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SPECTRAL APPROXIMATIONS TO THE FRACTIONAL
INTEGRAL AND DERIVATIVE

Changpin Li 1, Fanhai Zeng 2, Fawang Liu 3

Abstract

In this paper, the spectral approximations are used to compute the frac-
tional integral and the Caputo derivative. The effective recursive formulae
based on the Legendre, Chebyshev and Jacobi polynomials are developed
to approximate the fractional integral. And the succinct scheme for approx-
imating the Caputo derivative is also derived. The collocation method is
proposed to solve the fractional initial value problems and boundary value
problems. Numerical examples are also provided to illustrate the effective-
ness of the derived methods.

MSC 2010 : 26A33 (main), 65L12, 15A99, 39A70
Key Words and Phrases: fractional integral, Caputo derivative, spectral

approximation, Jacobi polynomials

1. Introduction

Fractional calculus (including the fractional integral and the fractional
derivative) has a long history, which is as old as the more familiar integer-
order counterparts [14]. Since then, fractional calculus has undergone a
rapid development primarily in theoretical mathematics. At present, frac-
tional calculus has been found widely used in many areas of science and
engineering [3, 9, 11, 15, 16, 19, 21, 27, 29].

Fractional derivative is more complicated than the classical one, and
the calculation of the fractional derivative is also more difficult than that
for the typical one. In [4], numerical algorithms for solving the fractional
integral and Caputo derivative were considered. Li et al. [10] also developed
numerical algorithms based on the piecewise polynomial interpolation to
approximate the fractional integral and Caputo derivative, and to solve the

c© Year Diogenes Co., Sofia
pp. xxx–xxx



2 C. P. Li, F. H. Zeng, F. Liu

fractional differential equations. An automatic quadrature method based
on the Chebyshev polynomials was presented for approximating the Caputo
derivative in [25]. Some other computational schemes, such as the L1, L2
and L2C schemes, etc., are also introduced [8, 12, 13, 15, 17, 18, 20, 22, 24,
26, 28].

To increase calculation accuracy, spectral approximations are often cho-
sen. In this paper, we derive effective algorithms to approximate the frac-
tional integral by using the Legendre, Chebyshev and Jacobi polynomials.
The numerical algorithm to calculate the Caputo derivative is also derived
based on the above computational schemes. Besides, we propose a kind
of fractional operational matrix, which can be seen as a generalization of
the classical derivative. When the fractional order of the Caputo derivative
reduces to an integer, the derived fractional operational matrix reduces to
the classical differential matrix. The applications of the constructed algo-
rithms are illustrated to compute the fractional integral, Caputo derivative
and the fractional ordinary differential equations. Numerical experiments
are displayed to verify the proposed numerical algorithms.

The remainder of this paper is organized as follows. In Section 2, we in-
troduce several definitions of fractional calculus and the Legendre, Cheby-
shev and Jacobi polynomials. Numerical algorithms for calculating the
fractional integral and the Caputo derivative are presented in Sections 3
and 4, respectively. The applications of the methods are illustrated in Sec-
tion 5. Numerical examples are presented in Section 6, and the conclusion
is included in the last section.

2. Definitions and notations

In this section, we introduce the definitions of the fractional calculus.
Then we introduce the Legendre, Chebyshev and Jacobi polynomials, which
will be used later on.

Definition 2.1. The fractional integral (or the Riemann–Liouville
integral) with order α > 0 of the given function f(t) is defined as

D−α
a,t f(t) =

1
Γ(α)

∫ t

a
(t− s)α−1f(s) ds, (2.1)

where Γ(·) is the Euler’s gamma function.

There exist several kinds of fractional derivatives. However, in engi-
neering the Caputo derivative is mostly used, which is introduced below.
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Definition 2.2. The Caputo derivative with order α > 0 of the given
function f(t) is defined as

CDα
a,tf(t) = D

−(n−α)
a,t

[
f (n)(t)

]

=
1

Γ(n− α)

∫ t

a
(t− s)n−α−1f (n)(s) ds,

(2.2)

where n is a positive integer and n− 1 < α≤n.

Next, we introduce the Legendre, Chebyshev and Jacobi polynomials.
The Legendre polynomials {Lj(x)}, x∈ [−1, 1] satisfy the three-term

recurrence relation

L0(x) = 1, L1(x) = x,

Lj+1 =
2j + 1
j + 1

xLj(x)− j

j + 1
Lj−1(x), j ≥ 1.

(2.3)

Their properties which will be used later on are listed as follows

(2j + 1)Lj(x) = L′j+1(x)− L′j−1(x), j ≥ 1, (2.4)

Lj(±1) = (±1)j , L′j(±1) =
1
2
(±1)j−1j(j + 1). (2.5)

The Chebyshev polynomials {Tj(x)}, x∈ [−1, 1] satisfy the three-term
recurrence relation

T0(x) = 1, T1(x) = x,

Tj+1(x) = 2xTj(x)− Tj−1(x), j ≥ 1.
(2.6)

Their fundamental properties are presented below

2Tj(x) =
1

j + 1
T ′j+1(x)− 1

j − 1
T ′j−1(x), j ≥ 2, (2.7)

Tj(±1) = (±1)j , T ′j(±1) =
1
2
(±1)j−1j2. (2.8)

The Jacobi polynomials {P a,b
j (x)}, a, b > −1, x ∈ [−1, 1] are given by

the following three-term recurrence relation [23]

P a,b
0 (x) = 1, P a,b

1 (x) =
1
2
(a + b + 2)x +

1
2
(a− b),

P a,b
j+1(x) = (Aa,b

j x−Ba,b
j )P a,b

j (x)− Ca,b
j P a,b

j−1(x), n ≥ 1,
(2.9)
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where

Aa,b
j =

(2j + a + b + 1)(2j + a + b + 2)
2(j + 1)(j + a + b + 1)

,

Ba,b
j =

(b2 − a2)(2j + a + b + 1)
2(j + 1)(j + a + b + 1)(2j + a + b)

,

Ca,b
j =

(j + a)(j + b)(2j + a + b + 2)
(j + 1)(j + a + b + 1)(2j + a + b)

.

