
Spectral broadening caused by dynamic
speckle in self-mixing velocimetry

sensors

Russell Kliese and A. D. Rakić∗
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Abstract: Self-mixing laser sensors require few components and can be
used to measure velocity. The self-mixing laser sensor consists of a laser
emitting a beam focused onto a rough target that scatters the beam with
some of the emission re-entering the laser cavity. This ‘self-mixing’ causes
measurable interferometric modulation of the laser output power that leads
to a periodic Doppler signal spectrum with a peak at a frequency propor-
tional to the velocity of the target. Scattering of the laser emission from
a rough surface also leads to a speckle effect that modulates the Doppler
signal causing broadening of the signal spectrum adding uncertainty to the
velocity measurement. This article analyzes the speckle effect to provide
an analytic equation to predict the spectral broadening of an acquired
self-mixing signal and compares the predicted broadening to experimental
results. To the best of our knowledge, the model proposed in this article
is the first model that has successfully predicted speckle broadening in a
self-mixing velocimetry sensor in a quantitative manner. It was found that
the beam spot size on the target and the target speed affect the resulting
spectral broadening caused by speckle. It was also found that the broadening
is only weakly dependent on target angle. The experimental broadening was
consistently greater than the theoretical speckle broadening due to other
effects that also contribute to the total broadening.
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1. Introduction

Simple sensors can be built using semiconductor lasers when a portion of the light emitted
re-enters the laser cavity causing measurable changes in the emitted power [1] and the laser
terminal voltage [2]. Such ‘self-mixing’ sensors can be used to measure the speed of a rough
moving target [3, 4]. Light scattered by a target with a velocity component parallel to the laser
emission axis experiences a Doppler shift. The self-mixing sensor acts as a homodyne sys-
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tem [5] whereby the Doppler shift in the reflected light leads to a periodic self-mixing signal
(either acquired directly from the laser terminal voltage variations or from a photodetector that
senses the variations in the optical power [4]).

Unlike a smooth surface, a rough surface makes it possible for the target to be inclined at any
angle; it need not be aligned normal to the emission axis because a rough surface causes light
to be scattered in all directions. An ideal self-mixing Doppler signal, in the absence of speckle
effect, would be a harmonic function with a constant amplitude; in the frequency domain it
would be represented by a single spectral line. However, a rough surface leads to a dynamic
speckle effect causing the self-mixing Doppler signal to exhibit variations in amplitude [6] and
phase. This leads to spectral broadening in the frequency domain [3].

Spectral broadening due to the dynamic speckle effect has been reported since the 1970’s [7–
11]. However, the literature pertaining to the effect in self-mixing sensors is more limited.
The dynamic speckle effect in self-mixing sensors has been experimentally reported by several
groups [12–14], and a number of models have been proposed [15,16] including a model for the
more complex problem of fluid flow with Brownian motion [17].

To the best of our knowledge, this article reports for the first time a model that has success-
fully predicted speckle broadening in a self-mixing velocimetry sensor in a qualitative manner
that has been validated by experimental results. The model requires no parameter fitting being
entirely based on the underlying optical physics of the speckle effect.

This article investigates the statistical properties of dynamic speckle from rough surfaces
allowing the broadening to be predicted for given system parameters. It builds on the statis-
tical optics foundations of Goodman [18, 19] and dynamic speckle theory published by Estes
et al. [7], Jakeman [9], and Pusey [11]. The speckle model developed here applies to the self-
mixing velocimetry sensor where a laser spot with Gaussian profile is focused onto the target.
We show that smaller spot sizes lead to increased spectral broadening; this is particularly im-
portant for high spatial resolution sensors that make use of small laser spots. Broadening of the
signal leads to uncertainty in the velocity obtained from the sensor.

Experimental verification of the speckle statistics is provided; the results are based on
Vertical-Cavity Surface-Emitting Lasers (VCSELs) that are particularly well suited to self-
mixing sensing applications. They typically have low threshold currents, often below one mil-
liampere, making them suitable for mobile applications. They also often have an approximately
circular, anastigmatic beam and Gaussian beam profile making optical design simpler than for
edge emitting devices whose beam is elliptical and frequently astigmatic. VCSELs are also
available at a low cost because of their mass production for short-haul communication links
and computer mouse devices.

