
SPECTRAL APPROXIMATION OF BANDEDLAURENT MATRICES WITH LOCALIZEDRANDOM PERTURBATIONS
A. B�otther, M. Embree, M. LindnerThis paper explores the relationship between the spetra of perturbed in�nite banded Laurentmatries L(a)+K and their approximations by perturbed irulant matries Cn(a)+PnKPnfor large n. The entries Kjk of the perturbation matries assume values in presribed sets
jk at the sites (j; k) of a �xed �nite set E, and are zero at the sites (j; k) outside E. WithKE
 denoting the ensemble of these perturbation matries, it is shown thatlimn!1 [K2KE
 sp (Cn(a) + PnKPn) = [K2KE
 sp (L(a) +K)under several fairly general assumptions on E and 
.1 Introdution and main resultsGiven a ontinuous omplex-valued funtion a on the omplex unit irle T, we denote byfangn2Z the sequene of its Fourier oeÆients,an = 12� Z 2�0 a(ei�)e�in� d�;and by L(a) the matrix (aj�k)j;k2Z. The matrix L(a) is alled the Laurent matrix withthe symbol a, and it is well known that L(a) indues a bounded operator on `2(Z) whosespetrum is the range a(T) of a, spL(a) = a(T).Let P denote the set of all trigonometri polynomials. Thus, a 2 P if and only if an 6= 0for at most �nitely many n. Throughout what follows we assume that a 2 P, whih isequivalent to the requirement that L(a) be a banded matrix.For a 2 P, we de�ne the n�n matrix Cn(a) by Cn(a) = (jk)nj;k=1 with jk = aj�k (modn).The matrix Cn(a) is a irulant matrix provided n exeeds the bandwidth of L(a). For1



example, if a(t) = a�1t�1 + a0 + a1t+ a2t2 (t 2 T), then
C6(a) = 0BBBBBB� a0 a�1 0 0 a2 a1a1 a0 a�1 0 0 a2a2 a1 a0 a�1 0 00 a2 a1 a0 a�1 00 0 a2 a1 a0 a�1a�1 0 0 a2 a1 a0

1CCCCCCA :
The spetrum of Cn(a) is a(Tn), where Tn denotes the set of the nth unit roots. Thus,the spetrum of Cn(a) approximates the spetrum of L(a) as n!1.This paper addresses the relationship between the spetra of L(a) + K and Cn(a) +PnKPn as n ! 1 when K = (Kjk) is a (deterministi or random) matrix whose nonzeroentries are all situated in a �xed �nite set E of sites (j; k) with j; k 2 f1; : : : ; mg, and wherePnKPn = (Kjk)nj;k=1. Related problems arise in the disretization of initial-boundary valueproblems [1℄, [8℄, [14℄, the theory of linear systems with unertain data [7℄, [12℄, [13℄, small-world networks [20℄, population biology [16℄, and non-Hermitian quantum mehanis [4℄,[5℄, [6℄, [10℄, [21℄. A prominent question is whether the spetrum of L(a) + K an befound by replaing L(a) +K with Cn(a) + PnKPn, where n is large, and then omputingthe eigenvalues of Cn(a) + PnKPn numerially. The reverse question is also of interest:Sometimes the spetrum of L(a) + K is known, and the problem is whether this tells usanything about the eigenvalues of Cn(a) + PnKPn for large n. In the language of physis,we are here onerned with the problem of whether the passage from the \�nite volumease" to the \in�nite volume ase" is ontinuous or not.One an show that spL(a) = a(T) is always a subset of sp (L(a) +K). Thussp (L(a) +K) = spL(a) [X = a(T) [Xwith some (possibly empty) set X, all points of whih are eigenvalues of L(a) + K. ThediÆulty with spetral approximation is that X may ontain entire onneted omponentsof C n a(T), whih, moreover, an emerge suddenly even if K hanges ontinuously. Forinstane, if a(t) = t (t 2 T), in whih ase L(a) is the forward shift on `2(Z), and K is thematrix whose (2; 1) entry is ! with all other entries zero, thensp (L(a) +K) = � T if ! 6= �1;D if ! = �1;where D = f� 2 C : j�j � 1g, while, for n � 2,sp(Cn(a) + PnKPn) = f� 2 C : �n = 1 + !g;whih shows that sp(Cn(a) + PnKPn) does not approximate sp(L(a) +K) if w = �1. (SeeExample 4.1 for further details.)Given a nonempty ompat set M � C and a sequene fMng of nonempty ompatsets Mn � C, we write limMn = M if Mn onverges to M in the Hausdor� metri. Thelosure of a set G � C will be denoted by G or los G, and its boundary G nG by �G.2