(2.10)

Here, we list some useful properties of the Jacobi polynomials that will be
used in the present paper [23].

P a,b
j (1) =

(
j + a

j

)
=

Γ(j + a + 1)
j!Γ(a + 1)

, P a,b
j (−1) = (−1)j Γ(j + b + 1)

j!Γ(b + 1)
.

(2.11)

dm

dxm
P a,b

j (x) = da,b
j,mP a+m,b+m

j−m (x), j≥m,m ∈ N, (2.12)

where

da,b
j,m =

Γ(j + m + a + b + 1)
2mΓ(j + a + b + 2)

. (2.13)

P a,b
j (x) = Âa,b

j

d
dx

P a,b
j−1(x) + B̂a,b

j

d
dx

P a,b
j (x) + Ĉa,b

j

d
dx

P a,b
j+1(x), j ≥ 1,

(2.14)
in which

Âa,b
j =

−2(j + a)(j + b)
(j + a + b)(2j + a + b)(2j + a + b + 1)

,

B̂a,b
j =

2(a− b)
(2j + a + b)(2j + a + b + 2)

,

Ĉa,b
j =

2(j + a + b + 1)
(2j + a + b + 1)(2j + a + b + 2)

.

(2.15)

If j = 1, Âa,b
1 in (2.15) is set to be zero.

Remark 2.1. The case a = b = 0 in (2.9) yields the Legendre polyno-

mials (P 0,0
j (x) = Lj(x)). If a = b = −1

2 , then P
− 1

2
,− 1

2
j (x) = Γ(j+1/2)

j!
√

π
Tj(x),

j≥ 0.

3. Approximation to the fractional integral

In the section, we develop algorithms to approximate the fractional in-
tegral of a given function. Among three kinds of polynomials, the Legendre
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polynomials are commonly used. We mainly study the Legendre approxi-
mation to the fractional integral in details in this section. The Chebyshev
and Jacobi approximations are almost the same as that of the Legendre
approximation.

Let u(x) be a function defined on the interval [−1, 1], and N be a
positive integer. Denote by

pN (x) =
N∑

j=0

l̃j Lj(x), (3.1)

where pN (x) is an approximation of u(x), and l̃j are the coefficients deter-
mined by u(x). If pN (x) is an orthogonal projection of u(x), then l̃j can be
determined by the orthogonality of {Lj(x)}. In this paper, we assume that
pN (x) is the interpolation of u(x). If pN (x) is the interpolation of u(x) on
the Legendre–Gauss–Lobatto points {xk}N

k=0, then l̃j can be determined
by

l̃j =
1
γj

N∑

k=0

u(xk)Lj(xk)ωk, (3.2)

where γj = 2
2j+1 for 0≤ j≤N − 1, γN = 2

N , and {ωk}N
k=0 are the corre-

sponding quadrature weights [23].
Therefore, for any α > 0, the fractional integral D−α

−1,xu(x) can be
approximated by

D−α
−1,xu(x)≈D−α

−1,xpN (x) =
1

Γ(α)

∫ x

−1
(x− s)α−1pN (s) ds

=
1

Γ(α)

N∑

j=0

l̃j

∫ x

−1
(x− s)α−1Lj(s) ds

=
N∑

j=0

l̃j L̂α
j (x),

(3.3)

where L̂α
j (x) = 1

Γ(α)

∫ x
−1(x − s)α−1Lj(s) ds. Next, we give an effective re-

currence formula to calculate L̂α
j (x).
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We can easily get L̂α
0 (x) = (x+1)α

Γ(α+1) and L̂α
1 (x) = x(x+1)α

Γ(α+1) −
α(x+1)α+1

Γ(α+2)

from (2.3). For j≥ 1, by using (2.3), we have

L̂α
j+1(x) =

1
Γ(α)

∫ x

−1
(x− s)α−1Lj+1(s) ds

=
1

Γ(α)
1

j + 1

∫ x

−1
(x− s)α−1

[
(2j + 1)sLj(s)− jLj−1(s)

]
ds

=
1

j + 1

{
(2j + 1)xL̂α

j (x)− jL̂α
j−1(x)

− 2j + 1
Γ(α)

∫ x

−1
(x− s)αLj(s) ds

}
.

(3.4)

Noticing that (2j + 1)Lj(x) = L′j+1(x)− L′j−1(x) for j≥ 1 (see Eq. (2.4)),
we have

L̂α
j+1(x) =

1
j + 1

{
(2j + 1)xL̂α

j (x)− jL̂α
j−1(x)

− 1
Γ(α)

∫ x

−1
(x− s)α(L′j+1(s)− L′j−1(s)) ds

}

=
1

j + 1

{
(2j + 1)xL̂α

j (x)− jL̂α
j−1(x)

− 1
Γ(α)

[
(x− s)α(Lj+1(s)− Lj−1(s))

]x

−1

− α(L̂α
j+1(x)− L̂α

j−1(x))
}

=
1

j + 1

{
(2j + 1)xL̂α

j (x)− jL̂α
j−1(x)− α(L̂α

j+1(x)− L̂α
j−1(x))

}
.

(3.5)
Hence, for j≥ 1, we get the following recurrence relation

L̂α
j+1(x) =

1
j + 1 + α

{
(2j + 1)xL̂α

j (x)− (j − α)L̂α
j−1(x)

}
. (3.6)

So, L̂α
j (x) can be calculated by the following formula





L̂α
0 (x) =

(x + 1)α

Γ(α + 1)
,

L̂α
1 (x) =

x(x + 1)α

Γ(α + 1)
− α(x + 1)α+1

Γ(α + 2)
,

L̂α
j+1(x) =

1
j + 1 + α

{
(2j + 1)xL̂α

j (x)− (j − α)L̂α
j−1(x)

}
, j≥ 1.

