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Global analyses of RNA expression levels are useful for classifying genes and overall phenotypes. Often these

classification problems are linked, and one wants to find “marker genes” that are differentially expressed in

particular sets of “conditions.” We have developed a method that simultaneously clusters genes and conditions,

finding distinctive “checkerboard” patterns in matrices of gene expression data, if they exist. In a cancer context,

these checkerboards correspond to genes that are markedly up- or downregulated in patients with particular

types of tumors. Our method, spectral biclustering, is based on the observation that checkerboard structures in

matrices of expression data can be found in eigenvectors corresponding to characteristic expression patterns

across genes or conditions. In addition, these eigenvectors can be readily identified by commonly used linear

algebra approaches, in particular the singular value decomposition (SVD), coupled with closely integrated

normalization steps. We present a number of variants of the approach, depending on whether the normalization

over genes and conditions is done independently or in a coupled fashion. We then apply spectral biclustering to

a selection of publicly available cancer expression data sets, and examine the degree to which the approach is

able to identify checkerboard structures. Furthermore, we compare the performance of our biclustering

methods against a number of reasonable benchmarks (e.g., direct application of SVD or normalized cuts to raw

data).

Microarray Analysis to Classify Genes

and Phenotypes
Microarray experiments for simultaneously measuring RNA

expression levels of thousands of genes are becoming widely

used in genomic research. They have enormous promise in

such areas as revealing function of genes in various cell popu-

lations, tumor classification, drug target identification, under-

standing cellular pathways, and prediction of outcome to

therapy (Brown and Botstein 1999; Lockhart and Winzeler

2000). A major application of microarray technology is gene

expression profiling to predict outcome in multiple tumor

types (Golub et al. 1999). In a bioinformatics context, we can

apply various data-mining methods to cancer datasets in or-

der to identify class distinction genes and to classify tumors.

A partial list of methods includes: (1) data preprocessing

(background elimination, identification of differentially ex-

pressed genes, and normalization); (2) unsupervised cluster-

ing and visualization methods (hierarchical, SOM, k-means,

and SVD); (3) supervised machine learning methods for clas-

sification based on prior knowledge (discriminant analysis,

support-vector machines, decision trees, neural networks, and

k-nearest neighbors); and (4) more ambitious genetic network

models (requiring large amounts of data) that are designed to

discover biological pathways using such approaches as pair-

wise interactions, continuous or Boolean networks (based on

a system of coupled differential equations), and probabilistic

graph modeling based on Bayesian networks (Tamayo et al.

1999; Brown et al. 2000; Friedman et al. 2000).
Our focus here is on unsupervised clustering methods.

Unsupervised techniques are useful when labels are unavail-

able. Examples include attempts to identify (yet unknown)

subclasses of tumors, or work on identifying clusters of genes

that are coregulated or share the same function (Brown et al.

2000; Mateos et al. 2002). Unsupervised methods have been

successful in separating certain types of tumors associated

with different types of leukemia and lymphoma (Golub et al.

1999; Alizadeh et al. 2000; Klein et al. 2001). However, unsu-

pervised (and even supervised) methods have had less success

in partitioning the samples according to tumor type or out-

come in diseases with multiple subclassifications (Pomeroy et

al. 2002; van’t Veer et al. 2002). In addition, the methods we

propose here are related to a method of Dhillon (2001) for

coclustering of words and documents.

Checkerboard Structures of Genes and Conditions

in Microarray Datasets
As a starting point in analyzing microarray cancer datasets, it

is worthwhile to appreciate the assumed structure of these

data (e.g., whether they can be organized in a checkerboard

pattern), and to design a clustering algorithm that is suitable

for this structure. In particular, in analyzing microarray can-

cer data sets we may wish to identify both clusters of genes

that participate in common regulatory networks and clusters

of experimental conditions associated with the effects of these

genes, for example, clusters of cancer subtypes. In both cases

we may want to use similarities between expression level pat-

terns to determine clusters. Clearly, advance knowledge of
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clusters of genes can help in clustering experimental condi-

tions, and vice versa. In the absence of knowledge of gene and

condition classes, it would be useful to develop partitioning

algorithms that find latent classes by exploiting relations be-

tween genes and conditions. Exploiting the underlying two-

sided data structure could help the simultaneous clustering,

leading to meaningful gene and experimental condition clus-

ters.
The raw data in many cancer gene-expression datasets

can be arranged in a matrix form as schematized in Figure 1.

In this matrix, which we denote by A, the genes index rows i
and the different conditions (e.g., different patients) index

the columns j. Depending on the type of chip technology

used, a value in this matrix Aij could either represent absolute
expression levels (such as from Affymetrix GeneChips) or rela-

tive expression ratios (such as from cDNA microarrays). The

methodology we will construct will apply equally well in both

contexts. However, for clarity in what follows, we will assume

that the values Aij in the matrix represent absolute levels and

that all entries are non-negative; in our numerical analyses we

removed genes that did not satisfy this criterion.
A specific assumption in tumor classification is that

samples drawn from a population containing several tumor

types have similar expression profiles if they belong to the

same type. Observing several experiments, each of which has

multiple tumor types, suggests a somewhat stronger assump-

tion; for tumors of the same type there exist subsets of over-

expressed (or underexpressed) genes that are not similarly

overexpressed (or underexpressed) in another tumor type.

Under this assumption, the matrix A could be organized in a

checkerboard-like structure with blocks of high-expression

levels and low-expression levels, as shown in Figure 1. A block

of high-expression levels corresponds to a subset of genes

(subset of rows) that are highly expressed in all samples of a

given tumor type (subset of columns). One of the numerous

examples supporting this picture is the CNS embryonal tu-

mors dataset (Pomeroy et al. 2002). However, this simple

checkerboard-like structure can be confounded by a number

of effects. In particular, different overall expression levels of

genes across all experimental conditions or of samples across

all genes in multiple tumor datasets can obscure the block

structure. Consequently, rescaling and normalizing both the

gene and sample dimensions could improve the clustering

and reveal existing latent variables in both the gene and tu-

mor dimensions.

Uncovering Checkerboard Structures

Through Solving an Eigenproblem
In this work, we attempt to simultaneously cluster genes and
experimental conditions with similar expression profiles (i.e.
to “bicluster” them), examining the extent to which we are
able to automatically identify checkerboard structures in can-
cer datasets. Further, we integrate biclustering with careful
normalization of the data matrix in a spectral framework
model. This framework allows us to use standard linear alge-
bra manipulations, and the resulting partitions are generated
using the whole dataset in a global fashion. The normaliza-
tion step, which eliminates effects such as differences in ex-
perimental conditions and basal expression levels of genes, is
designed to accentuate biclusters if they exist.

