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Spectral bias and task-model alignment explain
generalization in kernel regression and infinitely
wide neural networks
Abdulkadir Canatar 1,2, Blake Bordelon2,3 & Cengiz Pehlevan 2,3✉

A theoretical understanding of generalization remains an open problem for many machine

learning models, including deep networks where overparameterization leads to better per-

formance, contradicting the conventional wisdom from classical statistics. Here, we inves-

tigate generalization error for kernel regression, which, besides being a popular machine

learning method, also describes certain infinitely overparameterized neural networks. We use

techniques from statistical mechanics to derive an analytical expression for generalization

error applicable to any kernel and data distribution. We present applications of our theory to

real and synthetic datasets, and for many kernels including those that arise from training deep

networks in the infinite-width limit. We elucidate an inductive bias of kernel regression to

explain data with simple functions, characterize whether a kernel is compatible with a

learning task, and show that more data may impair generalization when noisy or not

expressible by the kernel, leading to non-monotonic learning curves with possibly

many peaks.
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L
earning machines aim to find statistical patterns in data that
generalize to previously unseen samples1. How well they
perform in doing so depends on factors such as the size and

the nature of the training data set, the complexity of the learning
task, and the inductive bias of the learning machine. Identifying
precisely how these factors contribute to the generalization per-
formance has been a theoretical challenge. In particular, a defi-
nitive theory should be able to predict generalization performance
on real data. Existing theories fall short of this goal, often pro-
viding impractical bounds and inaccurate estimates2,3.

The need for a new theory of generalization is exacerbated by
recent developments in deep learning4. Experience in the field
suggests that larger models perform better5–7, encouraging
training of larger and larger networks with state-of-the-art
architectures reaching hundreds of billions of parameters7.
These networks work in an overparameterized regime3,5 with
much more parameters than training samples, and are highly
expressive to a level that they can even fit random noise2. Yet,
they generalize well, contradicting the conventional wisdom from
classical statistical learning theory1,3,8 according to which over-
parameterization should lead to overfitting and worse general-
ization. It must be that overparameterized networks have
inductive biases that suit the learning task. Therefore, it is crucial
for a theory of generalization to elucidate such biases.

While addressing the full complexity of deep learning is as of
now beyond the reach of theoretical study, a tractable, yet prac-
tically relevant limit was established by recent work pointing to a
correspondence between training deep networks and performing
regression with various rotation invariant kernels. In the limit
where the width of a network is taken to infinity (network is thus
overparameterized), neural network training with a certain ran-
dom initialization scheme can be described by ridgeless kernel
regression with the Neural Network Gaussian Process kernel
(NNGPK) if only the last layer is trained9–12, or the Neural
Tangent Kernel (NTK) if all the layers are trained13. Conse-
quently, studying the inductive biases of kernels arising from the
infinite-width limit should give insight to the success of over-
parameterized neural networks. Indeed, key generalization phe-
nomena in deep learning also occur in kernel methods, and it has
been argued that understanding generalization in kernel methods
is necessary for understanding generalization in deep learning14.

Motivated by these connections to deep networks and also by
its wide use, in this paper, we present a theory of generalization in
kernel regression15–19. Our theory is generally applicable to any
kernel and contains the infinite-width limit of deep networks as a
special case. Most importantly, our theory is applicable to real
datasets.

We describe typical generalization performance of kernel
regression shedding light onto practical uses of the algorithm, in
contrast to the worst case bounds of statistical learning
theory8,18,20–22. In the past, statistical mechanics provided a
useful theoretical framework for such typical-case analyses for
various algorithms23–32. Here, using the replica method of sta-
tistical mechanics33, we derive an analytical expression for the
typical generalization error of kernel regression as a function of
(1) the number of training samples, (2) the eigenvalues and
eigenfunctions of the kernel, which define the inductive bias of
kernel regression, and (3) the alignment of the target function
with the kernel’s eigenfunctions, which provides a notion of how
compatible the kernel is for the task. We test our theory on
various real datasets and kernels. Our analytical generalization
error predictions fit experiments remarkably well.

Our theory sheds light onto the various generalization phe-
nomena. We elucidate a strong inductive bias: as the size of the
training set grows, kernel regression fits successively higher
spectral modes of the target function, where the spectrum is

defined by solving an eigenfunction problem19,34–36. Conse-
quently, our theory can predict which kernels or neural archi-
tectures are well suited to a given task by studying the alignment
of top kernel eigenfunctions with the target function for the task.
Target functions that place most power in the top kernel eigen-
functions can be estimated accurately at small sample sizes,
leading to good generalization. Finally, when the data labels are
noisy or the target function has components not expressible by
the kernel, we observe that generalization error can exhibit non-
monotonic behavior as a function of the number of samples,
contrary to the common intuition that more data should lead to
smaller error. This non-monotonic behavior is reminiscent of the
recently described “double-descent” phenomenon3,5,37,38, where
generalization error is non-monotonic as a function of model
complexity in many modern machine learning models. We show
that the non-monotonicity can be mitigated by increasing the
implicit or explicit regularization.

To understand these phenomena better, we present a detailed
analytical study of the application of our theory to rotation
invariant kernels, motivated by their wide use and relevance for
deep learning. Besides NNGPK and NTK, this class includes
many other popular kernels such as the Gaussian, Exponential
and Matern kernels39,40. When the data generating distribution is
also spherically symmetric, our theory is amenable to further
analytical treatment. Our analyses provide a mechanistic under-
standing of the inductive bias of kernel regression and the pos-
sible non-monotonic behavior of learning curves.

Results
Generalization error of kernel regression from statistical
mechanics. Kernel regression is a supervised learning problem
where one estimates a function from a number of observations.
For our setup, let D ¼ fxμ; yμgPμ¼1 be a sample of P observations

drawn from a probability distribution on X ´R, and X � R
D.

The inputs xμ are drawn from a distribution p(x), and the labels
yμ are assumed to be generated by a noisy target yμ ¼ �f ðxμÞ þ ϵμ,

where �f is square integrable with respect to p(x), and ϵμ repre-
sents zero-mean additive noise with covariance ϵμϵνh i ¼ δμνσ

2.

