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Spectral Approximation for Compact Operators

By John E. Osborn*

Abstract.   In this paper a general spectral approximation theory is developed for compact
operators on a Banach space.   Results are obtained on the approximation of eigenvalues

and generalized eigenvectors.   These results are applied in a variety of situations.

1.  Introduction.  Recently, Bramble and Osborn [7] developed spectral approxima-
tion results for a particular type of compact operator on a Hubert space and applied
them to obtain rate of convergence estimates for several Galerkin-type approximations
for the eigenvalues and generalized eigenvectors of nonselfadjoint elliptic partial differen-
tial operators.

In this paper spectral approximation results are established for compact operators
on a Banach space.  These results are then applied in a variety of situations:   Galerkin-
type approximations for nonselfadjoint elliptic operators, approximation of integral
operators by numerical quadrature, and an approximation by "homogenization"
recently studied by Babuska [4], [5].

The main results of the paper are in Section 3.  The development there is strongly
influenced by the treatment in [7].  The results in [7] are formulated in terms of
Sobolev space norms of negative as well as positive order, whereas the results in this
paper are formulated just in terms of the norm on the underlying Banach space.  Special
features of this work are:

1. Approximations for the generalized eigenvectors are obtained first and then
used to obtain the eigenvalue estimates.

2. In the case of a multiple eigenvalue (in general having different algebraic and
geometric multiplicities), a weighted average of approximate eigenvalues is shown to be
the "right" choice as an approximation.

3. The results apply to any compact operator on a Banach space and thus, in
particular, to nonselfadjoint operators on a Hubert space.

4. The results apply to a variety of approximation methods such as Galerkin-type
approximation of elliptic eigenvalue problems and the approximation of integral oper-
ators by numerical quadrature.

Our results should be compared to the work of Vaïnikko [18], [19], [20].  He
proves a general theorem on the convergence of eigenvalues and generalized eigenvectors.
Theorems 4 and 5 of Section 3 are analogous to his.  He does not obtain a result of the
type given by Theorem 3 of Section 3 (our main result).   His strongest results are
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SPECTRAL APPROXIMATION FOR COMPACT OPERATORS 713

associated with the approximation of an operator T by an operator PnT where Pn is a
projection whose adjoint can be calculated (cf. part (d) of Section 4).  This calculation,
which must be carried out for each application, does not appear to be simple and it is
not clear how to put several of the applications mentioned in Section 4 into Vaïnikko's
setting.

2.  Preliminaries.  Let A : X —► X be a compact operator on a complex Banach
space X.   We denote by a(A) and p(A) the spectrum and resolvent sets of A, respectively.
For any complex number z e p(A), RZ(A) = (z - A)~l is the resolvent operator.  a(A)
is countable; nonzero numbers in a(A) are eigenvalues; and if zero is in a(A), it may or
may not be an eigenvalue.

Let p S a(A) be nonzero.   There is a smallest integer a such that N((p. - A)a) —
TV((ju - A)a+1), where TV denotes the null space; a is called the ascent of p - A.
TV((ju - A)a) is finite dimensional and m = dim N((p - A)a) is called the algebraic mul-
tiplicity of p.  The vectors inTV((/i - A)a) are called the generalized eigenvectors of A
corresponding to p.  The geometric multiplicity of jn is equal to dim N(p - A) and is
less then or equal to the algebraic multiplicity.  The two multiplicities are equal if X
is a Hubert space and A is selfadjoint.

Throughout the paper we will consider a compact operator T: X —► X and a
sequence of compact operators Tn : X —*■ X such that Tn —> T pointwise
(lim„^J|r„/- Tf\\ = 0 for all/e J) and {Tn} is collectively compact, i.e., the set
{T„f'- 11/11 < 1, « = 1, 2, . . . } is sequentially compact. Clearly this is the case if
T„ -* T in norm (limn^J\Tn - T\\ = 0).

Let p be a nonzero eigenvalue of T with algebraic multiplicity «2 and let T be a
circle centered at p which lies in p(T) and which encloses no other points of o(T). The
spectral projection associated with p and T is defined by

E = EM = 2ldSrR*iT)ds-
Tí is a projection onto the space of generalized eigenvectors associated with p and T.
For « sufficiently large, T C p(Tn) and the spectral projection,

En=EBM = ±rfTR,(TH)dz,

exists; En converges to E pointwise and {En} is collectively compact; and dim R(En(p))
= dim R(E(p)) = m, where R denotes the range. En is the spectral projection associated
with Tn and the eigenvalues of Tn which lie in T, and is a projection onto the direct sum
of the spaces of generalized eigenvectors corresponding to these eigenvalues.  Thus,
counting according to algebraic multiplicities, there are m eigenvalues of Tn in T; we
denote these by px(n), . . . , Pm(n).  Furthermore, if T ' is another circle centered at
p with an arbitrarily small radius, we see that px(n), . . . , pm(n) are all inside of T
for « sufficiently large, i.e., limn^mPj(n) = p for/ = 1.m. R(E) and R(En) are
invariant subspaces for T and Tn, respectively, and TE = ET and TnEn = EnTn. We
will also use the fact that {Rz(Tn): z ET,« large} is bounded.