Apart from the speckle effect, there are several other factors that contribute to the Doppler
line broadening. Firstly, a range of velocities is present over the illuminated spot region on a ro-
tating target. This effect becomes more pronounced with the increased gradient in the velocity
distribution that occurs closer to the axis of rotation. Secondly, the vibration and surface profile
variation of the target adds an additional component to an otherwise constant velocity. Finally,
the finite linewidth of the laser emission adds uncertainty to the fringe locations of self-mixing
signals [20]. In order to concentrate this paper on speckle broadening effects alone, experimen-
tal parameters were chosen to minimize these additional sources of broadening where possible.
The additional sources of broadening will be the topic of a subsequent publication.

In Sec. 2 the key results from the derivation of the Doppler signal broadening caused by
the dynamic speckle effect are presented with the full derivation left to appendix A. Section 3
presents the relevant laser characteristics measured for the two lasers used in the experimental
validation (with some additional details relating to the measurement of the VCSEL beam waist
radius left to appendix B). Section 4 then compares the experimental results to the theory for
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Fig. 1. Geometry used for the derivation of the dynamic speckle statistics at point P. A field
which has the x,y coordinate system is incident on the rough surface moving with velocity
v which is inclined at an angle θ from the x axis. This field is scattered by the rough surface
and the resulting time autocorrelation function of the field at P with coordinates ξ ,η is
derived.

a range of target speeds, a range of spot sizes, and a range of target angles. This is followed by
concluding remarks.

2. Statistical properties of speckle fields

In this section, the theory necessary to obtain the statistical properties of the light coupled back
into the self-mixing sensor is presented so that an equation for the dynamic speckle broadening
can be formulated. The statistical autocorrelation function for differences between observations
times of the field at a point is presented (the full derivation is left to appendix A). The power
spectral density of the self-mixing signal can then be obtained from the Fourier transform of
the autocorrelation function [21] which can be directly compared to experimentally obtained
power spectral densities of the self-mixing signal.

This analysis considers the case where the laser is focused on the target to be measured.
The maximum power is coupled back into the laser under this condition, leading to the best
signal-to-noise ratio (SNR); this is the configuration most used in practice. Figure 1 shows
the geometry and coordinate systems used to derive the statistical autocorrelation function for
the field at point P. The laser beam enters from the right and is focused onto a spot on the
target which has a rough surface. The rough surface scatters the incident light producing a
speckle field in the ξ -η plane. Point P is the point on the laser emission axis at a distance
z from the target sufficient that the Fresnel approximations can be used to calculate the field
in the ξ -η plane using the Fresnel diffraction integral. (The sufficient conditions for accuracy
of the Fresnel approximation are complicated [22], but the distance z will be sufficient if P is
considered to be just in front of the focusing lens discussed in Sec. 4.) Point P is the point where
the coupling between the incoming field and the speckle field is obtained.

2.1. Assumptions

Several assumptions were used to simplify the problem and allow an analytic solution for the
power spectral density to be obtained. These assumptions are:

1. The target is rough compared to the wavelength of illumination so that the reflected
light from each point undergoes several 2π phase shifts before arriving at a phase that is
uniformly distributed on the interval (−π,π]. This condition is satisfied by the majority
of man-made and natural surfaces [23].
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2. The microstructure of the scattering surface is finer than the resolving power of an aper-
ture at point P with a diameter of the order of the beam waist diameter. This assumption
of fine microstructure allows the spatial autocorrelation function of the target to be well
approximated by a delta function [18].

3. The spatial extent of the spot is sufficient so that a large number of individual scattering
sites are illuminated.

4. The laser emission is monochromatic.

5. Only one polarization is considered and depolarization effects are ignored. This assump-
tion makes the derivation of the model tractable.

6. The speckle grain size is sufficiently large so that the field variation over the illuminated
region at P is insignificant (the speckle grain will have a linear dimension of the order of
λ z/r where λ is the laser emission wavelength and r is the spot radius [7]).

7. The wave-fronts of the incoming beam and the scattered beam at P have identical curva-
ture. The spherical scattered field will approximate the incoming field on the axis when
focused to a small spot on the target.

8. The change in intensity at point P is proportional to the change in the laser terminal volt-
age. This is valid for the weak feedback regime used in the experiments. The equivalence
between the intensity and the laser terminal voltage variation has been demonstrated ex-
perimentally [4] and is supported by a theoretical model [24].