The kernel regression problem is

f � ¼ arg min
f2H

1

2λ
∑
P

μ¼1
ð f ðxμÞ � yμÞ2 þ 1

2
f ; f
� �

H
; ð1Þ

where λ is the “ridge” parameter, H is a Reproducing Kernel Hilbert
Space (RKHS) uniquely determined by its reproducing kernel
Kðx; x0Þ and the input distribution p(x)41, and �; �h iH is the RKHS
inner product. The Hilbert norm penalty controls the complexity
of f. The λ→ 0 limit is referred to as the kernel interpolation
limit, where the dataset is exactly fit: f � ¼ argminf2H f ; f

� �

H
;

s:t: f ðxμÞ ¼ yμ; μ ¼ 1; ¼ P. We emphasize that in our setting the
target function does not have to be in the RKHS.

Our goal is to calculate generalization error, i.e. mean squared
error between the estimator, f*, and the ground-truth (target) �f ðxÞ
averaged over the data distribution and datasets:

Eg ¼
Z

dxpðxÞ f �ðxÞ � �f ðxÞ
� �2

� �

D

: ð2Þ

Eg measures, on average, how well the function learned agrees
with the target on previously unseen (and seen) data sampled
from the same distribution.

This problem can be analyzed using the replica method from
statistical physics of disordered systems33, treating the training set
as a quenched disorder. Our calculation is outlined in the Methods
and further detailed in the Supplementary Information. Here we
present our main results.
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Our results rely on the Mercer decomposition of the kernel in
terms of orthogonal eigenfunctions {ϕρ},
Z

dx0pðx0ÞKðx; x0Þϕρðx0Þ ¼ ηρϕρðxÞ; ρ ¼ 1; ¼ ;N; ð3Þ

which form a complete basis for the RKHS, and eigenvalues {ηρ}.
N is typically infinite. For ease of presentation, we assume that all
eigenvalues are strictly greater than zero. In Supplementary
Notes 1 and 2, we fully address the case with zero eigenvalues.
Working with the orthogonal basis set ψρðxÞ �

ffiffiffiffiffi

ηρ
p

ϕρðxÞ,
also called a feature map, we introduce coefficients fwρg and

fw�
ρg that represent the target and the estimator respectively:

�f ðxÞ ¼ ∑ρwρψρðxÞ, and f �ðxÞ ¼ ∑ρw
�
ρψρðxÞ.

With this setup, we calculate the generalization error of kernel
regression for any kernel and data distribution to be (Methods
and Supplementary Note 2):

Eg ¼
1

1� γ
∑
ρ

ηρ

κþ Pηρ

	 
2 κ2�w2
ρ þ σ2Pηρ

	 


;

κ ¼ λþ∑
ρ

κηρ

κþ Pηρ
; γ ¼ ∑

ρ

Pη2ρ

ðκþ PηρÞ
2 :

ð4Þ

We note that the generalization error is the sum of a σ-
independent term and a σ-dependent term, the latter of which
fully captures the effect of noise on generalization error.

Formally, this equation describes the typical behavior of kernel
regression in a thermodynamic limit that involves taking P to
infinity. In this limit, variations in kernel regression’s perfor-
mance due to the differences in how the training set is formed,
which is assumed to be a stochastic process, become negligible.
The precise nature of the limit depends on the kernel and the data
distribution. In this work, we consider two different analytically
solvable cases and identify natural scalings of N and D with P,
which in turn govern how the kernel eigenvalues ηρ scale
inversely with P. We further give the infinite-P limits of Eq. (4)
explicitly for these cases. In practice, however, we find that our
generalization error formula describes average learning curves
very well for finite P for even as low as a few samples. We observe
that the variance in learning curves due to stochastic sampling of
the training set is significant for low P, but decays with increasing
P as expected.

We will demonstrate various generalization phenomena
that arises from Eq. (4) through simulations and analytical
study. One immediate observation is the spectral bias: faster
rates of convergence of the error along eigenfunctions corre-
sponding to higher eigenvalues in the noise-free (σ2= 0) limit.
The generalization error can be decomposed into a sum of
modal errors Eg ¼ ∑ρηρw

2
ρEρ, where each normalized mode error

Eρ ¼ 1
w2
ρ

hðw�
ρ � wρÞ2iD represents the contribution of the mode

error due to estimation of the coefficient for eigenfunction ψρ
(Methods). The normalized mode errors are ordered according to
their eigenvalues for all P (Methods)

ηρ > ηρ0 ) Eρ <Eρ0 ; ð5Þ

which implies that modes ρ with large eigenvalues ηρ are learned
more rapidly as P increases than modes with small eigenvalues.

An important implication of this result is that target functions
acting on the same data distribution with higher cumulative
power distributions C(ρ), defined as the proportion of target
power in the first ρ modes

CðρÞ ¼
∑ρ0 ≤ ρηρ0w

2
ρ0

∑ρ0ηρ0w
2
ρ0

; ð6Þ

for all ρ ≥ 1 will have lower generalization error normalized by
total target power, Eg(P)/Eg(0), for all P (Methods). Therefore,
C(ρ) provides a measure of the compatibility between the kernel
and the target, which we name task-model alignment.

We further note that the target function enters normalized
generalization error only through combinations CðρÞ�
Cðρ� 1Þ ¼ ηρw

2
ρ=∑ρηρw

2
ρ. Hence, the kernel eigenvalues, the

cumulative power distribution, and the noise parameter com-
pletely specify the normalized generalization error. Spectral bias,
task-model alignment and noise explain generalization in kernel
regression.

Generalization error can exhibit non-monotonicity which can
be understood through the bias and variance decomposition38,42,43,

Eg= B+V, where B ¼
R

dxpðxÞ f �ðxÞ
� �

D
� �f ðxÞ

� �2
and V ¼

� R

dxpðxÞðf �ðxÞ � hf �ðxÞiDÞ
2
�

D
. We found that the average

estimator is given by f �ðx;PÞ
� �

D
¼ ∑ρ

Pηρ
Pηρþκ

�wρψρðxÞ, which

monotonically approaches to the target function as P increases,
giving rise to a monotonically decreasing bias (Supplementary
Note 2). However, the variance term arising from the variance of
the estimator over possible sampled datasets D is potentially non-
monotonic as the dataset size increases. Therefore, the total
generalization error can exhibit local maxima.

Applications to real datasets. Next, we evaluate our theory on
realistic datasets and show that it predicts kernel regression
learning curves with remarkable accuracy. We further elucidate
various heuristic generalization principles.