(3.7)
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Therefore, D−α
−1,xu(x) is approximated by

D−α
−1,x u(x)≈D−α

−1,x pN (x) =
N∑

j=0

l̃j L̂α
j (x),

where L̂α
j (x) is defined by (3.7), and l̃j is defined by (3.2).

Similarly, we can get the similar results for the Chebyshev polynomials
and the Jacobi polynomials.

For the Chebyshev polynomials, let T̂α
j (x) = 1

Γ(α)

∫ x
−1(x−s)α−1Tj(s) ds,

by many calculations, one can get





T̂α
0 (x) =

(x + 1)α

Γ(α + 1)
,

T̂α
1 (x) =

x(x + 1)α

Γ(α + 1)
− α(x + 1)α+1

Γ(α + 2)
,

T̂α
2 (x) =

4x

2 + α
T̂α

1 (x)− 2
2 + α

T̂α
0 (x) +

α(x + 1)α

(2 + α)Γ(α + 1)
,

T̂α
j+1(x) =

2(j + 1)x
j + 1 + α

T̂α
j (x)− (j + 1)(j − 1− α)

(j + 1 + α)(j − 1)
T̂α

j−1(x)

+
2(−1)jα(x + 1)α

Γ(α + 1)(j + 1 + α)(j − 1)
, j≥ 2.

(3.8)

If u(x) ≈ pN (x) =
∑N

j=0 t̃jTj(x), then CD−α
−1,xu(x) can be approximated

by

D−α
−1,x u(x)≈D−α

−1,x pN (x) =
N∑

j=0

t̃j T̂α
j (x),

where t̃j can be similarly determined, see [23] for details.
For the Jacobi polynomials, we denote by P̂ a,b,α

j (x) = 1
Γ(α)

∫ x
−1(x −

s)α−1P a,b
j (s) ds. Using the recurrence formulae (2.9)–(2.10), the properties
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(2.11) and (2.14), and tedious calculations, we have



P̂ a,b,α
0 (x) =

(x + 1)α

Γ(α + 1)
,

P̂ a,b,α
1 (x) =

a + b + 2
2

(
x(x + 1)α

Γ(α + 1)
− α(x + 1)α+1

Γ(α + 2)

)
+

a− b

2
P̂ a,b,α

0 (x),

P̂ a,b,α
j+1 (x) =

Aa,b
j x−Ba,b

j − αAa,b
j B̂a,b

j

1 + αAa,b
j Ĉa,b

j

P̂ a,b,α
j (x)

− Ca,b
j + αAa,b

j Âa,b
j

1 + αAa,b
j Ĉa,b

j

P̂ a,b,α
j−1 (x)

+
αAa,b

j

(
Âa,b

j P a,b
j−1(−1) + B̂a,b

j P a,b
j (−1) + Ĉa,b

j P a,b
j+1(−1)

)

Γ(α + 1)
(
1 + αAa,b

j Ĉa,b
j

) (x + 1)α,

j≥ 1.
(3.9)

If u(x) ≈ pN (x) =
∑N

j=0 p̃a,b
j P a,b

j (x), then D−α
−1,xu(x) can be approxi-

mated by

D−α
−1,x u(x)≈D−α

−1,x pN (x) =
N∑

j=0

p̃a,b
j P̂ a,b,α

j (x),

where p̃a,b
j can be determined almost similarly as l̃j in (3.2).

Remark 3.1. If a = b = 0, then P̂ 0,0,α
j (x) = L̂α

j (x). If a = b = −1
2 ,

then P̂
− 1

2
,− 1

2
,α

j (x) = Γ(j+1/2)
j!
√

π
T̂α

j (x).

4. Approximation to the Caputo derivative

This section deals with the numerical approximation of the Caputo
derivative of a given function u(x), x ∈ [−1, 1]. The algorithm is based
on the numerical approximation of the fractional integral derived in the
previous section. Among the Legendre, Chebyshev and Jacobi polynomials,
the Jacobi polynomials are the most general. Then in the present section,
we study the Jacobi approximation to the Caputo derivative.

Suppose that pN (x) is the approximate polynomial of u(x), which can
be expressed as

pN (x) =
N∑

j=0

p̃a,b
j P a,b

j (x), x ∈ [−1, 1]. (4.1)
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Let n − 1 < α < n, n is a positive integer, and the αth Caputo derivative
of pN (x) reads as

CDα
−1,xpN (x) =

1
Γ(n− α)

∫ x

−1
(x− s)n−α−1 dn

dsn
pN (s) ds

=
1

Γ(n− α)

N∑

j=0

p̃a,b
j

∫ x

−1
(x− s)n−α−1 dn

dsn
P a,b

j (s) ds

=
N∑

j=n

p̃a,b
j da,b

j,n

(
1

Γ(n− α)

∫ x

−1
(x− s)n−α−1P a+n,b+n

j (s) ds

)

=
N∑

j=n

p̃a,b
j da,b

j,n P̂ a+n,b+n,n−α
j (x),

where Eq. (2.12) is used. da,b
j,n is defined by (2.13), and P̂ a+n,b+n,n−α

j (x) is
defined by (3.9) with a, b and α being replaced by a + n, b + n and n− α,
respectively.

Denote by

Da,b,α,m
j =

1
Γ(n− α)

∫ x

−1
(x− s)n−α−1 dm

dsm
P a,b

j (s) ds, 0 ≤ m ≤ n,

one has
Da,b,α,n

j (x) = da,b
j,nP̂ a+n,b+n,n−α

j (x), (4.2)

where Da,b,α,n
j (x) = 0 for 0≤ j≤n−1, da,b

j,n is given by (2.13), and P̂ a+n,b+n,n−α
j

is defined by (3.9) with parameters a + n, b + n, n− α being replaced with
a, b, α, respectively.