2.2. Statistical time-autocorrelation function

In this section we present the autocorrelation function for the field at P. The field at P will have
a Gaussian probability distribution by the central limit theorem because it is the sum of many
independent random variables: the components from many different scatterers on the rough sur-
face. Therefore, the autocorrelation function and mean completely describe the random process.
Furthermore, the mean is zero (see Appendix A).

The statistical autocorrelation function of the field amplitude RA, at P as a function of the
difference between observation times τ , is:

RA(τ) =
exp

(
i 4πvτ sinθ

λ
)

λ 2z2

∫∫ ∞

−∞
U(x+ vτ cosθ ,y)U∗(x,y)

× exp

⎧
⎨

⎩

iπ
[
(x+ vτ cosθ)2 − x2

]

λ z

⎫
⎬

⎭
dxdy . (1)

where λ is the wavelength of the laser emission, θ is the inclination angle of the target, U is
the field incident on the rough surface, ∗ denotes the complex conjugate, and i is the imaginary
unit (

√−1).
Surface profile parameters are absent from Eq. (1) due to assumption 1 in Sec. 2.1. This

Independence of broadening on surface microstructure has been validated experimentally by
measuring the broadening from a sand-blasted aluminum surface and from a paper surface.
Under a range of conditions, the broadenings obtained from both surfaces were identical.

VCSELs used for self-mixing sensors often have emission profiles that are approximately
Gaussian. An analytic result can be obtained for the autocorrelation function for the specific
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Fig. 2. A plot of the normalised power spectral density with the FWHM and peak frequency
indicated.

case of Gaussian illumination specified by the beam waist radius at the target wt . If the Gaussian
field,

UG(x,y) =
2

πw2
t

exp

(
−x2 + y2

w2
t

)
, (2)

is substituted into Eq. (1), the normalised power spectral density can be obtained as a function
of frequency f ,

SA( f ) = exp

[

−2π2w2
t ( f − 2vsinθ

λ )2

v2

]

. (3)

This result makes use of an approximation valid for small spot sizes (see Sec. 6.1 in appendix
A for details). In this work, the spectral broadening is quantified by measuring the full-width
half-maximum (FWHM) of the Doppler signals. The FWHM of Eq. (3) is:

FWHM =
vcosθ

√
2loge 2

πwt
. (4)

The peak frequency fD, is the parameter used to obtain the target velocity in self-mixing ve-
locimetry sensors and is given by:

fD =
2vsinθ

λ
, (5)

which is in agreement with the Doppler frequency from [25].
A plot of SA( f ), with the FWHM and peak labeled, appears in Fig. 2. The simple analytic

formula for the FWHM can be used to predict spectral broadening for self-mixing sensors.
This result shows that the speckle broadening of Doppler self-mixing signal depends only on
the component of the target velocity normal to the optical axis and the beam waist radius on
the target. Notably it does not depend explicitly on wavelength, and is independent of the target
inclination angle in the small angle approximation.

3. Laser characterization

In order to validate the dynamic speckle theory, we wanted to choose representative lasers
used for self-mixing interferometry. In order to simplify the analysis, we limited the choice
of lasers to VCSELs operating in a single transverse mode, which is typically obtained from
devices with small apertures. We chose two mass produced VCSELs, one with visible emission
(Firecomms, RVM665T) and one with infra-red emission (Litrax, LX-VCS-850-T311), with
nominal emission wavelengths of 665 nm and 850 nm respectively. All measurements were
made at room temperature of approximately 25°C.
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Fig. 3. Light-current plots for the Firecomms laser (a) and the Litrax laser (b) used in the
experiments showing threshold currents measured at 25°C. The power rollover is typical of
VCSELs [27]. The insets show the emission spectra for the Firecomms and Litrax lasers at
1.00 mA and 4.08 mA respectively; both lase with a single mode.
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Fig. 4. Plots of the laser far-field profiles obtained from the CCD (circles) and the Gaussian
fits (solid lines) used to infer the laser beam waist radii for the Firecomms laser (a) with an
extracted beam waist diameter of 2.22 µm and the Litrax laser (b) with an extracted beam
waist diameter of 2.48 µm.

3.1. Light-current

Light-current plots for the lasers were measured in order to identify the threshold currents
(see Fig. 3). The laser bias currents were chosen to be close to threshold where self-mixing
sensors usually yield the highest SNR [26] and higher order modes are likely to be weakest.
The Firecomms laser was operated at 1.00 mA and the Litrax laser at 4.08 mA.

