
Math. Proc. Camb. Phil. Soc. (1976), 79, 71 7 1
MPCPS 79-7

Printed in Great Britain

Spectral asymmetry and Riemannian geometry. Ill

BY M. F. ATIYAH, V. K. PATODI AND I. M. SINGER

Oxford University

Tata Institute for Fundamental Research, Bombay

yiassachusetts Institute of Technology, Cambridge, Massachusetts

(Received 24 January 1975)

1. Introduction. In Parts I and II of this paper ((4), (5)) we studied the 'spectral
asymmetry' of certain elliptic self-adjoint operators arising in Riemannian geometry.
More precisely, for any elliptic self-adjoint operator A on & compact manifold we
defined

vA(s) = S sign A |A|-S, (1-1)

where A runs over the eigenvalues of A. For the particular operators of interest in
Riemannian geometry we showed that r/A(s) had an analytic continuation to the
whole complex s-plane, with simple poles, and that s = 0 was not a pole. The real
number i)A(0), which is a measure of 'spectral asymmetry', was studied in detail
particularly in relation to representations of the fundamental group.

In this part of the paper we shall study the function rjA(s) for arbitrary elliptic self-
adjoint operators. Whereas Part II was, in a sense, concerned with odd-dimensional
analogues of the Riemann-Roch theorem, Part III will be analogous to the general
index theorem. In particular topological arguments based on isT-theory will be used
in an essential way, just as in the proof of the index theorem in (7).

We begin in section 2 by establishing the basic analytical properties of the function
vA(s), showing in particular that it has an analytic continuation to the whole s-plane
with only simple poles. However, as explained in the introduction to Part I, s = 0 is
a possible pole. In the particular case of the Riemannian operators of Part I the
finiteness of ?}A(0) was established as a consequence of the main theorem of Part I.
An alternative proof, based on invariance theory, will also be given in section 4.
For general operators however there seems to be no direct analytical argument to
eliminate the pole at 5 = 0. The example at the end of section 4 illustrates the difficulty.
What the analysis does show is that the residue at s = 0 is unchanged under con-
tinuous variation of A: in other words the residue R(A) is a homotopy invariant. Note
also that if A is positive (or negative) its ^/-function coincides with + £,A(s), the £-
function of Seeley (14), and this is known to be finite at s = 0. Thus in studying R(A)

we may disregard positive (or negative) operators.
In section 3 therefore we undertake a topological study of self-adjoint elliptic

operators. Factoring out by positive (or negative) operators we show (Proposition
(3-1)) that the homotopy classes form an abelian group naturally isomorphic to K^TX)

where TX is the cotangent bundle of X and K denotes iT-theory with compact
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supports. The residue R(A) then induces a homomorphism K1(TX)~>R. To show
that this is zero it is therefore enough, for each X, to check that R(A) = 0 for suffi-
ciently many operators A corresponding to a set of rational generators of K^TX).
In section 4 we show that the basic Riemannian operators provide such a set of
generators provided dimX is odd. Since for these operators, as we have observed,
R(A) = 0 it follows that R(A) = 0 for all operators A on odd-dimensional manifolds
(Theorem 4-5). In (3) we stated that TJA{S) was always finite but at present we do not
know how to prove this for even-dimensional manifolds. The difficulty in extending
the proof to even-dimensions is somewhat technical and is discussed in section 4.

The second half of the paper is concerned with the effect of 'twisting' the ?/-function
of A by a unitary representation a of the fundamental group as in Part II. We obtain
in this way an invariant 7}a(0,A)eRIZ (see section 5) which is a homotopy invariant
of A. This is the generalization of the invariants introduced in Part II, section 3,
and our aim is to derive a topological formula for this invariant in terms of a and of
the class of A in K^TX). This formula, which we refer to as the index theorem for flat
bundles, is stated in section 5. It generalizes the Riemann-Roch theorem for flat
bundles of Part I, section 3, and the proof for odd-dimensional manifolds occupies
the last three sections of the paper.

In formulating the theorem we have first to show how to associate to the represen-
tation a of 771(X) an element in K~x{X;RjZ), generalizing the case of finite groups
treated in Part I, section 5. This involves giving an appropriate definition of K-
theory with coefficients in RjZ and the definition we adopt (in section 5) was sug-
gested to us by G. B. Segal. Essentially this definition reduces us to the case of QjZ-
coefficients (treated in Part I, section 5) and of -R-coefficients, where we can use
differential forms and real cohomology.

The proof of (5-3)-the index theorem for flat bundles-breaks up correspondingly
into two parts, one dealing with the i?-component and the other with the QjZ-
component. The .R-component is treated in section 6 by topological methods as in
section 5, that is we use the results of Part I for the Riemannian operators and then
apply X-theory to deduce the general case.

The Q/Z-component is treated in section 8 by converting the problem into one
concerning the index of a family of elliptic operators, and then applying the index
theorem for families as given in (9). This conversion depends on interpreting the Q/Z-
component in terms of 'spectral flow', a notion which is explained in section 7 and is
of some independent interest.

We hope elsewhere to give another proof of Theorem (5-3) in which the results of
section 6 are obtained in an entirely different manner quite independent of Part I
of this paper. In particular this will apply equally to even and odd dimensional mani-
folds. The idea of this alternative proof is to interpret the i?-component of section 6
as an index in a type II von Neumann algebra situation, using the basic results of M.
Breuer.

Just as in the treatment of the index theorem in (7) it is convenient to consider
pseudo-differential operators. There are various minor variations in the notion of
pseudo-differential operators, depending on how large a class of operators one wants
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to include. Since we shall be relying heavily on the analysis in (14), we shall employ
the term in the same sense as there (where they are referred to as Calderon-Zygmund
operators). In particular a pseudo-differential operator P of order m has a well-defined
leading symbol crm(P) which is a homogeneous function of degree m on the non-zero
cotangent vectors. By contrast the complete symbol of P means the class of P modulo
operators with C00 kernel, and is represented in local coordinates by a formal series

S <rm_j{x,g).
i=o

In our use of isT-theory we shall sometimes write K1 and sometimes K~1. By the
periodicity theorem these are the same and the exponent should be viewed as an
integer mod 2. Our reason for using both + 1 is to try to see clearly where the periodicity
theorem enters explicitly. In particular if one generalized everything to the real case
(as in (10)), then the distinction would become important because the periodicity then
is mod 8.

One final comment concerns the question of signs. There are many places where
sign conventions enter and although we have endeavoured to be consistent we have
not belaboured the point. Any error in sign in the final results will more readily be
found by computing examples than by checking all the intermediate stages.

2. Analytical properties O/TJA(S). We begin by recalling the general results of Seeley
(14) on zeta-functions of elliptic operators. Let B be an elliptic pseudo-differential
operator of positive order m on a compact n-dimensional manifold. We assume that
B is self-adjoint and positive so that it has eigenvalues /i > 0 and we define its zeta-
function by

lt>0

This converges for Re (s) > njm giving a holomorphic function of the complex
variable s in this half-plane. Moreover £B(s) can be analytically continued to the
whole s-plane as a meromorphic function with simple poles. More precisely, for every
integer N > — n, we have

N a,.

fc*0

where <frN(s) is holomorphic for Re(s) > —Njm. Finally the coefficients ak can be
computed by an explicit integral formula

ak = jak, (2-2)

where ock is constructed from the complete symbol of B. Note that £g(s) *s finite at
s = 0; its value there, denoted by a0, is also given by a formula of type (2-2).

If B = Bu depends in a C00 manner on u then Seeley's analysis allows us to consider
everything as a O° function of u. More precisely £B(s, u) = Tr i?~s has an expansion
of the form (2-1) in which the coefficients ak(u) are now C00 functions of u (as follows
from (2-2)), and

u *-+$N(s, u)

is a C00 map into the space of holomorphic functions in the half-plane Re (*) > — Njm.
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Finally if we relax the positivity condition on B and allow B to be non-negative,
so that /i = 0 may be an eigenvalue, all the above results continue to hold with minor
modifications. We now define

and its properties can be deduced from those of the zeta-function of B + H where H

denotes the projection onto the null-space of B (note that H is an operator with C°°
kernel). In particular

ja0, (2-3)

where a0 is the expression occurring in (2-2) and is constructed from the complete
symbol oiB + H, which is the same as that of B. Of course, when we come to consider
a variation Bu in which the dimension of the null-space varies, the corresponding
functions £(s, u) will have simple discontinuities (as functions of u) which we can
easily allow for.