Theorem 1.1 If a onneted omponent G of C n a(T) is not entirely ontained in the setsp (L(a) +K), thenlimn!1�(sp(Cn(a) + PnKPn) \G) [ �G� = sp (L(a) +K) \G: (1)Equality (1) holds in partiular if G is the unbounded onneted omponent of C n a(T).We will show that (1) is in general no longer true if G is ontained in sp (L(a) +K).Here is a result for perturbations loalized on the main diagonal or in a single site.For a 2 P, let B(a) be the union of a(T) and all bounded omponents of C n a(T).Furthermore, for � > 0, de�ne a� 2 P by a�(t) = a(�t) (t 2 T). Thus, if a(t) = Pk aktk,then a�(t) =Pk ak�ktk. Finally, putB�(a) = \�>0B(a�):Theorem 1.2 Let G be a onneted omponent of C n a(T).(a) Finitely-Many Main Diagonal Perturbations. If K = diag (K11; : : : ; Kmm) and Gontains at least one point of C nB�(a), then equality (1) is true.(b) Single-Entry Perturbations. If K is a matrix whose (j; k) entry is ! with all otherentries zero, and if the (k � j)th Fourier oeÆient of 1=(a � �) is either identially zeroin G or nowhere loally onstant in G, then equality (1) is valid.For tridiagonal Laurent matries with a �nite number of perturbed diagonal entries, wehave the following.Corollary 1.3 If a(t) = t + �2t�1 (t 2 T) with � 2 [0; 1℄ and K = diag (K11; : : : ; Kmm),then limn!1�sp (Cn(a) + PnKPn) [ a(T)� = sp (L(a) +K): (2)These three results are related to the results of [1℄, [8℄, [14℄ and are perhaps known tospeialists. We state and prove these results here for the reader's onveniene and beausewe have not found them expliitly in the literature.We now onsider the ase where K is randomly hosen. Let E be a �nite set of sites(j; k) with j; k 2 f1; : : : ; mg and suppose for eah (j; k) 2 E we are given a ompat subset
jk of the plane that ontains the origin. We put 
 = f
jkg(j;k)2E and denote by KE
 theset of all matries K = (Kjk) for whih Kjk 2 
jk if (j; k) 2 E and Kjk = 0 if (j; k) 62 E.Finally, for a �nite or in�nite matrix A, we de�nespE
 A = [K2KE
 sp (A+K): (3)Clearly, we may think of spE
 A as the union of all possible spetra that may emerge whenperturbing A by a matrix K randomly hosen in KE
 .3



Eah of the previous three results has a diret analogue relating spE
 Cn(a) to spE
 L(a).These results do not use any spei� knowledge of the probability distributions speifyinghow perturbations are drawn from 
, but only depend upon the support of the perturba-tions; see Davies [4℄ for a similar approah. Knowledge of distributions may lead to morepreise statements about the rate at whih spetral limits are reahed; see [21℄.Theorem 1.4 Let G be a onneted omponent of Cna(T) and suppose G is not ontainedin spE
 L(a). Then limn!1 �spE
 Cn(a) \G� = spE
 L(a) \G: (4)In partiular, (4) is true if G is the unbounded onneted omponent of C n a(T).Theorem 1.5 Let G be a onneted omponent of C n a(T).(a) Finitely-Many Main Diagonal Perturbations. If E = f(1; 1); : : : ; (m;m)g and Gontains at least one point of C nB�(a), then equality (4) holds.(b) Single-Entry Perturbations. If E = f(j; k)g and if the (k � j)th Fourier oeÆientof 1=(a� �) is either identially zero in G or nowhere loally onstant in G, then equality(4) is satis�ed.Corollary 1.6 Let E = f(1; 1); : : : ; (m;m)g. If a(t) = t + �2t�1 (t 2 T) with � 2 [0; 1℄,then limn!1 spE
 Cn(a) = spE
 L(a):A set S � C is said to be starlike if it, together with eah of its points !, ontains theline segment [0; !℄. We let SÆ denote the set of all interior points of S. For " > 0, we de�ne"S as f"! : ! 2 Sg and "
 as f"
jkg(j;k)2E.Theorem 1.7 If eah 
jk is a starlike ompat nonempty set suh that 
jk = los 
Æjk,then limn!1 spE"
Cn(a) = spE"
 L(a) (5)for all " 2 (0;1) exept for at most �nitely many "1; : : : ; "`, where ` does not exeed thenumber of bounded omponents of C n a(T).We onjeture that, under the above hypotheses for 
, equality (5) is atually true forall " 2 (0;1), but we have not been able to prove this.For tridiagonal Laurent matries, we an supplement Theorems 1.4 and 1.7 by thefollowing result, whih onerns perturbations in a single site.Theorem 1.8 Let E = f(j; k)g and let 
jk be a ompat subset of C ontaining the origin.Furthermore, suppose a(t) = t + �2t�1 (t 2 T) with � 2 [0; 1℄. If � = 1 or j � k 6= 1 or�1=" 62 
jk, then (5) is valid. Otherwise, if � 2 [0; 1); j�k = 1, and �1=" 2 
jk, then (5)is not true for 
jk = f�1="; 0g, while (5) holds if 
jk ontains, in addition to �1=" and 0,a third point !0 and a ontinuous urve between �1=" and !0.4



Corollary 1.6 and Theorem 1.8 show in partiular that (5) is valid for all " 2 (0;1) ifL(a) is tridiagonal, 
 is a losed ellipse (inluding the interesting extreme ases of a linesegment and of a losed disk) that ontains the origin, and E is a singleton or a �nite subsetof the main diagonal.The paper is organized as follows. We have produed several pitures in order to demon-strate how spetral approximation works in pratie; Setion 2 ontains the omments tothese pitures. In Setion 3 we reord some well-known results that are used in the sub-sequent proofs. The proofs of Theorems 1.1 and 1.2 and of Corollary 1.3 are ontainedin Setion 4, while Theorems 1.4, 1.5, 1.7, 1.8 and Corollary 1.6 are proved in Setion 5.In Setion 6 we briey address the di�erent limiting behavior observed for Toeplitz andirulant matries, and onlude in Setion 7 with a few onjetures that might stimulatefurther researh.2 IllustrationsWe will refer toa(t) = (1:5� 1:2 i)z�1+ (0:34 + 0:84 i)z + (�0:46� 0:1 i)z2 + (0:17� 1:17 i)z3 + (�1 + 0:77 i)z4as the animal symbol or the symbol; spetral approximation for this symbol leads topitures of several animals; Figure 3 shows two birds, while the right olumn of Figure 10is reminisent of horses in ave paintings. The range a(T) and the set B�(a) are shown inFigure 1. Figure 2 provides an indiation of the set[1�j�51�k�5 sp(j;k)[�7;7℄L(a); (6)where sp(j;k) is an abbreviation for spf(j;k)g. We see that (6) is the union of a(T) and manyantennae (whih, in the ase at hand, replae the \wings" of [3℄, [10℄). Theorem 1.5(b) wouldguarantee that Figure 2 indeed approximates (6) if we knew that the analyti funtions[1=(a� �)℄k�j were nowhere loally onstant for �5 � k � j � 5. This is de�nitely true inthe unbounded omponent of Cna(T). We have heked numerially that eah omponentof C n a(T) ontains two points �1 and �2 suh that [1=(a� �1)℄k�j and [1=(a� �2)℄k�j aredi�erent. For example, the points �1 = 1:5 and �2 = 2:25 + 0:5 i belong to the upper-rightomponent of Cna(T) (onstituting the head and the upper part of the body of the animal), and the values of [1=(a��1)℄k�j and [1=(a��2)℄k�j are given in Table 1. Consequently,we may use Theorem 1.5(b) to onlude that Figure 2 should be a good approximation ofthe set (6).Figure 3 shows approximations to spE[�7;7℄L(a) for the symbol when E = f(1; 1); (2; 1)g(top) and E = f(1; 1); (1; 2)g (bottom). By Theorem 1.4, the plots should approximatespE[�7;7℄L(a) well in the unbounded omponent of C n a(T), that is, the birds' bills and tailsare lose to the truth. Our results are not appliable to the bounded omponents.5
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Figure 1: a(T) (thik line) and B�(a) (thin line) for the animal symbol.