Figure 1 illustrates the overall idea of our approach. It

shows how applying a checkerboard-structured matrix A to a
step-like classification vector for genes (x) results in a step-like

classification vector on conditions (y). Reapplying the trans-
pose of the matrix AT to this condition classification vectors

results in a step-like gene classification vector with the same
step pattern as input vector x. This suggests that one might be
able to ascertain the checkerboard-like structure of A through
solving an eigenproblem involving AAT. More precisely, it
shows how the checkerboard pattern in a data matrix A is

reflected in the piecewise constant structures of some pair of
eigenvectors x and y that solve the coupled eigenvalue prob-

lems AT Ax = �2x and AAT y = �2y (where x and y have a com-
mon eigenvalue). This, in turn, is equivalent to finding the
singular value decomposition of A. Thus, the simple opera-

tion of identifying whether there exists a pair of piecewise
constant eigenvectors allows us to determine whether the
data have a checkerboard pattern. Simple reshuffling of rows
and columns (according to the sorted order of these eigenvec-
tors) then can make the pattern evident. However, different
average amounts of expression associated with particular
genes or conditions can obscure the checkerboard pattern.
This can be corrected by initially normalizing the data matrix
A. We propose a number of different schemes, all built around

the idea of putting the genes on the same scale so that they
have the same average level of expression across conditions,
and likewise for the conditions. A graphic overview of our
method (in application to real data) is shown in Figure 8,
where one can see how the data in matrix A are progressively
transformed by normalization and shuffling to bring out a
checkerboard-like signal.

We note that our method implicitly exploits the effect of

clustering of experimental conditions on clustering of the
genes and vice versa, and it allows us to simultaneously iden-
tify and organize subsets of genes whose expression levels are
correlated and subsets of conditions whose expression level
profiles are correlated.

METHODS

Technical Background

Data normalization

Preprocessing of microarray data often has a critical impact on
the analysis. Several preprocessing schemes have been pro-
posed. For instance, Eisen et al. (1998) prescribes the follow-
ing series of operations: Take the log of the expression data,
perform 5–10 cycles of subtracting either the mean or the
median of the rows (genes) and columns (conditions), and
then do 5–10 cycles of row-column normalization. In a simi-
lar fashion, Getz et al. (2000) first rescale the columns by their
means and then standardize the rows of the rescaled matrix.
The motivation is to remove systematic biases in expression
ratios or absolute values that are the result of differences in
RNA quantities, labeling efficiency and image acquisition pa-
rameters, as well as adjusting gene levels relative to their av-
erage behavior. Different normalization prescriptions could
lead to different partitions of the data. Choice of a normal-
ization scheme that is designed to emphasize underlying data
structures or is rigorously guided by statistical principles is
desirable for establishing standards and for improving repro-
ducibility of results from microarray experiments.

Singular Value Decomposition (SVD)

Principal component analysis (PCA; Pearson 1901) is widely
used to project multidimensional data to a lower dimension.
PCA determines whether we can comprehensively present
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multidimensional data in d dimensions by inspecting
whether d linear combinations of the variables capture most
of the data variability. The principal components can be de-
rived by using singular value decomposition, or “SVD” (Golub
and Van Loan 1983), a standard linear algebra technique that
expresses a real n � mmatrix A as a product A = U�VT, where
� is a diagonal matrix with decreasing non-negative entries,
and U and V are n � min(n,m) and m � min(n,m) orthonor-
mal column matrices. The columns of the matrices U and V
are eigenvectors of the matrices AAT and AT A, respectively,
and the nonvanishing entries �1 � �2 � … >0 in the matrix �
are square roots of the non-zero eigenvalues of AAT (and also
of AT A). Below we will denote the ith columns of the matrices
U and V by ui and vi, respectively. The vectors ui and vi are
called the singular vectors of A, and the values �i are called the
singular values. The SVD has been applied to microarray ex-
periment analysis in order to find underlying temporal and

tumor patterns (Alter et al. 2000; Holter et al. 2000; Ray-
chaudhuri et al. 2000; Lian et al. 2001).

Normalized Cuts Method

Spectral methods have been used in graph theory to design
clustering algorithms. These algorithms were used in various
fields (Shi and Malik 1997), including for microarray data par-
titioning (Xing and Karp 2001). A commonly used variant is
called the normalized cuts algorithm. In this approach the
items (nodes) to be clustered are represented as the vertex set
V. The degree of similarity (affinity) between each two nodes
is represented by a weight matrix wij. For example, the affinity
between two genes may be defined based on the correlation
between their expression profiles over all experiments. The
vertex set V together with the edges eij ∈ E and their corre-
sponding weights wij define a complete graph G(V,E) that we
want to segment. Clustering is achieved by solving an eigen-

Figure 1 Overview of important parts of the biclustering process. (A) shows the problem: shuffling a gene expression matrix to reveal a
checkerboard pattern associating genes with conditions. (B) shows how this problem can be approached through solving an “eigenproblem.” If
a gene expression matrix A has a checkerboard structure, applying it to a step-like condition classification vector x will result in a step-like gene
classification vector y. Moreover, if one then applies AT to y, one will regenerate a step-like condition classification vector with the same partitioning
structure as x. This suggests one can determine whether A has a checkerboard structure through solving an eigenvalue problem. In other words,
if A has a (hidden) checkerboard structure, there exist some piecewise constant partition vectors x = v* and y = u* such that AT Av* = �2v* and
AATu* = �2u* (bottom quadrant of part B). Note that most eigenvectors v of the eigenvalue problem AT Av = �2v (symbolized by a zigzag structure)
are not embedded in the subspace of classification (step-like) vectors x possessing the same partitioning structure, as indicated by a gray arrow
protruding from this subspace (parallelogram). On the other hand, piecewise constant (step-like) partition eigenvectors v* are embedded in this
subspace and are indicated by a green arrow. To reveal whether the data have a checkerboard structure, one can inspect whether some of the pairs
of monotonically sorted gene and tumor eigenvectors vi and ui have an approximate stepwise (piecewise) constant structure. The outer product
u*v*

T of the sorted partitioning eigenvectors gives a checkerboard structure. (C) shows how rescaling of matrix A can lead to improved coparti-
tioning of genes and conditions.
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system that involves the affinity matrix. These methods were
applied in the field of image processing, and have demon-
strated good performance in problems such as image segmen-
tation. Nevertheless, spectral methods in the context of clus-
tering are not well understood (Weiss 1999). We note that the
singular values of the original dataset represented in the ma-
trix A are related to the eigenvalues or generalized eigenvalues
of the affinity matrices AT A and AAT. These matrices repre-
sent similarities between genes and similarities between con-
ditions, respectively.