Therefore, the αth Caputo derivative CDα
−1,xu(x) can be approximated

by

CDα
−1,xu(x)≈ CDα

−1,xpN (x) =
N∑

j=n

p̃a,b
j Da,b,α,n

j (x),

where Da,b,α,n
j (x) is given by (4.2) and p̃a,b

j can be similarly obtained as l̃j
in (3.2).

5. Applications of the algorithms

Let u(x) be a real-valued function defined on the interval [xa, xb], and
x̂i (i = 0, 1, ..., N) be the collocation points on the reference interval [−1, 1],
then xi = 1

2 [(xb− xa)x̂i + xa + xb] are the corresponding collocation points
on [xa, xb]. Similar to the previous section, we use the more general poly-
nomials, i.e., the Jacobi polynomials, to illustrate our numerical methods.
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For a positive integer N , suppose that u(x) can be approximated by the
following polynomial

u(x) ≈ pN (x) =
N∑

j=0

p̃a,b
j P a,b

j (x̂), x̂ =
2x− xa − xb

xb − xa
∈ [−1, 1], (5.1)

Therefore, for any α > 0, we have

D−α
xa,xpN (x) =

1
Γ(α)

N∑

j=0

p̃a,b
j D−α

xa,xP a,b
j (x̂)

=
(

xb − xa

2

)α N∑

j=0

p̃a,b
j P̂ a,b,α

j (x̂),

(5.2)

in which
1

Γ(α)
D−α

xa,xP a,b
j (x̂) =

1
Γ(α)

∫ x

xa

(x− s)α−1P a,b
j (ŝ) ds

=
(

xb − xa

2

)α 1
Γ(α)

∫ x̂

−1
(x̂− ŝ)α−1P a,b

j (ŝ) dŝ

=
(

xb − xa

2

)α

P̂ a,b,α
j (x̂).

(5.3)

Here s = 1
2 [(xb − xa)ŝ + xa + xb] and x = 1

2 [(xb − xa)x̂ + xa + xb], ŝ, x̂ ∈
[−1, 1] are used. P̂ a,b,α

j (x̂) is defined by (3.9).
So, the fractional integral of u(x) at any point x ∈ [xa, xb] can be

approximated by (5.2). If we choose x = xi (i = 0, 1, ..., N), then we have


D−α
xa,x0

u(x0)
D−α

xa,x1
u(x1)

...
D−α

xa,xN
u(xN )


 ≈




D−α
xa,x0

pN (x0)
D−α

xa,x1
pN (x1)
...

D−α
xa,xN

pN (xN )


 = CD(a,b,−α)

xa,xb
p̃a,b (5.4)

where p̃a,b = (p̃a,b
0 , p̃a,b

1 , ..., p̃a,b
N )T , and

[
D(a,b,−α)

xa,xb

]
i,j

=
(

xb − xa

2

)α

P̂ a,b,α
j (x̂i), i, j = 0, ..., N.

Similarly, for n− 1 < α < n ∈ N, we can also get the following formula
for the Caputo derivative



Dα
xa,x0

u(x0)
Dα

xa,x1
u(x1)

...
Dα

xa,xN
u(xN )


 ≈




Dα
xa,x0

pN (x0)
Dα

xa,x1
pN (x1)
...

Dα
xa,xN

pN (xN )


 = D(a,b,α)

xa,xb
p̃a,b (5.5)
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where
[
CD(a,b,α)

xa,xb

]
i,j

=
(

xb − xa

2

)−α

Da,b,α,n
j (x̂i), i, j = 0, ..., N, (5.6)

and Da,b,α,n
j is defined by (4.2).

Remark 5.1. For a given positive integer N , the matrix CD
(a,b,α)
xa,xb

can be calculated effectively by O(N2) arithmetic operations. The similar
work can be found in [20], where the operational matrix D(α) based on the
explicit form of the Legendre polynomials was obtained, which takes O(N3)
arithmetic operations. The similar matrix D(α) based on the Chebyshev
polynomials can be found in [5, 6], where the computational complexity is
O(N3).

Remark 5.2. If pN (x) (see (5.1)) is the Legendre-Gauss-Lobatto in-
terpolation of u(x), u ∈ Hr(I), I = [xa, xb], then

‖u− pN‖L∞(I)≤CN3/4−r‖u‖Hr(I), r ∈ N,

where C is a positive constant (see [2]). Therefore, we can get the following
the error bounds

‖D−α
xa,x(u− pN )‖L∞(I)≤CN3/4−r‖u‖Hr(I), α > 0, r≥ 1,

and

‖CDα
xa,x(u−pN )‖L∞(I)≤CN3/4+2n−r‖u‖Hr(I), n−1 < α < n, n ∈ N, r≥ 2n.

The above estimates will be verified by the numerical experiments in the
following section.

Next we consider the eigenvalues of the Caputo fractional operator.
Let xa = −1, xb = 1, and xi(i = 0, 1, ..., N) be the Legendre–Gauss–
Lobatto points. We get the matrix CD

(0,0,α)
−1,1 ∈R(N+1)×(N+1) from Eq.

(5.6). CD
(0,0,α)
−1,1 is actually a kind of the operational differential matrix

corresponding to the Caputo derivative. If α = n, i.e., a positive integer,
then CD

(0,0,α)
−1,1 reduces to the classical differential matrix D(n).