Figure 2: Eigenvalues of C250(a) for the animal symbol, perturbed in one randomly hosenentry in the upper left 5 � 5 blok by a random number uniformly distributed in [�7; 7℄. Thisplot superimposes the eigenvalues of 2000 samples.k � j = �5 k � j = �4 k � j = �3 k � j = �2�1 �0:2037 + 0:1114 i �0:1443 � 0:0654 i �0:0841 + 0:0648 i �0:2849 � 0:0149 i�2 �0:1500 + 0:1924 i �0:0908 + 0:0331 i �0:1066 + 0:1782 i �0:3709 + 0:0319 ik � j = �1 k � j = 0 k � j = 1 k � j = 2�1 �0:1288 � 0:2019 i �0:0933 � 0:0258 i 0:1289 + 0:1292 i 0:0881 + 0:0532 i�2 �0:2111 � 0:2624 i �0:0734 � 0:1440 i 0:1884 + 0:0383 i 0:1294 + 0:0836 ik � j = 3 k � j = 4 k � j = 5�1 0:0499 + 0:0363 i 0:0146 � 0:1036 i �0:0872 � 0:0707 i�2 0:0391 + 0:1132 i �0:0413 � 0:0248 i �0:0947 � 0:0557 iTable 1: Fourier oeÆients of [1=(a��1)℄k�j and [1=(a��2)℄k�j for the animal symbol, where�1 = 1:5 and �2 = 2:25 + 0:5 i. These oeÆients were omputed using MATLAB's built-inquadrature routine quadl, and are believed to be orret to the digits presented.6



Figure 3: Eigenvalues of C250(a) for the animal symbol, perturbed simultaneously in two entriesby random numbers uniformly distributed in [�7; 7℄. On the top, the (1,1) and (2,1) entries arevaried; on the bottom, the (1,1) and (1,2) entries are perturbed. Eah plot superimposes theeigenvalues of 2000 samples.

Figure 4: Eigenvalues of C250(a) for the animal symbol, perturbed in the (j; k) entry by arandom number uniformly distributed in 7D. On the left, we take (j � k) (modn) = �1; onthe right, (j � k) (modn) = 1. Eah plot superimposes the eigenvalues of 2000 samples.7



In Figure 4 we see approximations to sp(j;k)7D L(a) for the symbol when (j; k) = (1; 2)(left) and (j; k) = (2; 1) (right). Using Theorem 1.4 for the unbounded omponent andTheorem 1.5(b) along with the numerially established fat that [1=(a� �)℄k�j is nowhereloally onstant, we an aept Figure 4 as a good approximation to sp(j;k)7D L(a).Figures 5 through 8 investigate a di�erent symbol, whih we all the apriorn symbol( symbol). It is given bya(t) = (�0:69� 0:13 i)z�5 + (0:73� 0:52 i)z�4 + (�0:06� 0:74 i)z�3+ (�0:31� 0:04 i)z�2 + (�0:11 + 0:10 i)z�1 + (�2:26 + 1:57 i)z+ (�0:13 + 0:05 i)z2 + (0:53 + 0:21 i)z3 + (0:37� 0:31 i)z4 + (0:22� 0:03 i)z5Figure 5 shows a(T) and B�(a). Figure 6 is the analogue of Figure 2 and indiates the set[1�j�51�k�5 sp(j;k)[�10;10℄L(a): (7)One an again numerially verify that [1=(a� �)℄k�j is nowhere loally onstant for �5 �k� j � 5. Thus, Theorem 1.5(b) an be employed to justify that the antennae of Figure 6are really all present in the set (7), and that Figures 7 and 8 should be good approximationsto sp(1;1)10DL(a); sp(3;1)10DL(a); sp(1;3)10DL(a):Finally, Figure 9 involves tridiagonal matries, illustrating the set[j�k 6=�1 sp(j;k)[�4;4℄L(a) for a(t) = t+ t�1=9: (8)The limiting set (8) was derived in our paper [3℄ and is portrayed at the top of Figure 9; webelieve this plot is orret to plotting auray. (Similar �gures appear in [3℄.) Theorem 1.8implies that limn!1 sp(j;k)[�4;4℄Cn(a) = sp(j;k)[�4;4℄L(a)for the symbol under onsideration, and Figure 9 illustrates this onviningly.3 PreliminariesLet a 2 P and let K be the in�nite matrix that is supported in the sites (j; k) withj; k 2 f1; : : : ; mg. We denote by Pm the projetion that sends a sequene x = fxkg to thesequene given by (Px)k = xk for k 2 f1; : : : ; mg and (Px)k = 0 otherwise. If A = (ajk)is an in�nite matrix or a �nite matrix of dimension n � m, we identify PmAPm with them�m matrix (ajk)mj;k=1.We know that spL(a) = a(T). For � 2 C n a(T), the inverse of L(a)� �I = L(a � �)is L((a� �)�1). The funtionf : C n a(T)! C; � 7! det�Im + PmL((a� �)�1)PmKPm� (9)8
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Figure 5: a(T) (thik line) and B�(a) (thin line) for the apriorn symbol.