To apply our theory, we numerically solve the eigenvalue
problem Eq. (3) on the dataset (Methods) and obtain the
necessary eigenvalues and eigenfunctions. When solved on a
finite dataset, Eq. (3) is an uncentered kernel PCA problem
(Methods). We use these eigenfunctions (or eigenvectors for
finite data) to express our target function, and the resulting
coefficients and kernel eigenvalues to evaluate the
generalization error.

In our first experiment, we test our theory using a 2-layer
NTK10,13 on two different tasks: discriminating between 0 and 1
s, and between 8 and 9 s from MNIST dataset44. We formulate
each of these tasks as a kernel regression problem by considering
a vector target function which takes in digits and outputs one-hot
labels. Our kernel regression theory can be applied separately to
each element of the target function vector (Methods), and a
generalization error can be calculated by adding the error due to
each vector component.

We can visualize the complexity of the two tasks by plotting the
projection of the data along the top two kernel principal
components (Fig. 1a, b). The projection for 0–1 digits appears
highly separable compared to 8–9s, and thus simpler to learn to
discriminate. Indeed, the generalization error for the 0–1
discrimination task falls more rapidly than the error for the 8–9
task (Fig. 1c). Our theory is in remarkable agreement with
experiments. Why is 0–1 discrimination easier for this kernel?
Fig. 1d shows that the eigenvalues of the NTK evaluated on the data
are very similar for both datasets. To quantify the compatibility of
the kernel with the tasks, we measure the cumulative power
distribution C(ρ). Even though in this case the data distributions are
different, C(ρ) is still informative. Figure 1e illustrates that C(ρ) rises
more rapidly for the easier 0–1 task and more slowly for the 8–9
task, providing a heuristic explanation of why it requires a greater
number of samples to learn.

We next test our theory for Gaussian RBF kernel on the
MNIST44 and CIFAR45 datasets. Figure 2a shows excellent
agreement between our theory and experiments for both.
Figure 2b shows that the eigenvalues of the Gaussian RBF kernel
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evaluated on data are similar for MNIST and CIFAR-10. The
cumulative powers C(ρ) (Fig. 2c), however, are very different.
Placing more power in the first few modes makes learning faster.
When the labels have nonzero noise σ2 > 0 (Fig. 2d, e),
generalization error is non-monotonic with a peak, a feature
that has been named “double-descent”3,37. By decomposing Eg
into the bias and the variance of the estimator, we see that the
non-monotonicity is caused solely by the variance (Fig. 2d, e).
Similar observations about variance were made in different
contexts before38,42,46.

These experiments and discussion in the previous section
provide illustrations of the three main heuristics about how
dataset, kernel, target function, and noise interact to produce
generalization in kernel regression:

(1) Spectral Bias: Kernel eigenfunctions ϕρ with large eigenva-
lues ηρ can be estimated with kernel regression using a
smaller number of samples.

(2) Task-Model Alignment: Target functions with most of their
power in top kernel eigenfunctions can be estimated

a cb

ed

Fig. 1 Effect of task-model alignment on the generalization of kernel regression. a, b Projections of digits from MNIST along the top two (uncentered)

kernel principal components of 2-layer NTK for 0s vs. 1s and 8s vs. 9s, respectively. c Learning curves for both tasks. The theoretical learning curves

(Eq. (4), dashed lines) show strong agreement with experiment (dots). d The kernel eigenspectra for the respective datasets. e The cumulative power

distributions C(ρ). Error bars show the standard deviation over 50 trials.

a cb

ed

Fig. 2 Gaussian RBF kernel regression on MNIST and CIFAR-10 datasets. Kernel is Kðx; x0Þ ¼ e
� 1

2Dω2
jjx�x0 jj2

with kernel bandwidth ω= 0.1, ridge parameter

λ= 0.01 and D being the size of images. a Generalization error Eg(p) when σ2= 0: Solid lines are theory (Eq. (4)), dots are experiments. b Kernel

eigenvalues and c cumulative powers C(ρ) for MNIST and CIFAR-10. d, e Generalization error when σ2= 0.5 with its bias-variance decomposition for

MNIST and CIFAR-10 datasets, respectively. Solid lines are theory, markers are experiments. Error bars represent standard deviation over 160 trials. Bias

and variance are obtained by calculating the mean and variance of the estimator over 150 trials, respectively.
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efficiently and are compatible with the chosen kernel. We
introduce cumulative power distribution, C(ρ), as defined in
Eq. (6), as a measure of this alignment.

(3) Non-monotonicity: Generalization error may be non-
monotonic with dataset size in the presence of noise (as
in Fig. 2), or when the target function is not expressible by
the kernel (not in the RKHS). We provide a discussion of
and examples for the latter kind in Supplementary Notes 3
and 4. We show that modes of the target function
corresponding to zero eigenvalues of the kernel act
effectively as noise on the learning problem.

To explore these phenomena further and understand their
causes, we study several simplified models where the kernel
eigenvalue problem and generalization error equations can be
solved analytically.

Double-descent phase transition in a band-limited RKHS. An
explicitly solvable and instructive case is the white band-limited
RKHS with N equal nonzero eigenvalues, a special case of which
is linear regression. Later, we will observe that the mathematical
description of rotation invariant kernels on isotropic distributions
reduces to this simple model in each learning stage.

In this model, the kernel eigenvalues are equal ηρ ¼ 1
N
for a

finite number of modes ρ= 1, ..., N and truncate thereafter: ηρ= 0
for ρ >N. Similarly, the target power w2

ρ truncates after N modes

and satisfies the normalization condition ∑
N
ρ¼1 w

2
ρ ¼ N . In

Supplementary Note 3, we relax these constraints and discuss
their implications. Linear regression (or linear perceptron) with
isotropic data is a special case when D=N, ϕρ(x)= xρ, and
hxρxρ0ix�pðxÞ ¼ δρρ0

25.

We study this model in the thermodynamic limit. We find that
the natural scaling is to take P→∞ and N→∞ with
α ¼ P=N � Oð1Þ, and D ~O(1) (or D ¼ N � OðPÞ in the linear
regression case), leading to the generalization error:

Egðα; λ; σ2Þ ¼
κλðαÞ2 þ σ2α

ðκλðαÞ þ αÞ2 � α
;

κλðαÞ ¼
1

2
ð1þ λ� αÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ λ� αÞ2 þ 4λα

q

� �

:

ð7Þ

Note that this result is independent of the teacher weights as long
as they are properly normalized. The function κλ(α) appears in
many contexts relevant to random matrix theory, as it is related
to the resolvent, or Stieltjes transform, of a random Wishart
matrix47,48 (Supplementary Note 3). This simple model shows
interesting behavior, elucidating the role of regularization and
under- vs. over-parameterization in learning machines.