We come now to our ^-functions, so let A be a self-adjoint elliptic pseudo-differential
operator of positive order m on a compact w-dimensional manifold and define its t\-

function as before by
A | | , (2-4)

A4=0

where A runs over the eigenvalues of A. Since A2 is non-negative of order 2m its zeta-
function 2 (^2)~s converges for Res > n/2m. Hence (2-4) converges absolutely for

A#0

Re (s) > n/m showing that TJA{S) is holomorphic in this half-plane.
According to Seeley, \A\ = {A2)l (taking the positive square-root) is again a pseudo-

differential operator. Hence

are pseudo-differential. If /i, —v denote the positive and negative eigenvalues of A,

the eigenvalues of B± are 2/i, v while those of B2 are /i, 2v. Thus both are elliptic self-
adjoint and non-negative, so their zeta functions (^(s), £2(

s) a r e defined. Moreover

Thus

Since ^(s) and £2(
s) a r e both meromorphic in the whole s-plane, (2-5) provides an

analytic continuation for qA{s) to the whole s-plane. At s = 0 the zeta-functions are
finite but, because of the factor (2~s — I)-1 in (2-5), t]A{s) has a priori a simple pole.
Its residue there is given by

R(A) = Res_0^(a) = - ^ (&(<)) - £2(0)). (2-6)

Using (2-3) we obtain an explicit integral formula

B(A)=jw, (2-7)
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where o» = — (log 2) - 1 (aj — a%), aj arising from the operator Bt. Since Bi is a linear
combination of A and \A\, and since the complete symbol of \A\ = (A2)b is expressible
by (14) in terms of that of A, it follows that w is constructed out of the symbol of A.

Summarizing our observations so far we have

PROPOSITION (2-8). yA{s) extends to a meromorphic function in the whole s-plane with

simple poles. Its residue at s = 0 is given by the integral formula (2-7) where w is con-

structed out of the complete symbol of A.

Our aim is to show that yA(s) is actually finite at s = 0 or equivalently that its
residue R(A) vanishes. As a first step in this direction we shall prove that B{A) is a
constant under smooth variation of A. For this purpose we shall consider a smooth
1-parameter family Au and we shall show that

To allow for the discontinuities produced by the zero-eigenvalues it is convenient to
decompose the series in (2-4) into two parts, corresponding to values A with | A| < C or
|A| > C, where C is any number which is not ± an eigenvalue. To study y(s,u) = yAu(s)
near u = 0 we pick C not an eigenvalue of + Ao, then by continuity it is not an eigen-
value of any + Au for small u. Thus we may write

7/(5, u) = y'(s,u) + y"{s,u),

where y' is the finite sum over eigenvalues A with |A| < C. As a function of s (with u

fixed) y'(s, u) is holomorphic and
y'(0,u)= £ signA(w)

0<|A(tt)|<C

is an integer. In particular y and y" have the same residue R(u) = E(AU) at s = 0,
confirming the fact that R(A) depends only on the complete symbol of A. Moreover,
if we define y~ to be the function with values in the C/Z obtained from y by reducing
modulo Z, we see that ?7(0, u) = ?7"(0, u). In other words in studying 7/(0, u) there is

no loss of generality in putting all eigenvalues in (-C, C) equal to zero, or, better still,

equal to one. Thus we may assume that Au is always invertible.

In order to compute -5- R{u) we shall first need to differentiate zeta-functions

with respect to a parameter:

PROPOSITION (2-9). Let Bu be a C™ one-parameter family of positive self-adjoint

elliptic operators of positive order m. Put £(s, u) = £B (s) and Bu = -^-(Bu), then for
(tit

large Re (s)

5£ £(«.«)= -striBB-*-1).

Proof. £(s,u) = —;tr X~s(Bu — A)~1dA, where F is a suitable contour enclosing
lm J r

the positive real axis. For large Re (s) the convergence of this expression is ensured
by the estimates in (14). To differentiate this we note that
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and so

{A (2Jtt-A)-i) (Bu-A.) + (Bu-A)-iBu = 0

or

^ ( ^ - A ) " 1 = -{Bu-A)-i&u(Bu-\)-K

Since trace is linear it commutes with d/du, hence

If the order m of B is sufficiently large (Bu — A)~x is of trace class and has a con-
tinuous Schwartz kernel which is bounded as a function of A. This follows from the
estimate on Sobolev norms ((14), Cor. 1). Hence for large TO we may interchange inte-
gration over F with taking traces since this amounts to changing the order of inte-
gration in an absolutely convergent double integral (over XxT). Since tvPQ = tr QP

whenever P is of trace class and Q is bounded it follows that

The Schwartz kernel of BU(BU—A)~2 has the same good properties as that of (Bu — A)"1,

hence we can again interchange tr and , giving

= — —. tr Bu s\-s~1(Bu - A)-1dA (integrating by parts),
47n J r

proving the Proposition for the case of large TO. The general case follows easily from
this by taking powers. In fact, replacing B by a large integral power BN we obtain

and since

T-{B%) = S Bi^B*-*-1,
au {=i

we have
d N .

The Lemma will then follow (with Ns for s) provided we can justify permuting
factors under the trace so that
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Since B\, is unbounded this requires a little care, but we can proceed as follows. For
Re (s) large we have (omitting the subscript u)

trB^B-B-^8-*-1 = tTfJ&BB-t***) (iH^*-*-1),

= tr (B-lx*-*-1) (BtBB-i1*8),

= tr (B-l*8-1) (BB-iNs) = trBB-1**-1.

All operators in parentheses ( ) are of trace class (for Re (s) large) and this justifies
the interchange of order.

The corresponding result for the 7] -function is

PROPOSITION (2-10). Let Au be a C^ one-parameter family of self-adjoint invertible

d
operators of positive order m. Put rj(s,u) = VAJ<S)

 an^ -^« = j"(-^u)> ^en for large

Re(s)

Proof. The argument is essentially the same as in (2-9) except we use two contours
F+ and F~ instead of F where F+ is the line Re (A) = e > 0 (oriented in the sense of
Im (A) increasing), and F~ = — (F+). Then

V(s>u) = HZ:

Here A~s denotes the branch |A|~sexp( —isargA) where —\u< argA < \n and in
particular (— l)s = exp (— nis). We now proceed as in (2-9) computing the ^-derivatives
of each contour integral separately. Seeley's estimates (14) still apply in this situationf
and we obtain

where P+ and P_ are the spectral projections of Au corresponding to A > 0 and A < 0
respectively. Hence

u | | u

as required.

Remark. An alternative proof can be given by differentiating (2-5) with respect to
a parameter u and applying (2-9). This gives

^V(s, u) = s(l-2-°

A little manipulation, using trPQ = txQP and the fact that |.4|,.B^iJj all commute
with A, yields the formula of (2-10).

We can now proceed and prove the promised assertion concerning the residue of

•f Seeley only requires that the top-order symbol of A takes values in C — rR+ for some non-
zero T e C. For positive A we usually take T = 1 but here we can take r = i.
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PROPOSITION (2-11). Let Abe a self-adjoint elliptic operator and let R(A) = Hess=or)A(s).

Then R(A) is constant for continuous variation of A.

Proof. By remarks made earlier we may suppose A invertible and it is enough to
prove that, for any C°° one-parameter family Au, d/du (R(u)) vanishes for u = 0, where
R(u) = R(AU). Now the self-adjoint operator Bu = |^0|+«^40 will be elliptic and
positive for small u. If £(s, u) denotes its zeta-function, (2-9) and (2-10) show that
for large Re (s) £(s, u) and v(s, u) = fjAu{s) have the same it-derivative at u = 0. Now,
as pointed out earlier, (2-1) extended to include dependence on a smooth parameter
u shows that d/du (£(s, u)) has an analytic continuation in s which is finite at s = 0.
The same is therefore true for d/du(i](s,u)) at u = 0. But (2-1) and (2-6) show that
7)(s, u) is of the form

. , R(u) £ bk(u) , . ,

where u-> <j>^{s, u) is a C00 map into the space of holomorphic functions in the half-
plane Re(s) > —N/m. Differentiating with respect to u and then putting u = 0 we
see that the resulting function of s has residue [d/du (R(u))]u=0 at s = 0. But we have
already proved that this function of s is finite at s = 0, so that its residue has to vanish.
Thus d/du (R(u)) vanishes at u = 0 as required.

In the proof of (2-11) we saw that

-j - rj(s, u) = -j- £(s, u) for u = 0, s = 0
du du

(where the value at s = 0 is obtained as usual by analytic continuation).
But the values of ̂ -functions at s = 0 and of their ^-derivatives are given by explicit

integral formulae. In view of our earner observations about the function TJ with
vaues in C/Z this gives

PROPOSITION (2-12). Let Au be a C™ one-parameter family of elliptic self-adjoint

operators of positive order and let TJ(S, u) be the corresponding i\-function reduced modulo

Z. Then (d?jldu)u=0 is holomorphic at s = 0 and its value there is given by an explicit

integral formula constructed out of the complete symbols of Ao and Ao.

