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SPECTRAL CALIBRATION OF EXPONENTIAL LEVY
MODELS

DENIS BELOMESTNY AND MARKUS REISS

1. Introduction

The calibration of financial models has become rather important
topic in recent years mainly because of the need to price increasingly
complex options in a consistent way. The choice of the underlying
model is crucial for the good performance of any calibration procedure.
Recent empirical evidences suggest that more complex models taking
into account such phenomenons as jumps in the stock prices, smiles
in implied volatilities and so on should be considered. Among most
popular such models are Levy ones which are on the one hand able
to produce complex behavior of the stock time series including jumps,
heavy tails and on other hand remain tractable with respect to option
pricing. The work on calibration methods for financial models based
on Lévy processes has mainly focused on certain parametrisations of
the underlying Lévy process with the notable exception of Cont and
Tankov (2004). Since the characteristic triplet of a Lévy process is a
priori an infinite-dimensional object, the parametric approach is always
exposed to the problem of misspecification, in particular when there is
no inherent economic foundation of the parameters and they are only
used to generate different shapes of possible jump distributions. In this
work we propose and test a non-parametric calibration algorithm which
is based on the inversion of the explicit pricing formula via Fourier
transforms and a regularisation in the spectral domain.Using the Fast
Fourier Transformation, the procedure is fast, easy to implement and
yields good results in simulations in view of the severe ill-posedness of
the underlying inverse problem.
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2. Description of the method

Let the prices Y1, . . . , YN of N call options at strikes K1 < . . . < KN

be observable

2.1. Data transformation. We transform the observations (Kj, Yj)
to (xj, Oj) by

Oj := Yj/S − (1−Kje
−rT /S)+,

xj := log(Kj/S)− rT,

where T is the time to maturity, r is a short rate and S is the spot
price.

2.2. Estimation of O. Find function Õ among all functions O with
two continuous derivatives that minimizes the penalized residual sum
of squares

RSS(O,κ) =
N+1∑
i=0

(Oi −O(xi))
2 + κ

∫ xN+1

x0

[O′′(u)]2 du,(1)

where x0 ¿ x1and xN+1 À xN are two artificial points and ON+1 =
O0 = 0. The first term in (1) measures closeness to the data, while
the second term penalizes curvature in the function, and κ establishes
a tradeoff between the two. The two special cases are κ = 0 when Õ
interpolates the data and κ = ∞ when the simple least squares line is
fitted. It can be shown that that (1) has an explicit, finite dimensional,
unique minimizer which is a natural cubic spline with knots at the
unique values of xi, i = 1, . . . , N . The general cross validation can be
used to choose κ (see, for example, Green and Silverman (1994)). Note,
that due to the non-smooth behavior of O(x) at 0 (see Belomestny and
Reiß (2004)) it is more reasonable to fit smoothing splines separately
for x > 0 and x ≤ 0 and combine them thereafter.

2.3. Estimation of FO. Since the solution of (1) is a natural cubic
spline, we can write

Õ(x) =
N∑

j=1

θjβj(x)

where βj(x), j = 1, . . . , N are set of basis function for representing the
family of natural cubic splines. Now we estimate FO(v + i) by

FÕ(v + i) =
N∑

j=1

θjF [e−xβj(x)](v).
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Although F [e−xβj(x)] can be computed in the closed form we prefer

using FFT and compute FÕ(v + i) on the grid.

2.4. Estimation of ψ. Calculate

(2) ψ̃(v) :=
1

T
log

(
1 + v(v + i)FÕ(v + i)

)
, v ∈ R,

where log(·) is taken in such a way that ψ̃(v) is continuous with ψ̃(−i) =
0.

2.5. Estimation of σ, γ and λ. With an estimate ψ̃ of ψ at hand,
we obtain estimators for the parametric part (σ2, γ, λ) by an averaging
procedure taking into account the polynomial structure of ψ. Upon
fixing the spectral cut-off value U , we set

σ̂2 :=

∫ U

−U

Re(ψ̃(u))wU
σ (u) du,(3)

γ̂ :=

∫ U

−U

Im(ψ̃(u))wU
γ (u) du,(4)

λ̂ :=

∫ U

−U

Re(ψ̃(u))wU
λ (u) du,(5)

where the weight functions wU
σ , wU

γ and wU
λ are given explicitly by

wU
σ (u) = r+3

1−2−2/(r+1) U
−(r+3)|u|r(1− 2 · 1{|u|>2−1/(r+1)U}), u ∈ [−U,U ],

wU
γ (u) :=

r + 2

2U r+2
|u|r sgn(u), u ∈ [−U,U ],

wλ(u) := r+1
2(22/(r+3)−1)

U−(r+1)|u|r(1− 2 · 1{|u|<2−1/(r+3)U}), u ∈ [−U,U ],

and r > 0 is a parameter reflecting our priori knowledge about the
smoothness of ν.