Figure 6: Eigenvalues of C250(a) for the apriorn symbol, perturbed in one randomly hosenentry in the upper left 5� 5 blok by a random number uniformly distributed in [�10; 10℄. Thisplot superimposes the eigenvalues of 2000 samples.9



Figure 7: Eigenvalues of C250(a) for the apriorn symbol, perturbed in the (j; j) entry by arandom number uniformly distributed in 10D. This plot superimposes the eigenvalues of 2000samples.

Figure 8: Eigenvalues of C250(a) for the apriorn symbol, perturbed in the (j; k) entry by arandom number uniformly distributed in 10D. On the left, (j� k) (modn) = �2; on the right,(j � k) (modn) = 2. Eah plot superimposes the eigenvalues of 2000 samples.10



Figure 9: The set [j 6=k�1sp(j;k)[�4;4℄L(a) (top) and eigenvalues of random single entry perturbationsto C250(a) from [�4; 4℄ (bottom) for the symbol a(t) = t + �2t�1 with � = 1=3. (The lowerplot superimposes the eigenvalues of 2000 samples.)
11



is analyti, and it is easily heked that if � 2 C n a(T), then� 2 sp(L(a) +K) () f(�) = 0: (10)We now state some well known fats for the irulant matries Cn(a); throughout whatfollows we assume that n is at least as large as the bandwidth of L(a). Let wn = e2�i=n andput Fn = 0BBBBB� 1 1 1 � � � 11 wn w2n � � � wn�1n1 w2n w4n � � � w2(n�1)n... ... ... ...1 wn�1n w2(n�1)n � � � w(n�1)(n�1)n
1CCCCCA ; Un = 1pnFn:The matrix Un is unitary and a straightforward omputation shows thatCn(a)� �In = Cn(a� �) = U�n diag�a(wjn)� ��n�1j=0 Un: (11)Formula (11) implies that spCn(a) = a(Tn). For � 62 a(Tn), we denote by C�1n (a� �) theinverse of Cn(a� �). By analogy to (9) and (10), we see that the funtionsfn : C n a(Tn)! C; � 7! det�Im + PmC�1n (a� �)PmKPm� (12)are analyti and that, for � 2 C n a(Tn),� 2 sp (Cn(a) + PnKPn) () fn(�) = 0: (13)Moreover, formula (11) givesC�1n (a� �) = U�n diag�(a(wjn)� �)�1�n�1j=0 Un: (14)and hene the (j; k) entry of C�1n (a� �) is[C�1n (a� �)℄jk = 1n n�1X̀=0 w`(j�1)n w`(k�1)na(wǹ)� � : (15)For � 62 a(T), the right-hand side of (15) onverges to12� Z 2�0 e�i�(j�k)a(ei�)� �d� = �(a� �)�1�j�k;and the onvergene is uniform on ompat subsets of C n a(T). It follows thatlimn!1 hC�1n (a� �)ijk = hL((a� �)�1)ijk (16)and thus limn!1 fn(�) = f(�); (17)the onvergene being uniform on ompat subsets of C n a(T).12



Theorem 3.1 (Hurwitz). Let G � C be an open set, let f be a funtion that is analytiin G and does not vanish identially, and let ffng be a sequene of analyti funtions in Gthat onverges to f uniformly on ompat subsets of G. If f(�) = 0 for some � 2 G, thenthere is a sequene f�ng of points �n 2 G suh that �n ! � as n!1 and fn(�n) = 0 forall suÆiently large n.Two proofs of Hurwitz' theorem are in [18, pp. 205 and 312℄, for example.Let fMng be a sequene of nonempty subsets of C. The uniform limiting set lim infMnis de�ned as the set of all � 2 C that are the limit of some sequene f�ng with �n 2 Mn,while the partial limiting set lim supMn is the set of all � 2 C that are a partial limit ofsome sequene f�ng with �n 2 Mn. Naturally, lim infMn � lim supMn.Theorem 3.2 (Hausdor�). Let M and the members of the sequene fMng be nonemptyompat subsets of C. Then fMng onverges to M in the Hausdor� metri,limn!1Mn =M;if and only if lim infn!1 Mn = lim supn!1 Mn =M:Proofs an be found in [9, Setions 3.1.1 and 3.1.2℄ and in [11, Setion 2.8℄.4 Deterministi perturbationsThis setion is devoted to the proofs of Theorems 1.1 and 1.3.Proof of Theorem 1.1. We abbreviate L(a) + K and Cn(a) + PnKPn to A and An,respetively. Sine the onneted omponent G is not a subset of spA, we infer from (10)that the funtion f given by (9) does not vanish identially on G. De�ne fn by (12).We �rst show that lim sup ((spAn \G)[ �G) � spA\G. Suppose � is not in spA\G.If � 62 G, then � is learly not in the partial limiting set. Thus, let � 2 G. As � 62 spA,we see that f(�) 6= 0 due to (10). From (17) we therefore onlude that there is an openneighborhood U � G of � and a natural number n0 suh that fn(�) 6= 0 for all � 2 U andall n � n0. Consequently, by (13), U \ spAn = ; for all n � n0, whih implies that � is notin lim sup ((spAn \G) [ �G).We now prove that spA\G � lim inf ((spAn\G)[�G). Pik � in spA\G. If � 2 �G,then � is obviously in the uniform limiting set. So assume � 2 G. Then f(�) = 0 by virtueof (10). Hene, Theorem 3.1 guarantees the existene of �n 2 G suh that �n ! � andfn(�n) = 0 for all suÆiently large n. From (13) we infer that �n 2 spAn. It follows that� belongs to lim inf ((spAn \G) [ �G).Combining the two inlusions shown in the preeding two paragraphs with Theorem 3.2,we arrive at equality (1). 13