We shall now develop some important consequences of (2-12) in connexion with
flat bundles. Let (X.:TT1{X) ->U(N) be a unitary representation of the fundamental
group of X. This defines a flat vector bundle Va over X with hermitian metric. If
A: Cm(X, E) -s- C^X, E) is a differential operator acting on the sections of the vector
bundle E then A extends naturally to give a differential operator

Aa:&"(X,E ®Va)^C™(X,E ®Va).

The reason is that the transition matrices of Va (with respect to its natural local
bases) are constants. Moreover if A is self-adjoint then, because a is unitary, Ax will
be self-adjoint. Hence we can consider its i/-function rja(s,A) = ifjj.s). We shall be
interested in comparing this with the corresponding 7/-function for the trivial repre-
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sentation and reducing modulo Z, so we put

fja{s,A) = 7Ja(s,A)-N7j(s,A). (2-13)

The point about the two operators Ax and AN = A ® A® ... ® A (N times) is
that they are locally isomorphic, and hence any invariant which is given by an ex-
plicit integral formula, computed locally, will coincide for Aa and AN. We apply
this observation twice. In the first place (2-8) implies that B(Aa) = B(AN) = NR(A)

and hence ^a(0, A) is finite. Next we apply (2-12) to a one-parameter family A(u)

and we deduce that [{d/du)iia(s,A(u))]s=0 = 0. As in the proof of Proposition (2-11)
we can interchange the order of d/du and put s = 0. Hence (d/du) fja{0, A(u)) = 0
which shows that ya(0, A) is a homotopy invariant of A.

If A is only a pseudo-differential operator the preceding discussion applies with
one minor modification, namely that there is no unique natural way of defining the
operator Aa. However, using a partition of unity, we can construct operators Aa

which act on ^(X,E ® Va) and whose complete symbol is cr(A) ® l a where cr(A) is
the complete symbol of A.

Summarizing all this we have proved

PROPOSITION (2-14). Let A be a self-adjoint pseudo-differential elliptic operator of
positive order acting on C^lXjE) and let a:771(X)-> U(N) be a unitary representation.
Let Aa be any self-adjoint extension of A to C^X, E ® Va), so that the complete symbols
are related by

a(Aa) = a(A) ® la,

where Va is the flat bundle associated to a and lo is the identity endomorphism ofVa. Define
f/a(s,A)by

Then rjJO, A) is finite and is a homotopy invariant of A. It takes values in BjZ.

This Proposition generalizes the particular cases studied in Part II, section 3,
where we considered particular operators A associated to a Riemannian metric, and
the homotopy invariance of (2-14) reduced to saying that rja(O,A) was independent
of the metric. Just as in Part II, section 3, we can refine our ^-invariant by using
the function

where h is the dimension of the null-space. Propositions (2-11), (2-13) and (2-14) all
continue to hold with 7] replaced by £.

3. K-theory of self-adjoint symbols. In section 2 we ended up with certain homotopy
invariants of self-adjoint elliptic operators. In this section we shall set up the appro-
priate algebraic machinery to deal with such homotopy invariants.

If A is a self-adjoint elliptic operator of order m acting on C°(X, E) its homotopy
class depends only on the homotopy class of its leading symbol o~m(A). For each
xeX and each non-zero cotangent vector £ at x, crm(A) (x, £) is a self-adjoint invertible
operator on the (finite-dimensional) vector space Ex. As a function of § it is homogeneous
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of degree m and so is determined by its restriction to the cotangent sphere bundle
S(X). Thus (rm(A) may be viewed as a 0°° self-adjoint automorphism of the vector
TT*E, where n:S(X)->X is the projection.

We shall therefore consider pairs (E, a) where E is a hermitian vector bundle over
X and cr is a self-adjoint automorphism ofn*E. For brevity such a a will be referred
to as a self-adjoint symbol on X. We shall consider homotopy classes of such symbols
and write <r ~ cr' for homotopy equivalence. Up to homotopy a self-adjoint symbol c
can always be replaced by its unitary part Ua = cr(<r2)~£. This satisfies (Uer)2 = 1
and so gives an orthogonal decomposition n*E = E+ + E~ where E+ and E~ are the
+ 1-eigenspaces of Uer. A self-adjoint symbol for which E~ = 0 is called positive and
one for which 27+ = 0 is called negative. We now define two self-adjoint symbols cr, cr'

to be stably equivalent, written o~ x a', if

cr © a, © /? ~ cr' © a' © /?'

where a, a' are positive and /?, ft' are negative. The important thing to note in this
definition is that the decomposition of the bundle on which a © /? acts is already

defined over X.

PROPOSITION (3-1). The stable classes of self-adjoint symbols on X are in bijective

correspondence with the elements of ^(TX), where TX is the cotangent bundle. The

correspondence is obtained by assigning to a self-adjoint symbol cr the element

where 8 is the coboundary homomorphism.

Proof. I t is enough to consider symbols a for which dim E+ and dim E~ are both
larger than dim X (since we can always add a © ft to ensure this). Then the isomorphism
classes of E+, E are determined by the elements [E+] eK(SX) and [E] eK(X). More-
overf the embedding E+ ->• E (hence the decomposition of E) is also unique up to
homotopy. Thus the homotopy classes of such cr correspond bijectively to pairs
[E], [i?+] of the corresponding dimension. The equivalence cr x a + a+ft corresponds
to an equivalence

[E], [E+] x [E] © [F], [E+] © [n*G]

where F, G are bundles on X. The equivalence classes generated by this relation are
clearly just the elements of the cokernel of

1 © n*:K{X) © K(X)^K(X) © K(SX).

Hence the stable classes of self-adjoint symbols correspond bijectively to the cokernel

of

t This is a standard 'stability' argument: the space Horn* (-B+, Ev) of embeddings is
GL{N, C)IOL(N~, C) where N = dim E, N~ = dim E~ and so is 2Ar--eonnected; since

2^ - > dim SX

there is (up to homotopy) a unique section of the fibre bundle Horn* (E+, E), i.e. a unique
global embedding E+ -> E.
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or equivalently, from the exact sequence, to the image of the coboundary

8:K(SX)-+K1(BX,SX) =

where BX is the unit ball bundle of X. I t remains to observe that S is surjective. If
dimX is odd this is clear because we have a section X^>-SX (a nowhere zero tangent
vector field). If dim X = 2n we note that the image of

has filtration ^ 2n because BX/SX is (2n — l)-connected. On the other hand the
filtration groups of K1 satisfy K\q = K\q+X{(>) so that

K\n{X) = K\n+1{X) = 0 since dimZ < 2n + 1.

Thus Im S = Ker j is the whole of KX{TX) as required.
Proposition (3-1) shows that the stable class [a] of a self-adjoint symbol a o n l

may be viewed as an element of ^(TX). This should be contrasted with the usual
theory of elliptic symbols in which the symbol class is an element of K°(TX). The
relation between the two cases can be clarified by using the ideas in (11), where to a
self-adjoint Fredholm operator A one associates the one-parameter family

A t = Icost + iAsint O^t^n. (3-2)

On the symbol level if cr is a self-adjoint symbol we consider the family

at = / cos t + ia sin t, 0 ^ t < n,

= (cos t + i sin t) I, n ^ t < 2n,

of elliptic symbols on X parametrized by a point t on the circle S1. This defines an
element a e Z 0 ^ 1 x TX) whose restriction to {0} x TX is trivial and so can be regarded
as an element of K~X(TX): it is essentially the same as the element [cr], or rather a
corresponds to [cr] under the periodicity isomorphism

This is a direct consequence of their definitions and^the fact that equations (3-3) are
just Bott's original definition (12) for the periodicity map

where GN is the Grassmannian of all subspaces of C^ (identified with the self-adjoint
unitary matrices) and Q denotes the loop space.

For an elliptic operator on X its index is computed, (7), from its symbol by the
'topological index' homomorphism K(TX)^Z. More generally, (9), a family of such
operators parametrized by a compact space P has an index in K(P) which is com-
puted from cr by a topological index K{P xTX)^-K(P). Using the equations
(3-2), extended to 2n as in (3-3), we can derive corresponding results for families of
self-adjoint elliptic operators.