Previous Work on Biclustering

The idea of simultaneous clustering of rows and columns of a
matrix goes back to (Hartigan 1972). Methods for simulta-
neous clustering of genes and conditions were more recently
proposed (Cheng and Church 2000; Getz et al. 2000; Lazze-
roni and Owen 2002). The goal was to find homogeneous
submatrices or stable clusters that are relevant for biological
processes. These methods apply greedy iterative search to find
interesting patterns in the matrices, an approach that is also
common in one-sided clustering (Hastie et al. 2000; Stolo-
vitzky et al. 2000). In contrast, our approach is more “global,”
finding biclusters using all columns and rows.

Another statistically motivated biclustering approach
has been tested for collaborative filtering of nonbiological
data (Ungar and Foster 1998; Hofmann and Puzicha 1999). In
this approach, probabilistic models were proposed in which
matrix rows (genes in our case) and columns (experimental
conditions) are each divided into clusters, and there are link
probabilities between these clusters. These link probabilities
can describe the association between a gene cluster and an
experimental condition cluster, and can be found by using
iterative Gibbs sampling and approximated Expectation
Maximization algorithms (Ungar and Foster 1998; Hofmann
and Puzicha 1999).

A Spectral Approach to Biclustering

Our aim is to have coclustering of genes and experimental
conditions in which genes are clustered together if they ex-
hibit similar expression patterns across conditions and, like-
wise, experimental conditions are clustered together if they
include genes that are expressed similarly. Interestingly, our
model can be reduced to the analysis of the same eigensystem

derived in Dhillon’s formulation for the problem of coclus-
tering of words and documents (Dhillon 2001). To apply
Dhillon’s method to microarray data, one can construct a
bipartite graph, where one set of nodes in this graph repre-
sents the genes, and the other represents experimental con-
ditions. An arc between a gene and condition represents the
level of overexpression (or underexpression) of this gene un-
der this condition. The bipartite approach is limited in that it
can only divide the genes and conditions into the same num-
ber of clusters. This is often impractical. As described below,
our formulation allows the number of gene clusters to be dif-
ferent from the number of condition clusters.

In addition, Dhillon’s optimal partitioning eigenvector
has a hybrid structure containing both gene and condition
entries, whereas in our approach we search for separate piece-
wise constant structure of the gene and corresponding sample
eigenvectors. Examining Dhillon’s and our partitioning ap-
proaches using data generated by the generating model dis-
cussed below shows the advantage of the latter.

Spectral Biclustering

We developed a method that simultaneously clusters genes
and conditions. The method is based on the following two
assumptions:

1. Two genes that are coregulated are expected to have cor-
related expression levels, which might be difficult to ob-
serve due to noise. We can obtain better estimates of the
correlations between gene expression profiles by averaging
over different conditions of the same type.

2. Likewise, the expression profiles for every two conditions
of the same type are expected to be correlated, and this
correlation can be better observed when averaged over sets
of genes of similar expression profiles.

These assumptions are supported by simple analyses of a
variety of typical microarray sets. For example, Pomeroy et al.
(2002) presented a dataset on five types of brain tumors, and
then used a supervised learning procedure to select genes that
were highly correlated with class distinction. They based this
work on the absolute expression levels of genes in 42 samples
taken from these five types of tumors. Using these data, we
measured the correlation between the expression levels of
genes that are highly expressed in only one type of tumor,

Figure 2 (a) The outer product of the sorted eigenvectors u and v of the 2nd eigenvalue of the equal row- and column-sum bistochastic-like
matrix B applied to a dataset with three types of lymphoma: CLL (C), FL (F), and DLCL (D). Sorting of v orders the patients according to the different
diseases. (b) As in (a), the 2nd singular value contribution to the biclustering method (C�1AT R�1A) of lymphoma CLL (C), FL (F), DLCL (D)
partitioned the patients according to their disease, with one exception. We preselected all genes that had complete data along all experimental
conditions (samples).
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and found only moderate levels of correlation. However, if we
instead average the expression levels of each gene over all
samples of the same tumor type (obtaining vectors with five
entries representing the averages of the five types of tumors),
the partition of the genes based on correlation between the
five-dimensional vectors is more apparent.

This dataset well fits the specifications of our approach,
which is geared to finding a “checkerboard-like structure,”
indicating that for each type of tumor there may be few char-
acteristic subsets of genes that are either upregulated or down-
regulated. To understand our method (Fig. 1), consider a situ-
ation in which an underlying class structure of genes and of
experimental conditions exists. We model the data as a com-
position of blocks, each of which represents a gene-type–

condition-type pairing, but the
block structure is not immediately
evident. Mathematically, the ex-
pression level of a specific gene i
under a certain experimental condi-
tion j can be expressed as a product
of three independent factors. The
first factor, which we called the hid-
den base expression level, is denoted
by Eij. We assume that the entries of
E within each block are constant.
The second factor, denoted �i, rep-
resents the tendency of gene i to be
expressed under all experimental
conditions. The last factor, denoted
�j, represents the overall tendency
of genes to be expressed under con-
dition j. We assume the microarray
expression data to be a noisy version
of the product of these three factors.

