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SPECTRAL BOUNDS FOR MATRIX POLYNOMIALS

WITH UNITARY COEFFICIENTS∗

THOMAS R. CAMERON†

Abstract. It is well known that the eigenvalues of any unitary matrix lie on the unit circle.

The purpose of this paper is to prove that the eigenvalues of any matrix polynomial, with unitary

coefficients, lie inside the annulus A 1

2
,2
(0) :=

{

z ∈ C | 1

2
< |z| < 2

}

. The foundations of this result

rely on an operator version of Rouché’s theorem and the intermediate value theorem.
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1. Introduction. Developing bounds for the eigenvalues of matrix polynomials

is a beautiful problem full of applications. For example, information about the loca-

tion of eigenvalues is valuable for computing them by an iterative method [1, 2]. When

computing the pseudospectra of matrix polynomials, one must obtain a particular re-

gion that contains the eigenvalues of interest. The spectrum bounds help determine

such a region. Our main result is specific to providing lower and upper bounds on

the eigenvalues of matrix polynomials whose coefficients are unitary. However, much

of our development can be applied to any matrix polynomial and has been used in

iterative methods for finding eigenvalues of matrix polynomials [1].

An n× n matrix polynomial of degree m is a mapping P : C → C
n×n defined by

P (z) =
m
∑

i=0

Aiz
i,

where Ai ∈ Cn×n and Am 6= 0, the zero matrix. For a given matrix polynomial

P (z), we say that λ ∈ C is an eigenvalue, if detP (λ) = 0. We denote the set of all

eigenvalues of P (z) by σ (P ), and call this set the spectrum of P (z). Moreover, we

say that x ∈ Cn \ {0} is an eigenvector of P (z) corresponding to λ, if P (λ)x = 0.

It is well known that the eigenvalues of a linear matrix polynomial, with unitary

coefficients, lie on the unit circle. However, once we consider matrix polynomials of

∗Received by the editors on February 17, 2015. Accepted for publication on September 12, 2015,

Handling Editor: Bryan L. Shader.
†Department of Mathematics, Washington State University, Pullman, Washington

(tcameron@math.wsu.edu).

585

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 585-591, September 2015



ELA

586 Thomas R. Cameron

degree greater than 1, this result no longer holds.

Example 1.1. Consider the quadratic matrix polynomial

P (z) = z2I + zI − I,

whose coefficients are unitary. The eigenvalues of P (z) satisfy the equation z2+z−1 =

0, and therefore, σ (P ) =
{

−1±
√
5

2

}

.

Let P (z) be an n × n matrix polynomial of degree m with unitary coefficients.

Given Example 1.1, we know that if m > 1, then the eigenvalues of P (z) are not

guaranteed to lie on the unit circle. However, we will show that the eigenvalues lie

inside the annulus A 1

2
,2(0). To prove this result we introduce an operator version of

Rouché’s theorem in Section 2, and use it to find bounds on the eigenvalues of matrix

polynomials. Then, in Section 3, we use these bounds and the intermediate value

theorem to prove our main result.

2. Rouché and Pellet theorems for matrix polynomials. Throughout this

section H is a separable Hilbert space, G is an open connected subset of C called a

region, and L(H) is the space of bounded linear operators from H to H . We begin

with a definition which will be used in the succeeding theorems.

Definition 2.1. A bounded linear operator A ∈ L(X, Y ), where X and Y are

complex Banach spaces, is called a Fredholm operator if its range ImA is closed and

the numbers

n(A) = dim KerA, d(A) = dim (Y/ImA)

are finite. Note that if X and Y are finite dimensional, then A is always Fredholm.

Theorem 2.2. Let W, S : G → L (H) be analytic operator functions. Assume

that W is normal with respect to the simple closed curve γ ⊆ G. If
∥

∥W (z)−1S(z)
∥

∥ < 1

for all z ∈ γ, then W + S is also normal with respect to γ. Moreover, W + S and W

have the same number of eigenvalues inside γ, counting multiplicities.

Proof. See p. 205 of [5].

We note that Theorem 2.2 holds for any Cauchy contour in G such that its interior

is a subset of G, but we only need concern ourselves with simple closed curves. We

say that W is normal with respect to the curve γ ⊆ G, if W (z) is invertible for all

z ∈ γ and W is Fredholm on the interior of γ. Moreover, the norm used can be any

norm induced by a norm on H , and it is easy to see that this result holds for analytic

matrix valued functions. We state and prove this now as a reference for the remainder

of this paper.
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Theorem 2.3. Let A, B : G → Cn×n be analytic matrix-valued functions.

Assume that A(z) is invertible on the simple closed curve γ ⊆ G. If
∥

∥A(z)−1B(z)
∥

∥ < 1

for all z ∈ γ, then A+B and A have the same number of eigenvalues inside γ, counting

multiplicities.