In the following, we numerically study the spectral radius of the Caputo
derivative operator. Consider the following model problem

{
CDα

−1,xu(x) = λu(x), x ∈ [−1, 1], 0 < α≤ 2,

u(−1) = u−1, u(1) = u1,
(5.7)
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Figure 1. The spectral radius associated with the Caputo
fractional operator for 0 < α≤ 1.

where besides u(−1) = u−1, the condition u(1) = u1 is necessary for 1 <
α≤ 2.

For 0 < α≤ 1, let pN (x) (see (5.1)) be the interpolation of u(x) on the
Legendre–Gauss–Lobatto points {xi}. Letting pN (x) satisfy the equation
(5.7) at x = xi (i = 1, 2, ..., N), and combining the initial condition u(−1) =
u−1, we have

Dp̃a,b = λp̃a,b, (5.8)

where [D]i,j = [CD
(0,0,α)
−1,1 ]i,j(i = 1, 2, ..., N ; j = 0, 1, ..., N), and [D]0,j =

(−1)j(j = 0, 1, ..., N). It is easy to see that λ is just the eigenvalue of the
matrix D. We know that, if α = 1, the spectral radius ρ(D) of D satisfies
the following relation

ρ(D)≤C0N
2, C0 > 0.

For 1 < α≤ 2, we can also get almost the same relation as (5.8), except
that the last row of D in (5.8) is replaced by [D]N,j = 1 (j = 0, 1, ..., N).
We plot the spectral radius of D for different α and N in Figures 1 and
2. From Figures 1 and 2, we can see that the spectral radius ρ(D) of D is
bounded by

ρ(D)≤C0N
2α, 0 < α≤ 2, C0 > 0.
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Figure 2. The spectral radius associated with the Caputo
fractional operator for 1 < α≤ 2.

Next, we simply illustrate how to use our method to solve the fractional
differential equations. Consider the fractional equation in the following
form

{
A(x)u′(x) + B(x) CDα

0,xu(x) + C(x)u(x) = f(x), x ∈ (0, L],

u(0) = u0,
(5.9)

where 0 < α < 1, A(x), B(x) and C(x) are real-valued functions.
Suppose that pN (x) (see Eq. (5.1) and set xa = 0, xb = L) is the

approximate solution of u(x), xi (i = 0, 1, ..., N) are the collocation points
on the interval [0, L] satisfying pN (xi) = u(xi) (i = 0, 1, ..., N) and

A(xi)p′N (xi) + B(xi) CDα
0,xi

pN (xi) + C(xi)u(xi) = f(xi), i = 1, 2, ..., N.

Noting pN (x0) = u0, we get the following algebraic equation

M p̃a,b = F, (5.10)
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where F = (u0, f(x1), f(x2), ..., f(xN ))T , and




[M ]0,j = P a,b
j (−1),

[M ]i,j = A(xi)
[
D

(a,b,1)
0,L

]
i,j

+ B(xi)
[
CD

(a,b,α)
0,L

]
i,j

+ C(xi)
[
D

(a,b,0)
0,L

]
i,j

,

i = 1, ..., N, j = 0, 1, ..., N.

(5.11)
For the following fractional initial value problem
{

A(x)u(m)(x) + B(x) CDα
0,xu(x) + C(x)u(x) = f(x), x ∈ (0, L],

u(0) = u0, u′(0) = u′0,
(5.12)

where 1 < α < 2, m = 1 or 2. We can also get the algebraic equation of
the form like (5.10), where F = (u0, f(x1), f(x2), ..., f(xN−1), u′0)

T , and M
satisfies




[M ]0,j = P a,b
j (−1), [M ]N,j =

2
L

dP a,b
j (−1)
dx

,

[M ]i,j = A(xi)
[
D

(a,b,m)
0,L

]
i,j

+ B(xi)
[
CD

(a,b,α)
0,L

]
i,j

+ C(xi)
[
D

(a,b,0)
0,L

]
i,j

,

i = 1, ..., N − 1, j = 0, 1, ..., N.
(5.13)

If the condition u′(0) = u′0 in (5.12) is replaced by u(L) = uL, then the
original fractional initial value problem is reduced to a fractional boundary
value problem. We can still get the same form of algebraic equation (5.10),
where F = (u0, f(x1), f(x2), ..., f(xN−1), uL)T , and M is defined the same

as (5.13) except that [M ]N,j = 2
L

dP a,b
j (−1)

dx is replaced by [M ]N,j = P a,b
j (1).

6. Numerical examples

This section provides the numerical examples to verify the methods
obtained in the preceding sections. The first two examples are used to test
the efficiency and accuracy of the formulae (3.9) and (4.2).

Example 6.1. Let u(x) = xµ, x ∈ [0, L] = [0, 1]. Now we calculate
the numerical solutions of the fractional integral D−α

0,xu(x) and the Caputo
derivative CDα

0,xu(x), α > 0.
The analytical forms of the fractional integral and the Caputo derivative

of u(x) are given by

D−α
0,xxµ =

Γ(µ + 1)
Γ(µ + 1 + α)

xµ+α, µ > −1,
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Table 1. The absolute errors for Example 6.1 with a = b = 0
and µ = 3.5.

N α = 0.2 α = 0.5 α = 0.8 α = 1.2 α = 1.5 α = 1.8
10 4.57e-08 3.57e-08 1.78e-08 5.18e-09 1.67e-09 6.04e-10
20 2.89e-10 1.52e-10 5.37e-11 9.88e-12 2.54e-12 1.31e-12
40 1.82e-12 6.36e-13 1.52e-13 1.74e-14 3.68e-15 2.77e-15
80 1.12e-14 2.59e-15 4.11e-16 1.67e-16 1.67e-16 1.18e-16
10 2.32e-07 1.82e-06 8.40e-06 1.61e-04 3.14e-04 3.18e-04
20 2.49e-09 2.90e-08 1.99e-07 6.63e-06 1.92e-05 2.67e-05
40 2.70e-11 4.73e-10 4.88e-09 2.81e-07 1.22e-06 2.55e-06
80 2.88e-13 7.62e-12 1.19e-10 1.18e-08 7.77e-08 2.44e-07

and

CDα
0,xxµ =

Γ(µ + 1)
Γ(µ + 1− α)

xµ−α, µ > −1.