If A = {Ap} is a family of self-adjoint elliptic operators of order 0 parametrized by

peP we obtain a mapping P->£$r where § is the space of self-adjoint Fredholm

operators on a Hilbert space. The (analytical) index of the family A can be considered
6 PSP 79
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A

to be the homotopy class of this map. Now in (11) it is shown that g (or equivalently
A A A

i$) consists of two contractible components ^ + (essentially positive) and ^_
A

(essentially negative) together with a third component $* which is a classifying
space for K~l. Thus discarding essentially positive (or negative) families we get an
index in K^P). In fact if B = {At p} is the corresponding family of elliptic operators,
parametrized by S1 x P, given by (3-2), we have

K-^P) 3 index A = index B e K^S1 x P).
A A

This is because the map g* -» Qg, identifying gf* as a classifying space for K*1, is
also given by (3-2).

The symbol of the family B is given by (3-3). Hence applying the index theorem
for B we get an index formula for A which may be stated as follows:

THEOREM (3-4). Let A = {Ap} be a family of self-adjoint elliptic operators parametrized

by peP (a compact space). Then the index of A can be computed by applying the topo-

logical index homomorphism K\P x TX)^-K1{P) to the symbol class of A.

Remark. As usual operators of order m can be reduced to operators of order 0 so
we have omitted any reference to order in (3-4).

Theorem (3-4) is not much more than a retranslation of the index theorem of (11).
We shall however consider some special cases later which are interesting in themselves
and are also a necessary step towards our 'index theorem for flat bundles'.

4. Finiteness of v(0). In section 2 we showed that R(A) = R,ess=owA(s) is a homotopy

invariant of the self-adjoint elliptic operator A. I t therefore depends only on the
homotopy class of the leading symbol o~m (A) where mis the order of A. For a positive
operator A we have nA(s) = £A(s) and this is finite at s = 0 by the results of Seeley (14).
Similarly for a negative operator. Since R(A © B) = R(A)+R(B) it follows that
R(A) depends only on the stable class of crm(A) as defined in section 3. By Proposition
(3-1) the stable class [cm(^l)] can be identified with an element of K^TX). The addi-
tivity of R(A) then implies that it is given by a homomorphism pm:K1(TX)->-R,

that is

R(A) = PJtrm{A)].

The order m of A is not of any importance. In fact putting B = A l^l*"1 we see that

hence R(B) = R(A)jk. Thus if we normalize the residue by multiplying by the order,
putting

R(A) = mR(A),

we have R(A) = R(B). On the other hand vmk(B) and o-m(A) have the same unitary
part on S(X) and hence define the same element of KX(TX). Thus putting p = mpm

we see that, independently of the order,

R(A) = p[<rm(A)].

To prove that 9/(0) is finite, i.e. that R = 0, it is therefore sufficient to verify this
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for a set of A whose classes \crm(A)~\ generate KX(TX) over Q. Now the first order
Riemannian examples studied in Parts I and II do in fact provide such a set of opera-
tors if X is odd-dimensional and orientable, as we shall now show.

If X is an oriented Riemannian manifold of dimension 21 — 1 we defined in Part II,
section 2, a self-adjoint elliptic operator acting on forms of even degree by

^ 0 = ;/(_ 1 y+i ^d - d*) <j>, deg 0 = 2^

(in Part I this operator was only introduced for I even). The importance of this operator
is due to the following

LEMMA (4-2). The element [cr1(Sev)]6Z1(?1Z), when restricted to a fixed fibre Tx of

TX, gives 2l~x times a generator of

-1) s Z.

Proof. If we construct the signature operator A on X x B then, as pointed out in
Part I, section 4, A is of the form

A = J\-t+B\, (4-3)

where ueB, J is a constant unitary matrix with J 2 = —1, and B = Bev © Bodi

with Boid (acting on odd forms) isomorphic to Bov by <f> \-> (— 1 )p *<fi (for deg <f> = 2p).

Now it is well-known (see, for example, (8), section 6) that the symbol of A restricted
to a fibre of T(X x B) gives 2' times a generator of ^(B21) ~ Z. On the other hand
formula (4-3) implies that the symbol class of A is the suspension of the self-adjoint
symbol class of B, i.e. they correspond via the isomorphism

This follows from formula (3-3) and the observations made there on the relation
between elliptic symbols and self-adjoint elliptic symbols. Hence

where g is a generator of iiC1(.S2'-1), which proves the lemma.
Now K^TX) is a module over K{X) and a standard argument (cf. (l)) shows that

an element ae^iTX) is a module generator provided its restriction to a fibre Tx

is a generator g of KX{TX). More generally if a restricts to a non-zero multiple of g
then cr is a module generator after tensoring with the rationals. The module product
o~.v corresponds on the operator level to extending a self-adjoint operator A, acting
on C™(X, E), to a self-adjoint operator Av, acting on CCO(X, E® V). Such an extension
involves choosing a metric and connexion on V but its leading symbol is just o~m(A) ® lp.

For the operator Bev above such extensions have been explicitly defined in Parts I
and II. From Lemma (4-2) and these remarks we deduce:

PROPOSITION (4-4). Let X be an oriented (21— l)-dimensional Biemannian manifold.

Then the symbols of the self-adjoint operators B%f, as V varies over the vector bundles on

X, generate a subgroup of K^TX) of finite index.

6-2



84 M. F. ATIYAH, V. K. PATODI AND I. M. SINGER

The next step is to establish the finiteness of 7/(0) for the special operators By*.

This can be done in one of two ways.

Method 1. By general cobordism theory some multiple of (X, V) is a boundary,
that is there is a 2Z-dimensional oriented manifold X' with dX' consisting of N copies
of X and a vector bundle V which restricts on each boundary component to a copy
of V. Now we apply our main boundary value problem of Part I which tells us that
i)A(s) is finite at s = 0, where A is N copies of By : in fact Part I gives a formula for
the value of 7/^(0).

Method 2. By Proposition (2-8) we know that the residue R(A) oivA{s) at s — 0 is
given by an explicit integral formula J w. For our particular operator A = By* the
integrand can be expressed in terms of the metric tensor g of X and the metric and
connexion of V. Moreover replacing g by k2g where A; is a positive constant replaces
A by k^eAe-1, where e is the automorphism on forms given by e(^) = kp(rf>) for a
jj-form 0 (cf. (2), p. 306, for a similar calculation): hence £(A, s) = Tr A~s gets replaced
by ^(k-^Ae-1,s) = ^(k~1A,s). Formula (2-6), together with the homogeneity pro-
perties of ^-functions (see (2)), then shows that the form w = w(g) satisfies

The generalized Gilkcy Theorem ((2), Theorem II) then asserts that w is a Pontrjagin-
Chern form and is therefore identically zero since dim X is odd.

Remark. Method 1 uses cobordism theory while Method 2 uses the invariant theory
of (2). Note that the invariant theory is not needed in Method 1 just to prove finiteness:
it is only required for the explicit evaluation of 7/(0).

For a non-orientable manifold X we can take the oriented double cover 3£->X.

If A is any self-adjoint elliptic operator on X we can Kft it up to a self-adjoint elliptic
operator A on X This is clear if A is differential. For a pseudo-differential A the
choice of A is not unique but its complete symbol is unique - see section 2 for essen-
tially the same construction in the language of flat bundles. Since R(A) is given by a
local integral formula (Proposition (2-8)) it follows that R(A) = 2R(A). Hence the
finiteness of ?/(0) on X implies the finiteness on X.

Thus we have finally proved our objective when dim X is odd, namely

THEOREM (4-5). Let X be an odd-dimensional manifold, A a self-adjoint elliptic

pseudo-differential operator of positive order on X. Then vA(s) is holomorphic at s = 0.

In (3) this Theorem was asserted for all X. Unfortunately we do not yet know how
to deal with even-dimensional X. The usual device, to change parity, is to replace
X by X x S1. Now it is true that if A is self-adjoint and elliptic on X and B is elliptic
on Y, with order B = order A, then

_ IA

~\1

1 1 ® B*

B -A®

is self-adjoint and elliptic o n l x 7 and

7jP{s) = (index B)vA(s).
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If A, B are differential operators then so is P but unfortunately if A or B is pseudo-
differential P is not pseudo-differential. On the other hand we cannot use only differen-
tial operators because index B — 0 if B is differential and dim Y is odd - for example
if Y is the circle. In (7), in studying the index, this problem is not serious because P

can be approximated (with respect to suitable Sobolev-norms) by pseudo-differential
operators and the index is norm-continuous. The residue R(A) is a more sophisticated
invariant, depending (in its explicit integral formula) on much of the complete symbol
of A, and so is not obviously continuous under a crude norm approximation. For the
present therefore the case of even-dimensional manifolds must be left open.

