type one if it is tangent to the unstable cone field and

connects opposite sides of stable boundaries of some Ri .

A curve is of type two if it is tangent to the unstable cone field and connects a point

from W ss
loc(Pi ), i ∈ {1, 2, 3, 4}, with a stable boundary of an opposite element of the

Markov partition.

In this terminology, Lemma 3.7 claims that T
m0
V (lV ) consists of two curves of type

two, some curves of type one, and some gaps between them of size of order V .

Lemma 3.10. An image of a curve of type one under T 6 is a union of a finite number of

curves of type one, and of a finite number of gaps of length between C1V and C2V . An

image of a curve of type two under T 6 is a union of a curve of type two, a finite number

of curves of type one, and a finite number of gaps of length between C1V and C2V .

Proof. The first part follows from the properties of the Markov partition and the fact
that the distance between strong stable (strong unstable) manifolds that form the Mar-
kov partition is of order V , see Subsect. 3.1. An image of a curve tangent to an unstable
cone field is a curve tangent to an unstable cone field. Also, T 6(W ss

loc(Pi )) ⊂ W ss
loc(Pi ).

Therefore the image of a curve of type two under T 6 is a curve which is close to a finite
piece of a strong unstable manifold of Pi , so the second part follows. ⊓⊔

Suppose that the gaps of order k have already been defined. Consider the comple-
ment of all gaps of order not greater than k on lV . It consists of a finite number of
closed intervals. Let J be one of them. Consider the curve T

m0+6(k−1)
V (J ). By con-

struction, it is either a curve of type one, or of type two. In either case, the image
T 6

V (T
m0+6(k−1)
V (J )) = T

m0+6k
V (J ) consists of some curves of type one or two, and some

gaps of size ∼ V . Let us say that the preimages of these gaps (under T
m0+6k
V ) are gaps

of order k + 1. It is clear that every gap in lV ∩ W s(�V ) has some finite order. Therefore
we have ordered all the gaps.

3.4. Distortion property: estimate of the gap sizes. Let us consider lV and some gap
γG ⊂ lV of order n. A bridge that corresponds to this gap is a connected component of
the complement of the union of all gaps of order ≤ n next to the gap. There are two bridges
that correspond to the chosen gap; take one of them, and denote it by γB . Denote also
γ = γG ∪ γB . Now let us consider ŴG ≡ T

m0+6(n−1)
V (γG) and ŴB ≡ T

m0+6(n−1)
V (γB).

By definition of the order n of the gap we know that

C3V ≤
|ŴG |
|ŴB |

≤ C4V

for some constants C3 and C4 independent of V .

Proposition 3.11. There is a constant K > 1 independent of the choice of the gap and

of V such that

K −1 |γG |
|γB |

≤
|ŴG |
|ŴB |

≤ K
|γG |
|γB |

.
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Notice that Theorem 1.2 immediately follows from Proposition 3.11.
The rest of this section is devoted to the proof of Proposition 3.11, which is completed

in Subsect. 3.7.

3.5. Dynamics near singularities. Here we prove several technical propositions on the
properties of the trace map in the coordinate system constructed in Subsect. 3.2. The
first two propositions are reformulations of [DG09a, Prop. 1]. The first one claims that
a certain unstable cone field is invariant.

We will use the variables (x, y, z) for coordinates in R
3. For a point p ∈ R

3, we will
denote its coordinates by (x p, yp, z p).

Proposition 3.12. Given C1 > 0,C2 > 0, λ > 1, there exists δ0 = δ0(C1,C2, λ) such

that for any δ ∈ (0, δ0), the following holds.

Let f : R
3 → R

3 be a C2-diffeomorphism such that

(i) ‖ f ‖C2 ≤ C1;

(ii) The plane {z = 0} is invariant under iterates of f ;

(iii) ‖D f (p) − A‖ < δ for every p ∈ R
3, where

A =

⎛
⎝
λ−1 0 0

0 1 0
0 0 λ

⎞
⎠

is a constant matrix.

Introduce the following cone field in R
3:

K u
p = {v ∈ TpR

3, v = vxy + vz : |vz | ≥ C2
√

|z p||vxy |}. (13)

Then for any point p = (x p, yp, z p), |z p| ≤ 1 we have

D f (K p) ⊆ K u
f (p).

Notice that the choice of the cone field K u
p here (in (13)) and below (in (18)) corre-

sponds to the choice of the cone field Ku
p in (9).

The next proposition establishes expansion of vectors from the introduced unstable
cones under the differential of the map.

Proposition 3.13. Given C1 > 0,C2 > 0, λ > 1, ε ∈ (0, 1
4 ), η > 0 there exists

δ0 = δ0(C1,C2, λ, ε), N0 ∈ N, N0 = N0(C1,C2, λ, ε, δ0), and C = C(η) > 0 such

that for any δ ∈ (0, δ0), the following holds:

Under the conditions of and with the notation from Proposition 3.12, suppose that

for the points p = (x p, yp, z p) and q = (xq , yq , zq), the following holds:

1. 0 < z p < 1 and 0 < zq < 1;
2. For some N ≥ N0 both f N (p) and f N (q) have z-coordinates larger than 1, and

both f N−1(p) and f N−1(q) have z-coordinates not greater than 1;
3. There is a smooth curve γ : [0, 1] → R

3 such that γ (0) = p, γ (1) = q, and for

each t ∈ [0, 1] we have γ ′(t) ∈ K u
γ (t);
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If N ≥ N0 (i.e., if z p is small enough), then

|D f N (v)| ≥ λ
N
2 (1−4ε)|v| for any v ∈ K u

p, (14)

and if D f N (v) = u = uxy + uz , then

|uxy | < 2δ1/2|uz |. (15)

Moreover, if |vz | ≥ η|vxy |, then

|D f k(v)| ≥ Cλ
k
2 (1−4ε)|v| for each k = 1, 2, . . . , N . (16)

In particular,

length( f N (γ )) ≥ λ
N
2 (1−4ε) length(γ ). (17)

In order to establish the distortion property we need better control over the expansion
rates. In Proposition 3.15 we improve the estimates given by (14) and (17). As a first
step we show that, roughly speaking, if a point stays for N iterates in a neighborhood
where normalizing coordinates are defined then it must be λ−N -close to the center-stable
manifold of a curve of fixed points.

Proposition 3.14. Given C1 > 0,C2 > 0, λ > 1, there exist δ0 = δ0(C1,C2, λ), N0 =
N0(C1,C2, λ, δ0) ∈ N, and C∗∗ > C∗ > 0 such that for any δ ∈ (0, δ0), the following

holds.

Let f : R
3 → R

3 be a C2-diffeomorphism such that

(i) ‖ f ‖C2 ≤ C1;

(ii) The planes {z = 0} and {x = 0} are invariant under iterates of f ;

(iii) Every point of the line {z = 0, x = 0} is a fixed point of f ;

(iv) At a point Q ∈ {z = 0, x = 0} we have

D f (Q) =

⎛
⎝
λ−1 0 0

0 1 0
0 0 λ

⎞
⎠ .

(v) ‖D f (p) − A‖ < δ for every p ∈ R
3, where

A = D f (Q) =

⎛
⎝
λ−1 0 0

0 1 0
0 0 λ

⎞
⎠ .

Introduce the following cone fields in R
3:

K u
p = {v ∈ TpR

3, v = vxy + vz : |vz | ≥ C2
√

|z p||vxy |}, (18)

K cu
p = {v ∈ TpR

3, v = vx + vyz : |vx | < 0.01λ−1|vyz |}, (19)

K s
p = {v ∈ TpR

3, v = vx + vyz : |vx | ≥ C2
√

|x p||vyz |}, (20)

K cs
p = {v ∈ TpR

3, v = vz + vxy : |vz | < 0.01λ−1|vxy |}. (21)

Suppose that for a finite orbit p0, p1, p3, . . . , pN we have

(p0)x ≥ 1, (p1)x < 1, (pN )z ≥ 1, (pN−1)z < 1,



244 D. Damanik, A. Gorodetski

and there are curves γ0 and γN such that γ0 connects p0 with W ss(Q) and is tangent to

both cone fields K u and K cu , and γN connects pN with W uu(Q) and is tangent to both

cone fields K s and K cs .

Then

C∗λ−N ≤ |(p0)z | ≤ C∗∗λ−N , and

C∗λ−N ≤ |(pN )x | ≤ C∗∗λ−N .

Proof. Consider an orthogonal from p0 to the plane {z = 0}, and denote its base by p∗
0 .

There is a unique point Q0 on the line {z = 0, x = 0} such that p∗
0 ∈ W ss(Q0). Denote

the line segment connecting p0 and p∗
0 by σ0 and set σi = f i (σ0), i = 1, 2, . . . , N .

Similarly, consider an orthogonal from pN to the plane {x = 0}, and denote its base
by p∗

N . There is a unique point QN on the line {z = 0, x = 0} such that p∗
N ∈ W uu(QN ).

Denote the line segment connecting pN and p∗
N by ρN , and set ρi = f −N+i (ρN ), i =

0, 1, 2, . . . , N − 1.
We have

0 < |σ0| < |σ1| < · · · < |σN−1| < |σN |, 1 ≤ |σN | ≤ λ(1 + δ),

0 < |ρN | < |ρN−1| < · · · < |ρ1| < |ρ0|, 1 ≤ |ρ0| ≤ λ(1 + δ).

Denote bk = dist(pk, Q). Then we have

(λ−1 − min(δ,C1bk))|σk | ≤ |σk−1| ≤ (λ−1 + min(δ,C1bk))|σk |, k = 1, 2, . . . , N ,

(λ−1−min(δ,C1bk))|ρk | ≤ |ρk+1| ≤ (λ−1+min(δ,C1bk))|ρk |, k =0, 1, 2, . . . , N −1.

Now we have

bk = dist(pk, Q)

≤ dist(Q, Q0) + |ρk | + dist(Q, QN ) + |σk |
≤ |σk | + |ρk | + C3C2(

√
|ρN | +

√
|σ0|),

where C3 does not depend on N . Indeed, the distance between p∗
0 and W ss(Q) is bounded

above by the length of the curve γ0, and since γ0 is tangent to the cone fields K u and K cu ,
its length is not greater than C2

√
|σ0|. On the other hand, dist(Q, Q0) is of the same order

as that distance since the strong stable manifolds of fixed points form a C1-foliation of
the plane {z = 0}. In the same way one gets an estimate dist(Q, QN ) ≤ C3C2

√
|ρN |.

Since we have the a priori estimates |σk | ≤ (1+δ)(λ−δ)−N+k and |ρk | ≤ (1+δ)(λ−
δ)−k , we also have

bk ≤ |σk | + |ρk | + 2C2(1 + δ)(λ − δ)−N/2.

If k < N/2, then

bk ≤ (λ − δ)−k(1 + (λ − δ)−N+2k + 2C(λ − δ)−N/2+k)

≤ C ′(λ − δ)−k .