Example 4.1. Here we demonstrate that the hypothesis on G in Theorem 1.1 is neessaryin general; that is, we show that the equality (1) does not generally hold if the onnetedomponent G of C n a(T) is entirely ontained in the set sp (L(a) + K). Let a(t) =t+ �2t�1 (t 2 T) with � 2 [0; 1℄. The set a(T) is the ellipsef(1 + �2) os � + i(1� �2) sin � : 0 � � < 2�g;with foi �2�. Let G+ and G� denote the bounded and unbounded omponents of Cna(T)respetively. Notie that a(T) = T if � = 0 and a(T) = [�2; 2℄ (whene G+ = ;) if � = 1.Theorem 1.1 shows thatlimn!1�(sp(Cn(a) + PnKPn) \G�) [ a(T)� = sp(L(a) +K) \G�: (18)In partiular, it follows that (2) holds for � = 1 and an arbitrary �nitely-supported matrixK. We therefore onsider the ase where � 2 [0; 1) and � 2 G+.First let � = 0. Then G+ = D = f� 2 C : j�j < 1g, and it is easily seen thatPmL((a� �)�1)Pm = 0BBBB� 0 1 � �2 � � �0 0 1 � � � �0 0 0 1 � � �0 0 0 0 � � �� � � � � � � � � � � � � � �
1CCCCA : (19)Formula (15) and a straightforward omputation giveC�1n (a� �) = 11� �n 0BBBBB� �n�1 1 � � � � �n�2�n�2 �n�1 1 � � � �n�3�n�3 �n�2 �n�1 � � � �n�4... ... ... ...1 � �2 � � � �n�1
1CCCCCA : (20)Let Ej!Ek be the matrix whose (j; k) entry is ! with all other entries zero. From (10) weobserve that � 2 sp (L(a) + Ej!Ek) if and only if 1 + [L((a � �)�1)℄kj! = 0. Taking intoaount (19) we see that D is ontained in sp (L(a) + Ej!Ek) only when j � k = 1 and! = �1. In that ase (13) and (20) imply that sp (Cn(a) + Ej!Ek) \D is f0g.Now let � 2 (0; 1). Every point � 2 G+ an be written in the form� = �ei� + �2��1e�i� with � � � < 1; 0 � � < 2�: (21)It follows that a(t)� � = t�1(t� z1)(t� z2) with z1 = �2��1e�i� and z2 = �ei�. As jz1j < 1and jz2j < 1, we get 1a(t)� � = 1t �1 + z1t + z21t2 + � � ���1 + z2t + z22t2 + � � �� ; (22)whene PmL((a� �)�1)Pm = 0BBBB� 0 1 z1 + z2 z21 + z1z2 + z22 � � �0 0 1 z1 + z2 � � �0 0 0 1 � � �0 0 0 0 � � �� � � � � � � � � � � � � � �

1CCCCA : (23)14



Notie that z1+z2 = � and z21+z1z2+z22 = �2��2. The values of [L((a��)�1)℄kj at � = 0and � = 2� are easily seen to be di�erent if j � k � 2. From (9) we therefore get that G+is a subset of sp (L(a) +Ej!Ek) if and only if j � k = 1 and ! = �1. So let j � k = 1 and! = �1. By (13),Mn := sp (Cn(a) + Ej!Ek) \G+ = f� 2 G+ : 1� [C�1n (a� �)℄kj = 0g; (24)and from (15) and (22) we onlude that[C�1n (a� �)℄kj = 1n n�1X̀=0 �1 + z1wǹ + z21w2`n + � � ���1 + z2wǹ + z22w2`n + � � ��= 1 + �zn1 + zn�11 z2 + � � �+ zn2 �+ �z2n1 + z2n�11 z2 + � � �+ z2n2 �+ � � �= 1 + zn+11 � zn+12z1 � z2 + z2n+11 � z2n+12z1 � z2 + � � �= 1 + 1z1 � z2 � zn+111� zn1 � zn+121� zn2 � : (25)Realling that z1 = �2��1e�i� and z2 = �ei�, we see that the set (24) isMn = f� 2 G+ : �2n+2ei(2n+2)� = (1� �nein�)�2n+2 + �2n�n+2ei(n+2)�g:Hene, if � 2Mn, then �2n+2 � �2n+2 < 2�2n+2 + �2n < 3�2n:It follows that �! � as n!1, and so (21) implies that lim supMn � [�2�; 2�℄. In otherwords, the sets (24) luster on the segment between the foi of the ellipse G+ and do not�ll out all of G+.To physiists, the matrix Cn(a) is the deterministi omponent of a model for \a quan-tum partile hopping on a ring", in the language of Feinberg and Zee [6℄. Eah row ofCn(a) orresponds to one of n sites arranged in a irle, eah one of whih only ommu-niates with its nearest neighbors on either side. The perturbation Ej!Ek (for j � k = 1and ! = �1) essentially fratures this periodi struture in the more dominant dire-tion. For n > 2, the resulting matrix is unitarily similar to the Toeplitz matrix Tn(an) foran(t) = t+�2(t�1+ tn); its eigenvalues luster on [�2�; 2�℄, but are exeptionally sensitiveto perturbations (see [2℄, [15℄, [17℄). Thus, the rather benign-looking perturbation Ej!Ektransforms a perfetly-onditioned normal matrix eigenvalue problem into a dramatiallyill-onditioned one.Proof of Theorem 1.2. By virtue of Theorem 1.1 and (10), it suÆes to prove that thefuntion f de�ned by (9) is not identially zero in G.(a) Pik � 2 G n B�(a). Then there exists a � > 0 suh that � 62 B(a�). Put D� =diag (1; �; : : : ; �m�1). One an diretly verify thatPmL((a� �)�1)Pm = D�1� PmL((a� � �)�1)PmD�;15



