
SPECTRAL APPROXIMATION OF BANDEDLAURENT MATRICES WITH LOCALIZEDRANDOM PERTURBATIONS
A. B�ott
her, M. Embree, M. LindnerThis paper explores the relationship between the spe
tra of perturbed in�nite banded Laurentmatri
es L(a)+K and their approximations by perturbed 
ir
ulant matri
es Cn(a)+PnKPnfor large n. The entries Kjk of the perturbation matri
es assume values in pres
ribed sets
jk at the sites (j; k) of a �xed �nite set E, and are zero at the sites (j; k) outside E. WithKE
 denoting the ensemble of these perturbation matri
es, it is shown thatlimn!1 [K2KE
 sp (Cn(a) + PnKPn) = [K2KE
 sp (L(a) +K)under several fairly general assumptions on E and 
.1 Introdu
tion and main resultsGiven a 
ontinuous 
omplex-valued fun
tion a on the 
omplex unit 
ir
le T, we denote byfangn2Z the sequen
e of its Fourier 
oeÆ
ients,an = 12� Z 2�0 a(ei�)e�in� d�;and by L(a) the matrix (aj�k)j;k2Z. The matrix L(a) is 
alled the Laurent matrix withthe symbol a, and it is well known that L(a) indu
es a bounded operator on `2(Z) whosespe
trum is the range a(T) of a, spL(a) = a(T).Let P denote the set of all trigonometri
 polynomials. Thus, a 2 P if and only if an 6= 0for at most �nitely many n. Throughout what follows we assume that a 2 P, whi
h isequivalent to the requirement that L(a) be a banded matrix.For a 2 P, we de�ne the n�n matrix Cn(a) by Cn(a) = (
jk)nj;k=1 with 
jk = aj�k (modn).The matrix Cn(a) is a 
ir
ulant matrix provided n ex
eeds the bandwidth of L(a). For1



example, if a(t) = a�1t�1 + a0 + a1t+ a2t2 (t 2 T), then
C6(a) = 0BBBBBB� a0 a�1 0 0 a2 a1a1 a0 a�1 0 0 a2a2 a1 a0 a�1 0 00 a2 a1 a0 a�1 00 0 a2 a1 a0 a�1a�1 0 0 a2 a1 a0

1CCCCCCA :
The spe
trum of Cn(a) is a(Tn), where Tn denotes the set of the nth unit roots. Thus,the spe
trum of Cn(a) approximates the spe
trum of L(a) as n!1.This paper addresses the relationship between the spe
tra of L(a) + K and Cn(a) +PnKPn as n ! 1 when K = (Kjk) is a (deterministi
 or random) matrix whose nonzeroentries are all situated in a �xed �nite set E of sites (j; k) with j; k 2 f1; : : : ; mg, and wherePnKPn = (Kjk)nj;k=1. Related problems arise in the dis
retization of initial-boundary valueproblems [1℄, [8℄, [14℄, the theory of linear systems with un
ertain data [7℄, [12℄, [13℄, small-world networks [20℄, population biology [16℄, and non-Hermitian quantum me
hani
s [4℄,[5℄, [6℄, [10℄, [21℄. A prominent question is whether the spe
trum of L(a) + K 
an befound by repla
ing L(a) +K with Cn(a) + PnKPn, where n is large, and then 
omputingthe eigenvalues of Cn(a) + PnKPn numeri
ally. The reverse question is also of interest:Sometimes the spe
trum of L(a) + K is known, and the problem is whether this tells usanything about the eigenvalues of Cn(a) + PnKPn for large n. In the language of physi
s,we are here 
on
erned with the problem of whether the passage from the \�nite volume
ase" to the \in�nite volume 
ase" is 
ontinuous or not.One 
an show that spL(a) = a(T) is always a subset of sp (L(a) +K). Thussp (L(a) +K) = spL(a) [X = a(T) [Xwith some (possibly empty) set X, all points of whi
h are eigenvalues of L(a) + K. ThediÆ
ulty with spe
tral approximation is that X may 
ontain entire 
onne
ted 
omponentsof C n a(T), whi
h, moreover, 
an emerge suddenly even if K 
hanges 
ontinuously. Forinstan
e, if a(t) = t (t 2 T), in whi
h 
ase L(a) is the forward shift on `2(Z), and K is thematrix whose (2; 1) entry is ! with all other entries zero, thensp (L(a) +K) = � T if ! 6= �1;D if ! = �1;where D = f� 2 C : j�j � 1g, while, for n � 2,sp(Cn(a) + PnKPn) = f� 2 C : �n = 1 + !g;whi
h shows that sp(Cn(a) + PnKPn) does not approximate sp(L(a) +K) if w = �1. (SeeExample 4.1 for further details.)Given a nonempty 
ompa
t set M � C and a sequen
e fMng of nonempty 
ompa
tsets Mn � C, we write limMn = M if Mn 
onverges to M in the Hausdor� metri
. The
losure of a set G � C will be denoted by G or 
los G, and its boundary G nG by �G.2