If k ≥ N/2, then

bk ≤ (λ − δ)−N+k(1 + (λ − δ)N−2k + 2C(λ − δ)N/2−k)

≤ C ′(λ − δ)−N+k .
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Therefore we have

|σ0| ≤ |σN |
N∏

k=1

(λ−1 + min(δ,C1bk))

≤ λ(1 + δ)λ−N

[N/2]∏

k=1

(1 + C1C ′(λ − δ)−k) ·
N∏

k=[N/2]+1

(1 + C1C ′(λ − δ)−N+k)

≤ C∗∗λ−N .

Also,

|σ0| ≥ |σN |
N∏

k=1

(λ−1 − min(δ,C1bk))

≥ λ−N

[N/2]∏

k=1

(1 − C1C ′(λ − δ)−k) ·
N∏

k=[N/2]+1

(1 − C1C ′(λ − δ)−N+k)

≥ C∗λ−N .

In the same way we get estimates for ρN . ⊓⊔

Proposition 3.15. Given C1 > 0,C2 > 0, λ > 1, there exist δ0 = δ0(C1,C2, λ), N0 ∈
N, N0 = N0(C1,C2, λ, δ0) ∈ N, and C̃ > 0 such that for any δ ∈ (0, δ0), the following

holds:

Under the conditions of and with the notation from Proposition 3.14, suppose that

v ∈ Tp0R
3, v ∈ K u

p0
. Then |D f N

p0
(v)| ≥ C̃λN/2|v|.

Proof. We will use the notation from Proposition 3.14 and its proof.
Let us denote vk = D f k(v), k = 0, 1, . . . , N , and Dk = |(vk)z |, dk = |(vk)xy |. Let

us normalize v in such a way that d0 = 1. Since v ∈ K u
p0

and |σ0| ≥ C∗λ−N , we have

D0 ≥ C5λ
−N/2, where C5 is independent of N .

Denote

D f (p) =

⎛
⎝
ν(p) m1(p) t1(p)

m2(p) e(p) t2(p)

s1(p) s2(p) λ(p)

⎞
⎠ .

We have

D f (p)(v) =

⎛
⎝
ν(p) m1(p) t1(p)

m2(p) e(p) t2(p)

s1(p) s2(p) λ(p)

⎞
⎠
⎛
⎝

vx

vy

vz

⎞
⎠ =

⎛
⎝
ν(p)vx + m1(p)vy + t1(p)vz

m2(p)vx + e(p)vy + t2(p)vz

s1(p)vx + s2(p)vy + λ(p)vz

⎞
⎠ .

Since‖ f ‖C2 ≤ C1, we also have |ν(p)| ≤ λ−1+C1dist(Q, p), |m1(p)|, |m2(p)|, |t1(p)|,
|t2(p)| ≤ C1dist(Q, p), and |λ(p)| ≥ λ − C1dist(Q, p). Furthermore, if p belongs to
the plane {z = 0}, then s1(p) = s2(p) = 0. Therefore, for arbitrary p, we have
|s1(p)|, |s2(p)| ≤ C1z p. This implies that we have the following estimates:

{
dk+1 ≤ (1 + min(δ,C1bk))dk + min(δ,C1bk)Dk

Dk+1 ≥ (λ − min(δ,C1bk))Dk − min(δ,C1|σk |)dk
. (22)
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Lemma 3.16. There exists k∗ such that dk ≥ Dk for all k ≤ k∗, and dk < Dk for all

k > k∗.

Proof. Indeed, if Dk > dk , then

dk+1 ≤ (1 + δ)dk + δDk ≤ (1 + 2δ)Dk

and

Dk+1 ≥ (λ − δ)Dk − δdk ≥ (λ − 2δ)Dk .

Since λ − 2δ > 1 + 2δ, we have Dk+1 > dk+1. ⊓⊔

We have the following preliminary estimates. If k < N/2, then bk ≤ C ′(λ− δ)−k ; if
k ≥ N/2, then bk ≤ C ′(λ−δ)−N+k . Also, |σk | ≤ (λ−δ)−N+k for each k = 0, 1, . . . , N .
Notice that this implies that

∏N
i=1(1+C1bi ) is bounded by a constant that is independent

of N . And, finally, Dk ≥ C5λ
−N/2(λ − δ)k ; see [DG09a, Lemma 6.1].

If Dk ≤ dk (i.e., k ≤ k∗), then

dk+1 ≤ (1 + C1bk)dk + C1bk Dk

≤ (1 + 2C1bk)dk

≤
[

k∏

i=1

(1 + 2C1bk)

]
d0

≤ C6,

where C6 does not depend on k or N . Moreover, we have

Dk+1 ≥ (λ − C1bk)Dk − C1|σk |dk

≥ (λ − C1bk)Dk − C1C6(λ − δ)−N+k

≥ (λ − C1bk)Dk

(
1 −

C1C6

λ − C1bk

·
(λ − δ)−N+k

Dk

)

≥ (λ − C1bk)Dk

(
1 −

C1C6

λ − C1bk

·
(λ − δ)−N+k

C5λ−N/2(λ − δ)k

)

≥ (λ − C1bk)Dk

(
1 −

(
C1C6

C5(λ − C1bk)

)
(λ1/2(λ − δ)−1)N

)

≥ λk+1 D0

[
k∏

i=0

(1 − (C1λ
−1)bi )

]
·
(

1 −
(

C1C6

C5(λ − C1bk)

)
(λ1/2(λ − δ)−1)N

)k

≥ λk+1 D0

[
k∏

i=0

(1 − (C1λ
−1)bi )

]
·
(

1−
(

C1C6

C5(λ − C1bk)

)
(λ1/2(λ − δ)−1)N

)N

≥ C7λ
k+1 D0,

since for any C > 0 and ξ ∈ (0, 1), one has limN→∞(1 − Cξ N )N = 1.
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If dk < Dk (i.e., k > k∗), then

Dk+1 ≥ (λ − C1bk)Dk − C1|σk |dk

≥ (λ − C1bk − C1|σk |)Dk

≥ λDk(1 − λ−1C1bk − λ−1C1|σk |)

≥ λk+1C7 D0

k∏

i=k∗
(1 − λ−1C1bk − λ−1C1|σk |)

≥ C8λ
k+1 D0,

where C8 does not depend on N or k.
Finally, |D f N

p0
(v)| ≥ DN ≥ C8λ

N D0 ≥ C̃λN/2|v|. ⊓⊔

Below (in the proof of Proposition 3.18) we will also need an estimate on k∗ provided
by Lemma 3.16. Namely, we claim that k∗ cannot be much larger than N/2. The formal
statement is the following.

Lemma 3.17. There is a constant C9 independent of N such that

λk∗ ≤ C9λ
N/2.

Proof. We know that Dk∗−1 ≤ dk∗−1 ≤ C6. Therefore C6 ≥ Dk∗−1 ≥ C7λ
k∗

D0 ≥
C7λ

k∗ · C5λ
−N/2, so λk∗ ≤ (C6C−1

7 C−1
5 )λN/2. ⊓⊔

Now we are ready to formulate the statement that will be used to check the distortion
property of the trace map.

Proposition 3.18. Given C1 > 0,C2 > 0,C3 > 0, λ > 1, there exist δ0 =
δ0(C1,C2,C3, λ), N0 = N0(C1,C2,C3, λ, δ0) ∈ N, and C > 0 such that for any

δ ∈ (0, δ0) and any � > 0, the following holds:

Under the conditions of and with the notation from Proposition 3.14, suppose that

the curve γ0 has a curvature bounded by C3. Suppose also that for the points p =
(x p, yp, z p) and q = (xq , yq , zq), the following holds:

1. p, q ∈ γ0;

2. For some N ≥ N0 both f N (p) and f N (q) have z-coordinates larger than 1, and

both f N−1(p) and f N−1(q) have z-coordinates not greater than 1;

3. dist( f N (p), f N (q)) = �.

Denote pk = f k(p), qk = f k(q), k = 0, . . . , N.

Let v ∈ TpR
3 and w ∈ TqR

3 be vectors tangent to γ0.

Denote vk = D f k(v) and wk = D f k(w), k = 0, . . . , N. Let αk be the angle between

vk and wk .

Then

N∑

k=0

αk < C�, and

N∑

k=0

dist(pk, qk) < C�. (23)
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Proof. First of all, notice that it is enough to prove Proposition 3.18 in the case when
the points p and q are arbitrarily close to each other. Indeed, otherwise split the piece of
the curve γ0 between the points p and q into a large number of extremely small pieces.
If for each of them the statement of Proposition 3.18 holds, then by subadditivity of the
inequalities (23) it holds in general.

Denote by Ŵ the piece of the curve γ0 between the points p0 and q0, and set Ŵk =
f k(Ŵ), k = 0, 1, 2, . . . , N . Denote μk = |Ŵk |. Due to the remark above we can assume
that for any vector tangent to Ŵ, the value of k∗ is the same. From the proof of Prop-
osition 3.15 we see that for k = 0, 1, . . . , k∗, we have μk ≤ C6μ0, and � ≈ μN ≥
C̃λN/2μ0 ≥ C̃λN/2C−1

6 μk∗ , so μk∗ ≤ (C̃−1C6)λ
−N/2μN ≤ C11λ

−N/2�.
On the other hand, if k > k∗, then

� ≈ μN ≥ DN ≥ C7λ
N−k Dk∗ ≥ C7λ

N−k 1

2
μk,

where we denote by Dk the length of the projection of Ŵk to the z-axis (slightly abusing
the notation). Therefore, μk ≤ (2C−1

7 )λ−N+k�.
It follows that we have

N∑

k=0

dist(pk, qk) ≤
N∑

k=0

μk

=
k∗∑

k=0

μk +
N∑

k=k∗+1

μk

≤ k∗ · C6μ0 +
N∑

k=k∗+1

(2C−1
7 )λ−N+k�

≤ k∗ · C̃−1λ−N/2C6� + C12�

≤ C�.

Notice that for any two vectors v,w ∈ K cu ,

∠(Av, Aw) ≤ λ∠(v,w), where A =

⎛
⎝
λ−1 0 0

0 1 0
0 0 λ

⎞
⎠ ,

and if a linear operator B is ξ -close to A, then

∠(Bv, Bw) ≤ (λ + ξ)(1 + ξ)∠(v,w)

= (λ + ξ(λ + 1 + ξ))∠(v,w)

< λ(1 + 2ξ)∠(v,w).

Therefore we have

α0 ≤ C3μ0

and

αk+1 ≤ λ(1 + 2C1bk)αk + C1μk, k = 0, 1, . . . , k∗.
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Since
∏k∗

k=0(1 + 2C1bk) ≤ C13 for some C13 that is independent of k∗ and N , we have

αk ≤ (λk + λk−1 + · · · + λ + 1) · (C13C1C6C3)μ0 ≤ C14λ
kμ0,

where C14 is also independent of k and N . In particular,

αk∗ ≤ C14λ
k∗
μ0 ≤ (C14C9)λ

N/2C̃−1λ−N/2� ≤ C15�

and

k∗∑

k=0

αk ≤
k∗∑

k=0

C14λ
kμ0 ≤ C16λ

k∗
μ0 ≤ C17�.

Now denote

K uu
p = {v ∈ TpR

3 : |vz | > 100λ|vxy |}.