3.2. Laser spot size

To estimate the spot size on the target wt , we measured the VCSEL waist radius w0, and multi-
plied by the magnification of the optical system α:

wt = αw0 . (6)

The VCSEL waist radius w0, was inferred from the beam in the far-field. The beam profile
was acquired using a high dynamic-range camera. The beam profile was fitted to the Gaussian
function in order to extract the beam parameters as shown in Fig. 4. From these measurements
w0 for both lasers was calculated (Table 1). Additional details of the beam profiling process are
included in appendix B.
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Table 1. Parameters of the two lasers used for experimental validation of the dynamic
speckle theory.

manufacturer Firecomms Litrax
model number RVM665T LX-VCS-850-T311
bias current 1.00 mA 4.08 mA
wavelength 668 nm 851 nm
beam waist radius 2.22 µm 2.48 µm

amplifier

ADC FFT

VCSEL

lens 1 lens 2

attenuator

target and motor
θ
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Fig. 5. Schematic of the experimental setup used to obtain Doppler velocimetry signals
along with a typical averaged spectrum. The setup is shown looking from above with the
laser beam waist imaged onto the disc disc below the axis or rotation such that there is a
component of velocity in the direction of the optical axis. The attenuator is used to keep
the sensor operating in the weak feedback regime. The laser is driven by a constant cur-
rent source. The laser terminal voltage variations are amplified, then sampled to produce a
spectrum via the FFT.

4. Experimental results

The broadening for a range of target velocities, target inclination angles, and spot-sizes were
measured. This was accomplished using the setup shown schematically in Fig. 5. The two
lenses, with focal lengths f1 and f2, were chosen from a range of microscope lenses in or-
der to produce a range of different sized laser spot images on the target (see Table 2). The
beam is attenuated to keep the sensor operating in the weak feedback regime. The target con-
sisted of paper on the face of an aluminum disc attached to a dc motor. The motor’s speed was
controlled using feedback from an optical encoder and a digital motor controller. The small
voltage variations induced by light scattered from the target were amplified and then digitized
using an analog-to-digital converter (ADC). The digitized signal was then transformed into the
frequency domain using a fast Fourier transform (FFT). One hundred FFTs were averaged to
provide a close approximation to the ensemble average. The FWHM broadening was obtained
by fitting the sum of a Gaussian function and a constant term (to account for noise) to the re-
sulting spectra over a frequency region around the peak. The free parameters of the fit were
the Gaussian FWHM (the parameter of interest), the Gaussian amplitude, the Gaussian center
frequency and the constant.

Several methods were used to ensure that the broadening due to the Dynamic speckle effect
would dominate the other sources of broadening. Because the speckle broadening is inversely
proportional to the spot size, small spot sizes were chosen. To reduce the effect of the velocity
variation over the spot region on the disc, the spot was formed at a large distance from the
center of the disc relative to the spot size. Tight control of the disc velocity was provided by a
digital motor controller. A rigid motor mounting bracket was used to limit vibration.

All FWHM broadening measurements were repeated several times and measurement uncer-
tainty was much smaller than the additional broadening observed above the theoretical broad-
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Table 2. The focal lengths and resulting magnifications for lens combinations used to obtain
a range of spot sizes on the target.

f1 (mm) f2 (mm) magnification
16 26.7 1.67
8 16 2.00
16 40 2.50
8 26.7 3.33
8 40 5.00
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Fig. 6. Doppler peak broadening for a range of target speeds measured using a 2.5× imag-
ing lens configuration (a), and for a range of spot sizes on the target with at a fixed tar-
get velocity of 111 mm/s (b). The circles and triangles show the experimental broadening
measurements acquired from the Firecomms and Litrax lasers respectively. The solid and
broken lines indicate the theoretical broadening for the Firecomms and Litrax lasers re-
spectively. Plots (c) and (d) show the differences between the experimental broadening
(which includes all broadening effects) and the theoretical values that only include speckle
broadening.

ening due to speckle.

4.1. Effect of target speed on broadening

According to Eq. (4), the broadening is proportional to the target velocity. The target velocity
was varied by changing the disc rotational speed using the motor controller. The target velocity
was calculated from the radial distance measured from the center of the disc to the spot location.
The inclination angle was fixed at 10°. Figure 6(a) shows the experimental results and the
theoretical broadening based on the beam waist radii in Table 1 and the 2.5× magnification
factor of the imaging system.