Theorem 1.1 If a 
onne
ted 
omponent G of C n a(T) is not entirely 
ontained in the setsp (L(a) +K), thenlimn!1�(sp(Cn(a) + PnKPn) \G) [ �G� = sp (L(a) +K) \G: (1)Equality (1) holds in parti
ular if G is the unbounded 
onne
ted 
omponent of C n a(T).We will show that (1) is in general no longer true if G is 
ontained in sp (L(a) +K).Here is a result for perturbations lo
alized on the main diagonal or in a single site.For a 2 P, let B(a) be the union of a(T) and all bounded 
omponents of C n a(T).Furthermore, for � > 0, de�ne a� 2 P by a�(t) = a(�t) (t 2 T). Thus, if a(t) = Pk aktk,then a�(t) =Pk ak�ktk. Finally, putB�(a) = \�>0B(a�):Theorem 1.2 Let G be a 
onne
ted 
omponent of C n a(T).(a) Finitely-Many Main Diagonal Perturbations. If K = diag (K11; : : : ; Kmm) and G
ontains at least one point of C nB�(a), then equality (1) is true.(b) Single-Entry Perturbations. If K is a matrix whose (j; k) entry is ! with all otherentries zero, and if the (k � j)th Fourier 
oeÆ
ient of 1=(a � �) is either identi
ally zeroin G or nowhere lo
ally 
onstant in G, then equality (1) is valid.For tridiagonal Laurent matri
es with a �nite number of perturbed diagonal entries, wehave the following.Corollary 1.3 If a(t) = t + �2t�1 (t 2 T) with � 2 [0; 1℄ and K = diag (K11; : : : ; Kmm),then limn!1�sp (Cn(a) + PnKPn) [ a(T)� = sp (L(a) +K): (2)These three results are related to the results of [1℄, [8℄, [14℄ and are perhaps known tospe
ialists. We state and prove these results here for the reader's 
onvenien
e and be
ausewe have not found them expli
itly in the literature.We now 
onsider the 
ase where K is randomly 
hosen. Let E be a �nite set of sites(j; k) with j; k 2 f1; : : : ; mg and suppose for ea
h (j; k) 2 E we are given a 
ompa
t subset
jk of the plane that 
ontains the origin. We put 
 = f
jkg(j;k)2E and denote by KE
 theset of all matri
es K = (Kjk) for whi
h Kjk 2 
jk if (j; k) 2 E and Kjk = 0 if (j; k) 62 E.Finally, for a �nite or in�nite matrix A, we de�nespE
 A = [K2KE
 sp (A+K): (3)Clearly, we may think of spE
 A as the union of all possible spe
tra that may emerge whenperturbing A by a matrix K randomly 
hosen in KE
 .3



Ea
h of the previous three results has a dire
t analogue relating spE
 Cn(a) to spE
 L(a).These results do not use any spe
i�
 knowledge of the probability distributions spe
ifyinghow perturbations are drawn from 
, but only depend upon the support of the perturba-tions; see Davies [4℄ for a similar approa
h. Knowledge of distributions may lead to morepre
ise statements about the rate at whi
h spe
tral limits are rea
hed; see [21℄.Theorem 1.4 Let G be a 
onne
ted 
omponent of Cna(T) and suppose G is not 
ontainedin spE
 L(a). Then limn!1 �spE
 Cn(a) \G� = spE
 L(a) \G: (4)In parti
ular, (4) is true if G is the unbounded 
onne
ted 
omponent of C n a(T).Theorem 1.5 Let G be a 
onne
ted 
omponent of C n a(T).(a) Finitely-Many Main Diagonal Perturbations. If E = f(1; 1); : : : ; (m;m)g and G
ontains at least one point of C nB�(a), then equality (4) holds.(b) Single-Entry Perturbations. If E = f(j; k)g and if the (k � j)th Fourier 
oeÆ
ientof 1=(a� �) is either identi
ally zero in G or nowhere lo
ally 
onstant in G, then equality(4) is satis�ed.Corollary 1.6 Let E = f(1; 1); : : : ; (m;m)g. If a(t) = t + �2t�1 (t 2 T) with � 2 [0; 1℄,then limn!1 spE
 Cn(a) = spE
 L(a):A set S � C is said to be starlike if it, together with ea
h of its points !, 
ontains theline segment [0; !℄. We let SÆ denote the set of all interior points of S. For " > 0, we de�ne"S as f"! : ! 2 Sg and "
 as f"
jkg(j;k)2E.Theorem 1.7 If ea
h 
jk is a starlike 
ompa
t nonempty set su
h that 
jk = 
los 
Æjk,then limn!1 spE"
Cn(a) = spE"
 L(a) (5)for all " 2 (0;1) ex
ept for at most �nitely many "1; : : : ; "`, where ` does not ex
eed thenumber of bounded 
omponents of C n a(T).We 
onje
ture that, under the above hypotheses for 
, equality (5) is a
tually true forall " 2 (0;1), but we have not been able to prove this.For tridiagonal Laurent matri
es, we 
an supplement Theorems 1.4 and 1.7 by thefollowing result, whi
h 
on
erns perturbations in a single site.Theorem 1.8 Let E = f(j; k)g and let 
jk be a 
ompa
t subset of C 
ontaining the origin.Furthermore, suppose a(t) = t + �2t�1 (t 2 T) with � 2 [0; 1℄. If � = 1 or j � k 6= 1 or�1=" 62 
jk, then (5) is valid. Otherwise, if � 2 [0; 1); j�k = 1, and �1=" 2 
jk, then (5)is not true for 
jk = f�1="; 0g, while (5) holds if 
jk 
ontains, in addition to �1=" and 0,a third point !0 and a 
ontinuous 
urve between �1=" and !0.4



