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Abstract—A method is proposed for the classification of urban
hyperspectral data with high spatial resolution. The approach is
an extension of previous approaches and uses both the spatial
and spectral information for classification. One previous approach
is based on using several principal components from the hyper-
spectral data and building several morphological profiles. These
profiles can be used all together in one extended morphological
profile. A shortcoming of that approach is that it was primarily
designed for classification of urban structures and it does not fully
utilize the spectral information in the data. Similarly, the commonly
used pixel-wise classification of hyperspectral data is solely based
on the spectral content and lacks information on the structure
of the features in the image. The proposed method overcomes
these problems and is based on the fusion of the morphological
information and the original hyperspectral data, i.e., the two
vectors of attributes are concatenated into one feature vector.
After a reduction of the dimensionality the final classification is
achieved using a Support Vector Machines classifier. The proposed
approach is tested in experiments on ROSIS data from urban areas.
Significant improvements are achieved in terms of accuracies when
compared to results obtained for approaches based on the use of
morphological profiles based on PCs only and conventional spectral
classification. For instance, with one data set, the overall accuracy
is increased from 79% to 83% without any feature reduction and
to 87% with feature reduction. The proposed approach also shows
excellent results with a limited training set.

Index Terms—Data fusion, hyperspectral data, support vector
machines, feature extraction, extended morphological profile, high
spatial resolution.

I. INTRODUCTION

In classification of remote sensing data from urban areas,

the identification of relatively small objects, e.g., houses and

narrow streets is important. Therefore, high spatial resolution

of the imagery is necessary for accurate classification. The

most commonly available remote sensing data of high spatial

resolution from urban areas are single-band panchromatic data.

However, using only one high-resolution panchromatic data

channel is usually not sufficient for accurate classification of

structural information. To overcome that problem, Pesaresi and

Benediktsson [1] proposed the use of morphological transfor-

mations to build a Morphological Profile (MP). In [2] the

method in [1] was extended for hyperspectral data with high

spatial resolution. The approach in [2] is based on using several

Principal Components (PCs) from the hyperspectral data. From

each of the PCs, a morphological profile is built. These profiles

are used all together in one Extended Morphological Profile

(EMP), which is then classified by a neural network. The method

in [2] has been shown to perform well in terms of accuracies

when compared to more conventional classification approaches.

However, a shortcoming of the approach is that it is primarily

designed for classification of urban structures and it does not

fully utilize the spectral information in the multispectral or

hyperspectral data.

However this type of data contains a lot of information about

the spectral properties and the land cover of the data. A finer

definition of the classes is possible and more classes can be

considered. Based on the spectral signatures of the classes,

many advanced pixel-based classifiers have been proposed in-

cluding advanced statistical classifiers [3] and distribution free

approaches such as neural networks and support vector ma-

chines [4]. The later one has shown remarkable abilities to deal

with remote multispectral data, especially with hyperspectral

data. However, if the spatial content of the image is not used the

resulting thematic map sometimes looks noisy (salt and pepper

classification noise). Approaches involving Markov Random

Field (MRF) and Monte Carlo optimization have been proposed

in [5], [6]. These approaches use the contextual information. The

main shortcoming of such algorithms is the computing time,

which can be high even for small data sets. Regarding the high

dimensionality of recently acquired data, both in the spectral

and in the spatial domain, computationally light algorithm are

of interest. In this sense, the MP has been proposed as an

alternative way to use spatial information [1], [7]. Relatively

to the MRF-based classifiers, the MP and its extension to a

multiband image, the EMP, have the possibility to use geo-

metrical contextual information (shape, size, etc) and perform

well on many kinds of data (panchromatic, multispectral and

hyperspectral data). However, as stated above, a shortcoming of

this approach is it does not fully utilize the spectral information

in the data, and consequently several approaches based on the

MP/EMP have been proposed to fully exploit the spatial and

the spectral information [8]–[10].

Each data set has its own properties, defining its ability to

deal with different natures of classes. Table I sums up the

properties of spectral and morphological/spatial data. The first

main consideration is the complementary characteristics of the



2

data. It has a consequence in the discrimination ability of such

a feature, as will be seen in the experiments. The fusion of

two types of information should clearly results in an increase

of the classification in terms of global accuracy. The use of

spectral information can be critical for classification of non-

structured information in urban areas, e.g., vegetation and soil

classes while the use of spatial information can be useful

for classification of structured objects, e.g., road and building

classes.

The second consideration is the possible redundancy of each

features set, see [3] for the spectral features and [11] for the

spatial features. Hence feature extraction (FE) algorithms could

be of an interest.

To include both type of information an extension to the

approach in [2] is proposed in this paper. The proposed method

is based on the data fusion of the morphological information

and the original data: First, an extended morphological profile is

created based on the PCs from the hyperspectral data. Secondly,

feature extraction is applied on the original hyperspectral data

and the extended morphological profile. Finally, the extracted

feature vectors from both the original data and the extended

morphological profile are concatenated into one stacked vector

and classified. The proposed approach is different from ap-

proaches in [12]–[14], where the authors had extracted spatial

information and used composite kernel to include both type

of information. Here, feature extraction algorithms are used to

select informative feature from the spectral and spatial domain.