In the context considered here, namely, pointwise convergence of a sequence of
collectively compact operators, these results can all be found in Anselone [1].  For the
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714 JOHN E. OSBORN

case of norm convergence, they can be found in [9].
If p is an eigenvalue of T with algebraic multiplicity m, then p is an eigenvalue

with algebraic multiplicity «2 of the adjoint operator T* on the dual space X*. The
ascent of p - T* will be a. E* will be the projection operator associated with T* and
u; likewise E* will be the projection operator associated with T* and px(n), . . . , pm(n).
If 0 G X and 0* €E X*, we will denote the value of the linear functional 0* at 0 by
[0, 0*] ■

Remark. T* here is the Banach adjoint. If X = H is a Hubert space,'we would
naturally work with the Hubert adjoint, which acts on H. Then p would be an eigen-
value of T if and only if p is an eigenvalue of T*.

Given two closed subspaces M and TV of X we define 8(M, TV) =

suPx£M,\\x\\ = idist(x' ty and HM, TV) = max[S(M, TV), Ô(TV, TW)] ; 8(M, TV) is called
the gap between M and TV.   The gap provides a natural way in which to formulate
results on the approximation of generalized eigenvectors.  We will need the following
results.

Lemma 1. // dim M = dim TV < °°, then

8(N, M) < 8(M, TV)[1 - 8(M, TV)]-1.

For a discussion of this result and the result that 5(TV, M) = d(M, TV) if X = H is
a Hubert space and S (TV, M) < 1, we refer to [10, pp. 264-269].

Lemma 2 (Lay [13]). Let TV, Mx and M2 be closed subspaces of X such that
X = Mx © TV = M2 ©TV and let Qx and Q2 be the projections of X along TV and onto
Mx and M2, respectively.  If \\I - Q2\\8(MX ,M2)< 1, then

IIQ2IIII/-Q2II8(M1.M2)
»Öl     02"<  l-\\I-Q2\\8(Mx,M2) ■

Proof.   Letcf = supxeMi;M = 1||x-Ö2x||.   Ut 8 > 8(Mx,M2),x GMx,\\x\\ =
1.  Then by the definition of 8(MX, M2) there exists u &M2 such that \\x - u\\ < 8.
Since (/ - Q2)u = 0, we have ||* - g2*|| = ||(7 - Q2)(x - u)\\ < \\I - Q2\\8.  Thus d <
11/ - ß2IIS for all 5 > 8(MX, M2) and hence d < ||/- Q2\\8(MX, M2).

Since R(I - Qx) = TV(ß2), we have Q2 = Q2QX.  It is clear that \\y - Q2y\\ <
d\\y\\ for all y EMX.  Hence for any x,

llô,*ll < llß,* - Q2Qxx\\ + \\Q2Qxx\\ < d\\Qxx\\ + \\Q2x\\,
from which we get Hgjjcll < (1 - J)-1 ||ß2x||.  Thus, since d<\\I- Q2\\8(MX ,M2)<\,
we have

ii/-e2iuiô2iiô(M1,Ti/2)
\\Qxx - Q2x\\ = \\Qxx - Q2Qxx\\ < d\\Qxx\\ <      } _ (|/ _ ^^ ^  ■

3.  Convergence Estimates.  Let p be a nonzero eigenvalue of T and assume the
ascent of p — T is a.  We begin this section by showing how the generalized eigenvectors
of T corresponding to p are approximated by the generalized eigenvectors of Tn cor-
responding to px(n), . . . , pm(n).

Theorem 1.  There is a constant Cx such that
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SPECTRAL APPROXIMATION FOR COMPACT OPERATORS 715

8(R(F),R(En))<Cx\\(T-Tn)\R{E)\\

for ail large n, where (T - Tn)\R(E~. denotes the restriction ofT~Tn to R(E).
Proof.   For /G R(E) with ||/|| = 1, we have \\f- EJ\\ = \\(E - En)Ef\\ <

||(7J - En)E\\, and hence 8(R(E), R(En)) < \\(E - En)E\\; fox f G R(En) with ||/|| = 1
we have \\f-Ef\\ < \\{En - E)En\\, and hence 8(R(En), R(E)) < \\(En - E)En\\. Since
En —► E pointwise and {/?„} is collectively compact, both \\(En - E)E\\ and 11(72 - En)En\
converge to 0 as « —»• °°   [1].  Thus lim„_008(R(E), R(En)) = 0.