Corollary 1.6 and Theorem 1.8 show in parti
ular that (5) is valid for all " 2 (0;1) ifL(a) is tridiagonal, 
 is a 
losed ellipse (in
luding the interesting extreme 
ases of a linesegment and of a 
losed disk) that 
ontains the origin, and E is a singleton or a �nite subsetof the main diagonal.The paper is organized as follows. We have produ
ed several pi
tures in order to demon-strate how spe
tral approximation works in pra
ti
e; Se
tion 2 
ontains the 
omments tothese pi
tures. In Se
tion 3 we re
ord some well-known results that are used in the sub-sequent proofs. The proofs of Theorems 1.1 and 1.2 and of Corollary 1.3 are 
ontainedin Se
tion 4, while Theorems 1.4, 1.5, 1.7, 1.8 and Corollary 1.6 are proved in Se
tion 5.In Se
tion 6 we brie
y address the di�erent limiting behavior observed for Toeplitz and
ir
ulant matri
es, and 
on
lude in Se
tion 7 with a few 
onje
tures that might stimulatefurther resear
h.2 IllustrationsWe will refer toa(t) = (1:5� 1:2 i)z�1+ (0:34 + 0:84 i)z + (�0:46� 0:1 i)z2 + (0:17� 1:17 i)z3 + (�1 + 0:77 i)z4as the animal symbol or the symbol; spe
tral approximation for this symbol leads topi
tures of several animals; Figure 3 shows two birds, while the right 
olumn of Figure 10is reminis
ent of horses in 
ave paintings. The range a(T) and the set B�(a) are shown inFigure 1. Figure 2 provides an indi
ation of the set[1�j�51�k�5 sp(j;k)[�7;7℄L(a); (6)where sp(j;k) is an abbreviation for spf(j;k)g. We see that (6) is the union of a(T) and manyantennae (whi
h, in the 
ase at hand, repla
e the \wings" of [3℄, [10℄). Theorem 1.5(b) wouldguarantee that Figure 2 indeed approximates (6) if we knew that the analyti
 fun
tions[1=(a� �)℄k�j were nowhere lo
ally 
onstant for �5 � k � j � 5. This is de�nitely true inthe unbounded 
omponent of Cna(T). We have 
he
ked numeri
ally that ea
h 
omponentof C n a(T) 
ontains two points �1 and �2 su
h that [1=(a� �1)℄k�j and [1=(a� �2)℄k�j aredi�erent. For example, the points �1 = 1:5 and �2 = 2:25 + 0:5 i belong to the upper-right
omponent of Cna(T) (
onstituting the head and the upper part of the body of the animal), and the values of [1=(a��1)℄k�j and [1=(a��2)℄k�j are given in Table 1. Consequently,we may use Theorem 1.5(b) to 
on
lude that Figure 2 should be a good approximation ofthe set (6).Figure 3 shows approximations to spE[�7;7℄L(a) for the symbol when E = f(1; 1); (2; 1)g(top) and E = f(1; 1); (1; 2)g (bottom). By Theorem 1.4, the plots should approximatespE[�7;7℄L(a) well in the unbounded 
omponent of C n a(T), that is, the birds' bills and tailsare 
lose to the truth. Our results are not appli
able to the bounded 
omponents.5
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Figure 1: a(T) (thi
k line) and B�(a) (thin line) for the animal symbol.

Figure 2: Eigenvalues of C250(a) for the animal symbol, perturbed in one randomly 
hosenentry in the upper left 5 � 5 blo
k by a random number uniformly distributed in [�7; 7℄. Thisplot superimposes the eigenvalues of 2000 samples.k � j = �5 k � j = �4 k � j = �3 k � j = �2�1 �0:2037 + 0:1114 i �0:1443 � 0:0654 i �0:0841 + 0:0648 i �0:2849 � 0:0149 i�2 �0:1500 + 0:1924 i �0:0908 + 0:0331 i �0:1066 + 0:1782 i �0:3709 + 0:0319 ik � j = �1 k � j = 0 k � j = 1 k � j = 2�1 �0:1288 � 0:2019 i �0:0933 � 0:0258 i 0:1289 + 0:1292 i 0:0881 + 0:0532 i�2 �0:2111 � 0:2624 i �0:0734 � 0:1440 i 0:1884 + 0:0383 i 0:1294 + 0:0836 ik � j = 3 k � j = 4 k � j = 5�1 0:0499 + 0:0363 i 0:0146 � 0:1036 i �0:0872 � 0:0707 i�2 0:0391 + 0:1132 i �0:0413 � 0:0248 i �0:0947 � 0:0557 iTable 1: Fourier 
oeÆ
ients of [1=(a��1)℄k�j and [1=(a��2)℄k�j for the animal symbol, where�1 = 1:5 and �2 = 2:25 + 0:5 i. These 
oeÆ
ients were 
omputed using MATLAB's built-inquadrature routine quadl, and are believed to be 
orre
t to the digits presented.6



Figure 3: Eigenvalues of C250(a) for the animal symbol, perturbed simultaneously in two entriesby random numbers uniformly distributed in [�7; 7℄. On the top, the (1,1) and (2,1) entries arevaried; on the bottom, the (1,1) and (1,2) entries are perturbed. Ea
h plot superimposes theeigenvalues of 2000 samples.

Figure 4: Eigenvalues of C250(a) for the animal symbol, perturbed in the (j; k) entry by arandom number uniformly distributed in 7D. On the left, we take (j � k) (modn) = �1; onthe right, (j � k) (modn) = 1. Ea
h plot superimposes the eigenvalues of 2000 samples.7



In Figure 4 we see approximations to sp(j;k)7D L(a) for the symbol when (j; k) = (1; 2)(left) and (j; k) = (2; 1) (right). Using Theorem 1.4 for the unbounded 
omponent andTheorem 1.5(b) along with the numeri
ally established fa
t that [1=(a� �)℄k�j is nowherelo
ally 
onstant, we 
an a

ept Figure 4 as a good approximation to sp(j;k)7D L(a).Figures 5 through 8 investigate a di�erent symbol, whi
h we 
all the 
apri
orn symbol( symbol). It is given bya(t) = (�0:69� 0:13 i)z�5 + (0:73� 0:52 i)z�4 + (�0:06� 0:74 i)z�3+ (�0:31� 0:04 i)z�2 + (�0:11 + 0:10 i)z�1 + (�2:26 + 1:57 i)z+ (�0:13 + 0:05 i)z2 + (0:53 + 0:21 i)z3 + (0:37� 0:31 i)z4 + (0:22� 0:03 i)z5Figure 5 shows a(T) and B�(a). Figure 6 is the analogue of Figure 2 and indi
ates the set[1�j�51�k�5 sp(j;k)[�10;10℄L(a): (7)One 
an again numeri
ally verify that [1=(a� �)℄k�j is nowhere lo
ally 
onstant for �5 �k� j � 5. Thus, Theorem 1.5(b) 
an be employed to justify that the antennae of Figure 6are really all present in the set (7), and that Figures 7 and 8 should be good approximationsto sp(1;1)10DL(a); sp(3;1)10DL(a); sp(1;3)10DL(a):Finally, Figure 9 involves tridiagonal matri
es, illustrating the set[j�k 6=�1 sp(j;k)[�4;4℄L(a) for a(t) = t+ t�1=9: (8)The limiting set (8) was derived in our paper [3℄ and is portrayed at the top of Figure 9; webelieve this plot is 
orre
t to plotting a