The vanishing of the index for a differential operator on an odd-dimensional mani-
fold is a consequence of the symmetry (or skew-symmetry) of its leading symbol and
can be proved analytically as in (8) or by topological methods (showing that the
symbol gives an element of finite order in K{TX)). There is a similar result for the
residue B(A), namely if A is differential and order A + dimX is odd then R{A) = 0.
Again this may be proved analytically or topologically. Thus for even-dimensional
Y, 77̂ (0) is finite for differential A of odd order: the unsettled case is for differential A

of even order. The reason why the order of A plays a role for this question (and not
for the index) is that R( — A) = — R(A) whereas index (— JB) = index B.

We conclude this section with an example which shows why the finiteness of rjA{s)

at s = 0 is not something which comes out trivially from the analysis. By definition
TJA(S) is, for Re (s) large, the trace of the operator

- s - lTS = A\A\

The kernel Ts(x,y) is (for large Res) a continuous function of (x,y)eX x X: it takes
its value in the vector space Horn (Ey, Ex) once we have picked a (700 measure on X.

In more concrete terms Ts(x, y) is a square matrix and

77 As) = I t r TJx, x) dx
Jx

depends only on the diagonal entries of this matrix. Now general analysis of the
Seeley-type gives only that the entries of Ts(x, x) have at most a simple pole at s = 0.
In fact the example we shall give will show that such a simple pole really occurs but
it disappears when we take the trace. It requires a fairly subtle argument therefore
to prove 7/(0) is finite while allowing the kernel T8(x, y) to admit a pole.

Our example is in fact the simplest case of our basic Riemannian operator of Part
I, namely the operator Bev acting on even forms for a 3-dimensional manifold X.

Explicit computation in this case shows that, near s = 0,

where B(s) is analytic in s. If we put V = T%(X), then the components of the above
matrix act as follows:

(1) Ois the zero endomorphism of A°V.
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(2) T02:A
2V->A°V is defined by

T02{<j>) = cx(*dT,<p), for 0eA 2 F,

where T is the scalar curvature of the manifold X, r = 2^ jH)ti, R being the curvature
tensor, and cx is a non-zero numerical constant.

(3) T02: A°F-> A2F is denned by

cJ*dr, / eA°F .

(4) T2 2eEnd A2F ^ A 2 F ® A2F (using the metric) is given by T22 =
where VR is the covariant derivative of the Ricci tensor R, %: ® 3 F-» A2F ® A2F
is given by

and c2 is a numerical constant.
Now, in general for a Riemannian manifold, the endomorphisms To2, T20 and T22.

are non-zero so that Ts(x, x) has a pole at s = 0. However Trace ^(z, x) = Trace T22 is
zero because (TraceT22)*l, up to a numerical constant, equals the image of V.R
under the skew-symmetrizing map x '• ® 3 F -> A3 F, and the Bianchi identities imply
that ;\;(V.S) = 0. Thus Trace Ts(x, x) is finite at s = 0, confirming the finiteness of

5. The index theorem for flat bundles. In section 2 we defined a reduced ^/-function
associated to a self-adjoint elliptic operator A and a unitary representation a by

rja(s, A) = nAa{s) - NT}A{S), mod Z,

where Aa is A ' twisted by a ' and N is the dimension of a. We proved in Proposition
(2-14) that Tjjfi, A) is finite and is a homotopy invariant of A. I t therefore only
depends on the leading symbol of A (and on a). In this section we shall formulate
an 'index theorem' which gives a topological formula for 7Ja(0,A) in terms of a and
of the leading symbol of A. In fact we shall work with the slightly more precise in-
variant fa(0, A) based on

where h is the dimension of the null-space.
We shall first show that fa(0,A) depends only on the class \p-m{A)]eKl{TX) as

defined in section 3. For this we must show the following

(i) f a(0, A) is additive under direct sums {A = Ar © A2),

(iii) fa(0, A) is independent of the order m of A (m > 0),

(iii) fa(0, A) vanishes if + A is non-negative.

Now (i) is clear. To prove (ii) we replace A and Aa by B and Ba where

1 —m
B=\A\*A, Ba=\Aa\*Aa, k =

m

Here \A\ and \Aa\ have the same null-spaces as A and Aa, and their inverses (which
we need for m > 1) are defined on the orthogonal complement of these null-spaces.
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Then B has order 1 and Ba is an extension or twisting of B by a in the sense of (2-14),
namely the complete symbol of Ba is a(B) ® la (because <r(Aa) = cr(A) ® la and
er(|.4|) depends only on (r(A)). Moreover

h(A) = h(B), h(Aa) = h{Ba),

and so fa(0,^4) = fa(0, B) as required.
For (iii) we note that if A ^ 0 we have

and so, by Seeley (14), h + t/A(0) = h + £A(0) is given by an integral formula (see section
2). Since A a and NA are locally isomorphic the integral formulae for ha + 5/a (0, A) and
N(h + ?)(0,A)) coincide and so their difference, and hence £,a(0,A), vanishes.

Thus for fixed a the mapping A i->fa(0, A) induces a homomorphism

inda: K
1(TX)^B/Z (5-1)

which we shall refer to as the analytical index of A (or of the symbol class of A) with
respect to the flat bundle a. Our aim is to identify inda topologically.

In Part II, section 5, we introduced isT-theory with (^-coefficients and showed
that a representation a of n-^X) factoring through a finite group defined an element
[a^eK-^X^/Z). Let us assume for the moment that we have extended this to
i?/Z-coefficients, so that any unitary representation a of n^X) defines an element
[a\eK-1(X,RjZ). Assuming Kx( ,R/Z) has the expected formal properties we have
a pairing

K~i{X, R/Z) ® K^TX) -> K°(TX, B/Z)
and a homomorphism

Ind: K\TX,B\Z)^R\Z

which extends the usual topological index of (7). For each a we therefore obtain a
topologically defined homomorphism

(5-2)

given by <r\-* — Ind([a].<j) (or Ind((r.[a]) since products in K1 are skew-symmetric)
and we shall prove the following:

(5-3) Index Theorem for flat bundles. If X is odd-dimensional the analytical index
inda of (5-1) coincides with the topological index Inda of (5-2).

Remarks. (1) I t seems likely that the theorem should also hold when dim X is even.
The difficulties here are essentially technical and similar to those discussed in section 4
in connexion with the finiteness of w(Q). As mentioned in the Introduction we hope to
give elsewhere an altogether different proof of (5-3) which will work in all cases.
This alternative proof will depend on the use of von Neumann algebras (see Remark
4 at the end of this section).

(2) If X is a Spin°-manifold, crsK^^X) the symbol class of its Dirac operator
then we get a homomorphism
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given by Mt-»Ind(mr) which coincides with the direct image homomorphism. When
RjZ is replaced by QjZ this was used in Part II , section 3, definition II. We see there-
fore that Theorem (3-6) of Part II is indeed a special case of Theorem (5-3).

Remark. Perhaps we should point out, at this stage, that there are two natural
direct image maps in isT-theory depending on which Thorn isomorphism one uses.
For a complex vector bundle V over X we can construct a generator for K{ F) over
K(X) by using either the exterior algebra of F or of its dual F*. We use F* and, as
a consequence, the direct image K{X)^-Z for an even-dimensional almost complex
or Spinc-manifold X is given cohomologically by the Riemannian-Roch formula

where ^ = ec£ ci is the total Todd polynomial.
We return now to the problem of defining i£-theory with R/Z-coefficients. The

method we shall follow is due to G. B. Segal and rests on the fact that we already
know how to define K*( , Q/Z), which is the 'torsion part ' . The 'free part', namely
isT-theory with Q- or ^-coefficients may just be defined by tensoring with Q or R:

K*(X; Q) = K*(X) ® Q, K*{X, R) = K*(X) ® R.

To put the two parts together we now define K*(X,R/Z) as the cokernel of the natural

homomorphism
(p,-j):K*(X,Q)->K*(X,QIZ)®K*(X,R).

The first component p of this is induced by passing to the limit in the diagram

4- m |
K*(X)->K*(X,ZjmnZ).

The second component, induced by the inclusion j:Q-*R, is injective for all X. It is
this fact which makes the cokernel satisfy the exactness axiom of a cohomology
theory. If Y <= X we have long exact sequences for the two cohomology functors
K*( ,Q) and K*( ,QjZ) © K*{ ,R)\ regarding the first as a sub chain-complex of
the second we see that the quotient complex is also acyclic (exact).

All the formal properties of ordinary if-theory now extend to K*( , RjZ) including
the appropriate cup-products and direct images. In view of the Chern character iso-
morphism

ch: K*{X,R)-+H*(X,R)

we may identify K*(X, R) with real cohomology, K° corresponding to even dimensions
and K1 to odd dimensions.