We now apply Lemma 1 with M = R(E) and TV = R(En). This yields

(3-1) 8(R(En), R(E)) < 8(R(E), R(En)) [1 - 8(R(E), R(En))]~1.

Since limn +J(R(E), R(En)) = 0, (3.1) implies that 8(R(En), R(E)) < C8(R(E), R(EJ)
for some constant C and hence that

(3.2) §(R(En), R(E)) < (1 + Q8(R(E), R(EJ).
Now for / G R(E) we have

||/-/2„/|| =  ||/2/-/2„/|| = l-Sr[Rz(.T)-Rz(Tn)]fdz2iri J r

J_
2tt f Rz(Tn)(T-Tn)Rz(T)fdz

R(E) is invariant for T and thus for RZ(T).  Hence

(3-3)       Wf-EJW < ¿ length(r) sup \\Rz(Tn)\\ \\(T - Tn)\R,E)\\ sup||7?z(r)ll U/H.

Since Tn —► T pointwise and {Tn} is collectively compact, supzer||7?z(rn)|| is bounded
in n.  Thus from (3.2) and (3.3) we have

l(R(E),R(En))<Cx\\(T-Tn)\R{E)\\,
where

Cx = (l/2irXl + C) length(r)   sup ||Ä,(rB)|| sup||7îz(r)l|.
n,zer zer

Although each of the eigenvalues px(n), . . . , pm(n) are close to p for large «,
their arithmetic mean is generally a closer approximation [7].  Thus we define

1   m
&") =—Z hi")-

7=1

In the terminology of [11] this is the weighted mean of the /i-group.  See also Kreiss
[12].  Our next theorem gives an estimate for jit - £(«).

Theorem 2.  There is a constant C2 such that

\p-p(n)\<C2\\(T-Tn)\R(E)\\

for all large n.
Proof.   For large n the operator En\R,Ey R(E) —► F(En) is one-to-one since

11(72 -En)E\\ -+0 and EJ= 0,f(=R(E) implies ||/|| = \\Ef-EJ\\ < \\(E-En)E\\-
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716 JOHN E. OSBORN

11/11, and En\R,Es is onto, since dim R(En) = dim R(E) = m.   Thus (F„\RtE))    •
R(En) —► R(E) is defined; we write E~l for (En\R/E-))~1.  For « sufficiently large and
fGR(E) with 11/11 = 1, we have

1 - \\EJ\\ = 1172/11 - ||/2n/|| < ||(72 -En)E\\ < H
and hence \\Enf\\ > %. This implies HT?"1!! < 2 for large «, i.e., \\E~l\\ is bounded in
n. We note that EnE~x is the identity on R(En) and E~1En is the identity on R(E).
Now we define f = TJ^'^Ti^^^: 7?(/2) —► R(E).

Using the fact that R(En) is invariant for Tn, we see that a(r„) = {px(n), . . . ,
2im(«)} and that the algebraic [geometric] multiplicity of any p¡(n) as an eigenvalue of
tn is equal to its algebraic [geometric] multiplicity as an eigenvalue of Tn.  Letting
T = T\R^E^ we likewise see that o(t) = {p}.  Thus trace t - mp and trace tn =
mp(n), and since T and Tn are defined on the same space, we have

P - p(n) = ±-trace(f - Tn).

The use of the operator tn was suggested by Atkinson [2].
Let 0j, . . . , 0m be a basis for R(E) and let 0j, . . . , <¡>m be the dual basis to

0p . . . , 0m.  Then
1 l    m

(3.4) M-/î(») = -trace(r-f„) = ^-Ç  [(T - T^, 0/].

Here each 0? is an element of R(E)*, the dual space of R(E), but we may extend each
<¡>f to X as follows.  Since X = R(E) © 7V(/2), any / G X can be written as / = g + h
with g G R(E) and h G TV(/2).  Define [/, 0f] = [g, 0f].  Clearly <¡>*, so extended, is
bounded, i.e., 0;* G X*.  Now [/, (p - T*)a<pf] = [(ju - 70a/, 0f ].  If f G R(E) =
TV((ji - T)a), this vanishes and if f G N(E), this vanishes since TVf/T) is invariant for p -
T   Hence [/ (ju - r*)°0f] = 0 for all /G X i.e., (¡i - T*f<t>f = 0.  Thus we have
shown that the 0? are generalized eigenvectors of T* corresponding to p. Although
this particular choice for the extension of 0? plays no role in this theorem, it is central
in the theorems which follow.