For the multisource classification, Support Vector Machines

(SVM) are used rather than a Neural Network, which was

used in our previous experiment with MP/EMP. The superiority

of SVM, implementing structural risk minimization, over the

neural classifiers, implementing empirical risk minimization, has

been discussed in [4] (in Chapters 9.6 and 12) and in [15],

[16]. SVM aim to discriminate two classes by fitting an optimal

separating hyperplane to the training data within a multi-

dimensional feature space, by using only the closest training

samples. Thus, the approach only considers samples close to

the class boundary and works well with small training set,

even when high dimensional data sets are classified. SVM have

already been applied for multisource classification in [17] where

several output coding methods were investigated.

In this paper, the proposed approach has been compared

to statistical classification methods and SVM classification.

Experiments were conducted on two different high resolution

remote sensing data sets from urban areas. The effectiveness of

the proposed methodology with a limited training set has been

also assessed.

The paper is organized as follows. Section II reviews the

use of morphological transformations for processing of hyper-

spectral imagery in urban areas. In Section III, the considered

supervised feature extraction approaches are introduced. Sup-

port Vectors Machines (SVM) are discussed in Section IV.

The applied data fusion schemes are discussed in Section V.

Experimental results obtained on two ROSIS data sets from

urban areas are presented in Section VI. Finally, conclusions

are drawn in Section VII.

TABLE I
SPECTRAL AND SPATIAL DATA PROPERTIES. ’ր’ INDICATES A GOOD

PROPERTY, ’∼’ INDICATES THAT THE PROPERTY MIGHT BE HARMFUL AND

’ց’ INDICATES A CRITICAL PROPERTY.

Spectral features Morphological features

ր Fine physical description ր Geometrical information

ր Directly accessible ∼ Needs to be extracted

∼ Redundancy ∼ Redundancy

ց No spatial information ց Reduced spectral information

II. EXTENDED MORPHOLOGICAL PROFILE

Mathematical Morphology is a theory aiming to analyze spa-

tial relationship between pixels. For a remote sensing applica-

tion, several morphological operators are available for extracting

geometrical information. An overview of operators can be found

in [18]. In the following sub-section, some basic notions of

mathematical morphology are reviewed. Then, the concept of

the Morphological Profile and its extension to multivalued data

are detailed.

A. Mathematical Morphology

The two fundamental operators in mathematical morphology

are erosion and dilation [19]. These operators are applied to an

image with a set of known shape, called a structuring element

(SE). To erode an image consists of finding where the SE fits the

objects in the image. The dilation, which is dual to the erosion,

shows where the SE hits the objects.

Opening and closing are combinations of erosion and dilation.

These operators remove from an original image structures of

size less than the SE. But they also modify structures which are

still present in the image after the opening/closing. Thus, they

can introduce fake objects in the image. To avoid this problem,

geodesic morphology and reconstruction should be used [19].

Opening and closing by reconstructions are connected operators

that satisfy the following assertion: If the structure of the image

cannot contain the SE, then it is totally removed, else it is totally

preserved. For a given SE, geodesic opening or geodesic closing

allows to know the size or shape of some objects present in the

image: The objects that are smaller than the SE are deleted

while the other (that are bigger than the SE) are preserved. To

determine the shape or size of all elements present in an image,

it is necessary to use a range of different SE sizes. This concept

is called Granulometry.

Granulometries are typically used for the analysis of the size

distribution of the structures in the images. Classical granu-

lometry by opening is built by successive opening operations

with an SE of an increasing size. By doing so, the image

is progressively simplified. Using connected operators, like

opening by reconstruction, no shape noise is introduced.

Morphological Profiles (MPs) are defined using the granu-

lometry. An MP is composed of the opening profile (OP) and

the closing profile (CP). The OP at the pixel x of the image I

is defined as an n-dimensional vector:

OPi(x) = γ
(i)
R (x), ∀i ∈ [0, n] (1)

where γ
(i)
R is the opening by reconstruction with an SE of a

size i and n is the total number of openings. Also, the CP at
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Fig. 1. Simple morphological profile with two opening and two closings. In
the shown profile, circular structuring elements are used with radius increment
4 (r = 4, 8 pixels). The processed image is a part of Fig. 4.(a).

the pixel x of image I is defined as an n-dimensional vector:

CPi(x) = φ
(i)
R (x), ∀i ∈ [0, n] (2)

where φ
(i)
R is the closing by reconstruction with an SE of a size

i. Clearly we have CP0(x) = OP0(x) = I(x). By collating

the OP and the CP , the MP of image I is defined as 2n + 1-

dimensional vector:

MP (x) = {CPn(x), . . . , I(x), . . . , OPn(x)} (3)

Example of MP is shown in Fig.1. Thus, from a single image

results a multiband image, whose dimension corresponds to

the number of transformations and spatial information is now

contained in the MP for each pixel. However, an MP is built with

only one band. Therefore, the spectral information is lost. One

approach to deal with this problem is to extract several images

that contain some parts of the spectral information and then

build the MP on each of the individual images. This approach,

namely the Extended Morphological Profile (EMP), is discussed

in the following.