Independent Rescaling of Genes

and Conditions

We assume that the data matrix A
represents an approximation of the
product of these three factors, Eij, �i,
and �j. Our objective in the simul-
taneous clustering of genes and
conditions is, given A, to find the
underlying block structure of E.
Consider two genes, i and k, which
belong to a subset of similar genes.
On average, according to this
model, their expression levels un-
der each condition should be re-
lated by a factor of �i/�k. Therefore,
if we normalize the two rows, i and
k, in A, then on average they should
be identical. The similarity between
the expression levels of the two
genes should be more noticeable if
we take the mean of expression lev-
els with respect to all conditions of
the same type. This will lead to an
eigenvalue problem, as is shown
next. Let R denote a diagonal ma-
trix whose elements r i (where
i=1,…,n) represent the row sums of
A [R = diag(A·1n), 1n denotes the n-
vector (1,…,1)]. Let u = (u1,u2,…,
um) denote a “classification vector”
of experimental conditions, so that
u is constant over all conditions of
the same type. For instance, if there
are two types of conditions, then
uj = � for each condition j of the

first type and uj = � for each condition j of the second type. In
other words, if we reorder the conditions such that all condi-
tions of the first type appear first, then u = (�,…,�,�,…�).
Then, v = R�1Au is an estimate of a “gene classification vec-
tor,” that is, a vector whose entries are constant for all genes
of the same type (e.g., if there are two types of genes, then vi=�
for each gene i of the first type and vi=	 for each gene i of the
second type). By multiplying by R�1 from the left. we nor-
malize the rows of A, and by applying this normalized matrix
to u, we obtain a weighted sum of estimates of the mean
expression level of every gene i under every type of experi-
mental condition. When a hidden block structure exists for
every pair of genes of the same type, these linear combina-
tions are estimates of the same value.

Figure 3 Lymphoma: Scatter plot of experimental conditions of the two best class partitioning
eigenvectors vi,vj. The subscripts (i,j) of these eigenvectors indicate their corresponding singular values.
CLL samples are denoted by red dots, DLCL by blue dots, and FL by green dots. (a) Bistochastization:
the 2nd and 3rd eigenvectors of BBT. (b) Biclustering: the 2nd and 3rd eigenvectors of R�1AC�1AT. (c)
SVD: the 2nd and 3rd eigenvectors of AAT. (d) Normalization and SVD: the 1st and 2nd eigenvectors
of ĀĀT where Ā is obtained by first dividing each column of A by its mean and then standardizing each
row of the column normalized matrix. (e) Normalized cut algorithm: 2nd and 3rd eigenvectors of the
row-stochastic matrix P. P is obtained by first creating a distance matrix S using Euclidean distance
between the standardized columns of A, transforming it to an affinity matrix with zero diagonal
elements and off diagonal elements defined as Wij = exp(��Sij)/max(Sij) and finally normalizing each
row sum of the affinity matrix to one. (f) As in (c) but with an SVD analysis of the log interaction matrix
K instead of A.

Kluger et al.

708 Genome Research
www.genome.org

 on August 4, 2006 www.genome.orgDownloaded from 

http://www.genome.org


The same reasoning applies to the columns. If we now
apply C�1ATv, where C is the diagonal matrix whose compo-
nents are the column sums of A[C = diag(1Tm 
 A)], we obtain
for each experimental condition j a weighted sum of estimates
of the mean expression level of genes of the same type. Con-
sequently, the result of applying the matrix C�1AT R�1A to a
condition classification vector, v, should also be a condition
classification vector. We will denote this matrix byM1.M1 has
a number of characteristics: it is positive semidefinite, it has
only real non-negative eigenvalues, and its dominant eigen-
vector is (1⁄√m )1m with eigenvalue 1. Moreover, assuming E
has linearly independent blocks, its rank is at least min(nr,nc),
where nr denotes the number of gene classes and nc denotes
the number of experimental condition classes. (In general the
rank would be higher due to noise.) Note that for data with nc
classes of experimental conditions, the set of all classification
vectors spans a linear subspace of dimension nc. (This is be-

cause a classification vector may
have a different constant value for
each of the nc types of experimental
conditions.) Therefore, there exists
at least one vector that satisfies
M1u = �u. (In fact, there are exactly
min(nr,nc) such vectors). One of
these eigenvectors is the trivial
vector (1⁄√m )1m. Similarly, there ex-
ists at least one gene classification
vector that satisfies M2v = �v, with
M2 = R�1AC�1AT. (Note that M1

and M2 have the same sets of eigen-
values such that if M1u = �u then
M2v = �v with v = R�1Au.) These
classification vectors can be esti-
mated by solving the two eigensys-
tems above. A roughly piecewise
constant structure in the eigenvec-
tors indicates the clusters of both
genes and conditions in the data.

These two eigenvalue prob-
lems can be solved through a stan-
dard SVD of the rescaled matrix
Â ≡ R�1/2 AC�1/2, realizing that
the equat ion Â T Â w ≡ C� 1 /

2ATR�1AC�1/2w = �w that is used to
find the singular values of Â is
equivalent to the above eigenvalue
problem C�1AT R�1Au=�u with
u ≡ C� 1 / 2w ( a n d s im i l a r l y
Â ÂTz ≡ R�1/2AC�1ATR�1/2z = �z
implies v ≡ R�1/2z). The outer prod-
uct lnl

T
m, which is a matrix contain-

ing only entries of one, is the con-
tribution of the first singular value
to the rescaled matrix Â. Thus, the
first eigenvalue contributes a con-
stant background to both the gene
and the experimental condition di-
mensions, and therefore its effect
should be eliminated. Note that al-
though our method is defined
through a product of A and AT it
does not imply that we multiply
the noise, as is evident from the
SVD interpretation.

Simultaneous Normalization of Genes

and Conditions

Because our spectral biclustering
approach includes the normaliza-
tion of rows and columns as an in-

tegral part of the algorithm, it is natural to attempt to simul-
taneously normalize both genes and conditions. As described
below, this can be achieved by repeating the procedure de-
scribed above for independent scaling of rows and columns
iteratively until convergence.

This process, which we call bistochastization, results in a
rectangular matrix B that has a doubly stochastic-like struc-
ture—all rows sum to a constant and all columns sum to a
different constant. According to Sinkhorn’s theorem, B can
then be written as a product B = D1AD2 where D1 and D2 are
diagonal matrices (Bapat and Raghavan 1997). Such a matrix
B exists under quite general conditions on A; for example, it is
sufficient for all of the entries in A to be positive. In general,
B can be computed by repeated normalization of rows and
columns (with the normalizing matrices as R�1 and C�1 or
R�1/2 and C�1/2).D1 andD2 then will represent the product of
all these normalizations. Fast methods to find D1 and D2 in-

Figure 4 Scatter plots as in Fig. 3 with another lymphoma dataset generated using Affymetrix chips
(Klein et al. 2001) instead of microarrays. DLCL samples are denoted by green dots, CLL by blue dots,
FL by yellow dots, and DLCL cell lines by magenta dots.
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clude the deviation reduction and balancing algorithms
(Bapat and Raghavan 1997). Once D1 and D2 are found, we
apply SVD to B with no further normalization to reveal a
block structure.