Using the facts that 7'„72„ = 72„r„ and £'^172„ is the identity on R(E),we see that

(3 5)    W~f"^' 0/*] ' = l[70/ ~E'nTnEn^ m I

= WE-'E^T-T^, 0;] I < W?En\ KT-Tn)\R{E)\\ Uf\\ ||0f ||
for each/.   \\En\\ is bounded in « since En —> E pointwise.  Thus from (3.4) and (3.5)
we get

1 m
\P - m\ < -supll/ifc1^!! Z 110/11 H0;il W(T-Tn)\R(E)l

7= 1

This gives the desired result.
For the remainder of the paper, except where the contrary is explicitly pointed

out, we assume Tn converges to T in norm.  Then T* converges to T* in norm.  Under
the assumption of norm convergence we can obtain a refined estimate for \p - p(n)\.

Theorem 3. Let (¡>x, . . . , 0m be any basis for R(E) and let 0!f, . . . , 0* be
the dual basis (chosen as in the proof of Theorem 2).   77îe« there is a constant C3
such that
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1      m
IM -Ä»)l < - Z \[(T-Tnyt>lt 0f] I + C3\\(T-Tn)\R(E)\\ \\(T* - 7^)1* ̂H.

7-1
Proof   From (3.5) we have

[(f - f„)0/, 0;] = [(/r^/go1- Tnyt>,, 0;]

(3-6> =[(r-r„)0/>(/^1jpB)**;]

= [(T - 7'„)0/, 0/] + [(r - T^, (E-lEn)*4>f ~ 4>*].
Let Ln = E~xEn. Ln is the projection on R(E) along N(En).  Thus L* is the projection
on N(Enr = R(E*) along R(E)1 = N(E*).  Since, as shown in the proof of Theorem 2,
4f G 7V((/i - T*)a) = R(E*) we have L*4>f - <pf = (L* - E*ypf. Thus from Lemma 2
with TV = N(E*), /#! = 7?(/2 *) and M2 = R(E*) as subspaces of X*,

*n(3 7) II,*,**    _:.nJ\F*\\\\I-E*\\8(R(E*),R(E*))\\^
(3.7) \\L*4,f - 0;|| <      1_||/_^||8(Ä(F.)jjR(£*))/

Note that Theorem 1 (applied to 71* and {r*}) implies that lim„^005(7î(7i*),7î(72*)) =
0, and hence Lemma 2 is applicable.  From (3.7) and Theorem 1 (again applied to T*
and {T*}), we have
(3.8) w#f - 0; 11 < c3ii(r* - twR(B9)\\
for some constant C3.  Now, combining (3.4), (3.6) and (3.8), we obtain

1    m
\p - P(n)\ < - £ \[(T- T^f, 0f] I + C3\\(T-Tn)\R(E)\\ \\(T* - T^)\R(En\\.

m 7=1

In addition to estimating p - p(n) we may estimate p - ju.(«) for each 7.
Theorem 4. Let a be the ascent of p - T.  Let <j>x, . . . ,<pm be a basis for

R(E), and let <¡>\*, . . . , <j>m be the dual basis.   Then there is a constant C4 such thatrm

m
\p - pf(n)\a < Cj £  \[(T-Tnyf>„ 0f] I + \\(T-Tn)\R(E)\\ \\(T* - T*)\R{Et)\\   .

Proof. For each «, /i;(«) is one of the eigenvalues of Tn. Let Tnwn = p¡(n)wn,
\\wn\\ = 1. We can then choose w* GTV((ju - T*)a) in such a way that [wn, w*] = 1
and the norms ||w*|| are bounded. First, using the Hahn-Banach Theorem, choose w*
G R(E)* such that [wn, w*] = 1 and ||w*|| = 1 and then extend w* to all of X as in
the proof of Theorem 2. w*, so extended, will be in R(E*) and satisfy ||w*|| < ||72||.
Now, noting that (T - p)awn = 0, we have

\p -pj(n)\a = \[(p-/i/(«))aw„, <] I = I[((ju -p¡(n)Y ~(H- 7)>„, w*] |

(3.9)
= I [" Z (P -Pj("))'(M - T)a-l-%{n) - T)wn, w*\

< Z b - nfiOftltyn) - T)wn, (p - T*f-l-¡w*\ I
7=0

a-1
< £ |/i - Pj(n)\> max \[(p{ri) - T)wn, 0*]l \\p - Tn^-'Ww^W.

/=0 (¡>*GR(E*),\\<t>*\\ = l        '
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718 JOHN E. OSBORN

For any 0* G 7Î(72 *) with ||0*|| = 1,

HÖI//I) - 7>„, 0*] | = \[(t„ - T)wn, 0*] | = \[E~lEn(Tn - T)wn, 0*] |

(3.10) < \[(Tn - T)wn, 0*] | + \[(Tn - 7>„, L*0* - 0*] |

< \[(Tn - T)wn, 0*] | + Q\(T-Tn)\R(E)\\ ||(7/* - T*)\R(En\\.