First we consider the interpolation limit (λ= 0, Fig. 3a).
The generalization error simplifies to Eg ¼ ð1� αÞΘð1� αÞþ
σ2

1�α αΘð1� αÞ � Θðα� 1Þ½ �. There is a first order phase transition
at αc= 1, when the number of samples P is equal to the number
of nonzero modes N and therefore to the number of parameters,
f�wρg, that define the target function. The phase transition is

signaled by the non-analytic behavior of Eg and verifiable by
computing the first-derivative of free energy (Supplementary
Note 3). When σ= 0, Eg linearly falls with more data and at the
critical point generalization error goes to zero. With noise
present, the behavior at the critical point changes drastically, and
there is a singular peak in the generalization error due to the noise
term of the generalization error (Fig. 3a). At this point the kernel
machine is (over-)fitting exactly all data points, including noise.
Then, as number of samples increase beyond the number of
parameters (α > 1), the machine is able to average over noise and
the generalization error falls with asymptotic behavior Eg ~ σ2/α.

Our results are consistent with those previously obtained for the
linear perceptron with a noisy target25,49, which is a special case
of kernel regression with a white band-limited spectrum.

When λ > 0 and σ= 0, Eg decreases monotonically with α and is
asymptotic to Eg ~ λ2/α2 (Fig. 3b). A sharp change at α= 1 is
visible for small λ, reminiscent of the phase transition at λ= 0.
When σ > 0 is sufficiently large compared to λ, non-monotonicity
is again present, giving maximum generalization error at α ≈ 1+ λ

(Fig. 3c), with an asymptotic fall Eg � σ2

α .
We find that Eg(α) is non-monotonic when the noise level in

target satisfies the following inequality (Fig. 3d and Supplemen-
tary Note 3):

σ2 >
gðλÞ λ< 1

2λþ 1 λ≥ 1




; ð8Þ

where gðλÞ ¼ 3λ½3λþ 2� 2
ffiffiffiffiffiffiffiffiffiffiffi

1þ λ
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

9λþ 1
p

cos θðλÞ�, and

θðλÞ ¼ 1
3
ðπ þ tan�1 8

ffiffi

λ
p

9λð3λþ2Þ�1
Þ. Although there is no strict phase

transition (in the sense of non-analytic free energy) except at λ=
0, Eq. (8) defines a phase boundary separating the monotonic and
non-monotonic learning curve regions for a given regularization
parameter and noise. For a given λ, double-descent occurs for
sufficiently high σ2. In the non-monotonic region, there is a single
local maximum when σ2 > 2λ+ 1, otherwise a local minima
followed by a local maxima (we call only this kind of peak as the
double-descent peak).

Based on this explicit formula, one could choose a large enough
λ to mitigate the peak to avoid overfitting for a given noise level
(Fig. 3d). However, larger λ may imply slower learning (see
Fig. 3b and Supplementary Note 3) requiring more training
samples to achieve the same generalization error. By inspecting

the derivative
∂Eg
∂λ ¼ 0, we find that λ*= σ2 (yellow dashed line in

Fig. 3d) is the optimal choice for ridge parameter, minimizing
Eg(α) for a given σ2 at all α (Fig. 3c). For λ > λ* the noise-free
error term increases from the optimum whereas λ < λ* gives a
larger noise term. Our result agrees with a similar observation
regarding the existence of an optimal ridge parameter in linear
regression46.

Further insight to the phase transition can be gained by
looking at the bias and the variance of the estimator38,42,43. The
average estimator learned by kernel regression linearly
approaches to the target function as α→ 1 (Supplementary

Note 2): f �ðxÞ
� �

D
¼ minfα; 1g�f ðxÞ (Fig. 4a), which indicates that

the bias (B) and variance (V) contributions to generalization
error have the forms B ¼ max f0; 1� αg2, V ¼ αð1� αÞΘð1�
αÞþ σ2

1�α αΘð1� αÞ � Θðα� 1Þ½ �. In the absence of noise, σ= 0,
variance is initially low at small α, reaches its maximum at α=
1/2 and then decreases as α→ 1 as the learned function

concentrates around �f (Fig. 4b). When there is noise, the phase
transition at α= 1 arises from the divergence in the variance V of
the learned estimator (Fig. 4c).

Multiple learning episodes and descents: rotation invariant
kernels and measures. Next, we study kernel regression on high-
dimensional spheres focusing on rotation invariant kernels, which
satisfy KðOx;Ox0Þ ¼ Kðx; x0Þ, where O is an arbitrary orthogonal
matrix. This broad class of kernels includes widely used radial
basis function kernels Kðx; x0Þ ¼ Kðjjx � x0jjÞ (Gaussian, Laplace,
Matern, rational quadratic, thin plate splines, etc) and dot pro-
duct kernels Kðx; x0Þ ¼ Kðx � x0Þ (polynomial kernels, NNGPK
and NTK)10,39,40.

When the data distribution is spherically isotropic p(x)= p(∣∣x∣∣),
we can separate Mercer eigenfunctions for rotation invariant kernels
into radial and angular parts. The spherical parts depend on the
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radial distances of the data points ∣∣x∣∣, whereas the angular
components admit a decomposition in terms of spherical harmonics
of the unit vectors Ykmðx̂Þ, where k is the degree and m is the order
of the harmonic50. A review of the basic properties of spherical
harmonics are provided in the Supplementary Note 6. Utilizing this
spherical symmetry, we obtain the following Mercer decomposition
Kðx; x0Þ ¼ ∑zkmηz;kRz;kðjjxjjÞRz;kðjjx0jjÞYkmðx̂ÞYkmðx̂0Þ. Since the

eigenvalues are independent of the spherical harmonic order m,
the minimal degeneracy of the RKHS spectrum is the number of
degree k harmonics: in the limit D→∞ given by ~Dk/k!51,52.
However, the degeneracy can be even larger if there are different (z,
k) indices with the same eigenvalue. For notational convenience, we
denote degenerate eigenvalues as ηK (K 2 Z

þ) and corresponding
eigenfunctions as ϕK,ρ where ρ 2 Z

þ indexes the degenerate indices.