and sine K is diagonal, we getPmL((a� �)�1)PmKPm = D�1� PmL((a� � �)�1)PmD�KPm= D�1� PmL((a� � �)�1)PmKPmD�:Consequently, f(�) = det(Im + PmL((a� �)�1)PmKPm)= det(Im + PmL((a� � �)�1)PmKPm): (26)The determinant (26) is 1 at � =1, and hene it annot vanish identially in the unboundedomponent of Cna�(T). Beause � 2 CnB(a�) and CnB(a�) is the unbounded omponentof Cna�(T), it follows that f is not identially zero in an open neighborhood of � and thusnot identially zero throughout G.(b) In this ase, the funtion (9) is f(�) = 1 + [(a � �)�1℄k�j!, and our assumptionlearly implies that f annot be identially zero in G.Proof of Corollary 1.3. From Example 4.1 we know that the ranges a�(T) are ellipseswith the same foi �2�, and B�(a) is seen to be simply the line segment between the foi.Sine eah omponent of C n a(T) ertainly ontains a point outside this line segment,Theorem 1.2 implies thatlimn!1�(sp (Cn(a) + PnKPn) \G�) [ a(T)� = sp (L(a) +K) \G�:Beause lim(Xn [Yn) = limXn [ limYn (whih easily follows from Theorem 3.2), we arriveat (2).5 Random perturbationsIn this setion we give proofs to Theorems 1.4, 1.5, 1.7, and 1.8, as well as Corollary 1.6.Throughout what follows, E is a �nite set of sites (j; k) with j; k 2 f1; : : : ; mg and 
 =f
jkg(j;k)2E is a family of ompat subsets of C, eah ontaining the origin.Proposition 5.1 If G is a onneted omponent of C n a(T), thenlim supn!1 (spE
 Cn(a) \G) � spE
 L(a) \G: (27)Proof. Pik � in the left-hand side of (27). If � 2 �G, then � is in the right-hand sideof (27) beause a(T) � spL(a) � spE
 L(a). So assume that � 2 G. By the de�nition ofthe partial limiting set, there are �n` 2 spE
 Cn`(a) \ G suh that �n` ! �. From (3) and(13) we infer that for eah n` there exists Kn` 2 KE
 suh thatdet(Im + PmC�1n` (a� �n`)PmKn`Pm) = 0: (28)Sine KE
 is a ompat set, the matries Kn` have a partial limit K in KE
 . From (16) and(28) we therefore get det(Im + PmL((a� �)�1)PmKPm) = 0;16



whih, by (3) and (10), shows that � is in the right-hand side of (27).Proof of Theorem 1.4. By virtue of Proposition 5.1 it suÆes to show thatspE
 L(a) \G � lim infn!1 (spE
 Cn(a) \G): (29)Sine a(Tn) = spCn(a) � spE
 Cn(a), a point � 2 �G ertainly belongs to the right-handside of (29). Thus, let � 2 spE
 L(a)\G. There exists a K 2 KE
 suh that � 2 sp(L(a)+K).By assumption, the omponent G is not ontained in spE
 L(a), and hene it annot be asubset of sp(L(a) + K). Thus, we an apply Theorem 1.1 to onlude that there exist�n 2 sp(Cn(a) + PnKPn) \ G � spE
 Cn(a) \ G suh that �n ! �, whih implies that � isin the right-hand side of (29).Proof of Theorem 1.5. Again, we are left to prove inlusion (29). If � 2 �G, then �is in lim inf a(Tn) and hene in the right-hand side of (29). Thus, let � 2 spE
 L(a) \ G.There is a K 2 KE
 suh that � 2 sp(L(a) + K) \ G. From Theorem 1.2 we dedue thatthere exist �n 2 sp(Cn(a)+PnKPn)\G � spE
 Cn(a)\G suh that �n ! �. Consequently,� belongs to the right-hand side of (29).Proof of Corollary 1.6. This is immediate from Theorem 1.5, beause B�(a) is the linesegment [�2�; 2�℄.Put 
Æ = f
Æjkg(j;k)2E, where 
Æjk is the set of interior points of 
jk. We de�nespE
Æ A = [K2KE
Æ sp (A+K) (30)if none of the sets 
Æjk is empty, and we let spE
Æ A = ; if one of the sets 
Æjk is the emptyset.Proposition 5.2 If G is a onneted omponent of C n a(T), thenspE
Æ L(a) \G � lim infn!1 (spE
 Cn(a) \G): (31)Proof. Let � 2 spE
ÆL(a)\G. As in the proof of Theorem 1.4, we may suppose that � 2 G.By (10) and (30), there exists a K 2 KE
Æ suh thatdet(Im + PmL((a� �)�1)PmKPm) = 0:We de�ne the entire funtions ' and 'n by'(z) = det(Im + PmL((a� �)�1)Pm(K � zK)Pm);'n(z) = det(Im + PmC�1n (a� �)Pm(K � zK)Pm):From (16) we see that 'n onverges to ' uniformly on ompat subsets of C. As '(1) = 1,the funtion ' is not identially zero. Sine '(0) = 0, we dedue from Theorem 3.1 thatthere are zn 2 C suh that zn ! 0 and 'n(zn) = 0 for all suÆiently large n. Consequently,by (13), � 2 sp (Cn(a) + Pn(K � znK)Pn). As K � znK 2 KE
Æ whenever zn is suÆiently17