Proof. Given z ∈ G, A(z) and B(z) are bounded linear operators from Cn to Cn,

where Cn is a separable Hilbert space. Moreover, A(z) is a Fredholm operator, since

Cn is of finite dimension. Therefore, A is normal with respect to the simple closed

curve γ ⊆ G, and the result follows from Theorem 2.2.

When n = 1 Theorem 2.3 is equivalent to the classical Rouché theorem (see [12,

p.391]), which has many applications. For example, Rouché’s theorem has been used

to prove the fundamental theorem of algebra and provide bounds on the roots of a

complex scalar polynomial. With regards to the latter, A.L. Cauchy provided upper

and lower bounds in [3]. A more general approach was taken up by M.A. Pellet in

[11], and has been revised by M. Marden in [9].

Now that we have a Rouché type theorem for analytic matrix valued functions we

can prove a generalization of Pellet and Cauchy bounds for the eigenvalues of matrix

polynomials. For our purposes we only need the Cauchy bounds, that is the upper

and lower bounds on the spectrum of a matrix polynomial. However, we can easily

prove a generalization of both Cauchy and Pellet bounds at the same time. We choose

to do so, since both Cauchy and Pellet bounds have been used in numerical methods

for computing the eigenvalues of a matrix polynomial [1, 2].

The generalization of Pellet and Cauchy bounds for matrix polynomials can be

found in [10] and [2]. For our purposes, we present a slightly different statement of

these results in Theorem 2.4. The detailed proof of this result was influenced by J.L.

Walsh in [14]

Theorem 2.4. Let P (z) be a n × n matrix polynomial of degree m ≥ 2, where

A0 6= 0. For each k ∈ {0, 1, . . . , m}, such that Ak is nonsingular, consider the

equation

(2.1)
∥

∥A−1

k

∥

∥

−1

rk =
∑

i6=k

‖Ai‖ r
i,

where r is a real positive number and ‖·‖ is any induced matrix norm.

1. If k = 0, then there exists one real positive solution r, and P (z) has no

eigenvalues of moduli less than r.

2. If 0 < k < m, then there are either no real positive solutions or two real

positive solutions r1 ≤ r2. In the latter case, P (z) has no eigenvalues in the

annulus Ar1,r2(0).

3. If k = m, then there exists one real positive solution R, and P (z) has no
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eigenvalues of moduli greater than R.

Proof. For each k ∈ {0, 1, . . . , m}, such that Ak is nonsingular, we define F :

R → R by

F (x) = ‖A0‖+ · · ·+ ‖Ak−1‖x
k−1 −

∥

∥A−1

k

∥

∥

−1

xk + · · ·+ ‖Am‖xm,

and A(z) = Akz
k and B(z) =

∑

i6=k

Aiz
i.

Let k = 0, then F (x) has one sign change and by Descartes’ rule of signs F (x)

has one real positive root r. Since F (0) < 0 and F (r) = 0, it follows that F (x) < 0

for all 0 ≤ x < r and ‖B(z)‖ <
∥

∥A−1(z)
∥

∥

−1

for all |z| < r. For any ε > 0, define

γ = (r − ε)eiθ, where 0 ≤ θ ≤ 2π. Then
∥

∥A(z)−1B(z)
∥

∥ < 1 for all z ∈ γ. Since this

holds for all ε > 0, by Theorem 2.3, P (z) has no eigenvalues of moduli less than r.

Let 0 < k < m, then F (x) has either no real positive roots or two real positive

roots. Suppose that r1 < r2 are two real positive roots of F (x), then F (x) < 0 for

all r1 < x < r2 and ‖B(z)‖ <
∥

∥A−1(z)
∥

∥

−1

for all r1 < |z| < r2. For ε > 0, define

γ1 = (r1 + ε)eiθ and γ2 = (r2 − ε)eiθ, where 0 ≤ θ ≤ 2π. Then
∥

∥A(z)−1B(z)
∥

∥ < 1 for

all z ∈ γ1 and all z ∈ γ2, and for all ε > 0. So, Theorem 2.3 implies that P (z) has kn

eigenvalues in Br2(0) and Br1(0). Since Br1(0) ⊆ Br2(0), it follows that P (z) has no

eigenvalues inside the annulus Ar1,r2(0).

Let k = m, then F (x) has one real positive root R. Moreover, F (x) < 0 for all

x > R and ‖B(z)‖ <
∥

∥A−1(z)
∥

∥

−1

for all |z| > R. For ε > 0, define γ = (R + ε)eiθ,

where 0 ≤ θ ≤ 2π. Then,
∥

∥A(z)−1B(z)
∥

∥ < 1 for all z ∈ γ and for all ε > 0. Therefore,

by Theorem 2.3, P (z) hasmn eigenvalues inside BR(0). Since detP (z) is a polynomial

of degree mn, it follows that P (z) has no eigenvalues of moduli greater than R.