Suppose that pN (x) is the interpolation of u(x) on the Jacobi–Gauss–
Lobatto points xj (j = 0, 1, ..., N) on the interval [0, L], and pN is expressed
by

pN (x) =
N∑

j=0

p̃a,b
j P a,b

j

(2x

L
− 1

)
, (6.1)

where p̃a,b
j can be easily calculated like (3.2).

We first set a = b = 0 and choose different N and α for our compu-
tation, the results are shown in Table 1. The first four rows of Table 1
show the absolute maximum errors at the Legendre–Gauss–Lobatto points
by using the formula (5.4) (or (3.9)) for the fractional integral. The last
four rows of Table 1 give the absolute maximum errors at the Legendre–
Gauss–Lobatto points by using the formula (5.5) for the Caputo derivative.
Obviously, Table 1 displays the spectral accuracy of the derived method for
the approximation of the fractional integral and Caputo derivative.

Now we set a = b = −1/2 to test our algorithms. The numerical results
are shown in Table 2. The first four rows and the last four rows give the
maximum errors for numerical solutions of the fractional integral and the
Caputo derivative of u(x) at the Chebyshev–Gauss–Lobatto points. We
can see that the spectral accuracy is achieved.

Example 6.2. Let u(x) = sinx, x ∈ [0, L], and we calculate the
fractional integral D−α

0,xu(x) and CDα
0,xu(x), α > 0.
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Table 2. The absolute errors for Example 6.1 with a = b =
−1/2 and µ = 3.5.

N α = 0.2 α = 0.5 α = 0.8 α = 1.2 α = 1.5 α = 1.8
10 5.49e-08 4.59e-08 2.54e-08 8.33e-09 3.09e-09 1.67e-09
20 3.08e-10 1.96e-10 7.62e-11 1.70e-11 4.97e-12 2.93e-12
40 1.81e-12 7.79e-13 2.14e-13 3.23e-14 8.09e-15 5.61e-15
80 1.06e-14 3.05e-15 5.66e-16 3.33e-16 1.80e-16 1.73e-16
10 2.23e-07 1.48e-06 7.44e-06 1.40e-04 3.23e-04 4.55e-04
20 2.12e-09 2.11e-08 1.62e-07 5.37e-06 1.86e-05 3.95e-05
40 2.15e-11 3.22e-10 3.77e-09 2.17e-07 1.14e-06 3.66e-06
80 2.20e-13 5.00e-12 8.89e-11 8.92e-09 7.10e-08 3.45e-07

The exact expressions of D−α
0,x sin x and CDα

0,x sinx are given by

D−α
0,x sinx = xα

∞∑

k=0

(−1)kx2k+1

Γ(α + 2k + 1)
, α > 0,

and 



CDα
0,x sin(x) = x1−α

∞∑

k=0

(−1)kx2k

Γ(2k + 2− α)
, 0 < α < 1,

CDα
0,x sin(x) = x3−α

∞∑

k=0

(−1)k+1x2k

Γ(2k + 4− α)
1 < α < 2.

We use formula (6.1) as that used in Example 6.1. The numerical
experiments are displayed in Tables 3 and 4. The first three rows and
the last three rows of Table 3 display the absolute maximum errors of the
numerical solutions of the fractional integral and the Caputo derivative of
u(x) by using the methods (5.4) and (5.5) with a = b = 0, respectively.
Table 4 gives the corresponding errors of the case a = b = −1/2. We can
see that the satisfactory results are obtained.

Next, we use our method to solve the fractional differential equations.

Example 6.3. Consider the following Baglay–Torvik equation [16, 6]

u′′(x) + CD1.5
0,xu(x) + u(x) = f(x), x ∈ (0, 1], (6.2)

with the initial conditions

u(0) = 0, u′(0) = w. (6.3)

Choosing appropriate f(x) such that (6.2) has the exact solution u(x) =
sinwx.
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Table 3. The absolute errors for Example 6.2 with a = b = 0.

N α = 0.2 α = 0.5 α = 0.8 α = 1.2 α = 1.5 α = 1.8
4 4.46e-06 5.40e-06 3.88e-06 1.71e-06 6.94e-07 2.90e-07
8 4.79e-12 4.72e-12 2.73e-12 8.94e-13 2.88e-13 6.96e-14
16 6.66e-16 2.22e-16 2.22e-16 1.67e-16 1.67e-16 8.33e-17
4 1.05e-05 6.17e-05 2.31e-04 1.02e-03 2.18e-03 5.66e-03
8 1.48e-11 1.08e-10 5.96e-10 4.14e-09 1.47e-08 5.33e-08
16 3.22e-15 1.91e-14 9.29e-14 6.39e-13 2.45e-12 9.03e-12

Table 4. The absolute errors for Example 6.2 with a = b = −1/2.

N α = 0.2 α = 0.5 α = 0.8 α = 1.2 α = 1.5 α = 1.8
4 6.08e-06 7.91e-06 6.26e-06 3.41e-06 1.87e-06 1.27e-06
8 6.58e-12 6.63e-12 3.96e-12 1.38e-12 4.97e-13 1.36e-13
16 3.33e-16 3.33e-16 2.22e-16 5.55e-17 2.22e-16 5.55e-17
4 1.34e-05 5.66e-05 1.95e-04 9.93e-04 2.05e-03 5.40e-03
8 1.98e-11 1.04e-10 3.92e-10 3.34e-09 1.15e-08 4.34e-08
16 4.44e-16 1.22e-15 7.55e-15 4.40e-14 2.32e-13 9.82e-13

We first set a = b = 0, and the results are shown in Table 5, which
shows the maximum absolute errors of the method (5.13) and the shifted
Chebyshev tau (SCT) method developed in [6] for the same parameters.
From this example, we can see that our method gives the more accurate
results than the SCT method used in [6]. Table 6 gives the maximum abso-
lute errors for (6.2) with the boundary value conditions, say, the condition
u′(0) = w is replaced by u(1) = sinw. From Tables 5–6, we find that the
spectral accuracy is attained.