ura
y. (Similar �gures appear in [3℄.) Theorem 1.8implies that limn!1 sp(j;k)[�4;4℄Cn(a) = sp(j;k)[�4;4℄L(a)for the symbol under 
onsideration, and Figure 9 illustrates this 
onvin
ingly.3 PreliminariesLet a 2 P and let K be the in�nite matrix that is supported in the sites (j; k) withj; k 2 f1; : : : ; mg. We denote by Pm the proje
tion that sends a sequen
e x = fxkg to thesequen
e given by (Px)k = xk for k 2 f1; : : : ; mg and (Px)k = 0 otherwise. If A = (ajk)is an in�nite matrix or a �nite matrix of dimension n � m, we identify PmAPm with them�m matrix (ajk)mj;k=1.We know that spL(a) = a(T). For � 2 C n a(T), the inverse of L(a)� �I = L(a � �)is L((a� �)�1). The fun
tionf : C n a(T)! C; � 7! det�Im + PmL((a� �)�1)PmKPm� (9)8
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Figure 5: a(T) (thi
k line) and B�(a) (thin line) for the 
apri
orn symbol.

Figure 6: Eigenvalues of C250(a) for the 
apri
orn symbol, perturbed in one randomly 
hosenentry in the upper left 5� 5 blo
k by a random number uniformly distributed in [�10; 10℄. Thisplot superimposes the eigenvalues of 2000 samples.9



Figure 7: Eigenvalues of C250(a) for the 
apri
orn symbol, perturbed in the (j; j) entry by arandom number uniformly distributed in 10D. This plot superimposes the eigenvalues of 2000samples.

Figure 8: Eigenvalues of C250(a) for the 
apri
orn symbol, perturbed in the (j; k) entry by arandom number uniformly distributed in 10D. On the left, (j� k) (modn) = �2; on the right,(j � k) (modn) = 2. Ea
h plot superimposes the eigenvalues of 2000 samples.10



Figure 9: The set [j 6=k�1sp(j;k)[�4;4℄L(a) (top) and eigenvalues of random single entry perturbationsto C250(a) from [�4; 4℄ (bottom) for the symbol a(t) = t + �2t�1 with � = 1=3. (The lowerplot superimposes the eigenvalues of 2000 samples.)
11



is analyti
, and it is easily 
he
ked that if � 2 C n a(T), then� 2 sp(L(a) +K) () f(�) = 0: (10)We now state some well known fa
ts for the 
ir
ulant matri
es Cn(a); throughout whatfollows we assume that n is at least as large as the bandwidth of L(a). Let wn = e2�i=n andput Fn = 0BBBBB� 1 1 1 � � � 11 wn w2n � � � wn�1n1 w2n w4n � � � w2(n�1)n... ... ... ...1 wn�1n w2(n�1)n � � � w(n�1)(n�1)n
1CCCCCA ; Un = 1pnFn:The matrix Un is unitary and a straightforward 
omputation shows thatCn(a)� �In = Cn(a� �) = U�n diag�a(wjn)� ��n�1j=0 Un: (11)Formula (11) implies that spCn(a) = a(Tn). For � 62 a(Tn), we denote by C�1n (a� �) theinverse of Cn(a� �). By analogy to (9) and (10), we see that the fun
tionsfn : C n a(Tn)! C; � 7! det�Im + PmC�1n (a� �)PmKPm� (12)are analyti
 and that, for � 2 C n a(Tn),� 2 sp (Cn(a) + PnKPn) () fn(�) = 0: (13)Moreover, formula (11) givesC�1n (a� �) = U�n diag�(a(wjn)� �)�1�n�1j=0 Un: (14)and hen
e the (j; k) entry of C�1n (a� �) is[C�1n (a� �)℄jk = 1n n�1X̀=0 w`(j�1)n w`(k�1)na(wǹ)� � : (15)For � 62 a(T), the right-hand side of (15) 
onverges to12� Z 2�0 e�i�(j�k)a(ei�)� �d� = �(a� �)�1�j�k;and the 
onvergen
e is uniform on 
ompa
t subsets of C n a(T). It follows thatlimn!1 hC�1n (a� �)ijk = hL((a� �)�1)ijk (16)and thus limn!1 fn(�) = f(�); (17)the 
onvergen
e being uniform on 
ompa
t subsets of C n a(T).12



Theorem 3.1 (Hurwitz). Let G � C be an open set, let f be a fun
tion that is analyti
in G and does not vanish identi
ally, and let ffng be a sequen
e of analyti
 fun
tions in Gthat 
onverges to f uniformly on 
ompa
t subsets of G. If f(�) = 0 for some � 2 G, thenthere is a sequen
e f�ng of points �n 2 G su
h that �n ! � as n!1 and fn(�n) = 0 forall suÆ
iently large n.Two proofs of Hurwitz' theorem are in [18, pp. 205 and 312℄, for example.Let fMng be a sequen
e of nonempty subsets of C. The uniform limiting set lim infMnis de�ned as the set of all � 2 C that are the limit of some sequen
e f�ng with �n 2 Mn,while the partial limiting set lim supMn is the set of all � 2 C that are a partial limit ofsome sequen
e f�ng with �n 2 Mn. Naturally, lim infMn � lim supMn.Theorem 3.2 (Hausdor�). Let M and the members of the sequen
e fMng be nonempty
ompa
t subsets of C. Then fMng 
onverges to M in the Hausdor� metri
,limn!1Mn =M;if and only if lim infn!1 Mn = lim supn!1 Mn =M:Proofs 
an be found in [9, Se
tions 3.1.1 and 3.1.2℄ and in [11, Se
tion 2.8℄.4 Deterministi
 perturbationsThis se
tion is devoted to the proofs of Theorems 1.1 and 1.3.Proof of Theorem 1.1. We abbreviate L(a) + K and Cn(a) + PnKPn to A and An,respe
tively. Sin
e the 
onne
ted 
omponent G is not a subset of spA, we infer from (10)that the fun
tion f given by (9) does not vanish identi
ally on G. De�ne fn by (12).We �rst show that lim sup ((spAn \G)[ �G) � spA\G. Suppose � is not in spA\G.If � 62 G, then � is 
learly not in the partial limiting set. Thus, let � 2 G. As � 62 spA,we see that f(�) 6= 0 due to (10). From (17) we therefore 
on
lude that there is an openneighborhood U � G of � and a natural number n0 su
h that fn(�) 6= 0 for all � 2 U andall n � n0. Consequently, by (13), U \ spAn = ; for all n � n0, whi
h implies that � is notin lim sup ((spAn \G) [ �G).We now prove that spA\G � lim inf ((spAn\G)[�G). Pi
k � in spA\G. If � 2 �G,then � is obviously in the uniform limiting set. So assume � 2 G. Then f(�) = 0 by virtueof (10). Hen
e, Theorem 3.1 guarantees the existen
e of �n 2 G su
h that �n ! � andfn(�n) = 0 for all suÆ
iently large n. From (13) we infer that �n 2 spAn. It follows that� belongs to lim inf ((spAn \G) [ �G).Combining the two in
lusions shown in the pre
eding two paragraphs with Theorem 3.2,we arrive at equality (1). 13