3. The main result. Now that we have introduced an operator version of

Rouché’s theorem and used it to prove a generalized version of Pellet and Cauchy

bounds for the spectrum of matrix polynomials, we can prove our main result. We

begin with several definitions that lay the foundation for this result.

Definition 3.1. Let

G(n, C) =
{

A ∈ C
n×n | A∗A = I

}

denote the group under matrix multiplication of all n×n unitary matrices. We define

the set of all n× n matrix polynomials with unitary coefficients by

U(n) =

{

P (z) =
m
∑

i=0

Aiz
i | Ai ∈ G(n, C) for i = 0, 1, . . . , m, where m ∈ N

}

.

We then define the family of all matrix polynomials with unitary coefficients by

U = ∪
n∈N

U(n).
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It is interesting that althoughG(n, C) is a group, U(n) fails to be a group. Indeed,

U(n) is closed under matrix polynomial multiplication and I ∈ U(n). However, not

every element of U(n) has an inverse which is also an element of U(n). For this reason,

U(n) is a semigroup with the identity element.

Now, corresponding to each P (z) ∈ U there is a spectrum σ(P ), which is the set of

all eigenvalues of P (z). Let σU = {σ(P ) | P (z) ∈ U}, and |σU | = {|σ(P )| | P (z) ∈ U},

where |σ(P )| denotes the set of moduli of the eigenvalues of P (z). The following

result provides upper and lower bounds on |σU |.

Theorem 3.2. Let P (z) ∈ U . Then for any λ ∈ C , such that λ is an eigenvalue

of P (z), it follows that 1

2
< |λ| < 2.

Proof. Define u : R → R by

u(x) = xm − xm−1 − · · · − 1.

Since the spectral norm of a unitary matrix is 1, it follows from Theorem 2.4 that the

one real positive root of u(x) is an upper bound on the moduli of the eigenvalues of

P (z). Note that 2m > 2m−1+ · · ·+20 for all positive integers m. Therefore, u(2) > 0

and u(1) < 0. Since u is a continuous function, the intermediate value theorem states

that there exists an R ∈ (1, 2) such that u(R) = 0. The moduli of any eigenvalue of

P (z) is bounded above by R and therefore bounded above by 2.

Define l : R → R by

l(x) = xm + · · ·+ x− 1.

Again, by Theorem 2.4, the one real positive root of l(x) is a lower bound on the

modulie of the eigenvalues of P (z). Note that
∞
∑

i=1

(

1

2

)i
= 1; therefore, l(1

2
) < 0

and l(1) > 0. By the intermediate value theorem, there exists r ∈
(

1

2
, 1

)

such that

l(r) = 0. The moduli of any eigenvalue of P (z) is bounded below by r and therefore

bounded below by 1

2
.

Theorem 3.2 provides upper and lower bounds on the set |σU |. We conclude by

proving that these bounds are in fact optimal; that is, they are the least upper bound

and greatest lower bound of the set |σU |.
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Theorem 3.3. sup |σU | = 2 and inf |σU | =
1

2
.

Proof. Given Theorem 3.2, we just have to show that there is no number less than

2 or greater than 1

2
which serves as an upper or lower bound to |σU |, respectively.

Consider a real number r, such that 1

2
< r < 1. Then

∞
∑

i=1

ri > 1, and it follows

that there exists an m ∈ N such that
m
∑

i=1

ri > 1. Now define P (z) = −I +
m
∑

i=1

ziI,

which is clearly an element of U . Then P (z) has a real positive eigenvalue that is

also a root of the polynomial l(x) = xm + · · ·+ x− 1. Since l(r) > 0 and l(1
2
) < 0, it

follows from the intermediate value theorem that there exists a λ ∈
(

1

2
, r

)

such that

l(λ) = 0. Therefore, r cannot be a lower bound of |σU |.

Define the matrix polynomial P (z) = zmI −
m−1
∑

i=0

ziI, which is clearly an element

of U for any m ∈ N. Moreover, P (z) has a real positive eigenvalue which is also a root

of the polynomial u(x) = xm −
(

xm−1 + · · ·+ 1
)

. If R ∈ (1, 2) is an upper bound of

|σU |, then Rm ≥ Rm−1 + · · · + 1. For, if Rm < Rm−1 + · · · + 1, then there exists a

λ ∈ (R, 2) such that u(λ) = 0. We note that

Rm−1 + · · ·+ 1 =
1−Rm

1−R
.

Therefore, if R ∈ (1, 2) is an upper bound of |σU |, then Rm ≥ 1−Rm

1−R
. Since (1−R) <

0, it follows that Rm (2−R) ≤ 1 and we have

(2−R) ≤
1

Rm
.

Since P (z) ∈ U for any m ∈ N, the above inequality must hold for all m ∈ N in order

for R to be an upper bound of |σU |. Since this is not possible, it follows that R ≥ 2.
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