If v,w ∈ K uu , then ∠(Av, Aw) ≤ λ−1/2
∠(v,w), and the same holds for any linear

operator B which is δ-close to A.
There exists m ∈ N independent of N such that if for a vector v we have |vz | > |vxy |,

then D f m(v) ∈ K uu .
Also

αk∗+m = ∠(D f m(vk∗), D f m(wk∗)) ≤ C15(λ + 2δ)m� = C16�,

and for k ≥ k∗ + m, we have αk+1 ≤ λ−1/2αk + C1μk .
Denote ν = λ−1/3 − λ−1/2.
If C1μk < ναk , then

αk+1 ≤ λ−1/2αk + ναk = (λ−1/2 + ν)αk = λ−1/3αk .

If C1μk ≥ ναk , then

αk+1 ≤ λ−1/2αk + Cμk ≤ (λ−1/2ν−1 + 1)C1μk .

Since
∑N

k=k∗+m μk ≤
∑N

k=k∗+m(2C−1
7 )λ−N+k� ≤ C12�, this implies that

N∑

k=k∗+m

αk ≤ C18�

and

N∑

k=0

αk ≤
k∗∑

k=0

αk + (αk∗+1 + · · · + αk∗+m−1) +
N∑

k=k∗+m

αk ≤ C�,

concluding the proof. ⊓⊔
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3.6. Distortion property: preliminary estimates. The main result of this subsection is
the following statement:

Lemma 3.19. There are constants R > 0, V0 > 0, and κ > 0 such that for any V ∈
(0, V0) and N ∈ N, the following holds: Suppose that γ ⊂ T N (lV )\Or1 is a connected

curve of length not greater than κ . Let the points p, q ∈ lV be such that T N
V (p) ∈ γ

and T N
V (q) ∈ γ , and vp and vq be unit vectors tangent to γ at points p and q. Then

N∑

i=0

(
∠(DT i

V (vp), DT i
V (vq)) + dist(T i

V (p), T i
V (q))

)
< R.

Notice that F−1(S\Or2) is a torus without small neighborhoods of the preimages of
the singularities, and we can define the following map:

T̃V : F−1(S\Or2) → T
2, T̃V = F−1 ◦ πV ◦ TV ◦ π−1

V ◦ F ≡ F−1
V ◦ TV ◦ FV . (24)

If V is small, T̃V is C2-close to the linear automorphism A on its domain.

Lemma 3.20. For V0 > 0 small enough, there exists t ∈ (0, 1) such that for V ∈
[0, V0], p, q ∈ T

2\F−1(Or2) and unit vectors vp ∈ K u
p, vq ∈ K u

q , we have

∠(DT̃V,p(vp), DT̃V,q(vq)) ≤ t∠(vp, vq) + 2‖T̃V ‖C2 dist(p, q).

Proof. If V0 is small, then T̃V is C2-close to the linear automorphism A. In particular,
for any point p ∈ T

2\F−1(Or2) and any vectors v1, v2 ∈ K u
p ,

∠(DT̃V,p(v1), DT̃V,p(v2)) ≤ t∠(v1, v2),

where t ∈ (0, 1) can be chosen uniformly for all V ∈ [0, V0] and p ∈ T
2\F−1(Or2).

Therefore we have

∠(DT̃V,p(vp), DT̃V,q(vq)) ≤ ∠(DT̃V,p(vp), DT̃V,p(vq))+∠(DT̃V,p(vq), DT̃V,q(vq))

≤ t∠(vp, vq) + 2‖DT̃V,p(vq) − DT̃V,q(vq)‖
≤ t∠(vp, vq) + 2‖T̃V ‖C2 dist(p, q),

as claimed. ⊓⊔

Definition 3.21. For any points p, q and any vectors vp, vq define

F(p, q, vp, vq) ≡
∠(vp, vq)

dist(p, q)
. (25)

Lemma 3.22. For p, q ∈ T
2\F−1(Or2), p �= q, and vectors vp ∈ K u

p, vq ∈ K u
q , con-

sider the function F(p, q, vp, vq) defined by (25). Suppose that p and q belong to a

curve that is tangent to the unstable cone field. Then

F(T̃V (p), T̃V (q), DT̃V,p(vp), DT̃V,q(vq)) ≤ tF(p, q, vp, vq) + 2‖T̃V ‖C2 .

In particular, if F(p, q, vp, vq) >
4‖T̃V ‖

C2

1−t
, then

F(T̃V (p), T̃V (q), DT̃V,p(vp), DT̃V,q(vq)) ≤
1 + t

2
F(p, q, vp, vq).
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Proof. We have

F(T̃V (p), T̃V (q), DT̃V,p(vp), DT̃V,q(vq)) =
∠(DT̃V,p(vp), DT̃V,q(vq))

dist(T̃V (p), T̃V (q))

≤
t∠(vp, vq) + 2‖T̃V ‖C2 dist(p, q)

dist(p, q)

= tF(p, q, vp, vq) + 2‖T̃V ‖C2 .

If we also have F(p, q, vp, vq) >
4‖T̃V ‖

C2

1−t
, then

tF(p, q, vp, vq) + 2‖T̃V ‖C2 ≤ tF(p, q, vp, vq) +
1 − t

2
F(p, q, vp, vq)

=
1 + t

2
F(p, q, vp, vq).

⊓⊔

Lemma 3.5 immediately implies the following statement.

Lemma 3.23. Fix a small V ≥ 0. Suppose that a, b ∈ T
2\F−1(Or2) are such that

�V (a) and �V (b) are defined, and va ∈ TaT
2\F−1(Or2), vb ∈ TbT

2\F−1(Or2). Then

F(a, b, va, vb) ≤ C̃2(F(�V (a),�V (b), D�V (va), D�V (vb)) + 1)

and

F(�V (a),�V (b), D�V (va), D�V (vb)) ≤ C̃2(F(a, b, va, vb) + 1).

Since T̃V is C2-close to the linear automorphism A on its domain for small V ≥ 0,
we can assume that for all V ∈ [0, V0], we have ‖T̃V ‖C2 ≤ 10.

Let C be the constant from Proposition 3.18, where C3 = ( 40
1−t

+ 1)C̃2 was taken.
Fix a small τ > 0. Take n∗ ∈ N such that

(
1 + t

2

)n∗

C̃2(C + 1) ≤
40

1 − t
, and C̃2μn∗ ≥ μn∗(1− τ

8 ). (26)

Now we are going to choose a neighborhood U of the set of singularities
{P1, P2, P3, P4} in such a way that if an orbit of a point leaves U , then it does not
enter U for the next n∗ iterates. Also, we will choose a smaller neighborhood U∗ ⊂ U

such that if a small curve is tangent to an unstable cone field (see Definition 3.8) and
intersects U∗, then either it is entirely inside of U , or its iterates will continue to intersect
U until they reach the opposite rectangle. Here is how we do that.

For small r3 ∈ (0, r2), we denote O0
r3

= Or3 , O1
r3

= T (Or3)∩Or1 , O i
r3

= T (O i−1
r3

)∩
Or1 for each i > 1, O i

r3
= T −1(O i+1

r3
)∩ Or1 for each i < 0, and U = ∪∞

i=−∞(O i
r3
). We

will take r3 so small that the following property holds. If p ∈ SV is such that T −1(p) ∈ U

but p �∈ U , then T n(p) �∈ U for every n ∈ N with n ≤ n∗.
For small r4 ∈ (0, r3), we denote O0

r4
= Or4 , O1

r4
= T (Or4)∩Or1 , O i

r4
= T (O i−1

r4
)∩

Or1 for each i > 1, O i
r4

= T −1(O i+1
r4

) ∩ Or1 for each i < 0, and

U∗ =
∞⋃

i=−∞
(O i

r4
). (27)
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We will take r4 so small that the following property holds. Suppose γ is a curve on
T

2 such that �V (γ ) is defined, FV (γ ) ⊂ Or1 , γ is tangent to the unstable cone field,
FV (γ )∩ Or1\U �= ∅, and FV (γ )∩U∗ �= ∅. Then there is k ∈ N such that T n

V (FV (γ ))∩
U �= ∅ for all natural n ≤ k, and T k

V (FV (γ )) intersects the opposite rectangle of the
Markov partition.

Lemma 3.24. There are V0 > 0 and R1 > 0 such that the following holds. Suppose that

v is a non-zero vector tangent to the line lV at some point p ∈ lV . Let N ∈ N be such

that TV (p) belongs to the bounded component of SV \Or1 . Then

N∑

i=0

‖DT i
V (v)‖ ≤ R1‖DT N

V (v)‖.

Proof. If V is small enough, the vector DT m0(v) is tangent to the unstable cone field.
Let us split the orbit {T m0(p), T m0+1(p), . . . , T N (p)} into several intervals

{T m0(q), T m0+1(q), . . . , T k1−1(q)}, {T k1(q), . . . , T k2−1(q)}, . . . , {T ks (q), . . . , T N (q)}

in such a way that the following properties hold:

(1) for each i = 1, 2, . . . , s, the points T ki −1(q) and T ki (q) are outside of Or2 ;
(2) if {T ki (q), . . . , T ki+1−1(q)} ∩ U∗ �= ∅, then {T ki (q), . . . , T ki+1−1(q)} ⊂ U∗;
(3) for each i = 1, 2, . . . , s − 1, we have either ki+1 − ki ≥ n∗ (where n∗ is chosen

due to (26)) or {T ki (q), . . . , T ki+1−1(q)} ∩ U∗ �= ∅.

Such a splitting exists due to the choice of U∗ ⊂ U in (27) above.
Apply Proposition 3.18 to those intervals in the splitting that are contained in U∗. The

choice of n∗ in (26) above guarantees for the intervals that do not intersect U∗ uniform
expansion of the vector. The first and the last interval may have length greater than n∗,
and then we have uniform expansion that “kills” the distortion added by the change of
coordinates, or smaller than n∗, but then they do not add more than a constant to the
sum. As a result, the required sum is bounded above by a geometrical progression. ⊓⊔

Lemma 3.24 implies the following statement.

Lemma 3.25. There are constants R1 > 0, V0 > 0, and κ1 > 0 such that for any

V ∈ (0, V0) and N ∈ N, the following holds: Suppose that γ ⊂ T N (lV )\Or1 is a

connected curve of length not greater than κ1. Let the points p, q ∈ lV be such that

T N
V (p) ∈ γ and T N

V (q) ∈ γ . Then

N∑

i=0

dist(T i
V (p), T i

V (q)) < R1.

Finally, the choice of n∗ and Proposition 3.18 imply that the functionF(T i
V (p), T i

V (q),

DT i
V (vp), DT i

V (vq)) is uniformly bounded, and together with Lemma 3.25 this proves
Lemma 3.19.
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3.7. Proof of the distortion property.