The experimental broadening is consistently greater than the theoretical speckle broadening
as can be expected due to a range of other factors that contribute to the broadening of the
Doppler signal. However, the proportionality of the broadening to the target speed agrees with
the theory. The additional broadening of the measured values is also proportional to the disc
speed as can be seen in Fig. 6(c).

#168214 - $15.00 USD Received 8 May 2012; revised 12 Jun 2012; accepted 20 Jul 2012; published 1 Aug 2012
(C) 2012 OSA 13 August 2012 / Vol. 20,  No. 17 / OPTICS EXPRESS  18765



0

20

40

60

80

100

120

-20 -10 0 10 20

p
ea

k
fr

eq
u

en
cy

(k
H

z)

angle (°)

(a)

0

2

4

6

8

10

12

-20 -10 0 10 20

b
ro

ad
en

in
g

(k
H

z)

angle (°)

(b)

Fig. 7. Doppler peak frequency (a) and FWHM broadening (b) with a fixed target speed of
111 mm/s over a range of target angles. The circles and triangles show the experimental
broadening measurements acquired from the Firecomms and Litrax lasers respectively. The
solid and broken lines indicate the theoretical broadening for the Firecomms and Litrax
laser’s respectively.

4.2. Effect of spot size on broadening

A range of spot sizes were generated using combinations of microscope lenses. The laser spot
was magnified according to the values listed in Table 2. Figure 6(b) show the measured results
along with the theoretical broadening. Again, the experimental broadening is consistently larger
than the theoretical broadening. However, in contrast to the additional broadening in Fig. 6(c),
the additional broadening in Fig. 6(d) is not strongly correlated to the inverse of the spot size.
The slope of the experimental results show a good match to the theory. These results also
confirm the independence of broadening on laser wavelength as expected by the theory — the
two lasers have substantially different wavelengths yet the broadening only depends on the spot
size.

The results in Fig. 6(a) and (b) show two slices through a two-dimensional continuum of
possible results depending on the spot size and target speed. Based on the results obtained, the
additional spectral broadening over this continuum scales with the target speed, but is relatively
independent of the laser spot size. The additional broadening may therefore be predominantly
due to an effect that scales with the target speed such as target vibration.

4.3. Effect of target angle on broadening

One perhaps unexpected result from the theoretical investigation was the cosine dependence
of the Doppler signal broadening with target inclination angle. This is in contrast to the peak
frequency fD, in Eq. (5) which has a sine dependence on the target inclination angle.

Figure 7(a) shows the experimentally obtained Doppler peak frequency and the theoretical
values in close agreement. Figure 7(b) shows the Doppler broadening results that are largely in-
dependent of the target angle. Again, the experimentally obtained broadening results are greater
than the theory predicts.

5. Conclusions

The speckle theory derived in this paper gives a simple analytic model that can be used to
predict spectral broadening for self-mixing sensors. The model provides insight in the depen-
dence of Doppler spectrum characteristics as a function of spot size on the target and the target
velocity. It also shows the interesting independence of the Doppler signal broadening on the
angle of incidence for target inclination angles close to normal. This is in contrast to the strong
dependence of the Doppler peak frequency on angle. Comparison between the model and the
experimental results was presented for two typical mass-produced VCSELs. The measured
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broadening was consistently larger than the theory predicts due to other effects that contribute
to broadening. Other contributing effects include the range of velocities present over the illu-
minated region on a rotating target, vibration, surface profile variation and the laser linewidth.
The experimental results suggest that vibration is the dominant source of the additional broad-
ening. However, these contributing mechanisms leading to additional broadening are not of
fundamental nature, and could be removed by the experimental design.

6. Appendix A: Derivation of the field amplitude autocorrelation function and power
spectrum

In this section we derive the autocorrelation function for the dynamic speckle process for a
general field distribution. We then solve for the specific case of a Gaussian field and apply a
simplification valid for small waist radii to obtain the simple analytic result used in the preced-
ing sections of the paper.

The dynamic speckle process is ergodic allowing the time autocorrelation and statistical au-
tocorrelation functions to be interchanged [28] or [29]. Both forms are used here as convenient.