B. Extended Morphological Profile

In order to apply this approach to hyperspectral data, charac-

teristic images need to be extracted. In [11], it was suggested

to use several principal components of the hyperspectral data

for such a purpose. Hence, the MP is applied on the first PCs,

corresponding to a certain amount of the cumulative variance

and a stacked vector is built with the MP on each PC. This

yields to the extended morphological profile (EMP). Following

the previous notation, the EMP is an m(2n + 1)-dimensional

vector:

MPext(x) = {MPPC1(x), . . . ,MPPCm} (4)

where m is the number of retaining PCs. Example of EMP is

shown in Fig. 2.

As with multispectral data, the MP/EMP may include some

redundancy. Classical feature reduction algorithm can be ap-

plied, as detailed in the following section.

III. SUPERVISED FEATURE EXTRACTION

Feature extraction can be viewed as finding a set of vectors

that represents an observation while reducing the dimensionality.

In pattern recognition, it is desirable to extract features that are

focused on discriminating between classes of interest. Although

a reduction in dimensionality is desirable, the error increment

due to the reduction in dimension has to be without sacrific-

ing the discriminative power of classifiers. In linear feature

extraction, the number of input dimensions corresponds to the

number of selected eigenvectors [3]. The transformed data are

determined by

x = ΦT
x (5)

where Φ is the transformation matrix composed of the eigen-

vectors of the feature matrix, x is the data in the input space

and x is the transformed data in the feature space. We have

in general dim(x) ≥ dim(x). Several statistical extraction

approaches have been proposed for remote sensing data [3],

including Decision Boundary Feature Extraction (DBFE) and

Nonparametric Weighted Feature Extraction (NWFE).

A. Decision Boundary Feature Extraction

It was shown in [20], that both discriminantly informative fea-

tures and redundant features can be extracted from the decision

boundary between two classes. The features are extracted from

the decision boundary feature matrix (DBFM). The eigenvectors

of the DBFM corresponding to non-zero eigenvalues are the

necessary feature vectors to achieve the same classification

accuracy as in the original space. The efficiency of the DBFE is

related to the training set and can be computationally intensive.

B. Nonparametric Weighted Feature Extraction

To overcome the limitations of the DBFE, Kuo and Land-

grebe [21] proposed the nonparametric weighted feature ex-

traction. NWFE is based on the Discriminant Analysis Feature

Extraction by focusing on samples near the eventual decision

boundary. The main ideas of the NWFE are 1) putting different

weights on every sample to compute the local means and 2)

defining nonparametric between-class and within-class scatter

matrices [3].

Many experiments have shown the effectiveness of these

approaches for the classification of hyperspectral data [3]. They

are usually applied on the spectral data, but it was successfully

applied to the EMP [11].

IV. CLASSIFICATION BY THE SUPPORT VECTOR MACHINE

So far, in our previous approach [2], [7], [11], [22] the clas-

sification was done with either a statistical classifier (Gaussian

Maximum Likelihood), a neural network or a fuzzy classifier.

Here it is proposed to use the Support Vector Machines (SVM).

Early work in classification of remotely sensed images by SVM

showed excellent results [17], [23], [24]. In [15], several SVM-

based classifiers were compared to other classical classifiers

such as a K-nearest neighbors classifier and a neural network

classifier and the SVM using the kernel method outperformed

the other classifiers in terms of accuracy. Multiclass SVM

performances were also positively compared with a discriminant

analysis classifier, a decision tree classifier and a feedforward

neural network classifier with a limited training set [25]. SVM

show good results in the situation of limited training set in [26].

Semisupervised SVM were also investigated for multi-spectral

data classification [27], [28].

SVM are surely among the most used kernel learning al-

gorithm. It performs robust non-linear classification of samples

using the kernel trick. The idea is to find a separating hyperplane
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Fig. 2. Extended morphological profile of two images. Each of the original profile has two openings and two closings. Circular structuring element with radius
increment 4 was used (r = 4, 8). The processed image is a part of Fig. 4.(a).

in some feature space induced by the kernel function while

all the computations are done in the orignal space [4]. A

good introduction to SVM for pattern recognition can be found

in [29]. Given a training set S = {(x1, y1), . . . , (x
ℓ, yℓ)} ∈

R
n × {−1; 1}, the decision function is found by solving the

convex optimization problem:

max
α

g(α) =
ℓ

∑

i=1

αi −
1

2

ℓ
∑

i,j=1

αiαjyiyjk(xi,xj)

subject to 0 ≤ αi ≤ C and
∑ℓ

i=1 αiyi = 0

(6)

where α are the Lagrange coefficients, C a constant that is used

to penalize the training errors, and k the kernel function. To

be an acceptable kernel, k should be a positive semi-definite

function [30]. One classical effective kernel is the Gaussian

kernel:

kσ(xi,xj) = exp

(

−‖xi − x
j‖2

2σ2

)

(7)

where the norm is the Euclidean-norm and σ ∈ R
+ tunes

the flexibility of the kernel. A short comparison of kernels for

remotely sensed image classification can be found in [26].

When the optimal solution of (6) is found, i.e., the αi, the

classification of a sample x is achieved by looking to which

side of the hyperplane it belongs:

y = sgn

(

ℓ
∑

i=1

αiyik(xi,x) + b

)

. (8)

To deal with multiclass classification problem, the pairwise

approach was used in our experiments [31]. More advanced

multiclass approaches applied to remote sensing data can be

found in [15]. For the particular case of one-class-classification,

a dedicated methodology is proposed in [32].