We have also investigated an alternative to bistochasti-
zation that we call the log-interactions normalization. A com-
mon and useful practice in microarray analysis is transform-
ing the data by taking logarithms. The resulting transformed
data typically have better distributional properties than the
data on the original scale—distributions are closer to Normal,
scatterplots are more informative, and so forth. The log-
interactions normalization method begins by calculating the
logarithm Lij = log(Aij) of the given expression data and then
extracting the interactions between the genes and the condi-
tions, where the term “interaction” is used as in the analysis
of variance (ANOVA).

As above, the log-interactions normalization is moti-
vated by the idea that two genes whose expression profiles

differ only by a multiplicative con-
stant of proportionality are really
behaving in the same way, and we
would like these genes to cluster to-
gether. In other words, after taking
logs, we would like to consider two
genes whose expression profiles dif-
fer by an additive constant to be
equivalent. This suggests subtract-
ing a constant from each row so
that the row means each become 0,
in which case the expression pro-
files of two genes that we would like
to consider equivalent actually be-
come the same. Likewise, the same
idea holds for the conditions (col-
umns of the matrix). Constant dif-
ferences in the log expression pro-
files between two conditions are
considered unimportant, and we
subtract a constant from each col-
umn so that the column means be-
come 0. It turns out that these ad-
justments to the rows and columns
of the matrix to achieve row and
column means of zero can all be
done simultaneously by a simple
formula. Defining Li. = (1/m) ∑m

j=1 Lij
to be the average of the ith row,
L.j = (1/n) ∑n

i=1 Lij to be the average
of the jth column, and L.. = (1/mn)
∑ni=1∑m

j=1 Lij
to be the average of the

whole matrix, the result of these ad-
justments is a matrix of interactions
K = (Kij), calculated by the formula
Kij = Lij � Li. � L.j + L... This formula
is familiar from the study of two-
way ANOVA, fromwhich the termi-
nology of “interactions” is adopted.
The interaction Kij between gene i
and condition j captures the extra
(log) expression of gene i in condi-
tion j that is not explained simply
by an overall difference between
gene i and other genes or between
condition j and other conditions,
but rather is special to the combi-
nation of gene i with condition j.
Again, as described before, we apply
the SVD to the matrix K to reveal
block structure in the interactions.

The calculations to obtain the
interactions are simpler than bisto-

chastization, as they are done by a simple formula with no
iteration. In addition, in this normalization the first singular
eigenvectors u1 and v1 may carry important partitioning in-
formation. Therefore we do not automatically discard them as
was done in the previously discussed normalizations. Finally,
we note another connection between matrices of interactions
and matrices resulting from bistochastization. Starting with a
matrix of interactions K, we can produce a bistochastic matrix
simply by adding a constant to K.

Postprocessing the Eigenvectors to Find Partitions

Each of the above normalization approaches (independent
scaling, bistochastization, or log interactions) gives rise, after
the SVD, to a set of gene and condition eigenvectors (that in
the context of microarray analysis are sometimes termed
eigengenes and eigenarrays; Hastie et al. 1999; Alter et al.
2000). Now in this section, we deal with the issues of how to
interpret these vectors. First recall that in the case of the first

Figure 5 Leukemia data presented in the same format as in Fig. 3. B-cell ALL samples are denoted
by red dots, T-cell ALL by blue dots, and AML by green dots. In this analysis we preselected all genes
that had positive Affymetrix average difference expression levels.
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two normalizations we discussed (the independent and bisto-
chastic rescaling), we discard the largest eigenvalue, which is
trivial in the sense that its eigenvectors make a trivial constant
contribution to the matrix, and therefore carry no partition-
ing information. In the case of the log-interactions normal-
ization, there is no eigenvalue that is trivial in this sense. We
will use the terminology “largest eigenvalue” to mean the
largest nontrivial eigenvalue, which, for example, is the sec-
ond largest eigenvalue for the independent and bistochastic
normalizations, whereas it is the largest eigenvalue for the
log-interactions normalization. If the dataset has an underly-
ing “checkerboard” structure, there is at least one pair of
piecewise constant eigenvectors u and v that correspond to
the same eigenvalue. One would expect that the eigenvectors

corresponding to the largest eigen-
value would provide the optimal
partition in analogy with related
spectral approaches to clustering
(e.g., Shi and Malik 1997). In prin-
ciple, the classification eigenvectors
may not belong to the largest eig-
envalue, and we closely inspect a
few eigenvectors that correspond to
the first few largest eigenvalues. We
observed that for various synthetic
data with near-perfect checker-
board-like block structure, the par-
titioning eigenvectors are com-
monly associated with one of the
largest eigenvalues, but in a few
cases an eigenvector with a small
eigenvalue could be the partition-
ing one. (This occurs typically
when the separation between
blocks in E is smaller than the stan-
dard deviation within a block.) In
order to extract partitioning infor-
mation from these eigensystems,
we examine all the eigenvectors by
fitting them to piecewise constant
vectors. This is done by sorting the
entries of each eigenvector, testing
all possible thresholds, and choos-
ing the eigenvector with a partition
that is well approximated by a
piecewise constant vector. (Select-
ing one threshold partitions the en-
tries in the sorted eigenvector into
two subsets, two thresholds into
three subsets, and so forth.) Note
that to partition the eigenvector
into two, one needs to consider
n�1 different thresholds; to parti-
tion it into three, it requires inspec-
tion of (n�1)(n�2)/2 different
thresholds, and so on. This proce-
dure is similar to application of the
k-means algorithm to the one-
dimensional eigenvectors. (In par-
ticular, in the experiments below
we performed this procedure auto-
matically to the six most dominant
eigenvectors.) A common practice
in spectral clustering is to perform a
final clustering step to the data pro-
jected to a small number of eigen-
vectors, instead of clustering each
eigenvector individually (Shi and
Malik 1997). In our experiments we
too perform a final clustering step
by applying both the k-means and

the normalized cuts algorithms to the data projected to the
best two or three eigenvectors.