Referring to the geometry in Fig. 1, the statistical autocorrelation function of the field ampli-
tude RA, at P as a function of times t1 and t2 is [28]

RA(t1, t2) = E [A(t1)A
∗(t2)] , (7)

where E[ · ] denotes the expected value operator [30] and A(t) is the complex field amplitude at
P.

Because A(t) is a stationary process (a necessary condition for ergodicity), the time differ-
ence τ = t2 − t1, only need to be considered. Therefore Eq. (7) can be rewritten as

RA(τ) = E [A(t − τ)A∗(t)] . (8)

If the surface is rough compared to the wavelength, the field at each point, (x,y), reflected
from the rough surface of the target is given a phase shift φ , that is uniformly distributed over
(−π,π]. We define Ψ(x,y) = eiΦ(x,y) where Φ(x,y) is a random variable for phase shift due to
the rough surface. If the target is inclined at an angle θ , from the perpendicular orientation, the
complex field reflected from the target will undergo an additional phase shift,

V (x,y) = exp

(
i
4πx tanθ

λ

)
. (9)

The complex field reflected and just to the right of the target α(x,y), is given by the product
of the incident field U(x,y), the phase shift due to the inclination of the target, and the random
phase shift:

α(x,y) =U(x,y)V (x,y)Ψ(x,y) , (10)

with Ψ(x,y) being a random variable.
The Huygens-Fresnel principle can be used to relate the field at the target plane α(x,y),

to the field at the observation point A(ξ ,η). This is approximated by the Fresnel diffraction
integral [22],

A(ξ ,η) =
exp

(
i 2πz

λ
)

iλ z
exp

[
iπ
λ z

(
ξ 2 +η2)

]

×
∫∫ ∞

−∞
α(x,y)exp

[
iπ
λ z

(
x2 + y2)

]
exp

[
iπ
λ z

(ξx+ηy)

]
dxdy . (11)
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The integral is simplified because only a single point is considered in the observation plane
and constant phase terms can be removed without affecting the statistical properties of the phase
because it is uniformly distributed over (−π,π]. Therefore

A(t) =
1

λ z

∫∫ ∞

−∞
α(x,y, t)exp

[
iπ
λ z

(
x2 + y2)

]
dxdy . (12)

We now consider the target in Fig. 1 moving with velocity v. For a fixed laser, the illumination
field amplitude U(x,y), and the reflected field amplitude are identical and do not change with
time. On the other hand, the random phase variations due to the rough surface Ψ, will be shifted
in the x direction a distance vt cosθ . Therefore, the reflected field just to the right of the rough
target in Fig. 1 is

α(x,y, t) = Ψ(x+ vt cosθ ,y)U(x,y)V (x,y) . (13)

It is now possible to calculate the autocorrelation function of the field at P, RA(t1, t2), from
Eq. (7) using the simplified Fresnel diffraction integral in Eq. (12) and the reflected field given
in Eq. (13).

RA(t1, t2) = E

[
1

λ z

∫∫ ∞

−∞
Ψ(x+ vt1 cosθ ,y)U(x,y)V (x,y)exp

[
iπ

(
x2 + y2

)

λ z

]

dxdy

× conj

{
1

λ z

∫∫ ∞

−∞
Ψ(x+ vt2 cosθ ,y)U(x,y)V (x,y)exp

[
iπ

(
x2 + y2

)

λ z

]

dxdy

}]

(14)

Where x has been substituted with x + vt cosθ to represent motion in the x direction. It is
possible to consider motion in any direction by altering the orientation of the axes so that the
x-axis lies in the direction of motion. Therefore, only considering motion in the x direction does
not limit the generality of the result.

If the order of integration is changed, the following form is obtained

RA(t1, t2) =
1

λ 2z2

∫∫∫∫ ∞

−∞
E [Ψ(x1 + vt1 cosθ ,y1)Ψ∗(x2 + vt2 cosθ ,y2)]

×U(x1,y1)V (x1,y1)U
∗(x2,y2)V

∗(x2,y2)exp

[
iπ

(
x2

1 + y2
1 − x2

2 − y2
2

)

λ z

]

dx1 dy1 dx2 dy2 . (15)

While Eq. (15) looks complicated, it is dramatically simplified under the assumption of very
fine microstructure of the scattering surface. The spatial autocorrelation of the random phase
screen becomes a delta function [18],