There is a constant C ' such that
m

i[(Tn-T)w„,0*]i<c z i[(t„-m>*;ii
',7=1

for all w„ G7?(7i) and 0* G 7?(72*) with ||w„|| = ||0*|| = 1.  Thus, using (3.9) and (3.10),
we obtain

\p - pj(n)\a < C4    Z   \[(T- r„)0,., 0f] I + 11(7/ - T„)\R{E)\\ \\(T* - T*)\RiEt)\\   .

Finally we consider the approximation of eigenvectors in R(E) by eigenvectors
in7*(72„).

Theorem 5. Let p(n) be an eigenvalue of Tn such that limn_>„p(n) = p. Sup-
pose for each n that wn is a unit vector satisfying (fi(n) - Tn)kwn = 0 for some
positive integer k < a.  Then, for any integer I with k < / < a, there is a vector un G
R(E) such that Qjt - T)'un = 0 and

\K-wn\\<C5\\(T-Tn)\RiE)\f-k+l)/a.

Proof.   Since N((p - T)1) is finite dimensional, there is a closed subspace M of
X such that X = N((p - T)1) © M.   For y G R((ß - T)1) the equation (¡i - T)'x = y
is uniquely solvable in M.   Thus (p - Ty\M: M —»■ R(p - T)1 is one-to-one and onto.
Hence (p - T)l\~^ : R(p - T)1 —> M exists and by the closed graph theorem is bounded.
Thus there is a constant C such that ||/|| < C||fju - Tyf\\ for all / G M.

Set un = Pwn where P is the projection on N((p - T)1) along M.   Then (p - T)lun
= 0 and wn - un G M, and hence

(3.11) \\wn-un\\<C\\(p-T)l(wn-un)\\.

By Theorem 1 there are vectors un G R(E) such that

\\wn-un\\<Cx\\(T-Tn)\RiE)\\.

Hence there is a constant C ' such that

H[(7i-r)'-ou-7'„y]w„ii

(3.12)
2-1
Z(P- Tn)\T - r„)0i - 7?-'-' [(wn - un) + u„]
7=0

C'\\(Tn-T)\R(E)\\.

Since k < /,
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SPECTRAL APPROXIMATION FOR COMPACT OPERATORS 719

\\(P-Tjwn\
l

Z
7=0

'.)(ß-p(n))>(n(n)-Tn)'->wn

(3.13)
Z    (%-p(n)y(p(n)-Tn)'

j=l-k+l\'/
V-/v

<C"|2i-/i(22)rfc+1

for some constant C".
Now, combining (3.11), (3.12) and (3.13), we obtain

\\wn-un\\<C\\(p-T)lwn\\

= C\\[(p-T)'-(ii- Tj]w„ +(p- T)'wn\\

< C{C'\\(T-Tn)\R{E)\\ + C"\p-p(n)\'-k+1}.

The result follows immediately from Theorem 4.
We return now to the case where Tn —> T pointwise and [Tn} is collectively

compact.  Theorems 1 and 2 have been proved under this hypothesis and provide the
main results on the approximation of generalized eigenvectors and eigenvalues, respect-
ively. Corresponding to Theorem 4, we have the following

Theorem 6. Suppose Tn —► T pointwise and {Tn} is collectively compact.
Let a be the ascent of p ■ T.   Then there is a constant C6 such that

|/i-M/(«)|a<C6||(7'-7'„)|Ä(F)||.

Proof.   Formula (3.9) in the proof of Theorem 4 is valid in this context. The
result thus follows from the fact that

Itiju/«) - 7>„, 0*] | = \[E~lEn(Tn - T)wn, 0*] I

<Sup\\E-lEn\\\\(Tn-T)\RiE)\\

for all wn GR(E) and 0* G7?(72*) with ||w„|| = ||0*|| = 1.
Finally we note that Theorem 5 is valid in this case also; the proof is exactly the

same as that given for Theorem 5 except that at the end we use Theorem 6 instead of
Theorem 4.  Theorem 6 is essentially the same as the ma,in result in Atkinson [2].

Thus we see that the eigenvector estimates are the same for norm convergence as
for pointwise convergence of a collectively compact sequence but the eigenvalue estimates
differ.  The appearance of the expression 11(7/- Tn)\R^E.\\ \\(T* - T*)\R^\\ in the
estimates in Theorems 3 and 4 as opposed to the expression 11(7/- Tn)\R,E^\\ in
Theorems 2 and 6 is a consequence of the fact that ||r- r„|| —► 0 implies \\T* - T*\\
—* 0.  If Tn —*■ T pointwise and {Tn} is collectively compact, it may happen that T*
does not converge to T* pointwise and that {7/*} is not collectively compact (cf. [1]).
We note also that Theorems 3 and 4 hold under the assumption that Tn —> T and
T* —*■ T* pointwise and both {Tn} and {T*} are collectively compact.