Example 4.1. Here we demonstrate that the hypothesis on G in Theorem 1.1 is ne
essaryin general; that is, we show that the equality (1) does not generally hold if the 
onne
ted
omponent G of C n a(T) is entirely 
ontained in the set sp (L(a) + K). Let a(t) =t+ �2t�1 (t 2 T) with � 2 [0; 1℄. The set a(T) is the ellipsef(1 + �2) 
os � + i(1� �2) sin � : 0 � � < 2�g;with fo
i �2�. Let G+ and G� denote the bounded and unbounded 
omponents of Cna(T)respe
tively. Noti
e that a(T) = T if � = 0 and a(T) = [�2; 2℄ (when
e G+ = ;) if � = 1.Theorem 1.1 shows thatlimn!1�(sp(Cn(a) + PnKPn) \G�) [ a(T)� = sp(L(a) +K) \G�: (18)In parti
ular, it follows that (2) holds for � = 1 and an arbitrary �nitely-supported matrixK. We therefore 
onsider the 
ase where � 2 [0; 1) and � 2 G+.First let � = 0. Then G+ = D = f� 2 C : j�j < 1g, and it is easily seen thatPmL((a� �)�1)Pm = 0BBBB� 0 1 � �2 � � �0 0 1 � � � �0 0 0 1 � � �0 0 0 0 � � �� � � � � � � � � � � � � � �
1CCCCA : (19)Formula (15) and a straightforward 
omputation giveC�1n (a� �) = 11� �n 0BBBBB� �n�1 1 � � � � �n�2�n�2 �n�1 1 � � � �n�3�n�3 �n�2 �n�1 � � � �n�4... ... ... ...1 � �2 � � � �n�1
1CCCCCA : (20)Let Ej!Ek be the matrix whose (j; k) entry is ! with all other entries zero. From (10) weobserve that � 2 sp (L(a) + Ej!Ek) if and only if 1 + [L((a � �)�1)℄kj! = 0. Taking intoa

ount (19) we see that D is 
ontained in sp (L(a) + Ej!Ek) only when j � k = 1 and! = �1. In that 
ase (13) and (20) imply that sp (Cn(a) + Ej!Ek) \D is f0g.Now let � 2 (0; 1). Every point � 2 G+ 
an be written in the form� = �ei� + �2��1e�i� with � � � < 1; 0 � � < 2�: (21)It follows that a(t)� � = t�1(t� z1)(t� z2) with z1 = �2��1e�i� and z2 = �ei�. As jz1j < 1and jz2j < 1, we get 1a(t)� � = 1t �1 + z1t + z21t2 + � � ���1 + z2t + z22t2 + � � �� ; (22)when
e PmL((a� �)�1)Pm = 0BBBB� 0 1 z1 + z2 z21 + z1z2 + z22 � � �0 0 1 z1 + z2 � � �0 0 0 1 � � �0 0 0 0 � � �� � � � � � � � � � � � � � �

1CCCCA : (23)14



Noti
e that z1+z2 = � and z21+z1z2+z22 = �2��2. The values of [L((a��)�1)℄kj at � = 0and � = 2� are easily seen to be di�erent if j � k � 2. From (9) we therefore get that G+is a subset of sp (L(a) +Ej!Ek) if and only if j � k = 1 and ! = �1. So let j � k = 1 and! = �1. By (13),Mn := sp (Cn(a) + Ej!Ek) \G+ = f� 2 G+ : 1� [C�1n (a� �)℄kj = 0g; (24)and from (15) and (22) we 
on
lude that[C�1n (a� �)℄kj = 1n n�1X̀=0 �1 + z1wǹ + z21w2`n + � � ���1 + z2wǹ + z22w2`n + � � ��= 1 + �zn1 + zn�11 z2 + � � �+ zn2 �+ �z2n1 + z2n�11 z2 + � � �+ z2n2 �+ � � �= 1 + zn+11 � zn+12z1 � z2 + z2n+11 � z2n+12z1 � z2 + � � �= 1 + 1z1 � z2 � zn+111� zn1 � zn+121� zn2 � : (25)Re
alling that z1 = �2��1e�i� and z2 = �ei�, we see that the set (24) isMn = f� 2 G+ : �2n+2ei(2n+2)� = (1� �nein�)�2n+2 + �2n�n+2ei(n+2)�g:Hen
e, if � 2Mn, then �2n+2 � �2n+2 < 2�2n+2 + �2n < 3�2n:It follows that �! � as n!1, and so (21) implies that lim supMn � [�2�; 2�℄. In otherwords, the sets (24) 
luster on the segment between the fo
i of the ellipse G+ and do not�ll out all of G+.To physi
ists, the matrix Cn(a) is the deterministi
 