The SVM are mainly a non-parametric method, yet some

parameters need to be tuned before the optimization. In the

Gaussian kernel case, there are two parameters: C, the penalty

term, and σ, the with of the exponential. It is usually done by

a cross-validation step, where several values are tested. In our

experiments, C was fixed to 200 and σ2 ∈ {0.5, 1, 2, 4} was

selected using a 5-fold cross validation. The SVM optimization

problem was solved using the LIBSVM [33].

V. DATA FUSION

The proposed method is based on the data fusion of the

morphological information and the original data. In a previous

work [34], it was proposed to fuse the classification results of

two SVM classifiers, each one working with either the spectral

or the EMP data. It consisted in an appropriate adaptive fusion

Fig. 3. Proposed data fusion scheme.

scheme based on the output’s characteristics of the SVM. The

results in terms of accuracy were increased but it needed two

training of SVM, that could be time consuming.

Here it is proposed to use a multisource strategy to fuse

spectral and spatial information. First, an EMP is created based

on applying the PCA on the hyperspectral data. Secondly,

feature extraction is applied on both the EMP and the original

hyperspectral data. Finally, the extracted feature vectors are

concatenated into one stacked vector and classified by the SVM.

In the morphological processing we usually retain PCs cor-

responding to 99% of the cumulative variance. This is done in

order to reduce the redundancy in the data but keep most of the

variation. The EMP is built using the m PCs that correspond

to the 99% variance. Each MP is composed of n geodesic

openings, n geodesic closing and the corresponding PC. The

SE is a disk with initial radius of r pixels. The size increment

is s. Hence, each MP has 2n + 1 features and the EMP has

m(2n + 1) features. Noting xϕ the features associated to the

spectral bands and xω the features associated to the EMP, the

corresponding extracted features from the FE algorithm are:

xϕ = ΦT
ϕxϕ (9)

and

xω = ΦT
φxω. (10)

The stack vector is finally x = [xϕ, xω]T .

Fig. 3 presents the data fusion scheme. Note that in this work,

only morphological information is extracted, but it is possible to

extract other types of spatial information with other processing

and include them in the stacked vector.

VI. EXPERIMENTS

A. Data set

Airborne data from the ROSIS-03 (Reflective Optics System

Imaging Spectrometer) optical sensor are used for the exper-

iments. The flight over the city of Pavia, Italy, was operated

by the Deutschen Zentrum fur Luft- und Raumfahrt (DLR, the

German Aerospace Agency) in the framework of the HySens

project, managed and sponsored by the European Union. Ac-

cording to specifications, the number of bands of the ROSIS-03

sensor is 115 with a spectral coverage ranging from 0.43 to
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TABLE II
INFORMATION CLASSES AND TRAINING-TEST SAMPLES FOR THE

UNIVERSITY AREA DATA SET.

Class Samples

No Name Train Test

1 Asphalt 548 6641

2 Meadows 540 18649

3 Gravel 392 2099

4 Trees 524 3064

5 Metal Sheets 265 1345

6 Soil 532 5029

7 Bitumen 375 1330

8 Bricks 514 3682

9 Shadows 231 947

Total 3921 42776

TABLE III
INFORMATION CLASSES AND TRAINING-TEST SAMPLES FOR THE PAVIA

CENTER DATA SET.

Class Samples

No Name Train Test

1 Water 824 65971

2 Trees 820 7598

3 Meadows 824 3090

4 Bricks 808 2685

5 Soil 820 6584

6 Asphalt 816 9248

7 Bitumen 808 7287

8 Tiles 1260 42826

9 Shadows 476 2863

Total 7456 148152

0.86µm. The data have been atmospherically corrected but not

geometrically corrected. The spatial resolution is 1.3m per pixel.

Two data sets were used in the experiment:

1) University Area: The first test set is around the Engi-

neering School at the University of Pavia. It is 610 by

340 pixels. Some channels (twelve) have been removed

due to noise. The remaining 103 spectral dimensions

are processed. Nine classes of interest are considered,

i.e., trees, asphalt, bitumen, gravel, metal sheets, shadow,

bricks, meadows and soil.

2) Pavia Center: The second test set is the center of Pavia.

The Pavia center image was originally 1096 by 1096

pixels. A 381 pixel wide black stripe in the left part of

image was removed, resulting in a “two parts” image. This

“two parts” image is 1096 by 715 pixels. Some channels

(thirteen) have been removed due to noise. The remaining

102 spectral dimensions are processed. Nine classes of

interest are considered, i.e., water, trees, meadows, bricks,

soil, asphalt, bitumen, tiles and shadows.

Available training and testing set for each data set are given in

Table II and III and Fig. 4 presents false colors images for both

data set.

The classification accuracy was assessed with:

• An overall accuracy(OA) which is the number of well

classified samples divided by the number of test’s samples

• An average accuracy (AA) which represents the average of

class classification accuracy

• A kappa coefficient of agreement (κ) which is the percent-

(a) (b)

Fig. 4. ROSIS data: (a) University Area, (b) Pavia Center. Three-channel
color composite of the areas used for the classification. Data characteristics are
detailed in Sub-Sections VI-B and VI-C.

age of agreement corrected by the amount of agreement

that could be expected due to chance alone [35].