After finding the eigenvalues of a kernel on the basis ϕK,ρ, one can
evaluate Eq. (4) to predict the generalization error of the kernel
machine.

We focus on the case where the degeneracy of ηK is
NðD;KÞ � ODðDKÞ. Correspondingly, for finite kernel power

Kðx; xÞ
� �

x�pðxÞ, the eigenvalues must scale with dimension like

ηK � ODðD�K Þ34,53. Examples include the widely used Gaussian

kernel and dot product kernels such as NTK, which we discuss
below and in Supplementary Note 4.

This scaling from the degeneracy allows us to consider multiple
P, D→∞ limits leading to different learning stages. We consider
a separate limit for each degenerate eigenvalue L while keeping
α≡ P/N(D, L) finite. With this setting, we evaluate Eq. (4) with

a

c

b

d

Fig. 3 Learning curves and double-descent phase diagram for kernels with white band-limited spectra.We simulated N= 800 dimensional uncorrelated

Gaussian features ϕðxÞ ¼ x � N ð0; IÞ and estimated a linear function �fðxÞ ¼ β>x with ∣∣β∣∣2= N. Error bars describe the standard deviation over 15 trials.

Solid lines are theory (Eq. (7)), dots are experiments. a When λ= 0 and σ2= 0, Eg linearly decreases with α and when σ2 > 0 it diverges as α→ 1. b When

σ2= 0, explicit regularization λ always leads to slower decay in Eg. c For nonzero noise σ2 > 0, there is an optimal regularization λ*= σ2 which gives the best

generalization performance. d Double-descent phase diagram where the colored squares correspond to the curves with same color in c. Optimal

regularization (λ*= σ2) curve is shown in yellow dashed line which does not intersect the double-descent region above the curve defined by g(λ) (Eq. (8)).

a cb

Fig. 4 Bias-variance decomposition of generalization error. a Average estimator for kernel regression with Kðx; x0Þ ¼ ∑
N
k¼1 cosðkðx� x0ÞÞ on target

function �fðxÞ ¼ e4ðcos x�1Þ with mean subtracted for different values of α= P/N when λ= σ2= 0. Estimator linearly approaches to the target function and

estimates it perfectly when α= 1. Dashed lines are theory. b With the same setting in Fig. 3, when λ= 0 and σ2= 0, the bias is a monotonically decreasing

function of α while variance has a peak at α= 1/2 yet it does not diverge. c When λ= 0 and σ2= 0.2, we observe that the divergence of Eg is only due to

the diverging variance of the estimator. In b, c, solid lines are theory, dots are experiments. Error bars represent the standard deviation over 15 trials.
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definitions �ηK � NðD;KÞηK , �w2
K � 1

NðD;KÞ∑ρ�w
2
K;ρ, to obtain the

generalization error in learning stage L:

EðLÞ
g ðαÞ ¼ �ηL�w

2
L

~κ2

ð~κþαÞ2�α
þ ~σL

2α

ð~κþαÞ2�α

	 


þ ∑
K>L

�ηK �w
2
K ;

~κðαÞ ¼ 1
2
ð1þ ~λL � αÞ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðαþ 1þ ~λLÞ
2 � 4α

q

;

~σ2L �
σ2þE

ðLÞ
g ð1Þ

�ηL �w
2
L

; ~λL �
λþ∑

K>L
�ηK

�ηL
:

ð9Þ

Several observations can be made:

(1) We note that EðLÞ
g ð0Þ ¼ �ηL�w

2
L þ∑K >L�ηK �w

2
K ¼ �ηL�w

2
L þ

EðLÞ
g ð1Þ. In the learning stage L, generalization error due

to all target modes with K < L has already decayed to zero.
As α→∞, K= L modes of the target function are learned,
leaving K > L modes. This illustrates an inductive bias
towards learning target function modes corresponding to
higher kernel eigenvalues.

(2) EðLÞ
g ðαÞ � EðLÞ

g ð1Þ reduces, up to a constant �ηL�w
2
L, to the

generalization error in the band-limited case, Eq. (7), with
the identification of an effective noise parameter, ~σL, and an
effective ridge parameter, ~λL. Inspection of ~σL reveals that
target modes with K > L (EðLÞ

g ð1Þ) act as noise in the
current stage. Inspection of ~λL reveals that kernel
eigenvalues with K > L act as a regularizer in the current
stage. The role of the number of eigenvalues in the white
band-limited case, N, is played here by the degeneracy N(D,
L).

(3) Asymptotically, first term in EðLÞ
g ðαÞ is monotonically

decreasing with α−2, while the second term shows non-
monotonic behavior having a maximum at α ¼ 1þ ~λL.
Similar to the white band-limited case, generalization error
diverges due to variance explosion at α ¼ 1þ ~λL when
~λL ¼ 0 (a band-limited spectrum is possible) implying
again a first order phase transition. Non-monotonicity
caused by the noise term implies a possible peak in the
generalization error in each learning stage. A phase diagram
can be drawn, where phase boundaries are again defined by
Eq. (8) evaluated with the effective ridge and noise
parameters, Fig. 5a.

(4) Similar to the white band-limited case, optimal regulariza-
tion happens when

~λL ¼ ~σ2L; ð10Þ
minimizing EðLÞ

g ðαÞ for a given ~σL for all α. This result
extends the previous findings on linear regression46 to the
large class of rotation invariant kernels.

(5) When all stages are considered, it is possible to observe
learning curves with multiple descents with at most one
peak per stage. The presence and size of the descent peak
depends on the level of noise in the data and the effective
regularization as shown in Eq. (8) and Eq. (9). Similar
observations of multiple peaks in the learning curves were
made before36 in the context of ridgeless regression on
polynomial kernels.

As an example of the effect of kernel spectrum on double-
descent, consider a power law �ηK ¼ K�s where s ≥ 1. Then
~λL ¼ Ls ζðs; LÞ þ λð Þ � 1 	 L

s�1
þ λLs; ðL 
 1Þ, where ζ(s, L) is

Hurwitz-Zeta function. In the ridgeless λ= 0 case, faster decaying

spectra (higher s, smaller ~λL) are more prone to double-descent
than the slower ones (Fig. 5a). Furthermore, we also observe that

higher modes (higher L, higher ~λL) are more immune to
overfitting, signaled by non-monotonicity, than the lower modes.