Tables 7 and 8 show the maximum absolute errors of the method (5.13)
with a = b = −1/2. Table 7 displays the errors of the numerical solutions
of (6.2) with the initial conditions (6.3), and Table 8 gives the errors of
the numerical solutions of (6.2) with the boundary value conditions as
mentioned above. Both two cases in this example give the better results
than the SCT method reported in [6].

This equation is often used to test the numerical algorithms. In the
following we consider the homogeneous Baglay–Torvik model.

Example 6.4. We consider the homogeneous Baglay–Torvik equation
with order α ∈ (1, 2) [1, 16, 7]

u′′(x) + CDα
0,tu(x) + u(x) = 0, x ∈ (0, L], u(0) = 1, u′(0) = 0. (6.4)
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Table 5. The absolute errors for Example 6.3 with different N
and a = b = 0.

N w Method (5.13) SCT [6] w Method (5.13) SCT [6]
4 1 2.42e-04 3.4e-04 4π 1.25e+01 3.9e-00
8 1 7.40e-10 4.3e-07 4π 1.38e+00 4.7e-01
16 1 3.33e-16 1.8e-08 4π 8.55e-05 3.5e-05
32 1 4.44e-16 7.1e-10 4π 5.10e-13 1.4e-06
48 1 3.33e-16 9.9e-11 4π 6.81e-13 1.9e-07
64 1 4.44e-16 2.4e-11 4π 1.90e-13 4.8e-08

Table 6. The absolute errors for Example 6.3 with boundary
value conditions and a = b = 0.

N w error w error w error
4 1 2.39e-05 2π 1.51e-01 4π 3.47e+00
8 1 7.53e-11 2π 9.20e-04 4π 1.62e-01
16 1 1.11e-16 2π 1.07e-10 4π 8.51e-06
32 1 3.33e-16 2π 1.78e-15 4π 1.13e-12
48 1 2.22e-16 2π 1.47e-15 4π 2.89e-13
64 1 2.22e-16 2π 1.44e-15 4π 1.22e-13

Table 7. The absolute errors for Example 6.3 with initial con-
ditions and a = b = −1/2.

N w error w error w error
4 1 1.41e-04 2π 4.59e-01 4π 1.36e+01
8 1 2.89e-10 2π 3.40e-03 4π 5.28e-01
16 1 5.55e-16 2π 2.96e-10 4π 2.33e-05
32 1 4.44e-16 2π 2.00e-15 4π 3.32e-13
48 1 4.44e-16 2π 5.33e-15 4π 3.70e-13
64 1 5.55e-16 2π 3.87e-15 4π 2.85e-13

We apply the method (5.13) with a = b = 0 to solve the equation (6.4),
where the collocation points are chosen as the Legendre–Gauss–Lobatto
points. We set L = 50, N = 256 for different α in Figures 3 and 4. When
α = 1.25, our result coincides with the results reported in [7], see Figure 3.
Figure 4 is also consistent with the numerical result in [7].

At last, we use scheme (5.13) to solve an oscillation model.
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Table 8. The absolute errors for Example 6.3 with boundary
value conditions and a = b = −1/2.

N w error w error w error
4 1 4.43e-05 2π 3.94e-01 4π 6.51e+00
8 1 6.66e-11 2π 8.71e-04 4π 1.97e-01
16 1 5.55e-16 2π 5.04e-11 4π 4.19e-06
32 1 5.55e-16 2π 1.61e-15 4π 3.21e-13
48 1 5.55e-16 2π 8.88e-16 4π 4.45e-13
64 1 5.55e-16 2π 1.39e-15 4π 3.53e-13
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Figure 3. Numerical result for Example 6.4 with N =
256, L = 40.

Example 6.5. Consider the following fractional oscillation equation
[7]

CDα
0,tu(x) + u(x) = f(x), 1 < α < 2, x ∈ (0, L], (6.5)

with the initial conditions

u(0) = 1, u′(0) = 0.

In this example, we still use the method (5.13) with a = b = 0 to
solve (6.5), where the Legendre–Gauss–Lobatto collocation points are used
again. We still let N = 256, L = 50 for our computation, and set α =
1.3, 1.5, 1.8, 1.95 as in [7]. The numerical result is displayed in Figure 5,
which coincides with the result in [7].
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Figure 4. Numerical results for Example 6.4 with N =
256, L = 40 and α = 1.5, 1.75.
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Figure 5. Numerical results for Example 6.5 with N =
256, L = 50.

7. Conclusion

In this paper, based on the Legendre, Chebyshev and Jacobi polynomi-
als we develop the effective numerical algorithms to compute the fractional
integral and Caputo derivative. The operational differential matrix based
on the Jacobi–Gauss–Lobatto points is also obtained, which can be seen as
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a generalization of the classical differential matrix. The computational cost
for deriving the operational differential matrix is O(N2), which is much less
than that in [5, 6].

Acknowledgements

The present work was supported by the National Natural Science Foun-
dation of China (grant no. 10872119), the Shanghai Leading Academic
Discipline Project (grant no. S30104), and the Key Program of Shanghai
Municipal Education Commission (grant no. 12ZZ084).

References

[1] R. L. Bagley, P. J. Torvik, On the appearance of the fractional de-
rivative in the behavior of real materials. J. Appl. Mech. 51, (1984),
294–298.