Proof of Proposition 3.11. Notice that we need to prove that
∣∣∣∣log

(
|ŴG ||γB |
|ŴB ||γG |

)∣∣∣∣

is bounded by some constant independent of the choice of the gap and of V . There are
points pG ∈ γG and pB ∈ γB such that if vG is a unit vector tangent to the curve γG at
pG , and vB is a unit vector tangent to the curve γB at pB , then

∣∣∣∣log

(
|ŴG ||γB |
|ŴB ||γG |

)∣∣∣∣ =
∣∣∣∣∣log

(
|T n+2

V (γG)||γB |
|T n+2

V (γB)||γG |

)∣∣∣∣∣

=
∣∣∣∣∣log

(
|DT n+2

V (vG)|
|DT n+2

V (vB)|

)∣∣∣∣∣

=
∣∣∣∣∣

n+1∑

i=0

(
log |DTV |DT i

V (vG )(T
i
V (pG))| − log |DTV |DT i

V (vB )
(T i

V (pB))|
)∣∣∣∣∣

≤
n+1∑

i=0

∣∣∣log |DTV |DT i
V (vG )(T

i
V (pG))| − log |DTV |DT i

V (vB )
(T i

V (pB))|
∣∣∣

≤
n+1∑

i=0

∣∣∣|DTV |DT i
V (vG )(T

i
V (pG))| − |DTV |DT i

V (vB )
(T i

V (pB))|
∣∣∣ .

We estimate each of the terms in this sum using

Lemma 3.26. Suppose f : R
n → R

n is a smooth map, a, b ∈ R
n , and va ∈ TaR

n, vb ∈
TbR

n are unit vectors. Then

∣∣|D f |va (a)| − |D f |vb
(b)|

∣∣ ≤ ‖ f ‖C2(∠(va, vb) + |a − b|).

Proof of Lemma 3.26.

∣∣|D f |va (a)| − |D f |vb
(b)|

∣∣ ≤
∣∣|D f |va (a)| − |D f |vb

(a)|
∣∣ +

∣∣|D f |vb
(a)| − |D f |vb

(b)|
∣∣

≤ ‖D f (a)‖ · |va − vb| + ‖ f ‖C2 · |a − b|
≤ ‖ f ‖C2(|va − vb| + |a − b|)
≤ ‖ f ‖C2(∠(va, vb) + |a − b|).

⊓⊔

Now, Proposition 3.11 follows from Lemma 3.19. ⊓⊔

4. The Integrated Density of States

4.1. Definition and basic properties. Recall the definition of N (E, V ) given in (1),

N (E, V ) = lim
n→∞

1

n
N (E, ω, V, [1, n]).
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Proposition 4.1 (Hof, see [Ho]). For every (E, V ) ∈ R
2, the limit in (1) exists for every

ω ∈ T and its value does not depend on it.

The following proposition collects some well-known properties of the integrated
density of states.

Proposition 4.2. (a) The map

R × R ∋ (E, V ) �→ N (E, V ) ∈ [0, 1]

is continuous.

(b) For every V ∈ R, there is a Borel measure on R, called the density of states measure

and denoted by d NV , such that

N (E, V ) =
∫

R

χ(−∞,E] d NV .

(c) The topological support of the measure d NV is equal to �V .

(d) The density of states measure is the ω-average of the spectral measure associated

with HV,ω and the vector δ0 ∈ ℓ2(Z). That is, for every V ∈ R and every bounded

measurable g : R → R,

∫

R

g d NV =
∫

ω∈T

〈δ0, g(HV,ω)δ0〉 dω. (28)

(e) We have

N (E, 0) =

⎧
⎪⎨
⎪⎩

0 E ≤ −2
1
π

arccos
(
− E

2

)
−2 < E < 2

1 E ≥ 2.

Proof. (a) This follows from (the proof of) Lemma 3.1 and Theorem 3.2 in [AS].
(b) For every V ∈ R, the map

R ∋ E �→ N (E, V ) ∈ [0, 1]

is continuous by (a) and non-decreasing by construction, and hence it is the dis-
tribution function of a Borel measure on R.

(c) and (d) See [CFKS, Sect. 9.2].
(e) This is folklore; see, for example, [LS, Theorem 1.1] and its discussion there for

a simple derivation. ⊓⊔

4.2. Complete gap labeling. Here we prove the following result, which implies
Theorem 1.5 since the transversality assumption holds for V0 > 0 sufficiently small.

Theorem 4.3. Suppose V0 > 0 is such that for every V ∈ (0, V0] and every point in

�V , its stable manifold intersects ℓV transversally. Then, for every V ∈ (0, V0], all gaps

allowed by the gap labeling theorem are open. That is,

{N (E, V ) : E ∈ R\�V } = {{kα} : k ∈ Z} ∪ {1}.
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Proof. Consider the preimages of the singularities of the trace map F−1(Pi ), i =
1, 2, 3, 4, on the torus. They form a set of 4 periodic points of the hyperbolic auto-
morphism A : T

2 → T
2, and the stable manifolds of those periodic points intersect the

line {φ = 0} transversally at the points {kα (mod 1)}, {kα+ 1
2 (mod 1)}, {kα+ α

2 (mod 1)},
and {kα + 1

2 + α
2 (mod 1)}.

The images of these points under the semiconjugacy F form the set of points on ℓ0
of the form (± cos(πmα),± cos(πmα), 1), and they correspond to the energies E ∈
{±2 cos(πmα),m ∈ Z}. The integrated density of states for the free Laplacian, N (E, 0),
takes the values {{mα} : m ∈ Z} at these energies.

After we increase the value of the coupling constant, each singularity splits into two
periodic points, and each of the stable manifolds of the singularities splits into two strong
stable manifolds of the periodic points. Every point between the stable manifolds has an
unbounded positive semiorbit, and therefore the interval that those manifolds cut in the
line ℓV corresponds to a gap in the spectrum.

Due to the continuous dependence of N (E, V ) on the coupling constant and the local
constancy of N (·, V ) in the complement of �V , the integrated density of states takes
the same value in the formed gap as at the energy that corresponds to the initial point of
intersection of the stable manifold of singularity with ℓ0. ⊓⊔

4.3. More on the asymptotic gap lengths.

Proof of Theorem 1.6. Fix any m ∈ Z\{0}. The integrated density of states of the free
Laplacian takes the values {±mα} at the energies {±2 cosπmα}.

If m = 2k, then these energies correspond to points with θ -coordinates kα(mod 1)
and kα + 1

2 (mod 1) on F−1(ℓ0).
If m = 2k + 1, then these energies correspond to points with θ -coordinates kα +

α
2 (mod 1) and kα + α

2 + 1
2 (mod 1) on F−1(ℓ0).

Take one of these points, Qk ∈ F−1(ℓ0). Let P∗ be the singularity such that Qk ∈
F−1(W ss(P∗)). Denote Ŵ = F−1(W ss

1 (P∗)). Let M ∈ N be the smallest number such
that A−M (Ŵ) contains Qk .

Then AM (F−1(ℓ0)) intersects Ŵ at some point Z , and the distance from Z to the set
of singularities is uniformly (in |m|) bounded from zero.

Denote by P ′(V ) and P ′′(V ) the periodic points on SV near P∗ (of period 2
or of period 6, depending on P∗). Denote by Ŵ′ = F−1

V (W ss
1 (P ′(V )) and Ŵ′′ =

F−1
V (W ss

1 (P ′′(V )).
Then T̃ M

V (F−1
V (ℓV )) (recall that T̃V was defined by (24)) intersects Ŵ′ and Ŵ′′ trans-

versally near the point Z and the curves Ŵ′ and Ŵ′′ cut in T̃ M
V (F−1

V (lV )) an interval IV

whose length is of order V . In other words, limV →0
|IV |
|V | exists and is uniformly bounded

from zero and from above.
We also have

lim
V →0

T̃ −M
V (IV )

|IV |
=

∣∣∣DA
M |F−1(l0)

∣∣∣
−1

= αM · C(Qk),

where C(Qk) is bounded from zero and from above.
Notice that if A−M (Ŵ) intersects F−1(ℓ0) at Qk , then A−M (Ŵ) must be of length at

least |k|α−1. On the other hand, |A−M (Ŵ)| = α−M |Ŵ|. Therefore, α−M |Ŵ| ≥ |k|α−1.
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Hence

lim
V →0

|T̃ −M
V (IV )|

|V |
= lim

V →0

|T̃ −M
V (IV )|
|IV |

|IV |
|V |

= αM C(Qk) lim
V →0

|IV |
|V |

≤ C(Qk)
1

|k|
.

On the other hand,

lim
V →0

|Um(V )|
|T̃ −M

V (IV )|
= |DF |F−1(l0)

(Qk)|

is bounded from above (since ‖DF‖ is bounded). Therefore we have

lim
V →0

|Um V |
|V |

= lim
V →0

|T̃ −M
V (IV )|

|V |
|Um(V )|

|T̃ −M
V (IV )|

≤ C(Qk)
1

|k|
,

where C(Qk) is uniformly bounded from above. ⊓⊔

Remark 4.4. Notice that one can actually claim a bit more. Namely, for those gaps that
appear away from the endpoints of the free spectrum, the corresponding constant Cm

is uniformly bounded away from zero. This follows from the fact that away from the
singularities, the differential of F has norm which is bounded away from zero.

5. Spectral Measures and Transport Exponents

5.1. Solution estimates. In this subsection we study solutions to the difference equation
and prove upper and lower bounds for them. Results of this kind are known (we provide
the references below), but our purpose here is to obtain explicit quantitative estimates,
as functions of the coupling constant, as they enter explicitly in the bounds on fractal
dimensions of spectral measures and transport exponents and we wish to prove the best
bounds possible for the latter quantities to get an idea about their behavior at weak
coupling. These applications will be discussed in the next two subsections.

Denote the largest root of the polynomial x3 − (2 + V )x −1 by aV . For small V > 0,

we have aV ≈
√

5+1
2 + cV with a suitable constant c. Our goal is to prove the following

pair of theorems (recall that σ(HV,ω) = �V for every ω).
Let M(n,m, ω, E) be the standard transfer matrix, that is, the SL(2,R) matrix that

maps (u(m + 1), u(m))T to (u(n + 1), u(n))T for every solution u of the difference
equation HV,ωu = Eu.

Theorem 5.1. For every V > 0 and every

ζ >
log[(5 + 2V )1/2(3 + V )aV ]

log
√

5+1
2

, (29)

there is a constant C > 0 such that for every ω and every E ∈ �V , we have

max
0≤|n−m|≤N

‖M(n,m, ω, E)‖ ≤ C N ζ . (30)
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Theorem 5.2. For every V > 0,

γℓ <
log

(
1 + 1

(2+2V )2

)

16 · log
(√

5+1
2

) , and γu > 1 +
log[(5 + 2V )1/2(3 + V )aV ]

log
√

5+1
2

,

there are constants Cℓ,Cu > 0 such that for every ω, L ≥ 1, and E ∈ �V , we have

that every solution to the difference equation HV,ωu = Eu, which is normalized by

|u(0)|2 + |u(1)|2 = 1, obeys the estimates

CℓLγℓ ≤ ‖u‖L ≤ Cu Lγu , (31)

where the local ℓ2 norm ‖ · ‖L is defined by

‖u‖2
L =

[L]∑

n=1

|u(n)|2 + (L − [L])|u([L] + 1)|2

for L ≥ 1.

Theorem 5.1 is a quantitative version of [DL99a, Theorem 3], which in turn was
a generalization of [IT, Theorem 1]. Theorem 5.2, on the other hand, is a quantitative
version of [DKL, Props. 5.1 and 5.2]. The upper bound in Theorem 5.2 is a consequence
of Theorem 5.1, while the lower bound in Theorem 5.2 will be extracted from the details
of the proof of [DKL, Prop. 5.1].