omponent of a model for \a quan-tum parti
le hopping on a ring", in the language of Feinberg and Zee [6℄. Ea
h row ofCn(a) 
orresponds to one of n sites arranged in a 
ir
le, ea
h one of whi
h only 
ommu-ni
ates with its nearest neighbors on either side. The perturbation Ej!Ek (for j � k = 1and ! = �1) essentially fra
tures this periodi
 stru
ture in the more dominant dire
-tion. For n > 2, the resulting matrix is unitarily similar to the Toeplitz matrix Tn(an) foran(t) = t+�2(t�1+ tn); its eigenvalues 
luster on [�2�; 2�℄, but are ex
eptionally sensitiveto perturbations (see [2℄, [15℄, [17℄). Thus, the rather benign-looking perturbation Ej!Ektransforms a perfe
tly-
onditioned normal matrix eigenvalue problem into a dramati
allyill-
onditioned one.Proof of Theorem 1.2. By virtue of Theorem 1.1 and (10), it suÆ
es to prove that thefun
tion f de�ned by (9) is not identi
ally zero in G.(a) Pi
k � 2 G n B�(a). Then there exists a � > 0 su
h that � 62 B(a�). Put D� =diag (1; �; : : : ; �m�1). One 
an dire
tly verify thatPmL((a� �)�1)Pm = D�1� PmL((a� � �)�1)PmD�;15



and sin
e K is diagonal, we getPmL((a� �)�1)PmKPm = D�1� PmL((a� � �)�1)PmD�KPm= D�1� PmL((a� � �)�1)PmKPmD�:Consequently, f(�) = det(Im + PmL((a� �)�1)PmKPm)= det(Im + PmL((a� � �)�1)PmKPm): (26)The determinant (26) is 1 at � =1, and hen
e it 
annot vanish identi
ally in the unbounded
omponent of Cna�(T). Be
ause � 2 CnB(a�) and CnB(a�) is the unbounded 
omponentof Cna�(T), it follows that f is not identi
ally zero in an open neighborhood of � and thusnot identi
ally zero throughout G.(b) In this 
ase, the fun
tion (9) is f(�) = 1 + [(a � �)�1℄k�j!, and our assumption
learly implies that f 
annot be identi
ally zero in G.Proof of Corollary 1.3. From Example 4.1 we know that the ranges a�(T) are ellipseswith the same fo
i �2�, and B�(a) is seen to be simply the line segment between the fo
i.Sin
e ea
h 
omponent of C n a(T) 
ertainly 
ontains a point outside this line segment,Theorem 1.2 implies thatlimn!1�(sp (Cn(a) + PnKPn) \G�) [ a(T)� = sp (L(a) +K) \G�:Be
ause lim(Xn [Yn) = limXn [ limYn (whi
h easily follows from Theorem 3.2), we arriveat (2).5 Random perturbationsIn this se
tion we give proofs to Theorems 1.4, 1.5, 1.7, and 1.8, as well as Corollary 1.6.Throughout what follows, E is a �nite set of sites (j; k) with j; k 2 f1; : : : ; mg and 
 =f
jkg(j;k)2E is a family of 
ompa
t subsets of C, ea
h 
ontaining the origin.Proposition 5.1 If G is a 
onne
ted 
omponent of C n a(T), thenlim supn!1 (spE
 Cn(a) \G) � spE
 L(a) \G: (27)Proof. Pi
k � in the left-hand side of (27). If � 2 �G, then � is in the right-hand sideof (27) be
ause a(T) � spL(a) � spE
 L(a). So assume that � 2 G. By the de�nition ofthe partial limiting set, there are �n` 2 spE
 Cn`(a) \ G su
h that �n` ! �. From (3) and(13) we infer that for ea
h n` there exists Kn` 2 KE
 su
h thatdet(Im + PmC�1n` (a� �n`)PmKn`Pm) = 0: (28)Sin
e KE
 is a 
ompa
t set, the matri
es Kn` have a partial limit K in KE
 . From (16) and(28) we therefore get det(Im + PmL((a� �)�1)PmKPm) = 0;16



whi
h, by (3) and (10), shows that � is in the right-hand side of (27).Proof of Theorem 1.4. By virtue of Proposition 5.1 it suÆ
es to show thatspE
 L(a) \G � lim infn!1 (spE
 Cn(a) \G): (29)Sin
e a(Tn) = spCn(a) � spE
 Cn(a), a point � 2 �G 
ertainly belongs to the right-handside of (29). Thus, let � 2 spE
 L(a)\G. There exists a K 2 KE
 su
h that � 2 sp(L(a)+K).By assumption, the 
omponent G is not 
ontained in spE
 L(a), and hen
e it 
annot be asubset of sp(L(a) + K). Thus, we 
an apply Theorem 1.1 to 
on
lude that there exist�n 2 sp(Cn(a) + PnKPn) \ G � spE
 Cn(a) \ G su
h that �n ! �, whi
h implies that � isin the right-hand side of (29).Proof of Theorem 1.5. Again, we are left to prove in
lusion (29). If � 2 �G, then �is in lim inf a(Tn) and hen
e in the right-hand side of (29). Thus, let � 2 spE
 L(a) \ G.There is a K 2 KE
 su
h that � 2 sp(L(a) + K) \ G. From Theorem 1.2 we dedu
e thatthere exist �n 2 sp(Cn(a)+PnKPn)\G � spE
 Cn(a)\G su
h that �n ! �. Consequently,� belongs to the right-hand side of (29).Proof of Corollary 1.6. This is immediate from Theorem 1.5, be
ause B�(a) is the linesegment [�2�; 2�℄.Put 
Æ = f
Æjkg(j;k)2E, where 
Æjk is the set of interior points of 
jk. We de�nespE
Æ A = [K2KE
Æ sp (A+K) (30)if none of the sets 
Æjk is empty, and we let spE
Æ A = ; if one of the sets 
Æjk is the emptyset.Proposition 5.2 If G is a 
onne
ted 
omponent of C n a(T), thenspE
Æ L(a) \G � lim infn!1 (spE
 Cn(a) \G): (31)Proof. Let � 2 spE
ÆL(a)\G. As in the proof of Theorem 1.4, we may suppose that � 2 G.By (10) and (30), there exists a K 2 KE
Æ su
h thatdet(Im + PmL((a� �)�1)PmKPm) = 0:We de�ne the entire fun
tions ' and 'n by'(z) = det(Im + PmL((a� �)�1)Pm(K � zK)Pm);'n(z) = det(Im + PmC�1n (a� �)Pm(K � zK)Pm):From (16) we see that 'n 
onverges to ' uniformly on 
ompa
t subsets of C. As '(1) = 1,the fun
tion ' is not identi
ally zero. Sin
e '(0) = 0, we dedu
e from Theorem 3.1 thatthere are zn 2 C su
h that zn ! 0 and 'n(zn) = 0 for all suÆ
iently large n. Consequently,by (13), � 2 sp (Cn(a) + Pn(K � znK)Pn). As K � znK 2 KE
Æ whenever zn is suÆ
iently17