Our clustering method provides not only a division into
clusters, but also ranks the degree of membership of genes
(and conditions) to the respective cluster according to the
actual values in the partitioning-sorted eigenvectors. Each
partitioning-sorted eigenvector could be approximated by a
step-like (piecewise constant) structure, but the values of the
sorted eigenvector within each step are monotonically de-
creasing. These values can be used to rank or represent gradual
transitions within clusters. Such rankings may also be useful,
for example, for revealing genes related to premalignant con-
ditions, and for studying ranking of patients within a disease
cluster in relation to prognosis.

Figure 6 Breast cell lines transfected with the CSF1R oncogene: Scatter plots as in Fig. 3 for mRNA
ratios of benign breast cells and wild-type cells transfected with the CSF1R oncogene causing them to
invade and metastasize (red), ratios of cells transfected with a mutated oncogene causing an invasive
phenotype and cells transfected with the wild-type oncogene (blue), and ratios of cells transfected with
a mutated oncogene causing a metastatic phenotype and cells transfected with the wild-type onco-
gene (green). In this case we preselected differentially expressed genes such that for at least one pair
of samples, the genes had a twofold ratio.
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In addition to the uses of biclustering as a tool for data
visualization and interpretation, it is natural to ask how to
assess the quality of biclusters, in terms of statistical signifi-
cance, or stability. In general, this type of problem is far from
settled; in fact, even in the simpler setting of ordinary clus-
tering new efforts to address these questions regularly con-
tinue to appear. One type of approach attempts to quantify
the “stability” of suspected structure observed in the given
data. This is done by mimicking the operation of collecting
repeated independent data samples from the same data-
generating distribution, repeating the analysis on those arti-
ficial samples, and seeing how frequently the suspected struc-
ture is observed in the artificial data. If the observed data
contain sufficient replication, then the bootstrap approach of
Kerr and Churchill (2001) may be applied to generate the
artificial replicated data sets. However, most experiments still
lack the sort of replication required to carry this out. For such
experiments, one could generate artificial data sets by adding

random noise (Bittner et al. 2000)
or subsampling (Ben-Hur et al.
2002) the given data.

We took an alternative ap-
proach to assess the quality of a bi-
clustering by testing a null hypoth-
esis of no structure in the data ma-
trix. We first normalized the data
and used the best partitioning pair
of eigenvectors (among the six lead-
ing eigenvectors) to determine an
approximate 2�2 block solution.
We then calculated the sum of
squared errors (SSE) for the least-
squares fit of these blocks to the
normalized data matrix. Finally, to
assess the quality of this fit we ran-
domly shuffled the data matrix and
applied the same process to the
shuffled matrix. For example, in the
breast cell oncogene data set de-
scribed below, fitting the normal-
ized dataset to a 2�2 matrix ob-
tained by division according to the
second largest pair of eigenvectors
of the original matrix is compared
to fitting of 10,000 shuffled matri-
ces (after bistochastization) to their
corresponding best 2�2 block ap-
proximations. The SSE for this
dataset is more than 100 standard
deviations smaller than the mean
of the SSE scores obtained from the
shuffled matrices, leading to a cor-
respondingly tiny P value for the
hypothesis test of randomness in
the data matrix.

Probabilistic Interpretation

In the biclustering approach, the
normalization procedure, obtained
by constraining the row sums to be
equal to one constant and the col-
umn sums to be equal to another
constant, is an integral part of the
modeling that allows us to discern
bidirectional structures. This nor-
malization can be cast in probabi-
listic terms by imagining first choos-
ing a random RNA transcript from
all RNA in all samples (conditions),
and then choosing one more RNA
transcript randomly from the same

sample. Here, when we speak of choosing “randomly” we
mean that each possible RNA is equally likely to be chosen.
Having chosen these two RNAs, we take note of which sample
they come from and which genes they express. The matrix
entry (R�1A)ijmay be interpreted as the conditional probabil-
ity ps|g(j|i) that the sample is j, given that the first RNA chosen
was transcribed from gene i. Similarly, (C�1AT)jk may be in-
terpreted as the conditional probability that the gene corre-
sponding to the first transcript is k, given that the sample is j.
Moreover, the product of the row-normalized matrix and the
column-normalized matrix approximates the conditional prob-
ability pg|g(i|k) of choosing a transcript from gene i, given that we
also chose one from gene k. This is so because, under the as-
sumption that k and i are approximately conditionally inde-
pendent given j,which amounts to saying that the probability
of drawing a transcript from gene k, conditional on having
chosen sample j, does not depend on whether or not the other
RNA that we drew happened to be from gene i, we have

Figure 7 Central nervous system embryonal tumor: Data generated using Affymetrix chips (Pomeroy
et al. 2002) of medulloblastoma (blue), malignant glioma (pink), normal cerebella (cyan), rhabdoid
(green), and primitive neuro-ectodermal (red) tumors. Scatter plots of experimental conditions pro-
jected onto the three best class partitioning eigenvectors using the same format as in Fig. 3.
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pg|g�k|i� = �
j

ps|g�j|i�pg|sg�k|j,i� ≈ �
j

ps|g�j|i�pg|s�k|j�

= ��R−1A��C−1AT��ik.

This expression reflects the tendency of genes i and k to co-
express, averaged over the different samples. Similarly, the
product of the column and row-normalized matrices approxi-
mates the conditional probability ps|s(j|l) that reflects the simi-
larity between the expression profiles of samples j and l. Note
that the probabilities pg|g(i|k) and ps|s(j|l) define asymmetrical
affinity measures between any pair (i,k) of genes and any pair
(j,l) of samples, respectively. This is very different from the

usual symmetrical affinity measures, for example, correlation,
used to describe the relationship between genes. However, for
bistochastizaton, the matrices BTB and BBT represent sym-
metrical affinities, pg|g(i|k) = pg|g(k|i) and ps|s(j|l) = ps|s(l|j), re-
spectively.