Let us recall some notation from [DL99a]. For V > 0, E ∈ R, and a ∈ {0, 1}, we
write

T (V, E, a) =
(

E − V a −1
1 0

)
.

For a word w = w1 . . . wn ∈ {0, 1}∗, we then set

M(V, E, w) = T (V, E, wn) × · · · × T (V, E, w1).

Next, define the words {sn}n≥0 inductively by

s0 = 0, s1 = 1, sn = sn−1sn−2 for n ≥ 2.

By the definition of these words, there is a unique u ∈ {0, 1}Z+ (the fixed point
of the Fibonacci substitution) that has sn as a prefix for every n ≥ 1; namely
u = 1011010110110 . . .. We denote the set of finite subwords of u by Wu , that is,
Wu = {0, 1, 01, 10, 11, 010, 011, 101, 110, . . .}. By uniform recurrence of u it suf-
fices to consider the matrices M(V, E, w) for E ∈ �V and w ∈ Wu when proving
Theorems 5.1 and 5.2.

With these quantities, we have

Mn = Mn(V, E) = M(V, E, sn)

and consequently

xn = xn(V, E) =
1

2
TrM(V, E, sn)

for n ≥ 1.
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Finding upper bounds for the norm of transfer matrices consists of three steps. The
first step is to bound the special matrices Mn , that is, M(Fn, 0, ω = 0, E). This is the
objective of Lemma 5.3. Then, in Lemma 5.5, we use interpolation to bound the norm
of the matrices M(n, 0, ω = 0, E). Finally, the case of general matrices M(n,m, ω, E)

is treated using partition. This will then complete the proof of Theorem 5.1.
We begin with the first step. Part (a) of the following lemma is due to Sütő (see

[S87, Lemma 2]) and part (b) is a relative of [IT, Lemma 4.(ii)]:

Lemma 5.3. (a) We have E ∈ �V if and only if the sequence {xn} is bounded. More-

over, we have

|xn| ≤ 1 +
V

2

for every E ∈ �V and n ≥ 1.

(b) With some positive V -dependent constant C, we have

‖Mn‖ ≤ Can
V

for every E ∈ �V and n ≥ 1.

Proof. As pointed out above, part (a) is known. Let us prove part (b). By the Cayley-
Hamilton Theorem, we have that M2

n − 2xn Mn + I = 0, that is,

Mn = 2xn I − M−1
n .

The recursion for the matrices Mn, Mn = Mn−2 Mn−1, gives

M−1
n−2 = Mn−1 M−1

n .

Putting these things together, we find

Mn = Mn−2 Mn−1 = Mn−2(2xn−1 I − M−1
n−1) = 2xn−1 Mn−2 − M−1

n−3.

Since we also have ‖Mn‖ = ‖M−1
n ‖, we obtain from this identity along with part (a)

the estimate

‖Mn‖ ≤ (2 + V )‖Mn−2‖ + ‖Mn−3‖

for every E ∈ �V .
Consider for comparison the recursion

mn = (2 + V )mn−2 + mn−3.

It is clear that we have ‖Mn‖ ≤ mn if we consider the sequence {mn} generated by the
recursion and the initial conditions m1 = ‖M1‖,m2 = ‖M2‖,m3 = ‖M3‖.

Any solution of the recursion is of the form

mn = c1xn
1 + c2xn

2 + c3xn
3 ,

where the x j are the roots of the characteristic polynomial x3 − (2 + V )x − 1. Thus, the
definition of aV implies that the estimate in (b) holds. ⊓⊔
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Remark. Since Fn ∼ (
√

5+1
2 )n , we can infer that ‖Mn‖ ≤ C F1+δ

n with δ → 0 as
V → 0. Since for V = 0, the norm of the transfer matrices grows linearly at the ener-
gies E = ±2, we cannot expect a better result in general. However, since the transfer
matrices are bounded when V = 0 and E ∈ (−2, 2), it is reasonable to expect that there
is a better bound for small values of V for most energies in the spectrum.

Let us now turn to the second step, which is the interpolation of the estimates from
the previous lemma to non-Fibonacci sites in the ω = 0 sequence. The following lemma
is a relative of [IT, Lemma 5]. Even though the proof is closely related to that in [IT],
we give the details to clearly show where the improved estimate comes from.

Lemma 5.4. For n ≥ 1 and k ≥ 0, we may write

Mn Mn+k = P
(1)
k Mn+k + P

(2)
k Mn+k−1 + P

(3)
k Mn+k−2 + P

(4)
k I

with coefficients P
( j)

k that also depend on n and E. Moreover, for every n ≥ 1 and

E ∈ �V , we have that

4∑

j=1

|P( j)
k | ≤ (5 + 2V )(3 + V )⌊k/2⌋.

Proof. Consider the case k = 0. Then,

Mn Mn = M2
n = 2xn Mn − I

by Cayley-Hamilton and hence we can set

P
(1)
0 = 2xn, P

(2)
0 = P

(3)
0 = 0, P

(4)
0 = −1.

It follows that for E ∈ �V , we have the estimate

4∑

j=1

|P( j)
0 | ≤ 3 + V .

Consider now the case k = 1. Then,

Mn Mn+1 = Mn+2 = 2xn+1 Mn + Mn−1 − 2xn−1 I

by [IT, Lemma 6] and hence we can set

P
(1)
1 = 0, P

(2)
1 = 2xn+1, P

(3)
1 = 1, P

(4)
1 = −2xn−1.

For E ∈ �V , we therefore have

4∑

j=1

|P( j)
1 | ≤ 5 + 2V .
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Next, assume that the lemma holds for k ∈ {1, . . . , ℓ} and consider the case k = ℓ+1.
Then, using [IT, Lemma 6] one more time, we find

Mn Mn+ℓ+1 = (Mn Mn+ℓ−1)Mn+ℓ

=
(

P
(1)
ℓ−1 Mn+ℓ−1 + P

(2)
ℓ−1 Mn+ℓ−2 + P

(3)
ℓ−1 Mn+ℓ−3 + P

(4)
ℓ−1 I

)
Mn+ℓ

= P
(1)
ℓ−1 Mn+ℓ+1 + P

(2)
ℓ−1(2xn+ℓ−2 Mn+ℓ − Mn+ℓ−1)

+ P
(3)
ℓ−1(2xn+ℓ−1 Mn+ℓ−1 − I ) + P

(4)
ℓ−1 Mn+ℓ

= P
(1)
ℓ+1 Mn+ℓ+1 + P

(2)
ℓ+1 Mn+ℓ + P

(3)
ℓ+1 Mn+ℓ−1 + P

(4)
k I,

where we set

P
(1)
ℓ+1 = P

(1)
ℓ−1

P
(2)
ℓ+1 = 2xn+ℓ−2 P

(2)
ℓ−1 + P

(4)
ℓ−1

P
(3)
ℓ+1 = −P

(2)
ℓ−1 + 2xn+ℓ−1 P

(3)
ℓ−1

P
(4)
ℓ+1 = −P

(3)
ℓ−1.

It follows that

4∑

j=1

|P( j)

ℓ+1| ≤ (3 + V )

4∑

j=1

|P( j)

ℓ−1|.

By induction hypothesis, we obtain the desired estimate. ⊓⊔

Lemma 5.5. For every V > 0 and every ζ obeying (29), there is a constant C̃ so that

‖M(n, 0, ω = 0, E)‖ ≤ C̃nζ

for every n ≥ 1, E ∈ �V .

Before we give the proof of Lemma 5.5, let us recall some facts about the minimal
representation of positive integers in terms of Fibonacci numbers; compare, for example,
[HCB,Le,Z]. Given n ≥ 1, there is a unique representation

n =
K∑

k=0

Fnk

such that nk ∈ Z+ and nk+1 − nk ≥ 2. This is the so-called Zeckendorf representation of
n (which, incidentally, was published by Lekkerkerker some twenty years before Zec-
kendorf). It is found by the greedy algorithm, that is, FnK

is set to be the largest Fibonacci
number less than or equal to n, n is replaced by n − FnK

, and the process is repeated
until we have a zero remainder. The property nk+1 − nk ≥ 2 follows from the way the
algorithm works together with the recursion for the Fibonacci numbers. Uniqueness of
this representation in turn follows from nk+1 − nk ≥ 2.

By construction, we have

FnK
≤ n < FnK +1 ≤ 2FnK

. (32)
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We will also need a relation between n and K , that is, the number of terms in the Zec-
kendorf representation of n. The algorithm to compute K = K (n) is the following: Start
with two words over the positive integers, 1 and 1. The next word is obtained by writing
down the previous word, following by the word preceding the previous word, but this
time with every symbol increased by one. Now iterate this procedure:

1, 1, 12, 122, 12223, 12223233, 1222323323334, . . .

Concatenate all the words to obtain a semi-infinite word over the positive integers:

111212212223122232331222323323334 . . .

The nth symbol in this semi-infinite sequence is K (n). Notice that the lengths of these
words follow the Fibonacci sequence. Moreover, only every other word has an increase
in the maximum value of its entries, relative to the previous one, and the increase is by
one whenever it happens. This shows that

F2(K−1) ≤ n. (33)

Proof of Lemma 5.5. From the Zeckendorf representation of n ≥ 1, one finds that

M(n, 0, ω = 0, E) = Mn0 Mn1 · · · MnK
;

compare the beginning of the proof of [IT, Theorem 1].
Let us prove by induction that with

bV = (3 + V )1/2,

we have for every k ≥ 1,

‖Mn0 Mn1 · · · Mnk
‖ ≤ C(5 + 2V )kb

−n0+2(k−1)
V (aV bV )

nk . (34)

Consider first the case k = 1. From Lemmas 5.3 and 5.4, we may infer that

‖Mn0 Mn1‖ ≤ |P(1)
n1−n0

| · ‖Mn1‖ + |P(2)
n1−n0

| · ‖Mn1−1‖ + |P(3)
n1−n0

| · ‖Mn1−2‖ + |P(4)
n1−n0

|

≤
4∑

j=1

|P( j)
n1−n0

|Ca
n1
V

≤ C(5 + 2V )(3 + V )⌊(n1−n0)/2⌋a
n1
V

≤ C(5 + 2V )b
−n0
V (aV bV )

n1 .