lose to zero, it follows that � 2 spE
ÆCn(a) for all n large enough and hen
e that � is in theright-hand side of (31).Proof of Theorem 1.7. Equality (5) is true for some " 2 (0;1) if (and only if)limn!1(spE"
Cn(a) \G) = spE"
 L(a) \G (32)for every 
onne
ted 
omponent G of C n a(T). Theorem 1.4 shows that (32) is true if Gis the unbounded 
omponent. We now prove that for ea
h bounded 
omponent G thereis at most one value "(G) for whi
h (32) is not valid. This will imply the assertion ofTheorem 1.7.By virtue of Proposition 5.1, equality (32) will follow as soon as we have shown thatspE"
 L(a) \ G � lim infn!1 (spE"
 Cn(a) \ G): Furthermore, sin
e a(Tn) = spCn(a) �spE"
Cn(a), it suÆ
es to show thatspE"
 L(a) \G � lim infn!1 (spE"
Cn(a) \G): (33)Thus, let G be a bounded 
omponent of C n a(T). It is 
lear that spE"
 L(a) does not
ontain all of G if " > 0 is suÆ
iently small. Put"(G) = supf" > 0 : spE"
 L(a) does not 
ontain Gg:We 
laim that (33) holds for all " 6= "(G).Suppose 0 < " < "(G). For �0 2 spE"
 L(a)\G, there is a K 2 KE"
 su
h that f(�0) = 0,where f is de�ned by (9). Sin
e G is not entirely 
ontained in spE"
 L(a), we see from (10)that f is not identi
ally zero in G. Thus, pro
eeding as in the proof of Theorem 1.4, we
on
lude that �0 is in the right-hand side of (33).Finally, suppose " > "(G). In that 
ase (33) amounts to the in
lusionG � lim infn!1 (spE"
 Cn(a) \G): (34)Take any Æ so that "(G) < Æ < ". Then G � spEÆ
 L(a), and sin
e ea
h 
jk is starlike andthe 
losure of its interior points, we have Æ
jk � "
Æjk and hen
e spEÆ
 L(a) � spE"
ÆL(a).Proposition 5.2 now gives (34).Proof of Theorem 1.8. Re
all the notation established in Example 4.1. We know fromTheorem 1.7 that (32) is true for G = G� and arbitrary 
ompa
t sets 
jk 
ontaining theorigin. By virtue of Proposition 5.1, equality (5) will follow on
e we have shown thatspE"
 L(a) \G+ � lim infn!1 (spE"
Cn(a) \G+): (35)For � = 1, the left-hand side of (35) is empty. So let � 2 [0; 1). In Example 4.1, weshowed that spE"
 L(a) \G+ = f� 2 G+ : hL((a� �)�1)ikj 2 �1=("
jk)g; (36)spE"
Cn(a) \G+ = f� 2 G+ : hC�1n (a� �)ikj 2 �1=("
jk)g; (37)18



where �1=("
jk) := f� : 1 + �! = 0 for some ! 2 "
jkg. Pi
k �0 in (36). Then thereexists some ! 2 "
jk su
h that the fun
tion f(�) = 1 + ![L((a � �)�1℄kj vanishes at �0.By Example 4.1, f is not identi
ally zero in G+ whenever j � k 6= 1 or ! 6= �1. Sin
efn(�) = 1 + ![C�1n (a � �)℄kj 
onverges to f(�) uniformly on 
ompa
t subsets of G+ byvirtue of (16), we infer from Theorem 3.1 that if j � k 6= 1 or ! 6= �1, then there exist�n 2 G+ su
h that �n ! �0 and fn(�n) = 0 for all suÆ
iently large n. By (37), this meansthat �0 is in the right hand side of (35).Now suppose � 2 [0; 1); j � k = 1, and �1 2 "
jk. In this 
ase (35) is equivalent tothe in
lusion G+ � lim infn!1 (spE"
 Cn(a) \G+): (38)Let 
 be a 
ontinuous 
urve between 0 and some point di�erent from 0 su
h that �1+ 
 �"
jk. When � = 0, we have G+ = D. We obtain from (20) and (37) that spE"
Cn(a) \D
ontains the setf� 2 D : 1 + !=(1� �n) = 0 for some ! 2 �1 + 
g = f� 2 D : �n 2 
g;and it is easily seen that the points of the latter set are asymptoti
ally dense in D asn!1, whi
h proves (38).Now let � 2 (0; 1). Then (25) and (37) show that spE"
 Cn(a) \G+ 
ontains the set�� 2 G+ : 1z1 � z2 � zn+111� zn1 � zn+121� zn2 � 2 Æ� ; (39)where Æ := fz=(1 � z) : z 2 
g. Clearly, Æ is also a 
ontinuous 
urve between 0 and somepoint di�erent from zero. Fix � 2 (�; 1) and let � be of the form (21). We then have1z1 � z2 � zn+111� zn1 � zn+121� zn2 � = zn+12z2 � z1  11� zn2 � �z1z2�n+1 11� zn1 ! ; (40)and sin
e, for suÆ
iently large n,����1� 11� zn2 ���� = ���� zn21� zn2 ���� � 2�n; ����z1z2 ����n+1 = ��2�2�n+1 ;it follows that as n!1, (40) equalszn+12z2 � z1 (1 +O(qn)) for some q 2 (0; 1):Consequently, the argument of (40) isarg� ei(n+1)��2��1e�i� � �ei� (1 +O(qn))� = (n + 1)� + �(�) + o(1); (41)where � is 
ontinuous and monotoni
ally in
reasing on [0; 2�) with �(0 + 0) = � and�(2�� 0) = 5�. Thus, as � moves on
e 
ounter-
lo
kwise along the ellipse de�ned by (21),19