We remark again that if X = H is a Hilbert space, we then let T* and 7/^ denote
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720 JOHN E. OSBORN

the Hubert adjoints.  In the proof of Theorem 2 in this context we would let 0j,
. . . , 0m be an orthonormal basis for R(E) and let 0* = 72*0,-. Then 0*, . . . , 0* G
TV(0¡7 - 7/*)a) and trace(f - fn) = S^x((f - t^, <¡>f), where (•,•) denotes the inner
product on 77, and with only minor modifications all the results of this section are
valid.

Finally, we note that if we were given a family {Tn}0<h<x of compact operators
such that Tn —> T pointwise as « —♦ 0 and {Tn}0<h<x is collectively compact, or
Th —► 7/ in norm, then all of the results in this section (with certain obvious modifica-
tions) hold.

4.   Applications.  We outline in this section several applications of the results in
Section 3.

(a) We consider first the approximation of eigenvalues of nonselfadjoint 2nd order
elliptic partial differential operators by Galerkin-type methods.

Let Í2 be a bounded domain in 7?^ with boundary 9Í2 which will be assumed to
be of class C°°. Hs(£l), for any real s > 0, will denote the usual Sobolev space and
the norm on Hs will be denoted by ||-||s. 7/°(i2) = L2(ü) and the inner product on
L2 will be denoted by (•,•)• #o(^) is the subspace of T/^fi) consisting of those func-
tions which vanish on 9Í2.

Let L be defined by

where a«, b¡ and c are in C°°(Ú). We assume L is uniformly strongly elliptic, i.e., there
is a constant a0 > 0 such that

Re  Z «^>«oZfi/,/'= i i'= i
for all real %x, . . . , %N and x G £2.  Associated with 7, is the sesquilinear form on
77 \Sl) defined by

Let Z> = maXj<1<Ar;;cen|/3((x)|. We assume without loss that Re c > a0/2 + b2/2a0
since adding a constant to c only shifts the eigenvalues.  Under this assumption B is
coercive on H1^), i.e.,

(4.1) Re B(u, u) > %a0\\u\\2

for all m G H1 (SI). The boundedness of the coefficients of L implies that B is continu-
ous on Hl(Q.), i.e., there is a constant ax such that

(4-2) \B(u, v)\ <ax\\u\\x\\v\\x

for all«, vEH\ÇÏ).
Given a closed subspace V of 771 (Í2) with 77¿(Í2) C V we can formulate a boundary

value problem associated with B as follows: Given/G L2(Q.) find w G K such that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SPECTRAL APPROXIMATION FOR COMPACT OPERATORS 721

(4.3) B(u, 0) = (/, 0)
for ail 0 G V.   Under our assumptions this problem always has a unique solution which
we denote by Tf.   If V = 77¿(Í2) this is the weak formulation of the Dirichlet problem
associated with L and if V = 77'(£2) it is the Neumann problem.  By the Rellich com-
pactness theorem 7/ is a compact operator on 7,2(£2).  We now suppose V is either
77¿(Í2) or Hl(Sl).  In addition, T satisfies the following regularity estimate:

(4.4) II7/IIJ+2<CS||/||Î

for all /G HS(Q.) for some constant Cs (cf. [4] ).  The 7,2(f2)-adjoint T* of T satisfies
7?(0, T*\p) = (0, 0) for all 0 G F and, as for T, the regularity estimate

(4.5) lir*/||í+2<Cí||/||í

foran/e/?*(íí).
An eigenvalue corresponding to this boundary value problem is a complex number

X such that

(4.6) B(u, 0) = \(u, 0)

for some nonzero u G V and all 0 G K   Clearly X is an eigenvalue satisfying (4.6) if
and only if p = 1/X is an eigenvalue of T.   If X and u satisfy (4.6), then, because of
the smoothness assumptions on 3Í2 and the coefficients of L, Lu = hi in £2 and u =
0 [bu/dv = 0] on 3Í2 if V = H^Q.)   [V = H1^)] where d/dv is the conormal deriva-
tive.

Let {-S1/, }0 </,.£! be a one-parameter family of finite dimensional spaces.  For
given integers k and r with 0 < k < r we say that {Sh}0<h<x is of class Skr if Sn C
Hk(£l) for each « and if there is a constant C independent of h and v such that

(4-7) inf   £/I''||ü-xll/<Crií||ü||/
^sh /tí, '
t o

for all 0 < « < 1 and v G 77 (Í2) with k < t < r.   We define the class 5fc r to consist
of those families {S„}0<n<x such that £„ C 77fc(S2) for each /2 and (4.7) is required
to hold only for v G 77'(£2) D 77¿(£2).  Many examples of such families have been
studied recently.  Each of the usual sets of trial functions used in the finite element
method is of class Sk    [Sk r] for some k and r.