Thus, the estimate (34) holds for k = 1.
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Now assume that (34) holds for k ∈ {1, . . . , ℓ} and consider the case k = ℓ+1. Using
Lemma 5.4 again, we see that

‖Mn0 Mn1 · · · Mnℓ Mnℓ+1‖ = ‖(Mn0 Mn1)Mn2 · · · Mnℓ Mnℓ+1‖
≤ |P(1)

n1−n0
| · ‖Mn1 Mn2 · · · Mnℓ Mnℓ+1‖

+|P(2)
n1−n0

| · ‖Mn1−1 Mn2 · · · Mnℓ Mnℓ+1‖

+|P(3)
n1−n0

| · ‖Mn1−2 Mn2 · · · Mnℓ Mnℓ+1‖

+|P(4)
n1−n0

| · ‖Mn2 · · · Mnℓ Mnℓ+1‖

≤ |P(1)
n1−n0

| · C(5 + 2V )ℓb
−n1+2(ℓ−1)
V (ab)nℓ+1

+|P(2)
n1−n0

| · C(5 + 2V )ℓb
−n1+1+2(ℓ−1)
V (aV bV )

nℓ+1

+|P(3)
n1−n0

| · C(5 + 2V )ℓb
−n1+2+2(ℓ−1)
V (aV bV )

nℓ+1

+|P(4)
n1−n0

| · C(5 + 2V )ℓb
−n2+2(ℓ−2)
V (aV bV )

nℓ+1

≤

⎛
⎝

4∑

j=1

|P( j)
n1−n0

|

⎞
⎠C(5 + 2V )ℓb

−n1+2ℓ
V (aV bV )

nℓ+1

≤ (5 + 2V )bn1−n0C(5 + 2V )ℓb
−n1+2ℓ
V (aV bV )

nℓ+1

= C(5 + 2V )ℓ+1b
−n0+2((ℓ+1)−1)
V (aV bV )

nℓ+1 .

We conclude that (34) holds for k = ℓ + 1.
Therefore,

‖M(n, 0, ω = 0, E)‖ ≤ C(5 + 2V )K b
−n0+2(K−1)
V (aV bV )

nK .

It follows that

lim sup
n→∞

log ‖M(n, 0, ω = 0, E)‖
log n

≤ lim sup
n→∞

log
(

C(5 + 2V )K b
−n0+2(K−1)
V (aV bV )

nK

)

log n

≤ lim sup
n→∞

K log(5 + 2V ) + 2K log bV + nK log (aV bV )

log n

≤ lim sup
n→∞

log n

2 log
√

5+1
2

log(5 + 2V ) + 2 log n

2 log
√

5+1
2

log bV + log n

log
√

5+1
2

log (aV bV )

log n

=
log(5 + 2V )1/2 + log bV + log (aV bV )

log
√

5+1
2

=
log[(5 + 2V )1/2(3 + V )aV ]

log
√

5+1
2

,

where we used (32) and (33) in the third step. Since these estimates are uniform in
E ∈ �V , the result follows. ⊓⊔
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In the third step, we can now turn to the

Proof of Theorem 5.1. Suppose V > 0 and ζ obeys (29). We will prove the following
estimate:

‖M(V, E, w)‖ ≤ C |w|ζ for every V > 0, E ∈ �V , and w ∈ Wu, (35)

from which (30) immediately follows.
Let V, E, w as in (35) be given. As explained in [DL99a, Proof of Lemma 5.2], we

can write

w = xyz,

where y ∈ {a, b}∗ is a word of length 2 and x R (the reversal of x) and z are prefixes of
u. Thus,

‖M(V, E, w)‖ ≤ ‖M(V, E, x)‖ · ‖M(V, E, y)‖ · ‖M(V, E, z)‖. (36)

It follows from [DL99a, Lemma 5.1] that

‖M(V, E, x R)‖ = ‖M(V, E, x)‖. (37)

Moreover, Lemma 5.5 yields

‖M(V, E, x R)‖ ≤ C̃ |x |ζ (38)

and

‖M(V, E, z)‖ ≤ C̃ |z|ζ . (39)

Since ζ > 1 and y has length 2, (35) follows from (36)–(39). ⊓⊔

Proof of Theorem 5.2. The upper bound in (31) follows from Theorem 5.1. The lower
bound in (31) will be extracted here from [DKL] since it is not made explicit there.

Denote U (n) = (u(n + 1), u(n))T and consider the associated local ℓ2-norms ‖U‖L .
Power-law bounds for ‖U‖L correspond in a natural way to power-law bounds for ‖u‖L ,
so let us discuss the former object. By considering squares adjacent to the origin and
Gordon’s two-block method, Damanik, Killip, and Lenz showed that

‖U‖F8n ≥
(

1 +
1

(2 + 2V )2

)n/2

;

see [DKL, Lemma 4.1]. We find

lim inf
n→∞

log ‖U‖F8(n−1)

log F8n

≥
log

(
1 + 1

(2+2V )2

)

16 · log
(√

5+1
2

) ,

uniformly in ω ∈ T and E ∈ �V . This, together with monotonicity, yields the asserted
lower bound. ⊓⊔
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5.2. Spectral measures. Given V > 0 and ω ∈ T, let us consider the operator HV,ω.
Since this operator is self-adjoint, the spectral theorem associates with each ψ ∈ ℓ2(Z)

a Borel measure μψ that is supported by �V and obeys

〈
ψ, g

(
HV,ω

)
ψ
〉
=

∫
g(E) dμψ (E)

for every bounded measurable function g on �V . It follows from Theorem 5.2 that each
of these spectral measures gives zero weight to sets of small Hasudorff dimension. More
precisely, we have the following result:

Corollary 1. For every V > 0, every ω, and every

α <
2 log

(
1 + 1

(2+2V )2

)

log
(

1 + 1
(2+2V )2

)
+ 16 · log

(√
5+1
2

)
+ 16 log[(5 + 2V )1/2(3 + V )aV ]

,

we have that μψ (S) = 0 for every ψ ∈ ℓ2(Z) and every Borel set S with hα(S) = 0.

Proof. This is an immediate consequence of Theorem 5.2 and [DKL, Theorem 1]. ⊓⊔

5.3. Transport exponents. Absolute continuity of spectral measures with respect to
Hausdorff measures is important because it implies lower bounds for transport expo-
nents via the Guarneri-Combes-Last Theorem. Let us recall this connection briefly.
Given HV,ω and ψ as above, consider the Schrödinger equation i∂tψ(t) = HV,ωψ(t)

with initial condition ψ(0) = ψ . Then, the unique solution of this initial-value prob-
lem is given by ψ(t) = e−i t HV,ωψ . To measure the spreading of a wavepacket, one
considers time-averaged moments of the position operator. This is of course mainly of
interest when ψ(0) = ψ is well-localized and in fact, in ℓ2(Z) one usually considers
the canonical initial state ψ = δ0.

One is interested in the growth of 〈〈|X |p
ψ 〉〉(T ) as T → ∞ for p > 0, where

〈|X |p
ψ 〉(t) =

∑

n∈Z

|n|p|〈δn, e−i t HV,ωψ〉|2

and the time average of a t-dependent function f is given by either

〈 f 〉(T ) =
1

T

∫ T

0
f (t) dt (40)

or

〈 f 〉(T ) =
2

T

∫ ∞

0
e−2t/T f (t) dt. (41)

We will indicate in the results below which time-average is involved. However, for com-
pactly supported (or fast-decaying) ψ , all the results mentioned below hold for both
types of time-average.

To measure the power-law growth of 〈〈|X |p〉〉(T ), define

β+
ψ (p) = lim sup

T →∞

log〈〈|X |p
ψ 〉〉(T )

p log T
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and

β−
ψ (p) = lim inf

T →∞

log〈〈|X |p
ψ 〉〉(T )

p log T
.

The Guarneri-Combes-Last Theorem (see [La, Theorem 6.1]) states that if μψ is not
supported by a Borel set S with hα(S) = 0, then β±(p) ≥ α for every p > 0, where
the time-average is given by (40).

Corollary 2. For every V > 0, ω ∈ T, 0 �= ψ ∈ ℓ2(Z), and p > 0, we have

β±
ψ (p) ≥

2 log
(

1 + 1
(2+2V )2

)

log
(

1 + 1
(2+2V )2

)
+ 16 · log

(√
5+1
2

)
+ 16 log[(5 + 2V )1/2(3 + V )aV ]

,

where the time-average is given by (40).

Proof. Immediate from the Guarneri-Combes-Last Theorem and Corollary 1. ⊓⊔

We also have the following estimate, which holds for a special initial state but which
is better when p is large:

Corollary 3. For every V > 0, ω ∈ T, and p > 0, we have

β±
δ0
(p) ≥

log
√

5+1
2

log
√

5+1
2 + log[(5 + 2V )1/2(3 + V )aV ]

−
3 log[(5 + 2V )1/2(3 + V )aV ]

p
(

log
√

5+1
2 + log[(5 + 2V )1/2(3 + V )aV ]

) ,

where the time-average is given by (41).

Proof. This is a consequence of Theorem 5.1 and results of Damanik, Sütő, and
Tcheremchantsev (see [DST, Theorem 1] and compare also [DT08, Theorem 1]). ⊓⊔

It can be shown that for compactly supported (or fast-decaying) ψ , the transport
exponents β±

ψ (p) are non-decreasing functions of p taking values in [0, 1]. Thus, in
this case it is natural to consider the limits of these quantities as p ↓ 0 and p ↑ ∞
and denote them by β±

ψ (0) and β±
ψ (∞), respectively. The bounds in the two previous

corollaries imply estimates for β±
ψ (0) and β±

ψ (∞) as well. However, at small coupling,

a better estimate for β±
δ0
(∞) is obtained via a different route:

Corollary 4. We have

lim
V ↓0

β±
δ0
(∞) = lim

V ↓0
lim
p↑∞

β±
δ0
(p) = 1,

uniformly in ω ∈ T. Here, the time-average is given by (41).

Proof. Damanik, Embree, Gorodetski, and Tcheremchantsev showed for the Fibonacci
Hamiltonian that β±

δ0
(∞) ≥ dim±

B (�V ) for every V > 0 and ω ∈ T; see [DEGT,
Theorem 3]. Since the right-hand side converges to one as V ↓ 0, the result follows. ⊓⊔
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Remarks. (a) As pointed out above, while the papers [DEGT,DST,DT03] work with
the time-average (41), the results above carry over to transport exponents defined
using (40).

(b) We find that β±
δ0
(∞), considered as a function of V , extends continuously to zero.

While we would expect this also for other initial states ψ , it does not follow
from Corollary 2. It would be interesting to extend this continuity result to all
fast-decaying initial states or to exhibit one for which it fails.

6. Consequences for Higher-Dimensional Models

6.1. Lattice Schrödinger operators with separable potentials. Let d ≥ 1 be an integer
and assume that for 1 ≤ j ≤ d, we have bounded maps V j : Z → R. Consider the
associated Schrödinger operators on ℓ2(Z),

[H jψ](n) = ψ(n + 1) + ψ(n − 1) + V j (n)ψ(n). (42)

Furthermore, we let V : Z
d → R be given by

V (n) = V1(n1) + · · · + Vd(nd), (43)

where we express an element n of Z
d as n = (n1, . . . , nd) with n j ∈ Z.

Finally, we introduce the Schrödinger operator on ℓ2(Zd) with potential V , that is,

[Hψ](n) =

⎛
⎝

d∑

j=1

ψ(n + e j ) + ψ(n − e j )

⎞
⎠ + V (n)ψ(n). (44)

Here, e j denotes the element n of Z
d that has n j = 1 and nk = 0 for k �= j .

Potentials of the form (43) and Schrödinger operators of the form (44) are called
separable. Let us first state some known results for separable Schrödinger operators.

Proposition 6.1. (a) The spectrum of H is given by

σ(H) = σ(H1) + · · · + σ(Hd).