RESULTS

Overall Format of the Results
We have performed a study in which we applied the above

spectral biclustering methods to five groups of cancer micro-

Figure 8 Optimal array partitioning obtained by the 1st singular vectors of the log-interaction matrix. The data consist of eight measurements
of mRNA ratios for three pairs of cell types: (A,a) benign breast cells and the wild-type cells transfected with the CSF1R oncogene causing them
to invade and metastasize; (C,c) cells transfected with a mutated oncogene causing an invasive phenotype and cells transfected with the wild-type
oncogene; and (D,d) cells transfected with a mutated oncogene causing a metastatic phenotype and cells transfected with the wild-type
oncogene. In this case we preselected differentially expressed genes such that for at least one pair of samples, the genes had a threefold ratio. The
sorted eigen-gene v1 and eigen-array u1 have gaps indicating partitioning of patients and genes, respectively. As a result, the outer product matrix
sort(u1 ) sort(v1)

T has a “soft” block structure. The block structure is hardly seen when the raw data are sorted but not normalized. However, it is
more noticeable when the data are both sorted and normalized. Also shown are the conditions projected onto the first two partitioning
eigenvectors u1 and u2. Obviously, using the extra dimension gives a clearer separation.
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array data sets—lymphoma (microarray and Affymetrix), leu-

kemia, breast cancer, and central nervous system embryonal

tumors. As explained above, we utilized SVD to find pairs of

piecewise constant eigenvectors of genes and conditions, that

reflect the degree to which the data can be rearranged in a

checkerboard structure. Our methods employ specific nor-

malization schemes that highlight the similarity of both gene

and condition eigenvectors to piecewise constant vectors, and

this similarity, in turn, directly reflects the degree of biclus-

tering. To assess our procedure, it is useful to see how well it

compares to several benchmarks, with respect to achieving

the goal of piecewise constant eigenvectors.
Our main results are presented in Figures 3–7. These

show consistently formatted graphs of the projection of each

dataset onto the best two eigenvectors. Each figure is laid out

in six panels, with the first two panels associated with our

biclustering methods and the next four panels showing the

benchmarks. In particular:

Panel a Bistochastization shows biclustering using the bisto-
chastic normalization.

Panel b Biclustering shows standard biclustering with inde-

pendent rescaling of rows and columns.

Panel c SVD shows SVD applied to the raw data matrix A.
Panel d Binormalization shows SVD applied to a transformed

matrix obtained by first rescaling its columns by

their means and then standardizing the rows of the

rescaled matrix as proposed in Getz et al. (2000).
Panel e Normalized cuts shows a normalized cuts benchmark.

Here we apply the normalized cuts algorithm using

an affinity matrix obtained from a distance matrix,

which, in turn, was derived by calculating the

norms of the differences between the standardized

columns of A as proposed in Xing and Karp (2001).

(See caption of Fig. 3 for more details.) Moreover, we

applied the normalized cuts algorithm to an affinity

matrix constructed from the column-rescaled row-

standardized matrix (Getz et al. 2000), as in panel

(d). We then examined whether a partition is visible

in the eigenvectors that correspond to the second

largest eigenvalue (which in the normalized cuts

case are supposed to provide approximation of the

optimal partition) and in the subspace spanned by

two or three eigenvectors with the best proximity to

piecewise constant vectors.

Panel f Log-interaction shows SVD applied to a matrix where

the raw expression data is substituted by the matrix

K described above.

Overall, by comparing the six panels in each of the five
different figures, we see that in the bistochastization method

(panel a) the distributions of the different samples have no or

minimal overlap between clusters as well as more tendency to

result in more compact clusters. The biclustering method

(panel b) results in slightly less separable clusters, but it tends

to separate the clusters along a single eigenvector. Straight

SVD of the different raw data (panel c) underperforms in com-
parison to our spectral methods, as can be seen from the in-

termingled distributions of tumors of different types or less

distinct clusters. Performing instead SVD on the log-

interaction matrix of the raw expression data tends to pro-

duce results that are similar to those obtained with bistochas-

tization (panel f). SVD of the column-rescaled row-

standardized matrix (Getz et al. 2000) and the normalized cut

method result in better partitioning than SVD of the raw data

(panels d and e). However, in general, our spectral methods

consistently perform well.
In the following sections we discuss each of the five

datasets in detail.

Lymphoma Microarray Dataset
We first applied the methods to publicly available lymphoma
microarray data: chronic lymphocytic leukemia (CLL), diffuse
large B-cell lymphoma (DLCL), and follicular lymphoma (FL).
The clustering results are shown in Figures 2 and 3. In both
cases when we used the doubly stochastic-like matrix B or the
biclustering method (C�1ATR�1A) of the lymphoma dataset,

we obtained the desired partitioning of patients in the second
largest eigenvectors. The sorted eigenvectors give not only a
partition of patients, but also an internal ranking of patients
within a given disease. In addition, the outer product of the
gene and tumor (sorted) eigenvectors allows us to observe
which genes induce a partition of patients and vice versa. This
can be seen in Figure 2. Dividing the eigenvector that corre-
sponds to the second largest eigenvalue (in both methods)
using the k-means algorithm (which is equivalent to fitting a
piecewise constant vector to each of the eigenvectors) led to a
clean partition between the DLCL patients and the patients
with other diseases. This is highlighted in the header of Figure
2 and the x-axis of Figure 3a,b. The published analysis did not
cluster two of the DLCL cases correctly (Alizadeh et al. 2000).
Further partitioning of the CLL and the FL patients is ob-
tained by using both the second- and third-largest eigenvec-
tors. To divide the data we applied a recursive, two-way clus-
tering using the normalized cuts algorithm to a two-column
matrix composed of the 2nd and 3rd eigenvectors of both
matrices. (Performing a final clustering step to the data pro-
jected to a small number of eigenvectors is a common practice
in spectral clustering.) Using the biclustering matrix with in-
dependent row and column normalizations, the patients were
correctly divided, with the exception of two of the CLL pa-
tients, who were clustered together with the FL patients. The
best partition was obtained using our doubly stochastic ma-
trix that divided the patients perfectly according to the three
types of diseases.

Lymphoma Affymetrix Dataset
The above lymphoma data were generated by microarray

technology that provides relative measurements of expression

data. We repeated the lymphoma analysis using data from a

study relating B-CLL to memory B cells (Klein et al. 2001).

These data were generated using Affymetrix U95A gene chips,

which presumably allow measurements proportional to abso-

lute mRNA levels. We selected samples taken from CLL, FL,

and DLCL patients, but in addition we also included samples

from DLCL cell lines. As can be seen in Figure 4a,b, the bis-

tochastization method cleanly separates the four different

sample types, and the biclustering separates these samples

except for one DLCL sample that slightly overlaps with the FL

distribution. We note that the DLCL patient expression

patterns are closer to those of the FL patients than to

the expression profiles of the DLCL cell lines (and

pg|g(DLCL|FL) > pg|g(DLCL|DLCL-cell lines).