E [Ψ(x1 + vt1 cosθ ,y1)Ψ∗(x2 + vt2 cosθ ,y2)] = δ (x2+vt2 cosθ −x1−vt1 cosθ ,y2−y1) , (16)

which is non-zero only when its parameters are zero. Replacing t2−t1 with τ , Eq. (16) becomes

δ (x2 − x1 + vτ cosθ ,y2 − y1) . (17)

Upon substituting this into Eq. (15), and considering the integration with respect to dx1 and dy1,
the delta-function is non-zero when x1 = x2+vτ cosθ and y1 = y2, therefore we can rewrite Eq.
(15) as

RA(τ) =
1

λ 2z2

∫∫ ∞

−∞
U(x2 + vτ cosθ ,y2)V (x2 + vτ cosθ ,y1)U

∗(x2,y2)V
∗(x2,y2)

exp

⎧
⎨

⎩

iπ
[
(x2 + vτ cosθ)2 − x2

2

]

λ z

⎫
⎬

⎭
dx2 dy2 . (18)
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The phase terms due to the inclination of the target can be expanded:

V (x2 + vτ cosθ ,y1)V
∗(x2,y2) = exp

[
i
4π(x2 + vτ cosθ) tanθ

λ

]
exp

[
−i

4πx2 tanθ
λ

]

= exp

(
i
4πvτ cosθ tanθ

λ

)

= exp

(
i
4πvτ sinθ

λ

)
. (19)

This term, which is related to the Doppler frequency as described subsequently, is independent
of x2 and y2, so can be moved outside of the integral in Eq. (18) yielding

RA(τ) =
exp

(
i 4πvτ sinθ

λ
)

λ 2z2

∫∫ ∞

−∞
U(x2 + vτ cosθ ,y2)U

∗(x2,y2)

exp

⎧
⎨

⎩

iπ
[
(x2 + vτ cosθ)2 − x2

2

]

λ z

⎫
⎬

⎭
dx2 dy2 . (20)

This is reproduced in Eq. (1) in Sec. 2 with x2 replaced by x and y2 replaced by y.

6.1. Gaussian field

We now solve the statistical autocorrelation function for the specific case of a Gaussian field.
We substitute Eq. (2) into Eq. (1) and solve the integral as follows:

RA(τ) =
exp

(
i 4πvτ sinθ

λ
)

(λ z)2

∫∫ ∞

−∞

4
(
πw2

t

)2 exp

[

− (x+ vτ cosθ)2 + y2 + x2 + y2

w2
t

]

×exp

⎧
⎨

⎩

iπ
[
(x+ vτ cosθ)2 − x2

]

λ z

⎫
⎬

⎭
dxdy

=
4exp

(
i 4πvτ sinθ

λ
)

(
λ zπw2

t

)2

∫ ∞

−∞
exp

(
−2y2

w2
t

)

×
∫ ∞

−∞
exp

{
iπ
λ z

[
(x+ vτ)2 − x2

]
− 1

w2
t

[
(x+ vτ)2 + x2

]}
dxdy

=
4exp

(
i 4πvτ sinθ

λ
)

(
λ zπw2

t

)2

∫ ∞

−∞
exp

(
−2y2

w2
t

)√
πwt√

2
exp

[
−v2τ2

2

(
π2w2

t

λ 2z2 +
1

w2
t

)]
dy

=
4

(
λ zπw2

t

)2

√
πwt

√
πwt√

2
exp

[
−v2τ2

2

(
π2w2

t

λ 2z2 +
1

w2
t

)
+ i

4πvτ sinθ
λ

]

=
2
√

2

π (λ zwt)
2 exp

[
−v2τ2

2

(
π2w2

t

λ 2z2 +
1

w2
t

)
+ i

4πvτ sinθ
λ

]
. (21)

This result, ignoring the Doppler term, i 4πvτ sinθ
λ , is in agreement with [9,11] for the case when

the beam waist is located on the target and the distance between the detectors is zero.
A(t) will have a Gaussian probability distribution by the central limit theorem because it is

the sum of many independent random variables. Therefore, the autocorrelation function and
mean completely describe the random process. Furthermore, the mean m = E[A(t)], is zero
because E[Ψ(t)] = 0.
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Fig. 8. (a) Near-field image of Firecomms laser below threshold (0.21 mA) suggestive of
non-circular carrier injection. The disc where emission is present is defined by the metal-
ization on the front facet of the laser. Non-uniform proton implantation may be responsible
for the irregular emission shape. (b) Diagram of the setup used to infer the laser near-field
spot size from a far-field image. (c) A sample far-field image obtained from the CCD array.
The speckle caused by the rough surface of the screen is evident in the CCD image.