These criteria were used to compare classification results and

were computed using the confusion matrix. Furthermore, the

statistical significance of differences was computed using Mc-

Nemar’s test, which is based upon the standardized normal test

statistic [36]:

Z =
f12 − f21√
f12 + f21

(11)

where f12 indicates the number of samples classified correctly

by classifier 1 and incorrectly by classifier 2. The difference in

accuracy between classifiers 1 and 2 is said to be statistically

significant if |Z| > 1.96. The sign of Z indicates whether

classifier 1 is more accurate than classifier 2 (Z > 0) or vice-

versa (Z < 0). This test assumes related testing samples and

thus is adapted to our situation since the training and testing set

were the same for each experiment.

The feature extractions were done with MultiSpec c© [3] while

the morphological operations were done with the Image Pro-

cessing Toolbox of Matlab c©. The SVM classification was done

using the LIBSVM through its Matlab c© interface [33]. From

previous experiments on the same data set, the Gaussian kernel

provides the best results and was used for the experiments [26].

The range of each feature, be it spectral or morphological, was

stretched between 0 and 1.

To obtain a baseline result for comparison, the classification

was also done using the Gaussian Maximum Likelihood (ML)

classifier on the hyperspectral data using MultiSpec c©1. Feature

extraction was done using the two FE algorithms (DBFE and

NWFE) but only the best results have been reported for both

data sets. The results were compared to those obtained by the

proposed approach.

1For the ML, the kappa coefficient was not accessible.
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TABLE IV
UNIVERSITY AREA. EIGENVALUES OF PRINCIPAL COMPONENTS IN

PERCENTAGE.

Value Cumulative Val.

λ1 82.75 82.75

λ2 15.56 98.01

λ3 1.51 99.55

λ4 0.14 99.70

B. University Area data set

PCs were computed from the hyperspectral data. The results

for the eigenvalues are shown in Table IV. The left column gives

the component number, the center column the eigenvalues in

percentage of the total amount of variance and the right column

the cumulative amount of variance. From the table, three PCs

were necessary to retain 99% of the variance criterion. EMPs

were built according to the scheme presented in the Section V:

A circular SE with a step size increment of 2 was used. Four

openings and closings were computed for each PC, resulting in

an EMP of dimension 27.

First, the classification with SVM was done using the spectral

information and the extended morphological profile. The best

ML accuracy was obtained using 8 features extracted with the

NWFE, following Landgrebe’s recommendations in [3]. The

results are reported in Table V. Regarding the global accuracies,

both SVM approaches perform equally well, for instance the

difference between the classification using the spectral informa-

tion and the EMP is not statistically significant, see Table VI.

Note that it is consistent with the characteristics of the scene:

The University Area is a mix between man-made structures and

natural materials. Therefore, the morphological information is

not as useful as it could be in a very dense urban area. When

a careful analysis is done on the class-specific accuracies, we

can see from Table V that each approach performed well for

complementary classes, e.g. the spectral approach performed

better for classes 3, 6, 9 while the EMP approach performed

better for classes 1, 2, 7, 8. After the data fusion we have to

look at these classes and see if the best information was used,

i.e., if the classification accuracy increased for these classes.

The experiment was then performed with the concatenated

vector. The vector was made of the 103 spectral bands and the

27 features of the EMP. The vector was directly used as an input

to the SVM. The classification results are reported in Table V.

As can be seen from the table, the global accuracies increased.

The κ value in percentage is 79.13% against 74.47% for the

spectral approach and 73.25% for the EMP and the differences

are statistically significant (see Table VI). Regarding the class-

specific accuracies, the results in terms of accuracies have

increased for classes 1, 7, 8 when compared to both individual

approaches. In fact all the classes are more accurately classified

than the worst respective cases for the individual approaches.

In the last experiment, feature reduction was applied on the

morphological data and the original data before the concate-

nation. Then the stacked vector was classified by the SVM.

Table VII summarizes the test accuracies for several values of

the variance criterion for the DBFE and NWFE. Best results

were obtained with 95% and 80% variance criterion for the

TABLE VII
UNIVERSITY AREA. GLOBAL ACCURACIES IN PERCENTAGE WITH

DIFFERENT FEATURE EXTRACTION METHODS. THE NUMBERS OF FEATURES

FROM THE SPECTRAL DATA AND THE MORPHOLOGICAL DATA,
RESPECTIVELY, ARE GIVEN IN BRACKETS.

Feature extraction Cum. Var. Features OA AA κ

DBFE

99 60 (45,15) 84.77 89.98 80.43

95 27 (27,10) 87.97 88.94 84.40

90 28 (20,8) 86.49 88.94 82.50

80 19 (14,5) 82.95 87.51 77.27

70 14 (10,4) 76.93 84.63 71.20

NWFE

99 62 (42,20) 84.15 88.89 79.61

95 28 (16,12) 82.90 87.25 77.98

90 18 (10,8) 82.64 86.77 77.65

80 13 (7,6) 87.59 88.93 83.89

70 10 (5,5) 79.57 87.39 74.49

DBFE and NWFE, respectively. Using 95% of the variance

criterion with DBFE, the hyperspectral data were reduced to

27 features and the EMP to 10 features. With NWFE and 80%,

7 features were extracted from the hyperspectral data and 6 from

the EMP. Again, as can be seen in Table VI, differences between

the classification accuracies are statistically significant.