We shall now show how| to associate to a unitary representation a of n^X) an
element of K~1(X, R/Z). We shall make some choices in order to construct an element
aeK~x{X,Q\Z) and an element beK~x(X,R). Altering our choices will alter (a,b)

to (a+p(c),b— j(c)) for some ceK~x(X,Q) so that we get a unique element in the
cokernel of (p, —j). The details are as follows.

| This construction is also due to G. B. Segal.
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(i) The choices. The vector bundle Va defined by a is flat so its real Chern classes
vanish, hence some multiple kVa is (unitarily) trivial: we choose k and the (unitary)
trivialization <f>:kVa->WN, where VN = XxOY.

(ii) The element a. As explained in Part II, section 5, the triple {T£,T̂ V, 4>} defines an
element ak of K~X{X, ZjkZ), hence an element a of K~X{X, QjZ).

(iii) The element b. The trivial bundle VkN = WN has, besides its own trivial connexion
y0, another flat connexion y1; coming from the flat connexion of Wa by the isomorphism
(p. We can therefore construct odd-dimensional characteristic classes in the manner
of Chern-Simons(l3). More precisely let yt be a one-parameter family of connexions
joining y0 to yx (e.g. yt = <7i + (l—<)y0) interpreted as connexion for the trivial
bundle o n / x l , where / is the unit interval [0,1]. We form the Chern forms ci of this
connexion and then integrate with respect to t el to get (2i— l)-forms <j)i on X. The
cohomology class (G^) of wi is independent of the choice of path. Applying this to the
Chern character ch, rather than the cit and then dividing by k we obtain our (mixed)
odd-dimensional cohomology class /? on X. We put b = ch - 1 (/?).

(iv) Effect of the choices. For fixed k we can alter <j> by any automorphism of X x CNk.

Such an automorphism defines an element uk of K-^X). It is routine to check that
ak gets altered to ak+pk(uk) where

pk: K-^X) -> K-^X, Z/kZ)

is 'reduction modk', and that b alters to

° k '

where J:K-^X)->K'^X,R) is the natural map. Putting u = k-^eR-^X^) it
follows that (a, b) t-> (a+p(u), b —j{u)). If we alter k to a multiple kl and <f> to <f> ® 1,
then a and b are both unaltered.

Remarks. (1) If our representation a is not unitary then the above construction
works in the same way to give an element oiK~1(X, C/Z). The point is that for unitary
connexions the Chern forms are real but for a general linear connexion they are
complex.

(2) We have assumed that X is a manifold but this is not really necessary. If X is
a finite complex we can embed it in Euclidean space and use differential forms on a
neighbourhood to represent cohomology. Thus for any discrete group F a unitary
representation a:T-> U(N) defines an element of K~\BT,R\Z), this group being
defined as the limit over finite subcomplexes of the classifying space Bv.

(3) For a finite group G the construction of Part II, section 5, is clearly compatible
with the more general construction given above. The point is that for finite G there
is a preferred class of trivializations <j> for wliich the element b is always zero and the
corresponding element a is unique.

(4) It is possible to give a more direct bundle-theoretic definition of

[oi\eK-\X,RIZ)
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without any reference to cohomology. This requires the use of von Neumann algebras
and will be described elsewhere.

The proof of Theorem (5-3) will be carried out in the remaining sections. It will be
divided into parts corresponding to the elements a and b in the construction above.
In section 6 we shall deal with the U-component b using the main results of Part I:
this proceeds very similarly to the finiteness proof in section 4. In section 7 we shall
digress a little to discuss the notion of spectral flow which is of independent interest
but is also used in section 8 to convert the Q/Z-component a into the index of a suitable
family of elliptic operators. We then appeal to the index theorem for families of (9)
to complete the treatment of the torsion part of Theorem (5-3). Note that the odd-
dimensionality of X is used in section 6 but not in section 8.

Theorem (5-3) can also be extended to non-unitary representations a. Although
the twisted operator Aa is then not self-adjoint it has a self-adjoint symbol and this
is enough to define i}a(s, A). We use a suitable contour integral as in the proof of
(2-10). In passing from 7]{s) to £(s) we now take h to be the dimension arising from the
spectrum on the imaginary axis, each A contributing dim Ker (Aa — X)N for large N.

£,a{Q,A) is now a complex number modulo integers and, as noted in Remark (1) above,
•a defines an element [a]e-K"~1(X, C/Z). Theorem (5-3) continues to hold in this
situation as an equation in C/Z. The proof proceeds as for the unitary case by sepa-
rating out the C-component and the torsion component. The latter is covered by the
proof of section 8 while the C-component can be treated by analytic continuation
from the .K-component proof of section 6. We shall make brief remarks on this at the
appropriate place.

6. Trivialized flat bundles. In this section we shall assume that dimX is odd. I t is
then convenient, though not essential, to use the finiteness of 7jA(0) established in
section 4.

In section 5 we studied f/a(0,A) which is a homotopy invariant of A depending on
•a and takes values in BIZ. In this section we shall refine this to a real-valued invariant
•on the assumption that the bundle Va defined by a is trivial and that a fixed (unitary)
trivialization <j>'-Va-+VN = X x CN has been chosen. The main point is that Aa and
AN can then be regarded as acting on the same bundle: if A operates on C<°(X,E)

then AN and Aa (via <j>) operate on C*>(X, NE).

We have seen that f(B) = £s{0) is a real-valued function of B whose reduction
modulo Z,f(B) is O°; that is / has integer discontinuities but is otherwise smooth.
The differential w = df is therefore a well-defined closed 1-form on the space of all B:

-we shall not worry about the precise definition of 1-forms on infinite-dimensional
spaces since we shall only use the restriction to one or two parameter families. On
any component of the space of all B (for a fixed manifold, bundle and order) we can
therefore introduce the indefinite integral g of w:

9(B) =
J Bo

B

0)

-which depends on Bo and on the homotopy class of the path from Bo to B. Clearly
g i s /made continuous by eliminating the integer jumps. If we further fix the leading
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symbol of B then we get a contractible space and so the homotopy class from Bo to
B is unique.

We apply these considerations to the operators Aa, AN above. They are both ob-
tained by twisting A and so their leading symbols coincide (via <j>). Hence we have a
uniquely defined integral

(O. (6-1)
J AS

On the one hand this is clearly continuous in all the data. On the other hand we
already know that its reduction modulo Z is (for fixed a) a homotopy invariant of A.

Hence (6-1) defines a homotopy invariant of A depending on a, <f> which takes real

values: we denote it by ind (a, <$>, A).

Our aim is to give an explicit formula for ind (a, <j), A) in terms of the class

and of the pair (a, <j>). As explained in section 5 the two flat connexions on X x CN

enable us to define a cohomology class

and hence an element

with ch6 = /?. Our explicit formula is then as follows:

PEOPOSITION (6-2). md(a,cf>,A) = -IndR{b(oc,,<j>)[am(A)]}whereIndR:K{TX,R)-+R

is induced from the topological index: K(TX)->Z by tensoring with JR.

Remarks. (1) It is clear that, after reducing modulo Z, (6-2) yields a special case of
Theorem (5-3)-in which the torsion component vanishes. The extra precision in
having (6-2) as an equation in R is however necessary for our proof. (2) Since the topo-
logical index is given by

ut->{chu.S(X)}[TX],

where «/(X) is the index class of X[8] we can rewrite (6-2) cohomologically as

ind (a,4,A)=- Via, <f>) ch [<rm(A)] J(X)} [TX]. (6-3)

We have already noted that ind (a, <fi, A) is a homotopy invariant of A. It is also
additive for direct sums and independent of the order m of A, because £A(0) is (see
section 2). Hence it depends only on the symbol class [a^AfleK^TX). Thus, for
fixed (a, 0), A i-> ind (a, <p, A) induces a homomorphism

To establish (6-2) for a given X it is therefore sufficient to check it for a set of opera-
tors A whose symbol classes generate KX(TX) over Q. Assume now that X is orientable;

then, as proved in Proposition (4-4), we get such a generating set by taking A = Bw

where W runs over the vector bundles on X and B is the basic self-adjoint operator
acting on differential forms which was studied in Parts I and II.
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To prove (6-2), or equivalently (6-3), for A = Bw we shall apply the main theorem
of Part I to the manifold I xX with the product metric and a suitable connexion on
the bundle NW, where W is W lifted to I x X. For any unitary connexion c on NW

we have a corresponding extension of B, acting on forms with coefficients in NW,

which we denote by Ac. Given two connexions c0 and cx we join them by any O°° path
of connexions ct, 0 ^ t =$ 1, which is constant near t = 0 and t = 1. This gives a con-
nexion on NW and we now apply the main theorem of Part I to the signature operator
of / x X with coefficients in NW. This gives the formula

£i(0)-£0(0)= f (chMfO^'-indexZ), (6-4)
JIxX

where §4 is the ^-function of A^, ch NW denotes the Chern character form of NW

constructed from its connexion, 3?' = &"(])) is the universal polynomial in the Pon-
trjagin form of / x X associated to the signature operatorf and index D is a certain
integer. If we now vary cx the integral expression in (6-4) varies continuously while
the term index D may jump. Hence the integral expression must coincide with the
'continuous part ' of the left-hand side namely with the integral (6-1) where Aa,AN

are replaced by ACo,ACi. In particular, taking co,cx to be the two connexions on NW

induced by the two flat connexions on I x Cff and any fixed connexion on W, we see
that

m&{a,<f>,A) = f (chM^)^f'. (6-5)
J IxX

Recalling the definition of fl(a, <j>) we see that (6-5) reduces to

ind (a, <j>, A) = {/?(a, 4>) £"(X)} [X]. (6-6)

I t remains to verify that this cohomological formula coincides with (6-3) via the Thorn
isomorphism

H*(X) ~ H*(TX).