lose to zero, it follows that � 2 spE
ÆCn(a) for all n large enough and hene that � is in theright-hand side of (31).Proof of Theorem 1.7. Equality (5) is true for some " 2 (0;1) if (and only if)limn!1(spE"
Cn(a) \G) = spE"
 L(a) \G (32)for every onneted omponent G of C n a(T). Theorem 1.4 shows that (32) is true if Gis the unbounded omponent. We now prove that for eah bounded omponent G thereis at most one value "(G) for whih (32) is not valid. This will imply the assertion ofTheorem 1.7.By virtue of Proposition 5.1, equality (32) will follow as soon as we have shown thatspE"
 L(a) \ G � lim infn!1 (spE"
 Cn(a) \ G): Furthermore, sine a(Tn) = spCn(a) �spE"
Cn(a), it suÆes to show thatspE"
 L(a) \G � lim infn!1 (spE"
Cn(a) \G): (33)Thus, let G be a bounded omponent of C n a(T). It is lear that spE"
 L(a) does notontain all of G if " > 0 is suÆiently small. Put"(G) = supf" > 0 : spE"
 L(a) does not ontain Gg:We laim that (33) holds for all " 6= "(G).Suppose 0 < " < "(G). For �0 2 spE"
 L(a)\G, there is a K 2 KE"
 suh that f(�0) = 0,where f is de�ned by (9). Sine G is not entirely ontained in spE"
 L(a), we see from (10)that f is not identially zero in G. Thus, proeeding as in the proof of Theorem 1.4, weonlude that �0 is in the right-hand side of (33).Finally, suppose " > "(G). In that ase (33) amounts to the inlusionG � lim infn!1 (spE"
 Cn(a) \G): (34)Take any Æ so that "(G) < Æ < ". Then G � spEÆ
 L(a), and sine eah 
jk is starlike andthe losure of its interior points, we have Æ
jk � "
Æjk and hene spEÆ
 L(a) � spE"
ÆL(a).Proposition 5.2 now gives (34).Proof of Theorem 1.8. Reall the notation established in Example 4.1. We know fromTheorem 1.7 that (32) is true for G = G� and arbitrary ompat sets 
jk ontaining theorigin. By virtue of Proposition 5.1, equality (5) will follow one we have shown thatspE"
 L(a) \G+ � lim infn!1 (spE"
Cn(a) \G+): (35)For � = 1, the left-hand side of (35) is empty. So let � 2 [0; 1). In Example 4.1, weshowed that spE"
 L(a) \G+ = f� 2 G+ : hL((a� �)�1)ikj 2 �1=("
jk)g; (36)spE"
Cn(a) \G+ = f� 2 G+ : hC�1n (a� �)ikj 2 �1=("
jk)g; (37)18



where �1=("
jk) := f� : 1 + �! = 0 for some ! 2 "
jkg. Pik �0 in (36). Then thereexists some ! 2 "
jk suh that the funtion f(�) = 1 + ![L((a � �)�1℄kj vanishes at �0.By Example 4.1, f is not identially zero in G+ whenever j � k 6= 1 or ! 6= �1. Sinefn(�) = 1 + ![C�1n (a � �)℄kj onverges to f(�) uniformly on ompat subsets of G+ byvirtue of (16), we infer from Theorem 3.1 that if j � k 6= 1 or ! 6= �1, then there exist�n 2 G+ suh that �n ! �0 and fn(�n) = 0 for all suÆiently large n. By (37), this meansthat �0 is in the right hand side of (35).Now suppose � 2 [0; 1); j � k = 1, and �1 2 "
jk. In this ase (35) is equivalent tothe inlusion G+ � lim infn!1 (spE"
 Cn(a) \G+): (38)Let  be a ontinuous urve between 0 and some point di�erent from 0 suh that �1+  �"
jk. When � = 0, we have G+ = D. We obtain from (20) and (37) that spE"
Cn(a) \Dontains the setf� 2 D : 1 + !=(1� �n) = 0 for some ! 2 �1 + g = f� 2 D : �n 2 g;and it is easily seen that the points of the latter set are asymptotially dense in D asn!1, whih proves (38).Now let � 2 (0; 1). Then (25) and (37) show that spE"
 Cn(a) \G+ ontains the set�� 2 G+ : 1z1 � z2 � zn+111� zn1 � zn+121� zn2 � 2 Æ� ; (39)where Æ := fz=(1 � z) : z 2 g. Clearly, Æ is also a ontinuous urve between 0 and somepoint di�erent from zero. Fix � 2 (�; 1) and let � be of the form (21). We then have1z1 � z2 � zn+111� zn1 � zn+121� zn2 � = zn+12z2 � z1  11� zn2 � �z1z2�n+1 11� zn1 ! ; (40)and sine, for suÆiently large n,����1� 11� zn2 ���� = ���� zn21� zn2 ���� � 2�n; ����z1z2 ����n+1 = ��2�2�n+1 ;it follows that as n!1, (40) equalszn+12z2 � z1 (1 +O(qn)) for some q 2 (0; 1):Consequently, the argument of (40) isarg� ei(n+1)��2��1e�i� � �ei� (1 +O(qn))� = (n + 1)� + �(�) + o(1); (41)where � is ontinuous and monotonially inreasing on [0; 2�) with �(0 + 0) = � and�(2�� 0) = 5�. Thus, as � moves one ounter-lokwise along the ellipse de�ned by (21),19