Considering the class-specific accuracies, the DBFE approach

improved the classification for class 2 while class 3 was less ac-

curately classified than with the concatenated full hyperspectral

data and EMP. However, the DBFE outperformed the individual

classifications of the spatial or spectral information. On this

data set, the classification of the DBFE feature extracted data

gave the best classification results. Similar comments can be

made for the accuracies obtained with classifications of the

NWFE. Still, the number of features needed to achieve the

same accuracy is significantly lower for the NWFE approach

than for the DBFE. Since the SVM is linearly related to the

dimensionality of the data, lower dimensional data reduced the

training time and increased the speed of the classification.

To assess this increase, comparison of the processing time

(training and classification process) for the different approaches

was made. Table VIII summarizes the results, which are clearly

different according to the features used. The training time could

depend on several factors:

1) The dimension of the data;

2) The size of the training set;

3) The number of parameters for the kernel.

For our given problem, items 2) and 3) are the same. Reducing

the size of the data is beneficial for the processing time, since

data with lower dimensionality (EMP and NWFE) have the

shortest processing time. For the best case (NWFE), the gain is

about 73%.

For the classification processing time, two factors have an

influence: The dimension of the data and the number of support

vectors (non-zero αi in (8)). Thus, approaches with low di-

mensionality and few support vectors perform the classification

task of the whole image faster (EMP and NWFE). Nevertheless,

the classification processing is really fast by comparison to the

training time, in all the cases.

Classification maps for the different approaches are shown in

Fig. 5.
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TABLE V
UNIVERSITY AREA. SUMMARY OF THE GLOBAL AND THE CLASS-SPECIFIC TEST ACCURACIES IN PERCENTAGE FOR THE CLASSIFICATION. THE NUMBERS

OF FEATURES FROM THE SPECTRAL DATA AND THE MORPHOLOGICAL DATA, RESPECTIVELY, ARE GIVEN IN BRACKETS.

ML (NWFE) Spectral EMP Spec. EMP DBFE 95% NWFE 80%

Features 8 103 27 130 37 (27,10) 13 (7,6)

OA 80.10 79.48 79.14 83.53 87.97 87.59

AA 87.00 88.14 84.30 89.39 89.43 88.93

κ - 74.47 73.25 79.13 84.40 83.89

Class 1 76.00 84.36 94.50 95.33 90.92 86.80

Class 2 73.90 66.20 72.82 73.46 85.91 86.95

Class 3 70.80 71.99 53.22 65.89 57.88 63.26

Class 4 96.70 98.01 98.89 99.18 99.22 98.53

Class 5 99.90 99.48 99.55 99.48 99.48 99.88

Class 6 87.60 93.12 58.11 84.15 85.32 82.62

Class 7 92.00 91.20 96.09 97.22 95.19 96.61

Class 8 87.30 92.26 95.27 96.12 95.84 95.38

Class 9 99.10 96.62 91.24 93.66 95.14 90.60

TABLE VI
UNIVERSITY AREA. STATISTICAL SIGNIFICANCE OF DIFFERENCES IN CLASSIFICATION ACCURACIES.

EMP/Spectral Spectral/Spec. EMP Spectral/DBFE 95% Spectral/NWFE 80% Spec. EMP/DBFE 95% Spec. EMP/NWFE 80% DBFE 95%/NWFE 80%

Z -1.36 -19.55 -37.98 -36.61 -25.19 -21.79 2.32

TABLE VIII
UNIVERSITY AREA. PROCESSING TIME IN SECONDS AS FUNCTION OF DIMENSIONALITY AND NUMBER OF SUPPORT VECTORS.

Spectral EMP Spec. EMP DBFE 95% NWFE 80%

Dimension 103 27 130 37 13

Training 3074 850 3257 1184 859

Number of SVs 1085 406 529 727 572

Classification 76 9 41 18 9

(a) (b) (c) (d)

Fig. 5. University Area: Classification map obtained with SVM from: (a) the original hyperspectral data, (b) the EMP, (c) 37 DBFE features and (d) 13 NWFE
features. Classification accuracies are reported in the Table V.

C. Pavia Center data set

For the second test, the scene is a very dense urban area in

the center of the city of Pavia. Because of that, morphological

information should be useful for the discrimination. PCs were

computed from the hyperspectral data. The results for the

eigenvalues are shown in Table IX. From the Table, three PCs

were necessary to retain 99% of the variance criterion. The EMP

was built according to the scheme presented in the section V:

A circular SE with a step size increment of 2 was used. Four

openings and closings were computed for each PC, resulting in
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TABLE IX
PAVIA CENTER. EIGENVALUES OF PRINCIPAL COMPONENTS IN

PERCENTAGE.

Value Cumulative Val.

λ1 82.94 82.94

λ2 14.82 97.77

λ3 1.70 99.47

λ4 0.19 99.66

an EMP of dimension 27.

SVM classification was applied to the original hyperspectral

data and the EMP. The best ML accuracy was obtained using 29

features extracted with the DBFE. The results are reported in

Table X. From the Table, it can be seen that SVM classifier

achieved excellent global accuracies. In these experiments,

the morphological approach performs better than the spectral

based approach. Table XI shows the statistical significance of

differences between the classification accuracies for the different

approaches. This is consistent with the characteristics of the pic-

ture: it is a very dense urban area and morphological processing

provides discriminative information. In terms of accuracies, the

main improvement in the classification is achieved for class 4.