the point (40) tra
es out a small 
ontinuous 
urve around 0 (
ontained in a disk of radiusO(�n+1)) whose winding number with respe
t to � is n+3. This 
urve interse
ts the 
urveÆ at least n+3 times, and from (41) we see that the arguments � of the �'s 
orresponding tothe interse
tion points are asymptoti
ally dense on [0; 2�). As � may be 
hosen arbitrarilyin (0; 1), this proves that every point of G+ is in the uniform limiting set of the sets (37)and hen
e implies (35).Finally, let � 2 [0; 1); j� k = 1, and "
jk = f�1; 0g. From Example 4.1, together with(36) and (37), we infer that spE"
 L(a) \G+ = G+, while spE"
Cn(a) \G+ equalsf� 2 G+ : �n 2 f�1; 0gg for � = 0; (42)f� 2 G+ : zn+11 =(1� zn1 ) = zn+12 =(1� zn2 )g for � 2 (0; 1): (43)From (42) it is 
lear that (5) is not true for � = 0, and in Example 4.1 we showed that thepoints of (43) 
luster on [�2�; 2�℄, revealing that (5) does not hold for � 2 (0; 1).6 Laurent versus ToeplitzThe n�n Toeplitz matrix indu
ed by a 2 P is the matrix Tn(a) = (aj�k)nj;k=1. S
hmidt andSpitzer [19℄ showed that sp Tn(a) 
onverges in the Hausdor� metri
 to some set �(a) that iseither a singleton or a �nite union of analyti
 ar
s. For example, if a(t) = t+�2t�1 (t 2 T)with � 2 [0; 1℄, then �(a) = [�2�; 2�℄. For the and symbols, the set �(a) 
oin
ideswith the set B�(a).It turns out that in general spE
 Cn(a) and spE
 Tn(a) approa
h di�erent limits as n!1.This is ni
ely seen in Figure 10, where we 
ompare real perturbations to the symbol forthe 
ir
ulant (Laurent) and Toeplitz 
ases.7 Some 
onje
turesIn this se
tion we formulate a few 
onje
tures that 
on
ern re�nements of the results wehave proved. Throughout what follows we suppose that a 2 P and that K has only �nitelymany nonzero entries.Conje
ture 7.1. We 
onje
ture that perturbation of a banded Laurent matrix in a singleentry of the main diagonal 
an never produ
e a spe
trum that 
ontains an entire 
omponentof the 
omplement of the original spe
trum, that is, we 
laim that sp (L(a)+E1!E1) never
ontains an entire 
omponent of C n a(T). Sin
esp(L(a) + E1!E1) = a(T) [ f� 62 a(T) : 1 + [L((a� �)�1)℄11! = 0g;this is equivalent to 
onje
turing that if a 2 P, then the zeroth Fourier 
oeÆ
ient of (a��)�1
an never be a nonzero 
onstant throughout some 
omponent of C n a(T).Conje
ture 7.2. We 
onje
ture that sp (L(a) +K) n spL(a) is always the union of some
omponents of C n a(T) and a �nite number of points. Equivalently, we 
onje
ture thatsp (L(a) +K) n spL(a) is never 
ountable. 20



Cir
ulant Toeplitz
Real perturbations to the (1; 1) entry

Real single entry perturbations to the (j; j) entry for random j 2 f1; 2; 3g
Real single entry perturbations to the (j; j) entry for random j 2 f1; 2; 3; 4; 5g

Simultaneous real perturbations to the (1; 1) and (2; 1) entriesFigure 10: Eigenvalues of random perturbations to C100(a) (left) and T100(a) (right). Allperturbations are uniformly distributed in [�7; 7℄ and ea
h plot superimposes the eigenvaluesof 2000 samples. (The �rst three plots on the left are identi
al.) Note that the s
ale of theseimages di�ers from the one used in Figures 1{4.
21



Conje
ture 7.3. We 
onje
ture thata(T) � lim infn!1 sp (Cn(a) + PnKPn)holds for all a 2 P, and that, in parti
ular, (2) 
an be repla
ed bylimn!1 sp (Cn(a) + PnKPn) = sp (L(a) +K):Conje
ture 7.4. In 
onne
tion with Theorem 1.1, we 
onje
ture that if a bounded 
om-ponent G of C n a(T) is entirely 
ontained in sp(L(a) +K), thenlimn!1�(sp (Cn(a) + PnKPn) \G) [ �G�= limn!1�(sp Tn(a) \G) [ �G� = �(a) \G:This 
onje
ture in
ludes the 
laim that (1) is never true if G is a subset of sp (L(a) +K).Conje
ture 7.5. We 
onje
ture that, under the hypothesis of Theorem 1.7, equality (5)is a
tually true for all " 2 (0;1).Conje
ture 7.6. Let k � k be the operator norm on `2. Given a bounded operator A on `2or a matrix A, the stru
tured pseudospe
trum or spe
tral value set spm" A is de�ned byspm" A = [kKk�" sp (A+ PmKPm)(see [3℄, [7℄, [12℄, [13℄). In [7℄, it is shown thatspm" A = spA [ f� 62 spA : kPm(A� �I)�1Pmk � 1="g:Using this equality, we 
an show that if a 2 P, thenlimn!1 spm" Cn(a) = spm" L(a) (44)for all " 2 (0;1) with the ex
eption of at most �nitely many "1; : : : ; "`, where ` is notgreater than the number of bounded 
omponents of C n a(T). We 
onje
ture that (44) isin fa
t true for all " 2 (0;1).We 
an prove (44) for all " 2 (0;1) in the 
ase where a(t) = t + �2t�1 (t 2 T) with� 2 [0; 1℄ and m � 3. For m = 3, the proof is based on the fa
t thatkP3L((a� �)�1)P3k =s1 + j�j22 +rj�j2 + j�j44is nowhere lo
ally 
onstant in the ellipse G+. We 
onje
ture that for m � 4 the normskPmL((a� �)�1)Pmk are also nowhere lo
ally 
onstant in G+.22
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