the point (40) traes out a small ontinuous urve around 0 (ontained in a disk of radiusO(�n+1)) whose winding number with respet to � is n+3. This urve intersets the urveÆ at least n+3 times, and from (41) we see that the arguments � of the �'s orresponding tothe intersetion points are asymptotially dense on [0; 2�). As � may be hosen arbitrarilyin (0; 1), this proves that every point of G+ is in the uniform limiting set of the sets (37)and hene implies (35).Finally, let � 2 [0; 1); j� k = 1, and "
jk = f�1; 0g. From Example 4.1, together with(36) and (37), we infer that spE"
 L(a) \G+ = G+, while spE"
Cn(a) \G+ equalsf� 2 G+ : �n 2 f�1; 0gg for � = 0; (42)f� 2 G+ : zn+11 =(1� zn1 ) = zn+12 =(1� zn2 )g for � 2 (0; 1): (43)From (42) it is lear that (5) is not true for � = 0, and in Example 4.1 we showed that thepoints of (43) luster on [�2�; 2�℄, revealing that (5) does not hold for � 2 (0; 1).6 Laurent versus ToeplitzThe n�n Toeplitz matrix indued by a 2 P is the matrix Tn(a) = (aj�k)nj;k=1. Shmidt andSpitzer [19℄ showed that sp Tn(a) onverges in the Hausdor� metri to some set �(a) that iseither a singleton or a �nite union of analyti ars. For example, if a(t) = t+�2t�1 (t 2 T)with � 2 [0; 1℄, then �(a) = [�2�; 2�℄. For the and symbols, the set �(a) oinideswith the set B�(a).It turns out that in general spE
 Cn(a) and spE
 Tn(a) approah di�erent limits as n!1.This is niely seen in Figure 10, where we ompare real perturbations to the symbol forthe irulant (Laurent) and Toeplitz ases.7 Some onjeturesIn this setion we formulate a few onjetures that onern re�nements of the results wehave proved. Throughout what follows we suppose that a 2 P and that K has only �nitelymany nonzero entries.Conjeture 7.1. We onjeture that perturbation of a banded Laurent matrix in a singleentry of the main diagonal an never produe a spetrum that ontains an entire omponentof the omplement of the original spetrum, that is, we laim that sp (L(a)+E1!E1) neverontains an entire omponent of C n a(T). Sinesp(L(a) + E1!E1) = a(T) [ f� 62 a(T) : 1 + [L((a� �)�1)℄11! = 0g;this is equivalent to onjeturing that if a 2 P, then the zeroth Fourier oeÆient of (a��)�1an never be a nonzero onstant throughout some omponent of C n a(T).Conjeture 7.2. We onjeture that sp (L(a) +K) n spL(a) is always the union of someomponents of C n a(T) and a �nite number of points. Equivalently, we onjeture thatsp (L(a) +K) n spL(a) is never ountable. 20



Cirulant Toeplitz
Real perturbations to the (1; 1) entry

Real single entry perturbations to the (j; j) entry for random j 2 f1; 2; 3g
Real single entry perturbations to the (j; j) entry for random j 2 f1; 2; 3; 4; 5g

Simultaneous real perturbations to the (1; 1) and (2; 1) entriesFigure 10: Eigenvalues of random perturbations to C100(a) (left) and T100(a) (right). Allperturbations are uniformly distributed in [�7; 7℄ and eah plot superimposes the eigenvaluesof 2000 samples. (The �rst three plots on the left are idential.) Note that the sale of theseimages di�ers from the one used in Figures 1{4.
21



Conjeture 7.3. We onjeture thata(T) � lim infn!1 sp (Cn(a) + PnKPn)holds for all a 2 P, and that, in partiular, (2) an be replaed bylimn!1 sp (Cn(a) + PnKPn) = sp (L(a) +K):Conjeture 7.4. In onnetion with Theorem 1.1, we onjeture that if a bounded om-ponent G of C n a(T) is entirely ontained in sp(L(a) +K), thenlimn!1�(sp (Cn(a) + PnKPn) \G) [ �G�= limn!1�(sp Tn(a) \G) [ �G� = �(a) \G:This onjeture inludes the laim that (1) is never true if G is a subset of sp (L(a) +K).Conjeture 7.5. We onjeture that, under the hypothesis of Theorem 1.7, equality (5)is atually true for all " 2 (0;1).Conjeture 7.6. Let k � k be the operator norm on `2. Given a bounded operator A on `2or a matrix A, the strutured pseudospetrum or spetral value set spm" A is de�ned byspm" A = [kKk�" sp (A+ PmKPm)(see [3℄, [7℄, [12℄, [13℄). In [7℄, it is shown thatspm" A = spA [ f� 62 spA : kPm(A� �I)�1Pmk � 1="g:Using this equality, we an show that if a 2 P, thenlimn!1 spm" Cn(a) = spm" L(a) (44)for all " 2 (0;1) with the exeption of at most �nitely many "1; : : : ; "`, where ` is notgreater than the number of bounded omponents of C n a(T). We onjeture that (44) isin fat true for all " 2 (0;1).We an prove (44) for all " 2 (0;1) in the ase where a(t) = t + �2t�1 (t 2 T) with� 2 [0; 1℄ and m � 3. For m = 3, the proof is based on the fat thatkP3L((a� �)�1)P3k =s1 + j�j22 +rj�j2 + j�j44is nowhere loally onstant in the ellipse G+. We onjeture that for m � 4 the normskPmL((a� �)�1)Pmk are also nowhere loally onstant in G+.22
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