We apply our theory to Gaussian RBF regression on synthetic
data in Fig. 5 where Fig. 5b demonstrates a perfect agreement

with theory and experiment on Gaussian RBF with synthetic data
when no label noise is present. The vertical dashed lines represent
the locations where P=N(D, 1) and P=N(D, 2), respectively.
Figure 5c shows the regression experiment with the parameters

ð~σ21; ~λ1Þ indicated by colored squares on the phase diagram
(Fig. 5a). When the parameters chosen on the yellow dashed line
in Fig. 5a, corresponding to the optimal regularization for fixed
effective noise, the lowest generalization error is achieved in the
first learning episode without a double-descent. Finally, Fig. 5d
shows the theory and experiment curves with the parameters

ð~σ21; ~λ1Þ shown by the colored circles in Fig. 5a. As expected, for
fixed effective regularization, increasing noise hurts general-
ization. For further experiments see Supplementary Note 4.

Dot product kernels, NTK and wide neural networks. Our
theory allows the study of generalization error for trained and
wide feedforward neural networks by exploiting a correspondence
with kernel regression. When weights in each layer are initialized
from a Gaussian distribution N ð0; σ2WÞ and the size of hidden
layers tend to infinity, the function f(x, θ) learned by training the
network parameters θ with gradient descent on a squared loss to
zero training error is equivalent to the function obtained from
ridgeless (λ= 0) kernel regression with the NTK: KNTK(xi, xj)
=∇θf(xi, θ0)⋅∇θf(xj, θ0)13. For fully connected neural networks,
the NTK is a dot product kernel KNTKðx; x0Þ ¼ KNTKðx � x0Þ13,34.
For such kernels and spherically symmetric data distributions p
(x)= p(∣∣x∣∣), kernel eigenfunctions do not have a radial part, and
consequently the eigenvalues are free of a z-index. Therefore, k-th
eigenvalue has degeneracy of the degree k spherical harmonics,

ODðDkÞ, (K, L→ k, l and ρ→m)34, allowing recourse to the same
scaling we used to analyze rotation invariant kernels in the pre-
vious section. The learning curves for infinitely wide neural
network will thus have the same form in Eq. (9), evaluated with
NTK eigenvalues and with λ= 0.

In Fig. 6a, we compare the prediction of our theoretical
expression for Eg, Eq. (4), to NTK regression and neural network
training. The match to NTK training is excellent. We can describe
neural network training up to a certain P after which the
correspondence to NTK regression breaks down due to the
network’s finite-width. For large P, the neural network operates in
under-parameterized regime where the network initialization
variance due to finite number of parameters starts contributing to
the generalization error3,38,42,54. A detailed discussion of these
topics is provided in Supplementary Note 4.

Neural networks are thought to generalize well because of
implicit regularization2,51,52. This can be addressed with our
formalism. For spherical data, we see that the implicit
regularization of a neural network for each mode l is given by
~λl ¼

∑k > l�ηk
�ηl

. As an example, we calculate the spectrum of NTK for

rectifier activations, and observe that the spectrum whitens with

increasing depth52, corresponding to larger ~λl and therefore more
regularization for small learning stages l (Fig. 6b). The trend for
small degree harmonics l is especially relevant since, as we have
shown, approximately Dl samples are required to learn degree l
harmonics. In this small l regime, we see that deep networks
exhibit much higher effective regularization compared to shallow
ones due to slower decay of eigenvalues.

Discussion
We studied generalization in kernel regression using statistical
mechanics and the replica method33. We derived an analytical
expression for the generalization error, Eq. (4), valid for any
kernel and any dataset. We showed that our expression explains
generalization on real datasets, and provided a detailed analysis of
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its application to band-limited kernels with white spectra and the
widely used class of rotation invariant kernels39,40 operating on
spherical data. For the latter case, we defined an effective reg-
ularization and an effective noise which govern the generalization
behavior, including non-monotonicity of learning curves. It will
be interesting to see if analogues of these concepts can be defined
for real datasets. Our results are directly applicable to infinite-
width limit of neural networks that admit a kernel description
(including feedforward, convolutional and recurrent neural

networks)13,55–59, and explain their inductive bias towards simple
functions35,51,60–64. We also note a closely related recent study19,
which we discuss further in Supplementary Discussion, that uti-
lizes random matrix theory to study generalization in kernel
regression.

One goal of our present work is to provide a framework that
incorporates structural information about the data distribution
into a realistic prediction of generalization performance that
holds for real data and any kernel. Indeed, a recent study

a b

c d

P N D

P N D P N D

Fig. 5 Gaussian RBF kernel regression on high-dimensional spherical data. a Phase diagram for non-monotonic learning curves obtained from the theory

by counting the zeros of
∂Eg
∂α . Colored squares and colored circles correspond to curves in c, d, respectively. b Kernel regression with Gaussian RBF

Kðx; x0Þ ¼ e
� 1

2Dω2
jjx�x0 jj2

with ω= 3, D= 100 and noise-free labels. Target is �fðxÞ ¼ ∑k;m �wkm

ffiffiffiffiffiffiffi

ηkm
p

YkmðxÞ with random and centered weights �wkm such that

�w2
km

� �

¼ ηkm (Supplementary Note 5). Dashed lines represent the locations of N(D, 1) and N(D, 2), showing different learning stages. c, d Generalization

error for Gaussian RBF kernel for various kernel widths ω corresponding to specific ~λL’s and noise variances ~σL pointed in the phase diagram in D= 100.

Solid lines—theory (Eq. (4)). Larger regularization suppresses the descent peaks, which occur at P* ~N(D, L) shown by the vertical dashed lines. c Varying
~λL with fixed the ~σL. d vice versa. For fixed noise, we observe an optimal ~λ1 for up to P/N(D, 1) ~10 after which the next learning stage starts. Error bars

indicate standard deviation over 300 trials for b and 100 trials for c, d.