Leukemia Dataset
We applied our methods to public microarray data of acute

leukemia (B- and T-cell acute lymphocytic leukemia [ALL] and

acute myelogenous leukemia [AML]). The patient distribu-
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tions of the different diseases of the leukemia dataset become

separated in the two-dimensional graphs generated by pro-

jecting the patient expression profiles onto the 2nd and 3rd

gene class partition vectors of the biclustering method (Fig.

5b). The bistochastic method also partitions the patients well,

with only one ambiguous case that is close to the boundary

between ALL and AML (Fig. 5a). Application of k-means to a

matrix composed of the 2nd and 3rd biclustering eigenvectors

results in three misclassifications, which is a slight improve-

ment over the four misclassifications reported by Golub et al.

(1999). Further partitioning of the ALL cases is obtained by

applying a normalized cuts clustering method to the biclus-

tering eigenvectors, and produces a clear separation between

T- and B-cell ALL. This is a slight improvement over published

results (two misclassifications; Golub et al. 1999; Getz et al.

2000). Another advantage over their methods is that biclus-

tering does not require specification of the number of desired

clusters or lengthy searches for subsets of genes.

Dataset From Breast Cell Lines Transfected

With the CSF1R Oncogene
In another microarray experiment study (Kluger et al. 2001),

an oncogene encoding a transmembrane tyrosine kinase re-

ceptor was mutated at two different phosphorylation sites.

Benign breast cells were transfected with the wild-type onco-

gene, creating a phenotype that invades andmetastasizes. The

benign cell line was then transfected with the two mutated

oncogenes, creating one phenotype that invades and another

one that metastasizes. RNA expression levels were measured

eight times for each phenotype. Transfection with a single

oncogene is expected to generate similar expression profiles,

presumably because only a few genes are biologically influ-

enced. Therefore, it was desirable to see whether profiles of

the different phenotypes can be partitioned.

Figure 8 allows us to examine the extent to which the

data can be arranged in a checkerboard pattern. This is done

by taking the outer product of the cell type-sorted eigenvector

that has the most stepwise-like structure (and is associated

with the first largest singular value) with the corresponding

gene-sorted eigenvector. Due to noise in the data and simi-

larity between the different samples, common clustering tech-

niques such as hierarchical, k-means, and medoids did not

succeed in cleanly partitioning the data, but the relevant ei-

gen-array obtained following bistochastization or log-

interaction normalization partitioned the samples perfectly.

Expression levels of the four cell lines were measured in two

separate sets of four measurements. We chose to measure the

ratio of three of the cell lines: benign (a), invasive (c), and
metastatic (d) with respect to the cell line that invades and

metastasizes (b) in the first batch, and the corresponding ra-

tios were similarly derived for the second batch. In Figure 8,

the ratios from the first and second batches are denoted by (a,
c, d) and (A, C, D), respectively. As can be seen, the simulta-

neous normalization methods partition the data such that all

the phenotypes are separated into clusters—that is, “a”s were
clustered with “A”s in one group, “c”s with “C”s in another

group, and “d”s with “D”s in yet another group, as expected.

Further exploration is required in order to relate those gene

clusters to biological pathways that are relevant to these con-

ditions.

Central Nervous System Embryonal Tumor Dataset
Finally, we analyzed the recently published CNS embryonal

tumor dataset (Pomeroy et al. 2002): Pomeroy et al. parti-

tioned these five tumor types using standard principal com-

ponent analysis, but did so after employing a preselection of

genes exhibiting variation across the data set (see Fig. 1b in

Pomeroy et al. 2002). Using all genes, we find that the bisto-

chastization method, and to a lesser degree the biclustering

method, partitioned the medulloblastoma, malignant glioma,

and normal cerebella tumors. As can be seen in Figure 7, the

remaining rhabdoid tumors are more widely scattered in the

subspace obtained by projecting the tumors onto the 2nd–4th

gene partitioning eigenvectors of the biclustering and bisto-

chastization methods. Nonetheless, the rhabdoid tumor dis-

tribution does not overlap with the other tumor distributions

if we use the bistochastization method. The primitive neuro-

ectodermal tumors (PNETs) did not cluster and were difficult

to classify even using supervised methods.

DISCUSSION
Unsupervised clustering of genes and experimental condi-

tions in microarray data can potentially reveal genes that par-

ticipate in cellular mechanisms that are involved in various

diseases. In this paper we present a spectral biclustering

method that utilizes the information gained by clustering the

conditions to facilitate the clustering of genes, and vice versa.

The method incorporates a closely integrated normalization.

It also naturally discards the irrelevant constant background,
such that no additional arguments are needed to ignore the

contribution associated with the largest eigenvalue, as advo-

cated in Alter et al. (2000). In particular, our method is de-

signed to cluster populations of different tumors assuming
that each tumor type has a subset of marker genes that exhibit

overexpression and that typically are not overexpressed in

other tumors. The main underlying assumption is that we can

simultaneously obtain better tumor clusters and gene clusters

by correlating genes averaged over different samples of the

same tumors. Likewise, the correlation of two tumors is more

apparent when averaged over sets of genes of similar expres-

sion profiles. In situations where the number of tumor types

(the number of clusters of experimental conditions) happens

to be equal to the number of typical gene profiles (the number

of gene clusters), the biclustering algorithm is related to the

modified normalized cuts objective function introduced by

Dhillon (2001). In addition, in a situation where the data

have approximately a checkerboard structure with more than

two clusters on each side, there may be several eigenvectors

indicating a partitioning. In this case we may be able to de-

termine the number of clusters by identifying all of these

eigenvectors, for example, using a pairwise measure such as

mutual entropy between all pairs of eigenvectors.
The methods presented in this paper, particularly those

incorporating simultaneous normalization of rows and col-

umns, show consistent advantage over SVD spectral analysis

of the raw data, the logarithm of the raw data, other forms of
rescaling transformations of the raw data, and the normalized
cuts partitioning of the raw or rescaled data. Nevertheless, our
partitioning results are not perfect. Better results may be ob-
tained by employing a generative model that better suits the
data. It has been shown that removal of irrelevant genes that
introduce noise can further improve clustering (as in Xing
and Karp 2001). Furthermore, if partitioning in the gene di-
mension is sharper than partitioning in the condition dimen-
sion or vice versa, we can organize the conditions or genes of
the blurrier dimension contiguously. Such arrangements per-
haps give one a sense of the progression of disease states or
relevance of a gene to a particular disease.
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