The other classes are classified equally accurately. The data

fusion should thus improve the classification of class 4 while

preserving very good results for the others classes.

Next, the experiment was performed using the concatened

vector. The vector was made of the 102 spectral bands and the

27 features of the EMP. This vector was used as an input for

the SVM without any additional processing. The classification

results are reported in Table X. The differences of classification

accuracies between the EMP and the concatened vector are not

statistically significant, since the McNemar’s test is almost equal

to zero, see Table XI. Thus, both EMP and concatened vector

perform equally well.

As in the previous experiment, feature reduction was applied

both on the morphological data and on the original data before

the concatenation. Then, the stacked vector was classified by

the SVM. Table XII summarizes the test accuracies for several

values for the variance criterion for the DBFE and NWFE. The

best results are obtained with 99% variance criterion for both

DBFE and NWFE. Using 99% of the variance with the DBFE,

the hyperspectral data is reduced to 51 features and the EMP is

reduced to 15 features. With the NWFE and 99% of the variance

criterion, 44 features were extracted from the hyperspectral data

and 20 from the EMP. The results are given in Table X.

For this experiment, the DBFE does not help for the clas-

sification since the Z test is not significant. On the other

hand, similar classification accuracy is reached with far less

features, nearly half the size of the previous feature set, thus

decreasing the total training and classification time. The NWFE

leads to a significant increase of the classification accuracies,

|Z|= 7.75 by comparison to the best results obtained with

the concatenation vector, which is contrary to the previous

experiment. Classification maps for the different approaches are

shown in Fig. 6. Visually, the thematic map produced with the

classification of the NWFE features seems less noisy than the

one obtained with the classification of the DBFE features. This

is especially true in the top-left corner which correspond to a

TABLE XII
PAVIA CENTER. GLOBAL ACCURACIES IN PERCENTAGE WITH DIFFERENT

FEATURE EXTRACTION METHODS. THE NUMBERS OF FEATURES FROM THE

SPECTRAL DATA AND THE MORPHOLOGICAL DATA, RESPECTIVELY, ARE

GIVEN IN BRACKETS.

Feature extraction Cum. Var. Features OA AA κ

DBFE

99 66 (51,15) 98.65 97.30 98.10

95 41 (31,10) 98.37 96.86 97.70

90 31 (23,8) 98.08 96.71 97.29

80 22 (17,5) 98.53 97.22 97.42

70 17 (13,4) 98.53 97.31 97.42

NWFE

99 66 (44,20) 98.87 97.95 98.41

95 31 (19,12) 98.58 96.66 97.99

90 21 (12,9) 98.41 97.28 97.71

80 14 (8,6) 98.24 96.63 97.52

70 10 (6,4) 98.39 96.39 97.73

TABLE XIV
UNIVERSITY AREA. SUMMARY OF THE GLOBAL TEST ACCURACIES IN

PERCENTAGE FOR SVM CLASSIFICATION USING A LIMITED TRAINING

SET.THE NUMBERS IN BRACKETS ARE THE NUMBERS OF FEATURES FROM

THE SPECTRAL DATA AND FROM THE MORPHOLOGICAL DATA,
RESPECTIVELY.

Cum. Var. Features OA AA κ

Spectral - 103 71.25 75.79 63.70

EMP - 27 75.79 80.72 69.00

Spec. EMP - 130 75.25 81.23 68.66

DBFE

99 66 (44,12) 77.33 83.77 71.31

95 32 (25,7) 81.34 82.84 75.65

90 23 (18,5) 74.55 79.15 67.45

80 16 (12,4) 72.28 80.35 65.25

70 11 (9 ,2) 61.31 72.04 52.26

NWFE

99 53 (35,18) 85.42 87.48 80.87

95 25 (14,11) 81.04 85.42 75.84

90 17 (10,7) 79.05 83.72 73.27

80 13 (7,6) 84.77 85.65 80.09

70 9 (5,4) 83.10 84.35 77.84

very dense urban area.

Regarding the computing time, the results for the training and

the classification are reported in Table XIII. As expected, using

feature extraction methods reduces the processing time for both

the training and the classification.

Classification maps for the different approaches are shown in

Fig. 6.

D. Small training set experiment: University Area

To assess the effectiveness of the proposed methodology for a

limited training set, we have randomly extracted a few training

samples from the training set. For this experiment, we used

20 samples for each class, which represents less than 5% of

the original training set. We have used the same EMP but had

some problems with the DBFE, the covariance matrix was non-

invertible (the NWFE does not suffer from this problem). In

order to overcome this shortcoming and to apply the DBFE

anyway, we use the leave on out covariance (LOOC) to estimate

the covariance matrix and perform a statistical enhancement

with unlabeled samples, both algorithms were implemented in

the MultiSpec c© software [37], [38]. We have repeated the

training samples selection and the classification process five

times, and the mean classification results are reported in the

paper.
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TABLE X
PAVIA CENTER. SUMMARY OF THE GLOBAL AND THE CLASS-SPECIFIC TEST ACCURACIES IN PERCENTAGE FOR SVM CLASSIFICATION. THE NUMBERS OF

FEATURES FROM THE SPECTRAL DATA AND THE MORPHOLOGICAL DATA, RESPECTIVELY, ARE GIVEN IN BRACKETS.