Fig. 6 Comparison of our theory with finite width neural network experiments. a 2-layer NTK regression and corresponding neural network training using

NeuralTangents package55 with 50000 hidden units for D= 25 with varying noise levels chosen according to g(λ). Target function is a single degree mode
�fðxÞ ¼ ckQ

ðD�1Þ
k ðβ � xÞ, where ck is a constant, β is a random vector, and Q

ðD�1Þ
k is the k-th Gegenbauer polynomial (see Supplementary Note 5 and 6). Here

we picked k= 1 (linear target). Solid lines are the theory predicted learning curves (Eq. (4)), dots represent NTK regression and × represents Eg after neural

network training. Correspondence between NN training and NTK regression breaks down at large sample sizes P since the network operates in under-

parameterized regime and finite-size effects become dominating in Eg. Error bars represent standard deviation of 15 averages for kernel regression and 5

averages for neural network experiments. b ~λl dependence to mode l across various layer NTKs. The weight and bias variances for the neural network are

chosen to be σ2W ¼ 1 and σ2b ¼ 0, respectively.
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suggested that structure in data allows kernel methods to out-
perform pessimistic generalization expectations based on the high
ambient dimension65. Authors of a different study66 calculated
test error of random Fourier features model using random matrix
theory techniques without strong assumptions on data distribu-
tion and obtained excellent agreement on real datasets. Overall,
our results demonstrate how data and inductive biases of a model
interact to shape generalization behavior, and in particular the
importance of the compatibility of a learning task with the model
for sample-efficient learning. Our findings elucidate three heur-
istic principles for generalization in kernel regression.

First is the spectral bias. The eigendecomposition of the kernel
provides a natural ordering of functions which are easiest to
estimate. Decomposing generalization error into modal errors, we
found that errors in spectral modes with large eigenvalues
decrease more rapidly with increasing sample size than modes
with small eigenvalues, also observed in34, illustrating a pre-
ference to fit certain functions over others. Our findings are
consistent with other experimental results and analytical ones
which derive error bounds on test risk to elucidate the spectral or
frequency bias of NTK and NNGPK67–70.

Consequently, how a given task decomposes in the eigenbasis,
a heuristic that we name task-model alignment, determines the
number of samples required to achieve good performance: tasks
with most of their power in top eigenmodes can be learned in a
sample-efficient manner. We introduced cumulative power dis-
tribution as a metric for task-model alignment and proved that
target functions with higher cumulative power distributions will
have lower normalized generalization error for all P under the
same kernel and data distribution. A related notion of kernel
compatibility with target was defined in71,72, which we discuss in
detail in Supplementary Discussion.

The third phenomenon we explore is how non-monotonicity can
appear in the learning curves when either labels are noisy, or the
target function has modes that are not expressible with the kernel.
Non-monotonicity is caused by the variance term in the bias-
variance decomposition of the generalization error. In the analyti-
cally tractable models we considered, this is related to a phase
transition appearing in separate learning stages for the rotation
invariant kernels. Non-monotonicity can be mitigated with explicit
or implicit regularization38,42,73. We showed the existence of an
optimal regularizer, independent of sample size, for our theoretical
settings. When applied to linear regression, our optimal regularizer
matches that previously given in literature46.

Non-monotonicity in generalization error gathered a lot of
interest recently. Many studies pointed to absence of overfitting in
overparameterized machine learning models, signaled by a peak
and a subsequent descent in generalization error as the model
complexity, or the number of parameters, increases, and the
model transitions from an under-parameterized to over-
parameterized (interpolating) regime3,5,35,38,42,43,54,66,74,75. Mul-
tiple peaks are also possible in this context76. Our work provides
an explanation for the lack of overfitting in overparameterized
models by elucidating strong inductive biases of kernel regression,
valid even in the interpolation limit, which includes infinitely
overparameterized limits of neural networks. Sample-wise non-
monotonicity has also been observed previously in many
models5,24,25,54,73, including ones that show multiple
peaks36,43,46,77. A closely related study obtained an upper bound
for test risk in ridgeless regression which shows non-monotonic
behavior with increasing sample size whenever P � OðDLÞ,
consistent with our results on rotation invariant kernels and
isotropic data.

An interesting comparison can be made between the multiple
peaks we observed in our analytically solvable models and the
multiple peaks observed in random features models43,76. In these

models, one of the peaks (termed “nonlinear” in a previous
study43) happens when the number of samples reaches the
number of features, and thus the number of parameters of the
model, crossing the interpolation threshold. While the peak we
observed in the white band-limited case with nonlinear features
also happens at the interpolation threshold (P=N), the
mechanisms causing double descent are different. In random
features models, this peak is due to variance in the initialization of
the random feature vectors. In our example, such variance does
not exist. The peak is due to overfitting the noisy labels and
disappears when there is no noise. The peaks observed for the
rotationally invariant case has a more subtle connection. In each
learning stage, peaks occur when number of samples reach the
degeneracy of eigenfunctions in that stage. While kernel regres-
sion is non-parametric, one can think of this again as crossing an
interpolation threshold defined by the dimensionality of the
feature space in the large-D limit. Like the white band-limited
case, these peaks are due to overfitting noise.

While our theory is remarkably successful in its predictions, it
has limitations. First, the theory requires eigendecomposition of
the kernel on the full dataset which is computationally costly.
Second, its applicability to state-of-the-art neural networks is
limited by the kernel regime of networks, which does not capture
many interesting and useful deep learning phenomena62,78.
Third, our theory uses a Gaussian approximation79 and a replica
symmetric ansätz33. While these assumptions were validated by
the remarkable fit to experiments, it will be interesting to see if
their relaxations reveal new insights.

Methods
Statistical mechanics formulation. With the setting described in the main text,
kernel regression problem reduces to minimization of the energy function

HðwÞ � 1

2λ
∑
P

μ¼1
∑
N

ρ¼1
ð�wρ � wρÞψρðxμÞ þ ϵμ

� �2

þ 1

2
jjwjj22: ð11Þ

The quantity of interest is the generalization error in Eq. (2), which in matrix
notation is

Eg ¼ ðw� � �wÞ>Λðw� � �wÞ
� �

D
; ð12Þ

where Λργ= ηρδργ represents a diagonal matrix with entries given by the RKHS
eigenvalues ηρ.

In order to calculate the generalization error, we introduce a Gibbs distribution

pGðwÞ � 1
Z
e�βHðwÞ with the energy function in Eq. (11). In the β→∞ limit, this

Gibbs measure is dominated by the solution to the kernel regression problem. We
utilize this fact to calculate the generalization error for kernel regression. This can
be done by introducing a source term with strength J to the partition function,

ZðJÞ ¼
Z

dwe�βHðw;DÞþJβPðw��wÞ>Λðw��wÞ; Eg ðDÞ ¼ lim
β!1

1

βP

d

dJ
lnZðJÞ

�

�

�

�

J¼0

; ð13Þ

where we recognize the free energy βF � �lnZðJÞ which is the relevant quantity to
compute generalization error for a given dataset, Eg ðDÞ. In Supplementary Note 2,

we introduce other source terms to calculate training error, average estimator and
its variance.