Now on an even-dimensional manifold Y, J£" corresponds via the Thorn isomorphism
to ch [<T(D)] . J{ Y), where D is the generalized Signature operator - this is essentially
the way it arises in (8), section 6. Taking F = / x I w e have D = <xo(8ldu + A) where
u is the inward normal coordinate (see Part II, section 4, where the Signature operator
is denoted by A and our A is denoted by B) and a0 is a fixed matrix. As explained in
the proof of Lemma (4-2) this formula for D shows that |V(Z>)] restricted to 1 x X is
the suspension of the class of the self-adjoint symbol cr(A) in KX{TX). Actually,
because the inward normal is the negative direction in the standard orientation con-
ventions, we get —[(r{A)]. Hence ££' corresponds to — ch.[cr(A)]</(X) and so (6-6)
coincides with (6-3) as asserted.

We have now proved (6-2) when X is orientable (and dimX is odd). For non-
orientable X we introduce its oriented double covering X->X. Since the right-hand

t Explicitly

<i, 1 tanh \x*

where the p} are interpreted as the elementary symmetric functions of x\, ..., x\ ((8), (6-4)).
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side in (6-2) or (6-3) is clearly multiplicative for finite coverings it will be enough to
prove the corresponding result for ind(a, <j>,A). But by definition this is given by
the integral (6-1). Moreover by Proposition (2-12), the 1-form (o = df in (6-1) is itself
given by an integral over X, in which the integrand is computed locally from the
complete symbols. Hence ind (a, <fi, A) is multiplicative for finite coverings.

Note that this argument, as well as the argument in the orientable case, works
because we now have a real-valued invariant. If we had kept our invariant in R/Z

then our proof would not have dealt with the 2-torsion because it involves taking
multiples (by a power of 2).

Everything in this section extends in a fairly straightforward way to the non-
unitary case, R being replaced by C. The only point that requires comment concerns
(6-4) which came from applying the main theorem of Part I. Working modulo Z we
ignore the term index D and we then regard both sides of (6-4) as functions of the
connexion cv They are both denned for any connexion, not necessarily unitary, and
(6-4) asserts equality for unitary connexions. But the space of all connexions is a
complex afline space and the unitary connexions can be viewed as the real points of
this space.

We may therefore extend (6-4) by analytic continuation provided both sides are
analytic. The Chern forms appearing on the right are polynomial functions of the
connexion and so certainly analytic. To see that f̂  (0) is analytic in the connexion
c we note that the operator Ac depends affine linearly on c and that \A (0) can be
denned by a suitably Cauchy integral in the A-plane, using the resolvent (Ac— A)"1.
Thus (6-4) holds for all connexions and in particular for the flat connexion a.

7. Spectral flow. In this section we make a slight digression to discuss the notion
of' spectral flow' and to relate it to the main theorem of Part I. As mentioned in the
introduction to Part I spectral flow provided one of the clues leading to the introduction
of the function T/(S) - this was work carried out in collaboration with G. Lusztig.
Moreover in section 8 the connexion with spectral flow will be applied to complete
the proof of our general index theorem for flat bundles.

For a family At of elliptic self-adjoint operators of positive order we have in section
6 already replaced the function f(t) = £^((0) by its continuous part g(t), so that

f(t) = 9(t)+j(t), j(0) = 0, (7-1)

where j(t) is integer-valued. From its definition we see that j(t) can be interpreted as
the net number of eigenvalues of Au that cross the origin as u runs from 0 to t. More
precisely j(t) increases by 1 every time an eigenvalue A < 0 changes to one ^ 0 and
decreases by 1 when the reverse happens.

Whereas f(t) and g(t) depend on the asymptotic properties of the eigenvalues, and
require that At be a pseudo-differential operator of positive order, their difference
j(t) can be defined whenever we have a family Ft of self-adjoint Fredholm operators.

Assuming that Ft is continuous in t we can still count eigenvalues crossing zero: even
though Ft may have a continuous spectrum, 0 is always in the discrete spectrum. To
give a precise definition of j(t) (for t = 1 say) we consider the graph of Spec Ft:

£?= U Specif.
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I t is a closed subset of the (t, A)-plane. We define j(l) to be the intersection number of
£? with the line A = — e where e is any sufficiently small positive number (we can take
e = 0 if Fo and F1 are both invertible). This intersection number may be defined as in
elementary topology using any convenient approximation of the family Ft, e.g. by
an analytic or piece-wise linear family.

discrete spectrum _ e continuous spectrum

/l/l/VW\A
We shall refer to j( l) as the spectral flow from Fo to Fv

A case of particular importance is when i^ = Fo so that we have a family para-
metrized by the circle S1. The graph above can then be viewed as on the cylinder
S1 x B (identifying t = 0 with t = 1), and the spectral flow is the intersection number
of S? with any circle S1 x A. The spectral flow is now a homotopy-invariant of the
family and it defines a homomorphism

where $* is the non-trivial component of the self-adjoint Fredholm operators as in
section 3.

A

Now we have the homotopy equivalence ^ - ^ - Q ^ established in (ll) giving an
isomorphism

^ Z by Bott periodicity.)

I t is easy to construct a family with spectral flow equal to 1 (take At with eigenvalues
n + t,neZ) and so (7-2) is an isomorphism and coincides up to sign with (7-3). The
sign will be clarified shortly.

Thus Theorem (3-4) can be viewed as giving an explicit formula for the spectral
flow of a family At of elliptic self-adjoint operators parametrized by teS1, namely

THEOREM (7-4). Let At be a family of self-adjoint elliptic operators on X parametrized

by teS1. Then the spectral flow of the family is given by Ind[a{At}], where

is the symbol of the family and

Ind: K1(S1xTX)->K1{S1) s Z

denotes the topological index.

Remark. There is a slightly more general version of (7-4) in which the product
S1 x X is replaced by a fibre bundle with fibre X and base S1. Only minor changes in
notation and proof are involved.
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For a first order family At we can also compute the spectral flow by using the main
theorem of Part I. We take the operator D = 8/dt + At on Xxl and we assume
(using a deformation) that At is constant near t — 0. There are then two index prob-
lems we can consider:

(i) the index of D with the boundary condition (2-3) of Part I;

(ii) the index of D with periodic boundary condition, i.e. the index of the operator
o n l x S1.

The boundary contributions from X x 0 and Xxl cancel when we apply the index
theorem (3-10) of Part I to compute (i), and the integral term coincides with that for
problem (ii). Hence (i) and (ii) have the same index. On the other hand, index D in
(i) is the same as the spectral flow of the family At: this point was essentially made in
discussing (6-4), except that the interest there was in the continuous part g(t) whereas
we now want the residual jump function j(t). Thus the spectral flow of the family At

is equal to the index of djdt + At on X x S1.
It is now a routine matter to compare, on the K-theory level, the index of 8/dt + At

onXxS1 with the answer given by applying Theorem (3-4). We know they differ at
most in sign and a careful check of all sign conventions shows that the sign is + .

Remark. The two approaches to the family At, converting spectral flow into an
index, can be thought of as 'suspension' and 'desuspension'. In one case we go up
from a 1-parameter family to a 2-parameter family, whereas in the other case we go
down to a single operator. The results are compatible via the periodicity theorem.
Note that desuspension is technically more difficult and requires that At be a family
of first-order elliptic operators.

8. Modk index theorem. In this section we shall prove a 'modi index theorem'
which will deal with the torsion part of Theorem (5-3). The proof will be quite indepen-
dent of Part I but will use the ideas of section 7.