[2] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Specral Methods.
Fundamentals in Single Domains. Springer-Verlag, Berlin (2006).

[3] F. Cortés, M. Elejabarrieta, Finite element formulations for transient
dynamic analysis in structural systems with viscoelastic treatments
containing fractional derivative models. Int. J. Numer. Meth. Engng.
69, (2007), 2173–2195.

[4] K. Diethelm, N. J. Ford, A. D. Freed, Y. Luchko, Algorithms for the
fractional calculus: a selection of numerical methods. Comput. Methods
Appl. Mech. Engrg. 194, (2005), 743–773.

[5] E. H. Doha, A. H. Bhrawy, S. S. Ezz-Eldien, A chebyshev spectral
method based on operational matrix for initial and boundary value
problems of fractional order. Comput. Math. Appl. 62, (2011), 2364–
2373.

[6] E. H. Doha, A. H. Bhrawy, S. S. Ezz-Eldien, Efficient chebyshev spec-
tral methods for solving multi-term fractional orders differential equa-
tions. Appl. Math. Modelling 35, (2011), 5662–5672.

[7] J. T. Edwards, N. J. Ford, A. C. Simpson, The numerical solution of
linear multi-term fractional equations: system of equations. J. Comput.
Appl. Math. 148, ( 2002), 401–418.

[8] S. Esmaeili, M. Shamsi, A pseudo-spectral scheme for the approximate
solution of a family of fractional differential equations. Commun. Non-
linear Sci. Numer. Simulat. 16, (2011), 3646–3654.

[9] V. V. Kulish, Application of fractional calculus to fluid mechanics. J.
Fluids Eng. 124, (2002), 803–808.

[10] C. P. Li, A. Chen, J. J. Ye, Numerical approach to fractional calculus
and fractional ordinary differential equations. J. Comput. Phys. 230,
(2011), 3352–3368.



22 C. P. Li, F. H. Zeng, F. Liu

[11] F. Liu, Q. Q. Yang, I. Turner, Two new implicit numerical meth-
ods for the fractional cable equation. J. Comput. Nonlinear Dyn. 6,
(2011), 011009–1.

[12] C. Lubich, Discretized fractional calculus. SIAM J. Math. Anal. 17,
(1986), 704–719.

[13] V. E. Lynch, B. A. Carreras, D. del-Castillo-Negrete, K. M. Ferreira–
Mejias, H. R. Hicks, Numerical methods for the solution of par-
tial differential equations of fractional order. J. Comput. Phys. 192,
(2003), 406–421.

[14] K. Miller, B. Ross, An Introduction to the Fractional Calculus and
Fractional Differential Equations. Wiley, New York (1993).

[15] K. B. Oldham, J. Spanier, The Fractional Calculus. Academic Press,
New York (2006).

[16] I. Podlubny, Fractional Differential Equations. Acdemic Press, San
Dieg (1999).

[17] I. Podlubny, Matrix approach to discrete fractional calculus, Fract.
Calc. Appl. Anal. 3, (2000), 359–386.

[18] I. Podlubny, A. Chechkin, T. Skovranek, Y. Q. Chen, B. Vinagre,
Matrix approach to discrete fractional calculus II: partial fractional
differential equations. J. Comput. Phys. 228, (2009), 3137–3153.

[19] Y. A. Rossikhin, M. V. Shitikova , Application of fractional calculus for
dynamic problems of solid mechanics: Novel trends and recent results.
Applied Mechanics Reviews 63, (2010), 010801–1.

[20] A. Saadatmandi, M. Dehghan, A new operational matrix for solv-
ing fractional-order differential equations. Comput. Math. Appl. 59,
(2010), 1326–1336.

[21] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and
Derivatives, Gordon and breach Science, Yverdon, Switzerland (1993).

[22] A. Schmidt, L. Gaul, , On the numerical evaluation of fractional deriva-
tives in multi-degree-of-freedom systems. Signal Processing 86, (2006),
2592–2601.

[23] J. Shen, T. Tang, L. L. Wang, Spectral Methods. Algorithms, Analysis
and Applications. Springer-Verlag, Heidelberg, Berlin (2011).

[24] E. Sousa, How to approximate the fractional derivative of order 1 <
α ≤ 2. In: Proceedings of FDA’10. The 4th IFAC Workshop Fractional
Differentiation and its Applications, Badajoz, Spain (2010).

[25] H. Sugiura, T. Hasegawa, Quadrature rule for Abel’s equations: Uni-
formly approximating fractional derivatives. J. Comput. Appl. Math.
223, (2009), 459–468.

[26] Z. Z. Sun, X. N. Wu, A fully discrete difference scheme for a diffusion-
wave system. Appl. Numer. Math. 56, (2006), 193–209.



SPECTRAL APPROXIMATIONS TO FRACTIONAL CALCULUS23

[27] Q. Yu, F. Liu, V. Anh, I. Turner, Solving linear and nonlinear space-
time fractional reaction-diffusion equations by the Adomian decompo-
sition method. Int. J. Numer. Meth. Engng. 74, (2008), 138–158.

[28] Z. M. Odibat, Computational algorithms for computing the fractional
derivatives of functions. Math. Comput. Simulat. 79, (2009), 2013–
2020.

[29] P. Zhuang, T. Gu, F. Liu, I. Turner, P. K. D. V. Yarlagadda, 2011,
Time-dependent fractional advection-diffusion equations by an implicit
MLS meshless method. Int. J. Numer. Meth. Engng. 88, (2011), 1346–
1362.

1,2 Department of Mathematics
Shanghai University
Shanghai 200444, PR China

e-mail: lcp@shu.edu.cn Received: February 28, 2012

3 School of Mathematical Sciences
Queensland University of Technology
GPO Box 2434, Brisbane, Qld.
4001, Australia
email: f.liu@qut.edu.au