The free energy depends on the sampled dataset D, which can be thought of as a
quenched disorder of the system. Experience from the study of physics of
disordered systems suggests that the free energy concentrates around its mean (is
self-averaging) for large P33. Therefore, we calculate the typical behavior of the

system by performing the average free energy over all possible datasets: βF ¼
β Fh iD ¼ � lnZðJÞ

� �

D
in the P→∞ limit.

All calculations are detailed in Supplementary Notes 1 and 2. Here we provide a
summary. To perform averages over the quenched disorder, we resort to the replica

trick80 using logZðJÞ
� �

D
¼ limn!0

1
n
ð ZðJÞn
� �

D
� 1Þ. A key step is a Gaussian

approximation to the average over the dataset in the feature space81, which exploits
the orthogonality of the feature vectors with respect to the input distribution p(x).
These averages are expressed in terms of order parameters defining the mean and
the covariance of the Gaussian. The calculation proceeds by a replica symmetric
ansätz33, evaluating the saddle point equations and taking the β→∞ limit.
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Modal errors. The generalization error can be written as a sum of modal errors
arising from the estimation of the coefficient for eigenfunction ψρ:

Eg ¼ ∑
ρ
ηρw

2
ρEρ; ð14Þ

where

Eρ ¼
1

w2
ρ

ðw�
ρ � wρÞ2

D E

D
¼ 1

1� γ

κ2

ðκþ PηρÞ
2 : ð15Þ

We now provide a proof that the mode error equation implies that the
logarithmic derivatives of mode errors have the same ordering as the kernel
eigenvalues when σ= 0. Assuming that ηρ > ηρ0 , and noting that κ0ðPÞ ¼
� κγ

Pð1þγÞ < 0 since κ, γ, P > 0, we have

d

dP
log

Eρ

Eρ0

 !

¼ �2
κ0ðPÞ þ ηρ

κþ Pηρ
�

κ0ðPÞ þ ηρ0

κþ Pηρ0

" #

< 0: ð16Þ

Thus, we arrive at the conclusion

d

dP
log Eρ<

d

dP
logEρ0 ) 1

Eρ

dEρ

dP
<

1

Eρ0

dEρ0

dP
: ð17Þ

Let uρ;ρ0 ðPÞ ¼ log
Eρ

Eρ0

	 


. The above derivation demonstrates that d
dP uρ;ρ0 ðPÞ< 0 for

all P. Since uρ;ρ0 ð0Þ ¼ 0, this implies that uρ;ρ0 ðPÞ< 0 or equivalently Eρ < Eρ0 for all P.

This result indicates that the mode errors have the opposite ordering of eigenvalues,
summarizing the phenomenon of spectral bias for kernel regression: the
generalization error falls faster for the eigenmodes with larger eigenvalues. If the target

function has norm T ¼ �f ðxÞ2
� �

¼ ∑ρηρw
2
ρ then the generalization error is a convex

combination of fTEρðPÞg1ρ¼1
. The quantities TEρ(P) maintain the same ordering as the

normalized mode errors Eρ for all P, and we see that re-allocations of target function
power that strictly increase the cumulative power distribution CðρÞ ¼ 1

T
∑ρ0 ≤ ρηρ0w

2
ρ0

curve must cause a reduction in generalization error. We emphasize that, for a fixed
set of kernel eigenvalues, strictly higher C(ρ) yields better generalization but provide a
caveat: for a fixed target function, comparison of different kernels requires knowledge
of both the change in the spectrum ηρ as well as changes in the C(ρ) curve.

Diagonalizing the kernel on real datasets. Calculation of Eg requires two inputs:
kernel eigenvalues ηρ and teacher weights �wρ , both calculated using the underlying

data distribution. For a dataset with a finitely many samples, we assume a discrete

uniform distribution over data pðxÞ ¼ 1
M
∑

M
i¼1 δðx � xiÞ withM being the size of the

whole dataset (train+test). Then, the corresponding eigenvalue problem reads:

ηkϕkðx0Þ ¼
Z

pðxÞKðx; x0ÞϕkðxÞdx ¼ 1

M
∑
M

i¼1
Kðxi; x0ÞϕkðxiÞ: ð18Þ

Given a kernel Kðx; x0Þ, one can evaluate the M ×M kernel Gram matrix Kij=K
(xi, xj) and solve for the eigenvalues Λkl= ηkδkl and eigenfunctions Φki= ϕk(xi) of K
=NΦΛΦ⊤. Note that both data indices and eigen-indices take values i, k= 1,...,M.

For a target function with multiple classes �f ðxÞ : RD ! R
C , we denote the one-hot

encoded labels Y ¼ ½y1; :::; yC � 2 R
M ´C and obtain the teacher weights for each

class with �wc ¼ 1
MΛ�1=2

Φ
>yc . For solving kernel regression, each of the C one-hot

output channels can be treated as an individual target function ft,c(x) where f t;cðxμÞ ¼
yμc for one-hot labels y

μ
c . The weights wc obtained above allows the expansion of each

teacher channel in the kernel’s eigenbasis f t;cðxÞ ¼ ∑
M
k¼1 wc;k

ffiffiffiffiffi

ηk
p

ϕkðxÞ. The total
generalization error for the entire task is simply Eg ¼ ∑

C
c¼1 ðf �c ðxÞ � f t;cðxÞÞ

2
D E

x;D

where f �c is the kernel regression solution for output channel c. Note that, with the
choice of one-hot labels, the total target power is normalized to 1. After computing

learning curves for each channel c, which requires plugging in fðηk;w2
c;kÞg

M

k¼1
into our

theory, the learning curves for each channel are simply summed to arrive at the final
generalization error.

In other cases, when we do not generally possess a priori knowledge about p(x), the
underlying data distribution, solving the kernel eigenvalue problem in Eq. (3) appears
intractable. However, when we are provided with a large number of samples from the
dataset, we may approximate the kernel eigenvalue problem by using a Monte-Carlo

estimate of the data density i.e. pðxÞ 	 1
M
∑

M
i¼1 δðx � xiÞ with M being the size of the

dataset. Then Eq. (18) approximates the eigenvalues and eigenvectors where one obtains
the exact eigenvalues when the number of samples is large, M→∞40.
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