If V = 7/'(i2) we assume we are given a family [Sn] of class Sx r with r > 2; if
F = /7¿(Í2) we assume we are given a family of class Sx r with r > 2 and assume, in
addition, that Sn G 77¿(£2) for each «.  We now consider the approximate eigenvalues
defined by the Galerkin method with trial functions given by {Sh}, i.e., the complex
numbers X(«) satisfying B(w, 0) = \(h)(w, <j>) for some nonzero w G Sn and all 0 G Sft.
These will be approximations to the eigenvalues of (4.6).   For /G L2(S2) let Tnf be
the unique element in Sh such that

(4-8) B(Tnf, 0) = (/ 0)
for all 0 G Sn.  It is easily seen that Tnw = (l/\(h))w.   Thus the eigenvalues p(h) of 7/ft
are reciprocals of the Galerkin eigenvalues X(n).  The eigenvalues of (4.6) are thus char-
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acterized as the eigenvalues of the compact operator 7/and the approximate eigenvalues
are characterized as the eigenvalues of the compact operators Th.

In order to apply the results of Section 3, we need to obtain estimates for T —Th.
Let /G 77i_2(S2) for some t with 2 < t < r.   From (4.3) and (4.8) we have
B((T - Tn)f, 0) = 0 for all 0 G Sh.  Hence, using (4.1),

11(7- - Th)f\\\ < j- \B((T - Tn)f, (T - Tn)f)\
"o

= 2-\B((T-Tn)f, Tf-x)\

for any x G Sh.  Thus, using (4.2), (4.7) and (4.4) we have

(4.9) \\(T-Tn)f\\x<C  inf   II7/-XII,  < Ch^WTfW, < Ch^WfW^
xes„

for an appropriate constant C.   Now let 0 G Hs with 0 < s < r - 2. Then

((r - Th)f, 0) = B((T - Tn)f, r*0) = B((T - Tn)f, T*0 - X)
for any x G Sn.  Thus, using (4.2) and (4.9), we have

\((T- Th)f 0)| < Ch'-'UfU^   inf 117*0 -xlli-
XS5ft

Using (4.7) and (4.5), we get

(4.10) \((T-Tn)f, 0)1 < CT2i+i||/||f_2||0||s.

The argument leading to (4.10) is due to Nitsche [13].
From the estimate (4.10) we can obtain all of the estimates needed to apply the

results of Section 3.  (4.10) with t = 2 and s = 0 yields \((T - Th)f, 0)| <
C722||/||OI|0||O, and hence

ll(r-rÄ)/[|0=        sup    _ \((T-Tn)f, 0)i<c/22ii/iio
i//eL2(iî),||i2y II0=1

for all /G L2(ÇÏ).  This shows that Tn —* Tin norm, and hence that all the results of
Section 3 apply.  Now we estimate \\(T - Tn)\RiE)\\.  Toward this end let fGR(E).
Under our assumptions the eigenvectors and generalized eigenvectors of T (or L) are in
H\Q.) for any t > 0.  Thus from (4.10) with t = r and s = 0 we get

\((T-Tn)f 0)KC«ni/llr_2ll0llo
and hence

H(T- Th)\R(E)U = SUP K(T- Tn)f, 0)1"   R(t) fER(E),4>GL2(ïlf,\\f\\0=W\\0=l hJ
(4.11)

<c7ir sup        ll/H-2 <Chr.
f(aR(E)ff\\Q=i

Next we estimate 11(7* - T^)\R,Etd\.  The generalized eigenfunctions of T* are also in
7/f for any t > 0.  Thus, using (4.10) with s = r - 2 and t = 2, we find

\(f, (T* - r*)0)| = |((r- Tn)f, 0)| < O2Hl/lloll0llr-2
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which yields

(4.12) \\(T*-T*)\R(Et)\\<Chr.

Finally we consider 'LJLx \((T - 7^)0^, 0i%  It follows immediately from (4.10) with
t = r and s = r - 2 that

m
(4.13) £ KO" - W,-, 0/)l < ch2r-2.

7=1

Let X be an eigenvalue of algebraic multiplicity «2 satisfying (4.6) and let p = 1/X.
Then the eigenvalues px(h), . . . , pm(h) which converge to p as « —► 0 are computed
as the reciprocals of certain eigenvalues Xj(/V), . . . , Xm(«) of the finite dimensional
eigenvalue problem

B(w, 0) = X/AXw, 0).
for nonzero w ESh and all 0 G 5ft.  Thus using (4.11), (4.12) and (4.13) we see that
Theorem 3 yields the estimate

(4.14)
1    m \ -1 I
¿-ZiA/W     \<ch2-2.