ML (DBFE) Spectral EMP Spec. EMP DBFE 99% NWFE 99%

Features 29 102 27 129 66 (51,15) 64 (44,20)

OA 94.50 97.67 98.69 99.69 98.65 98.87

AA 94.00 95.60 97.69 98.07 97.30 97.95

κ - 96.71 98.15 98.15 98.10 98.41

Class 1 91.50 98.35 99.08 98.66 99.17 99.21

Class 2 92.00 91.23 91.62 93.52 90.00 92.49

Class 3 97.70 96.76 96.18 95.95 96.54 96.76

Class 4 86.90 88.45 98.40 98.77 98.92 99.55

Class 5 95.60 96.97 98.81 99.42 99.27 99.74

Class 6 94.40 96.32 97.98 98.36 98.45 98.70

Class 7 96.40 96.01 97.89 98.22 97.91 98.41

Class 8 99.30 99.40 99.74 99.79 99.81 99.72

Class 9 92.30 99.93 99.44 99.93 98.60 96.93

TABLE XI
PAVIA CENTER. STATISTICAL SIGNIFICANCE OF DIFFERENCES IN CLASSIFICATION ACCURACIES.

EMP/Spectral EMP/Spec. EMP EMP/DBFE 99% EMP/NWFE 99% Spec. EMP/DBFE 95% Spec. EMP/NWFE 80% DBFE 95%/NWFE 80%

Z 27.84 -0.06 1.44 -8.14 1.42 -7.75 -9.44

TABLE XIII
PAVIA CENTER. PROCESSING TIME IN SECONDS AS FUNCTION OF DIMENSIONALITY AND NUMBER OF SUPPORT VECTORS.

Spectral EMP Spec. EMP DBFE 95% NWFE 80%

Dimension 102 27 129 66 66

Training (s) 5178 1569 5909 3520 3962

Number of SVs 691 265 401 558 408

Classification (s) 143 20 105 73 47

(a) (b) (c) (d)

Fig. 6. Pavia Center: Classification map obtained with SVM from: (a) the original hyperspectral data, (b) the EMP, (c) 66 DBFE features and (d) 64 NWFE
features. Classification accuracies are reported in the Table X.

As with the previous experiments, we perform the classifica-

tion using the spectral or the morphological feature with SVM.

The ML produced very poor results, simply close to random

classification and hence not reported. The global accuracies are

reported in Table XIV. Statistical significance of differences is

reported in Table XV.

First of all, the test results are lower than those in Table V

and VII, due to the limited training set. For instance, with the

concatened feature vector, the overall accuracy and the κ are

respectively, 83.53% and 79.13% for the original training set

while using a limited training set, the overall accuracy and the

κ are respectively, 75.35% and 68.66%. Nevertheless, with a

very small training set, the results are still good.

For the feature extraction, NWFE with 99% of the cumulative

variance provides the best results: The obtained overall accuracy

is 85.42% and the κ is 80.87%, which is closed to the best
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results obtained with the full training set (OA=97.87% and κ

= 84.40%, see Table V). The |Z| between the best results with

limited training and the best results with full training set is equal

to 13.65.

Furthermore, the accuracies are better than those obtained

with the full training set with the spectral or morphological

information alone. It is also important to note that NWFE

outperforms better DBFE without any statistical enhancement.

Considering the processing time, with only 20 samples for

each class, the training as well as the classification of the entire

data set are done in 1 or 2 seconds.

VII. CONCLUSION

Classification of hyperspectral data with a fine spatial reso-

lution has been investigated. The contribution of this work is a

methodology to include both spatial and spectral information in

the classification process by a data fusion scheme. Experimental

results on two ROSIS data sets showed excellent accuracies

and improvements compared to those obtained with pixel-based

classifiers and the EMP-based classifier.

The use of feature extraction was motivated by the fact that

the full stacked vector contains a lot of redundancy, because

there is a redundancy in the hyperspectral data [3] as well as

in the EMP [11], which was confirmed by the experiments. On

the other hand, SVM are known to be robust to dimensionality.

Therefore, the use of feature reduction for SVM could be

disputable. However, in the experiments lower dimensional data

decreased the processing time, which can be crucial for some

applications, and more important it has been showed that SVM

can suffer from the dimensionality when many features are

irrelevant [39]. By construction, the stacked vector may contain

many copies of the same information and a feature extraction

step may finally be needed to ensure correct classification

on every data set, which is confirmed by the experiments

(Usefulness of features reduction for the classification of remote

sensing data with SVM was also assessed in [40]).

It is clear that feature extraction helps for the classification

of hyperspectral data but it is not clear which one of the

feature extraction methods should be used for the fusion of

morphological and spectral features. From a theoretical point

of view, the NWFE was derived because of some intrinsic

problems with the DBFE [3], i.e., ”DBFE can involve lengthly

calculations and more significantly it does not perform as well

for small numbers of training samples”. Hence, the NWFE

might be more preferable, especially when a small training set

is available. The experiments performed with a limited training

set confirmed that.

In conclusion, the proposed fusion method succeed in taking

advantage of the spatial and the spectral information simulta-

neously. It outperformed previous results [2], [10]. Our current

research is oriented to the definition of additional spatial fea-

tures, such as textural characteristics [41], to be include in the

feature vectors.
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