By a mod k family of self-adjoint elliptic operators we shall mean a family

At 0 «S t < 1
with given isomorphisms

-40 = ^o © • • • © Bo b times

Ax ^ B1 © ... © Bx k times

for some Bo, Bx. If At u 0 ^ u < 1 is a homotopy of such a mod k family then we have

a family of self-adjoint operators parametrized by the (<, «)-square 0 ^ < < 1,0 ^u ^ 1

The total spectral flow around the boundary is therefore zero and this gives

sf{AtJ-sf{Ati0} = *(«/{5lp «}-*/{BOilJ).

Thus the spectral flow of At reduced modulo k is a homotopy invariant: we denote it by
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If Bo ~ B1 then our family {At} 0 < t ^ 1 can be closed up into a family {Ay} para-
metrized by yeS1, and sfk{At} is then the mod k reduction of sf{Ay}, the integer spec-
tral flow invariant of section 7. More generally this holds whenever Bo is homotopic
to Bt through self-adjoint elliptic operators.

If it were always possible to find such a homotopy connecting Bo and B1 there would
really be no point in introducing this mod k spectral flow. In general however JS0 and
Bx need not be homotopic even though kB0 is homotopic to kBx (by our family {At}).

This is because the group KX(TX) of self-adjoint symbols may have elements of
order k. On the other hand if we consider, not elliptic operators on X, but abstract

A

self-adjoint Fredholm operators, the situation simplifies because the space g* (see
A

section 3) is connected while the trivial components of ^ can be ignored. This means
that our mod k spectral flow can always be viewed as the mod k reduction of an integer

A

spectral flow for a suitable family S1-*^*. However this in itself is no help in effec-
tively computing our mod k index because we only have index theorems (e.g. Theorem
(3-4)) for families of elliptic operators.

Our next task therefore is to show how to compute our mod 7c spectral flow by
converting it, in a somewhat more sophisticated way, into the index of a certain
family of elliptic operators. Our parameter space will be, not S1, but S1 x Mk where
Mk is the Moore space of Part II, section 5, namely Mk is the ' cofibre' of the degree
jfcmap S1->S1.

Let H be the line-bundle on Mk induced from the Hopf bundle on S2 by the natural
map Mk^-S2: then [H] — 1 generates K{Mk) which is cyclic of order k. Moreover kH

is trivial so let 6: kH -» k be a trivialization.j Now form the family Aiti m) of self-adjoint
operators parametrized by (t,m)el xMk where Attm) = At®IHm, and IHm denotes
the identity automorphism of H^ (fibre of H over m).

Using the isomorphism 8 we have

^(o,»)S-B0® JkHm ^5 0® I k m , \

• 4 ( i , r a ) S - £ i ® 4 f f m s £ i ® 4 J K '

Now take a second family over / x Mk in which H is replaced by the trivial line-bundle.
The isomorphisms (8-1) enable us to glue our two families together over ({0} U {1}) x Mk

to obtain finally a family {A~y} of self-adjoint operators parametrized by yeS1 x Mk.

The index of this family, in the sense of Theorem (3-4), is then an element of

x Mk) s Z ® R(Mk) %Z® ZjkZ. (8-2)

The interesting component of this is equal to our mod k spectral flow as we shall now
prove.

PROPOSITION (8-3). Using the decomposition (8-2) we have

Proof. The interest of (8-3) lies precisely in the fact that it re-interprets sfk{At} in
terms of the index of the family {Ay} of elliptic operators. However for the proof we

t Here k denotes the trivial fc-dimensional bundle Mk x C&.
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may pass to the abstract situation in which all operators are self-adjoint Fredholm
operators. The construction of {Ay} still makes sense in this context, and we now have
the added simplification noted above that sfk{At} can be viewed as the mod k reduc-
tion of the integer spectral flow sf{Au}. Here Au (u e S1) denotes the extension of {At}

to a family over 81 given by a homotopyf Bo ~ Bx in $*• In terms of A the family A

may be described more simply as follows. hetf:S1->-Sl v S1 be the map which pinches
a circle to a figure eight

and put F = / x 1: S1 x Mk -> (S1 v S1) x Mk = (S1 xMk)[) Mk (S1 x Mk). Then

A = F*(I ®IHUA'® Ij)

where A' denotes the family A in the opposite sense (u replaced by — u). Hence,
taking the index of both families, we get

index^f = (indexA) ® [H] + (indexZ') ® [1]

= (indexl) ®([H]-1).

Here index leK1(81xMk) while index AeK^S1). Using (8-2), and recalling that
[H~\ — 1 is the natural generator of R(M), we can rewrite this as

index^T = (0; index A mod k).

On the other hand we saw, in section 7, that for an ^-family of self-adjoint Fredholm
operators the index coincided with the spectral flow. Applying this to A we have

index ̂ T = (0, sf(A) mod k)

= (0,sfk(A))
completing the proof.

Proposition (8-3) together with Theorem (3-4) therefore gives an explicit formula
for our mod k spectral flow. We now apply this to the following special situation.

Let E,F be vector bundles on X and <f>:kE^kF an isomorphism. Then as
explained in Part II, section 5, we get an element

[E, F, 0] eK~\X, Z/kZ) = K~\X xMk,Xx point).

If A is a self-adjoint elliptic operator on X we take extensions AE, AF, that is self-
adjoint operators on X whose leading symbols are obtained by tensoring the leading
symbol of A by the identity endomorphisms of E,F respectively. Then, using <f>, we

t If Bo or B, are essentially positive (or negative) so is the whole family {At} and both sides
of (8-3) are easily seen to be zero. We therefore ignore these cases.

7 PSP 79
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can regard
kAE = AE © ... ®AE k times

and kAF = AF © ... © AF k times

as acting on the same bundle. They have the same leading symbol hence can be
connected in a homotopically unique way by a family At with Ao = kAE, A1 = kAF.

This mod k family then has a mod k spectral flow which is a homotopy invariant of
all our data, and which we shall denote by indfc (E, F,(j>\A). The symbol of the corres-
ponding family A, parametrized by Sl x Mk, is given by

[*{!)] = [<r(A)].[E,F,$]
using the multiplication

K-l(X x Mk)->K°(TX xMk).

Applying (8-3) and Theorem (3-4) (with P = S1x Mk) and rewriting things in terms
of K-theory with coefficients in ZfeZ we obtain the following:

(8-4). Modk Index Theorem.

Indk(E,F,<t>;A) = lndk{[(rm(A)][E,F,fl)

where Ind^: K°(TX, ZjkZ) -> ZjkZ is the topological index for ZjkZ coefficients.

Theorem (5-3) - our general index theorem for flat bundles formulated in section 5
- now follows by combining (8-4) with (6-2). The proof is just a matter of collecting
the notation. We take the triple {E, F,fi)in (8-4) to be the triple (Wa, WN, <j>) of section
5. For the family At used in (8-4) we then compute the difference £(0^-,) — £(0, Ao)

in terms of its continuous part and the spectral flow as in (7*1). With the notation of
section 6 we have

£(0, A,)- £(0, Ao) = ind (ka, kcj>,A) + sf{At}.

Dividing by k and observing that Ax = kAa, Ao = kAN and

yf{t} k(Va,VN,<P;A) modZ

we obtain

£a(0,A) = E,{Q,A)-£{0,AN) = ±ind(ka,k<j>,A) + mdk(Va,VN,<f>;A) modZ.

Applying (6-2) and (8-4) this becomes

1.(0, A) = - IndB {ba) + Indfc [era]

where a = [o-m(-4)], b = b{a,<j>), a = [K>^v>^] a n ( i In ( i denotes topological index.
But from the way we defined the element [a] e K~\X, R/Z) in section 5 this equation
is essentially the same as

L(0,A)= -Ind([a]<r)

which is the assertion of Theorem (5-3). The proof is therefore complete.
An incidental consequence of our mod A; index theorem is that it provides yet
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another definition of the Q/Z invariants of Part II, section 3, for Spinc-manifolds

with finite fundamental group G. This is:

V. The spectral flow definition. If Va is the flat vector bundle defined by the repre-

sentation a:n1(Y)->-G-> U(N) we choose a trivialization Wa-+kN coming from (a

finite skeleton of) Ba. This makes lcDa and kND operators on the same bundle (D

denotes the Dirac operator of Y) and we can join them (say linearly) by a one-

parameter family of self-adjoint elliptic operators. The spectral flow of this family

divided by — k is the value of our invariant in Q\Z.

The equivalence of definitions V and II (of Part II, section 3) is given by (8-4).
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