(b) Given ψ1, . . . , ψd ∈ ℓ2(Z), denote by μ j the spectral measure corresponding to

H j and ψ j . Furthermore, denote by μ the spectral measure corresponding to H

and the element ψ of ℓ2(Zd) given by ψ(n) = ψ1(n1) · · ·ψd(nd). Then,

μ = μ1 ∗ · · · ∗ μd .

Proof. Recall the definition and properties of tensor products of Hilbert spaces and oper-
ators on these spaces; see, for example, [RS, Sects. II.4 and VIII.10]. It follows from
[RS, Theorem II.10] that there is a unique unitary map U from ℓ2(Z) ⊗ · · · ⊗ ℓ2(Z)

(d factors) to ℓ2(Zd) so that for ψ j ∈ ℓ2(Z), the elementary tensor ψ1 ⊗ · · · ⊗ ψd

is mapped to the element ψ of ℓ2(Zd) given by ψ(n) = ψ1(n1) · · ·ψd(nd). With this
unitary map U , we have

U∗HU =
d∑

j=1

Id ⊗ · · · ⊗ Id ⊗ H j ⊗ Id ⊗ · · · ⊗ Id,

with H j being the j th factor. Given this representation, part (a) now follows from [RS,
Theorem VIII.33] (see also the example on [RS, p. 302]). Part (b) follows from the proof
of [RS, Theorem VIII.33]; see also [BS] and [S]. ⊓⊔
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6.2. A consequence of the Newhouse Gap Lemma. We have seen above that the spec-
trum of a product model is given by the sum of the individual spectra. If these individual
spectra are Cantor sets and we want to show that their sum is not a Cantor set, the
following consequence of the Gap Lemma is useful.

Lemma 6.2. Suppose C, K ⊂ R
1 are Cantor sets with τ(C) · τ(K ) > 1. Assume also

that the size of the largest gap of C is not greater than the diameter of K , and the size

of the largest gap of K is not greater than the diameter of C. Then the sum C + K is a

closed interval.

Proof. Denote min C = c1,max C = c2,min K = k1,max K = k2. Let us prove that

C + K = [c1 + k1, c2 + k2].

The inclusion “⊆” is obvious, so let us prove the inclusion “⊇.” Take an arbitrary point
x ∈ [c1 + k1, c2 + k2]. Then, x ∈ C + K if and only if 0 ∈ C + K − x = C − (x − K ).
Therefore,

x ∈ C + K ⇔ C ∩ (x − K ) �= ∅.

Since τ(C) · τ(x − K ) = τ(C) · τ(K ) > 1, the Gap Lemma implies that a priori there
are only four possibilities:

(1) the intervals [c1, c2] and [x − k2, x − k1] are disjoint;
(2) the set C is contained in a finite gap of the set (x − K );
(3) the set (x − K ) is contained in a finite gap of the set C ;
(4) C ∩ (x − K ) �= ∅.

But the case (1) contradicts the assumption x ∈ [c1 + k1, c2 + k2], and the cases (2) and
(3) are impossible due to our assumption on the sizes of gaps and diameters of C and
K . Therefore, we must have C ∩ (x − K ) �= ∅ and hence x ∈ C + K . ⊓⊔

6.3. The square Fibonacci Hamiltonian. Let us now discuss the (diagonal version of
the) model studied by Even-Dar Mandel and Lifshitz, namely the operator

[H
(2)
V ψ](m, n) = ψ(m + 1, n) + ψ(m − 1, n) + ψ(m, n + 1) + ψ(m, n − 1) +

+ V
(
χ[1−α,1)(mα mod 1) + χ[1−α,1)(nα mod 1)

)
ψ(m, n)

in ℓ2(Z2). By Proposition 6.1, we have

σ(H
(2)
V ) = �V + �V . (45)

Proof of Theorem 1.4. By (45), it suffices to show that �V +�V is an interval for V > 0
sufficiently small. By Theorem 1.2, there is V0 > 0 such that τ(�V ) > 1 for V ∈ (0, V0).
For such V ’s, Lemma 6.2 applies with C = K = �V and yields

�V + �V = [min�V + min�V ,max�V + max�V ],

as desired. ⊓⊔
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Appendix A. The Off-Diagonal Fibonacci Hamiltonian

The purpose of this appendix is to give complete proofs of the basic spectral proper-
ties of the off-diagonal Fibonacci Hamiltonian. This operator has been considered in
many physics papers and is the basic building block for the higher-dimensional product
models studied by Even-Dar Mandel and Lifshitz. The mathematics literature on the
Fibonacci model provides an exhaustive study of the diagonal model, and it was always
understood that “analogous results hold for the off-diagonal model.” For the reader’s
convenience, we make these analogous results explicit here and hence provide in this
paper a complete treatment of the spectrum of the Even-Dar Mandel-Lifshitz product
model at weak coupling.

A.1. Model and results. Let a, b be two positive real numbers and consider the Fibonacci
substitution,

S(a) = ab, S(b) = a.

This substitution rule extends to finite and one-sided infinite words by concatenation. For
example, S(aba) = abaab. Since S(a) begins with a, one obtains a one-sided infinite
sequence that is invariant under S by iterating the substitution rule on a and taking a
limit. Indeed, we have

Sk(a) = Sk−1(S(a)) = Sk−1(ab) = Sk−1(a)Sk−1(b) = Sk−1(a)Sk−2(a). (46)

In particular, Sk(a) starts with Sk−1(a), and hence there is a unique one-sided infinite
sequence u, the so-called Fibonacci substitution sequence, that starts with Sk(a) for
every k. The hull �a,b is then obtained by considering all two-sided infinite sequences
that locally look like u,

�a,b = {ω ∈ {a, b}Z : every subword of ω is a subword of u}.
It is known that, conversely, every subword of u is a subword of every ω ∈ �a,b. In this
sense, u and all elements of the hull ω look exactly the same locally.

We wish to single out a special element of �a,b. Notice that ba occurs in u and that
S2(a) = aba begins with a and S2(b) = ab ends with b. Thus, iterating S2 on b|a,
where | denotes the eventual origin, we obtain as a limit a two-sided infinite sequence
which belongs to �a,b and coincides with u to the right of the origin. This element of
�a,b will be denoted by ωs .

Each ω ∈ �a,b generates a Jacobi matrix Hω acting in ℓ2(Z),

(Hωψ)n = ωn+1ψn+1 + ωnψn−1.

With respect to the standard orthonormal basis {δn}n∈Z of ℓ2(Z), where δn is one at n

and vanishes otherwise, this operator has the matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .

. . . 0 ω−1 0

. . . ω−1 0 ω0 0

0 ω0 0 ω1
. . .

0 ω1 0
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and it is clearly self-adjoint.
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This family of operators, {Hω}ω∈�a,b
, is called the off-diagonal Fibonacci model. Of

course, the structure of the Fibonacci sequence disappears when a = b. In this case,
the hull consists of a single element, the constant two-sided infinite sequence taking
the value a = b, and the spectrum and the spectral measures of the associated operator
Hω are well understood. For this reason, we will below always assume that a �= b.
Nevertheless, the limiting case, where we fix a, say, and let b tend to a is of definite
interest.

Our first result concerns general properties of the spectrum of Hω. For S ⊂ R, we
denote by dimH S the Hausdorff dimension of S and by dimB S the box counting dimen-
sion of S (which is then implicitly claimed to exist).

Theorem A.1. Suppose a, b > 0 and a �= b. Then, there exists a compact set �a,b ⊂ R

such that σ(Hω) = �a,b for every ω ∈ �a,b, and

(i) �a,b has zero Lebesgue measure.

(ii) The Hausdorff dimension dimH �a,b is an analytic function of a and b.

(iii) 0 < dimH �a,b < 1.

More can be said about the spectrum when a and b are close to each other:

Theorem A.2. There exists ε0 > 0 such that if a, b > 0, a �= b, and a2+b2

2ab
< 1 + ε0 (in

other words, if a and b are close enough), then

(iv) The spectrum �a,b is a Cantor set that depends continuously on a and b in the

Hausdorff metric.

(v) For every small δ > 0 and every E ∈ �a,b, we have

dimH

(
(E − δ, E + δ) ∩ �a,b

)
= dimB

(
(E − δ, E + δ) ∩ �a,b

)

= dimH �a,b = dimB �a,b.

(vi) Denote α = dimH �a,b, then the Hausdorff α-measure of �a,b is positive and

finite.

(vii) We have that

�a,b + �a,b = [min�a,b + min�a,b,max�a,b + max�a,b].

Given these results, and especially Theorem A.2.(vii), we can confirm rigorously the
observation made by Even-Dar Mandel and Lifshitz in [EL06,EL07] that the square
Fibonacci Hamiltonian (based on the off-diagonal one-dimensional model) has no gaps
in its spectrum for sufficiently small coupling.

Next, we turn to the spectral type of Hω.

Theorem A.3. Suppose a, b > 0 and a �= b. Then, for every ω ∈ �a,b, Hω has purely

singular continuous spectrum.

Throughout the rest of this appendix we will only consider a, b > 0 with a �= b. Theo-
rems A.1 and A.2 are proved in Subsect. A.2 and Theorem A.3 is proved in Subsect. A.3.
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A.2. The trace map and its relation to the spectrum. The spectral properties of Hω are
closely related to the behavior of the solutions to the difference equation

ωn+1un+1 + ωnun−1 = Eun . (47)

Denote

Un =
(

un

ωnun−1

)
.

Then u solves (47) (for every n ∈ Z) if and only if U solves

Un = Tω(n, E)Un−1, (48)

(for every n ∈ Z), where

Tω(n, E) =
1

ωn

(
E −1
ω2

n 0

)
.

Note that det Tω(n, E) = 1. Iterating (48), we find

Un = Mω(n, E)U0,

where

Mω(n, E) = Tω(n, E) × · · · Tω(1, E).

With the Fibonacci numbers {Fk}, generated by F0 = F1 = 1, Fk+1 = Fk + Fk−1 for
k ≥ 1, we define

xk = xk(E) =
1

2
TrMωs (Fk, E).

For example, we have

Mωs (F1, E) =
1

a

(
E −1
a2 0

)
,

Mωs (F2, E) =
1

b

(
E −1
b2 0

)
1

a

(
E −1
a2 0

)
=

1

ab

(
E2 − a2 −E

Eb2 −b2

)
,

Mωs (F3, E) =
1

a

(
E −1
a2 0

)
1

b

(
E −1
b2 0

)
1

a

(
E −1
a2 0

)

=
1

a2b

(
E3 − Ea2 − Eb2 −E2 + b2

E2a2 − a4 −Ea2

)
,

and hence

x1 =
E

2a
, x2 =

E2 − a2 − b2

2ab
, x3 =

E3 − 2Ea2 − Eb2

2a2b
. (49)
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Lemma A.4. We have

xk+1 = 2xk xk−1 − xk−2 (50)

for k ≥ 2. Moreover, the quantity

Ik = x2
k+1 + x2

k + x2
k−1 − 2xk+1xk xk−1 − 1 (51)

is independent of both k and E and it is given by

I =
(a2 + b2)2

4a2b2 − 1.

Proof. Since ωs restricted to {n ≥ 1} coincides with u and the prefixes sk of u of length
Fk obey sk+1 = sksk−1 for k ≥ 2 by construction (cf. (46)), the recursion (50) follows as
in the diagonal case; compare [D00,D07a,S87]. This recursion in turn implies readily
that (51) is k-independent.