Using Theorem 1 we have

(4.15) S(R(E),R(En))<Chr

for the generalized eigenvectors.
The estimates (4.14) and (4.15) were obtained by Bramble and Osborn [7].  The

results of Section 3 also apply to several other methods for constructing approximations
to the eigenvalues of the eigenvalue problem associated with L and the Dirichlet bound-
ary conditions: the least squares method of Bramble and Schatz [8], methods of
Nitsche [16], [17], and the Lagrange multiplier method of Babuäka [3].  In addition,
the results of Section 3 apply to the approximation of Steklov eigenvalues as studied
in [6].  For a more complete discussion of all of these methods, see [7].

(b) Let (Tf\x) = 5l0K(x, y)f(y)dy where K(x, y) is continuous for 0 < x, y < 1.
T is a compact operator« on C[0, 1] -the Banach space of continuous functions with the
supremum norm. Let [Tn] be a sequence of approximations to T defined by numerical
quadrature, i.e., let

(Tnm)=±wnjK(x,yn)f(yn),

where 0 <y„. < 1 and the weights wn. are real or complex and we assume that
2"=1 wn.g(yn) —» f10g(x)dx for each g E C[0, 1].  Then it is known (cf. [1]) that
Tn —* /pointwise and {Tn} is collectively compact.

Thus Theorems 1, 2, 5 and 6 apply to this type of approximation. A complete
discussion of approximation by numerical quadrature can be found in [1] ; compare
also [2].

(c) Let a(x) and c(x) be periodic functions of period 1 which are defined by
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(px,        -%<X<0, (qx,        -a(x) = [ c(x) = I
[p2,      Q<x<% [q2,      0

-#<x<0,

<x<&,

where px, p2, qx, q2 aré positive constants, and let an(x) = a(x/h) and ch(x) = c(x/h)
where n is a small parameter.  Recently BabusTca [4], [5] has studied the eigenvalue
problem,

<4-l6) ïx(a»lî)=X»C»U»'      °<X<1>

together with the boundary conditions,

(4.17) „(0) = u(i) = 0
or

(4.18) «(0) = du(\)ldx = 0.

As h —*■ 0 the problem (4.16), (4.17)   [(4.18)] "tends" to the "homogenized" problem,

<4-19> Í(*of)=Vo«.      0<X<1>
where a^1 = Vi(p~xx + p2l) and c0 = )6.(qx + q2), together with the boundary condi-
tions (4.17)   [(4.18)].  The problem (4.19), (4.17)   [(4.18)] is considered as an approx-
imation to (4.16), (4.17)   [(4.18)] for « small.

Computational experiments show that with the boundary conditions (4.17) the
eigenvalue error is proportional to «2, whereas with (4.18) the eigenvalue error is pro-
portional to «. The higher order convergence with the boundary condition (4.17) can
be explained as follows.

Let T and Tn be the inverses of the differential operators defined by (4.16), (4.17)
and (4.19), (4.17), respectively.  The eigenvalue problems (4.16), (4.17) and (4.19),
(4.17) are selfadjoint and for their first eigenvalues Xn and X¿, we have from Theorem
3 the estimate

(4.20) K ~K\< Ci((T - TnYl>> « + W - ^ttlloï.

where 0 is the unit eigenvector of (4.19), (4.17) corresponding to X¿.  Since 0 G
772 [0, 1], we will have \\(T - Tft)0||o < C72.   Now BabusTca has shown that (T - Thy}>
can be expressed in the form (T' - Thy¡> = h2u + hv where v is odd with respect to
x = Vi.  Since 0 is a multiple of sin x, we see that (v, 0) = 0 and thus ((T - Thyp, 0) =
h2(u, 0).  Hence from (4.20) we have |X¿ ~Xn\<Ch2.

It follows from Theorem 1 that the eigenvector error is of the order « for both
types of boundary conditions. Thus, with this type of approximation, the eigenvalue
error is not always of higher order than the eigenvector error.

(d) Given a compact operator T, a common way to define an approximating
sequence of operators is to let Tn = PnT where {Pn} is a sequence of projections which
converge pointwise to the identity.  Then Tn —>■ T in norm.

Thus Theorems \, 3, 4 and 5 apply to such projection methods.  We limit our-
selves to pointing out that the estimate in Theorem 2 yields
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m
\p - m(«)| < £ \[(T~7>„7>;, 0/] I + C3\\(T- Tn)\R(E)\\ \\(T* - T*)\R(Et)\\

7-Í
m

= Z W -Pn?n¡, 0/] ! + C3\\(T-Tn)\R(E)\\ \\(T* - T*)\R(Et)\\
7=1

m
< Z 11(7-- r„)0;.|| 11(7-7>*)0;|| 4- C3\\(T-Tn)\R{E)\\\\(T* - T*)\RiE.}\\.
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