6.1.1. Simplification for a small Gaussian spot

If wt is small, the π2w2
t /λ 2z2 term in Eq. (21) becomes insignificant compared to 1/w2

t , or

π2w4
t

λ 2z2 � 1 . (22)

For example, using the experimental conditions for the Litrax laser with the greatest waist
radius on the target (12.4 µm), Eq. (22) yields ≈ 0.0002. Making use of this simplification and
normalizing, Eq. (21) becomes:

RA(τ) = exp

(
−v2τ2

2w2
t
+ i

4πvτ sinθ
λ

)
. (23)

The normalised spectrum is therefore:

SA( f ) = F{RA(τ)}/max(F{RA(τ)}) = exp

[

−2π2w2
t

(
f − 2vsinθ

λ
)2

v2

]

. (24)

This result is reproduced in Eq. (3) in Sec. 2.2 and plotted in Fig. 2.

7. Appendix B: Experimental procedure used to measure the beam waist radius

For a perfect Gaussian beam it is possible to use a knife-edge technique to measure the focused
spot size directly [31, 32]. However, in this work, the VCSEL near-fields departed from a cir-
cular profile. The image of the Firecomms laser near-field taken below threshold in Figure 8(a)
is suggestive of non-uniform carrier injection leading to the non-circular near-field profile.

In contrast to the laser near-field profiles, the laser far-field profiles were more circular and
provided good fits to the ideal Gaussian beam profile. Additionally, the relationship between
the laser far-field profile and the self-mixing signal power spectrum is more direct. This can be
seen by considering that the self-mixing signal power spectrum in Eq. (24) is obtained from the
Fourier transform of the autocorrelation function in Eq. (1). In the small spot approximation
(such that the phase terms in the integral are small), Eq. (1) is simply the autocorrelation of the
field on the target. Recalling the autocorrelation theorem [33],

∫ ∞

−∞
f (u) f ∗(u+ x)du = |F{ f}|2 , (25)
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the self-mixing signal power spectrum is therefore related to the spatial power spectrum (spatial
power distribution) of the field on the target. In a similar way, and fundamental to the field of
Fourier optics [34], the laser far-field intensity (as measured by the CCD array) is also the
spatial power spectrum of the laser near-field which is a reduced version of the field on the
target. Therefore, the laser far-field intensity distribution and the self-mixing power spectrum
are closely related.

For these reasons, the laser far-field images were used to infer the laser beam waist radii.
Figure 8(b) shows how a CCD array was used to capture an image of the laser far-field profile

that was projected onto a screen [a sample image appears in Fig. 8(c)]. A camera lens was used
to reduce the profile image to fit on the CCD array. The resulting two-dimensional matrix of
intensities from the CCD was reduced to a one-dimensional vector by integrating each vertical
column. The vectors obtained for each of the two VCSELs were plotted in Fig. 4. In order to
obtain the VCSEL waist radius, the one-dimensional data was fitted to a Gaussian function that
we now derive. A Gaussian beam [35] has the following intensity profile:

I(x,y) ∝ exp

[
−2(x2 + y2)

w2(z)

]
, (26)

where z is the distance from the beam waist, zR (the Rayleigh parameter) is equal to πw2
0/λ ,

and

w(z) = w0

√

1+

(
z
zR

)2

. (27)

The integration of the CCD array columns corresponds to integration over y giving:

I(x) ∝ exp

[
− 2x2

w2(z)

]
. (28)

In the far-field, z � zR, therefore, w(z) ≈ zλ/(πw0). The laser wavelengths λ , were meas-
ured for each laser using an optical spectrum analyzer (Agilent 86140B, resolution 0.07 nm,
accuracy ±0.5 nm) for the bias conditions used in the experiments; they are recorded in Table
1. Substituting w(z) with the far-field approximation into Eq. (28) and making use of the small
angle approximation, r/z ≈ θ , we obtain:

I(θ) ∝ exp

[

−2

(
πθw0

λ

)2
]

. (29)

This function was fitted to the data obtained from the CCD images in Fig. 4 in order to extract
the beam-waist radii which appear in Table 1.
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