In particular, the xk’s are again generated by the trace map

T (x, y, z) = (2xy − z, x, y)

and the preserved quantity is again

I (x, y, z) = x2 + y2 + z2 − 2xyz − 1.

The only difference between the diagonal and the off-diagonal model can be found in the
initial conditions. How are x1, x0, x−1 obtained? Observe that the trace map is invertible
and hence we can apply its inverse twice to the already defined quantity (x3, x2, x1). We
have

T −1(x, y, z) = (y, z, 2yz − x)

and hence, using (49),

(x1, x0, x−1) = T −2(x3, x2, x1)

= T −2
(

E3 − 2Ea2 − Eb2

2a2b
,

E2 − a2 − b2

2ab
,

E

2a

)

= T −1
(

E2 − a2 − b2

2ab
,

E

2a
, 2

(E2 − a2 − b2)E

4a2b
−

E3 − 2Ea2 − Eb2

2a2b

)

= T −1
(

E2 − a2 − b2

2ab
,

E

2a
,

E

2b

)

=
(

E

2a
,

E

2b
, 2

E2

4ab
−

E2 − a2 − b2

2ab

)

=
(

E

2a
,

E

2b
,

a2 + b2

2ab

)
.

It follows that

I (xk+1, xk, xk−1) = I (x1, x0, x−1)

=
E2

4a2 +
E2

4b2 +
(a2 + b2)2

4a2b2 − 2
E2(a2 + b2)

8a2b2 − 1

=
(a2 + b2)2

4a2b2 − 1

for every k ≥ 0. ⊓⊔
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It is of crucial importance for the spectral analysis that, as in the diagonal case, the
invariant is energy-independent and strictly positive when a �= b!

Lemma A.5. The spectrum of Hω is independent of ω and may be denoted by �a,b. With

σk = {E ∈ R : |xk | ≤ 1},

we have

�a,b =
⋂

k≥1

σk ∪ σk+1. (52)

Moreover, for every E ∈ �a,b and k ≥ 2,

|xk | ≤ 1 +

(
(a2 + b2)2

4a2b2 − 1

)1/2

(53)

and for E �∈ �a,b, |xk | diverges super-exponentially.

Proof. It is well known that the hull �a,b together with the standard shift transformation
is minimal. In particular, every ω ∈ �a,b may be approximated pointwise by a sequence
of shifts of any other ω̃ ∈ �a,b. The associated operators then converge strongly and we
get σ(Hω) ⊆ σ(Hω̃). Reversing the roles of ω and ω̃, the first claim follows.

So let �a,b denote the common spectrum of the operators Hω, ω ∈ �a,b. We have
‖Hω‖ ≤ max{2a, 2b}. Thus, �a,b ⊆ [− max{2a, 2b},max{2a, 2b}] =: Ia,b. For E ∈
Ia,b, we have that at least one of x1, x0 belongs to [−1, 1]. This observation allows us to
use the exact same arguments Sütő used to prove (52) for the diagonal model in [S87].

The only point where care needs to be taken is the claim that σk is the spectrum of
the periodic Jacobi matrix obtained by repeating the values ωs takes on {1 ≤ n ≤ Fk}
periodically on the off-diagonals. This, however, follows from the general theory of
periodic Jacobi matrices, which relies on the diagonalization of the monodromy matrix
(which is Mωs (Fk, E) in this case) in order to obtain Floquet solutions and in particular
discriminate between those energies that permit exponentially growing solutions and
those that do not. This distinction works just as well here, but one needs to use that the
ωn’s that enter in the Un’s are uniformly bounded away from zero and infinity.

Thus, after paying attention to this fact, we may now proceed along the lines of Sütő.
Let us describe the main steps of the argument. Since at least one of x1, x0 belongs to
[−1, 1], we have a result analogous to [S87, Lemma 2] with the same proof as given
there. Namely, the sequence {xk}k≥0 is unbounded if and only if there exists k such that
|xk | > 1 and |xk+1| > 1. Moreover, we then have |xk+l | > cFl for some c > 1 and all
l ≥ 0. This shows

σk ∪ σk+1 =
⋃

l≥0

σk+l .

Using now the fact that the Fk periodic Jacobi matrices with spectrum σk converge
strongly to Hωs , we obtain

�a,b ⊆
⋂

k≥1

⋃

l≥0

σk+l =
⋂

k≥1

σk ∪ σk+1 =
⋂

k≥1

σk ∪ σk+1,

since the spectra σk and σk+1 are closed sets. Thus, we have one inclusion in (52).
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Next, suppose E ∈
⋂

k≥1 σk ∪ σk+1. If k ≥ 1 is such that |xk | > 1, then |xk−1| ≤ 1
and |xk+1| ≤ 1. Since we have

x2
k+1 + x2

k + x2
k−1 − 2xk+1xk xk−1 − 1 =

(a2 + b2)2

4a2b2 − 1,

this implies

xk = xk+1xk−1 ±
(

1 − x2
k+1 − x2

k−1 + x2
k+1x2

k−1 +
(a2 + b2)2

4a2b2 − 1

)1/2

,

and hence

|xk | ≤ |xk+1xk−1| +

(
(1 − x2

k+1)(1 − x2
k−1) +

(
(a2 + b2)2

4a2b2 − 1

))1/2

which, using |xk−1| ≤ 1 and |xk+1| ≤ 1 again, implies the estimate (53) for E ∈⋂
k≥1 σk∪σk+1. We will show in the next subsection that the boundedness of the sequence

{xk}k≥0 implies that, for arbitrary ω ∈ �a,b, no solution of the difference equation (47)
is square-summable at +∞. Consequently, such E’s belong to �a,b.7 This shows the
other inclusion in (52) and hence establishes it. Moreover, it follows that (53) holds for
every E ∈ �a,b.

Finally, from the representation (52) of �a,b and our observation above about
unbounded sequences {xk}k≥0, we find that |xk | diverges super-exponentially for E �∈
�a,b. This concludes the proof of the lemma. ⊓⊔

Lemma A.6. For every E ∈ R, there is γ (E) ≥ 0 such that

lim
n→∞

1

n
log ‖Mω(n, E)‖ = γ (E),

uniformly in ω ∈ �a,b.

Proof. This follows directly from the uniform subadditive ergodic theorem; compare
[DL99b,Ho]. ⊓⊔

Lemma A.7. The set Za,b := {E ∈ R : γ (E) = 0} has zero Lebesgue measure.

Proof. This is one of the central results of Kotani theory; see [Ko] and also [D07b]. Note
that these papers only discuss the diagonal model. Kotani theory for Jacobi matrices is
discussed in Carmona-Lacroix [CL] and the result needed can be deduced from what
is presented there. For a recent reference that states a result sufficient for our purpose
explicitly, see Remling [Re]. ⊓⊔

Lemma A.8. We have �a,b = Za,b.

7 This follows by a standard argument: If E �∈ �a,b , then (Hω − E)−1 exists and hence (Hω − E)−1δ0 is
an ℓ2(Z) vector that solves (47) away from the origin. Choosing its values for n ≥ 1, say, and then using (47)
to extend it to all of Z, we obtain a solution that is square-summable at +∞.
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Proof. The inclusion �a,b ⊇ Za,b holds by general principles. For example, one can
construct Weyl sequences by truncation when γ (E) = 0. The inclusion �a,b ⊆ Za,b

can be proved in two ways. Either one uses the boundedness of xk for energies E ∈ �a,b

to prove explicit polynomial upper bounds for ‖Mω(n, E)‖ (as in [IT] for ω = ωs or in
[DL99b] for general ω ∈ �a,b), or one combines the proof of the absence of decaying
solutions at +∞ for E ∈ �a,b given in the next subsection with Osceledec’s Theorem,
which states that γ (E) > 0 would imply the existence of an exponentially decaying solu-
tion at +∞. Here we use one more time that Un is comparable in norm to (un, un−1)

T .
⊓⊔

Proof of Theorems A.1 and A.2. The existence of the uniform spectrum�a,b was shown
in Lemma A.6 and the fact that �a,b has zero Lebesgue measure follows from Lem-
mas A.7 and A.8. The set of bounded orbits of the restriction of the trace map

T : R
3 → R

3 to the invariant surface I (x, y, z) = C ≡ (a2+b2)2

4a2b2 − 1,C > 0, is
hyperbolic; see [Can] (and also [DG09a] for C sufficiently small and [Cas] for C suffi-
ciently large). Due to Lemma A.5, the points of the spectrum correspond to the points
of the intersection of the line of the initial conditions

ℓa,b ≡
{(

E

2a
,

E

2b
,

a2 + b2

2ab

)
: E ∈ R

}

with the stable manifolds of the hyperbolic set of bounded orbits. Properties (ii) and (iii)
can be proved in exactly the same way as Theorem 6.5 in [Can]. The line ℓa,b intersects
the stable lamination of the hyperbolic set transversally for sufficiently small C > 0,
as can be shown in the same way as for the diagonal Fibonacci Hamiltonian with a
small coupling constant; see [DG09a]. Therefore the spectrum �a,b for close enough
a and b is a dynamically defined Cantor set, and the properties (iv)–(vi) follow; see
[DEGT,DG09a,Ma,MM,P,PT] and references therein. The statement (vii) follows as
in the diagonal case since the thickness of �a,b tends to infinity as a2+b2

2ab
approaches 1.

⊓⊔

Notice that a proof of the transversality of the line ℓa,b to the stable lamination of the
hyperbolic set of bounded orbits for arbitrary a �= b would imply the properties (iv)–(vi)
for these values of a and b.

A.3. Singular continuous spectrum. In this subsection we prove Theorem A.3. Given
the results from the previous subsection, we can follow the proofs from the diagonal
case quite closely.

Proof of Theorem A.3. Since the absence of absolutely continuous spectrum follows
from zero measure spectrum, we only need to show the absence of point spectrum. It
was shown by Damanik and Lenz [DL99a] that, given any ω ∈ �a,b and k ≥ 1, the
restriction of ω to {n ≥ 1} begins with a square

ω1 . . . ω2Fk
. . . = ω1 . . . ωFk

ω1 . . . ωFk
. . .

such that ω1 . . . ωFk
is a cyclic permutation of Sk(a). By cyclic invariance of the trace,

it follows that TrMω(Fk, E) = 2xk(E) for every E .
The Cayley-Hamilton Theorem, applied to Mω(Fk, E), says that

Mω(Fk, E)2 − (TrMω(Fk, E)) Mω(Fk, E) + I = 0,
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which, by the observations above, translates to

Mω(2Fk, E) − 2xk Mω(Fk, E) + I = 0.

If E ∈ �a,b and u is a solution of the difference equation (47), it therefore follows
that

U (2Fk + 1) − 2xkU (Fk + 1) + U (1) = 0.

If u does not vanish identically, this shows that un �→ 0 as n → ∞ since the xk’s
are bounded above and the ωn’s are bounded below away from zero. In particular, if
E ∈ �a,b, then no non-trivial solution of (47) is square-summable at +∞ and hence E

is not an eigenvalue. It follows that the point spectrum of Hω is empty. ⊓⊔
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