2.6. Estimation of ν. Define

(6) ν̂(u) := F−1
[(

ψ̃(·) + σ̂2

2
x2 − iγ̂x + λ̂

)
K(x)

]
(u), u ∈ R,

where K(x) is a compactly supported kernel. In all simulations we take

K(x) =
(
1− (x/Uν)

2
)+

, x ∈ R
for some Uν which may differ from U . The use of an additional cut-off
parameter Uν can improve the quality of ν̂ significantly.
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2.7. Correction of ν. Due to the estimation error and as a result of
the cut-off procedure in (6) the estimate ν̂ can take negative values and
needs correcting. Our aim is therefore to find ν̂+ such that

‖ν̂+ − ν̂‖2
L2(R) → min, inf

x∈R
ν̂+(x) ≥ 0

subject to ∫

R
ν̂+(x) dx =

∫

R
ν̂(x) dx.

It can be easily shown that the solution of the above problem is given
by

ν̂+(x; ξ) := max{0, ν̂(x)− ξ}, x ∈ R
where ξ is chosen to satisfy the equation

∫

R
ν̂+(u; ξ) du =

∫

R
ν̂(u) du.

2.8. Choice of parameters. In our simulations the following heuris-
tic criteria for choosing the spectral cut-off parameter U∗ is employed

(7) U∗ = argminU

∣∣∣∣
d

dU
σ̂U

∣∣∣∣ .

So, U∗ corresponds to the flattest region of the curve U → σ̂U or in
other words the region where σ̂U stabilizes. Other possible approaches
to choose U include stagewise aggregation discussed in Belomesnty and
Reiß (2005) and risk hull minimization developed by Cavalier and Gol-
ubev (2005). As to U∗

ν , it can be found as a point where ν̂U stabilizes

(8) U∗
ν = argminUν

∥∥∥∥
d

dUν

ν̂Uν

∥∥∥∥
L2

.

In the case of real data examples when the Levy model serves as an
approximation only the following criteria can be useful. One defines
U∗ as a solution of the following minimization problem

(9) inf
U

[
N∑

i=1

|C(Ki; TU)− Yi|2 + α

∫

R
|ν̂ ′′U(x)|2 dx

]
, α > 0

where C(K; TU) is the price at strike K computed using the Levy model
with the triplet TU = (σ̂U , γ̂U , ν̂U).
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3. Simulated and Real Data Examples

In this section we present simulated as well as real data examples
demonstrating the performance of the calibration algorithm proposed.
In our simulations different data designs, sample sizes and noise lev-
els are used in order to investigate the behavior of the procedure in
circumstances mimicking real ones. The data design {xi} is chosen to
be normally distributed with zero mean and variance 1/3 and hence is
similar to the one observed on the market where much more contracts
are settled at the money than in- or out of money. Upon simulating
the design, {O(xi)} are computed from the underlying model and then
contaminated by the noise with zero mean and variances of the order
{[δ O(xi)]

2}.
In section 3.1 the Merton jump diffusion model is considered where
jumps are normally distributed with mean η and variance υ2

ν(x) =
λ

υ
√

2π
exp

(
−(x− η)2

2υ2

)
, x ∈ R.

The parameter γ in the Lévy triple (σ2, γ, ν) is uniquely determined
by the martingale condition

γ = −(σ2/2 + λ(exp(υ2/2 + η)− 1)).

Our choice of parameters

σ = 0.1, λ = 5, η = −0.1, υ = 0.2

implies γ = 0.371. Note, that under such a choice the mean jump size
is negative and the model reflects the important feature observed on
the market.
More interesting example of Kou model is considered in section 3.2
where Lévy density ν is given by

ν(x) = λ
(
pλ+e−λ+x1[0,∞)(x) + (1− p)λ−eλ−x1(−∞,0)(x)

)
, x ∈ R.

and λ+, λ− ≥ 0, p ∈ [0, 1] are parameters. Again the parameter γ is
given explicitly by

γ = −(σ2/2 + λ(p/(λ+ − 1)− (1− p)/(λ− + 1)))

and under the choice

σ = 0.1, λ = 5, λ− = 4, λ+ = 8, p = 1/3

one has γ = 0.424. The Kou model allows us to model different tails
behavior for positive and negative jumps and hence makes the mod-
elling more realistic.
Finally, in section 3.3 two real data examples are presented. Both data
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sets consist of DAX options (put and call) for different maturities and
strikes. Lévy models are calibrated separately for each maturity.
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3.1. Merton Model.

Sample Size: N = 100

Noise Level: δ = 0.05
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Figure 1. Left: Sample (Oj). Right: True ν (dashed)
and estimated ν̂ (solid) Lévy densities.

σ̂ γ̂ λ̂

0.10402 0.38998 4.90736

Table 1. Parameters estimates for the sample shown
in Fig. 1 obtained using U and Uν given by (7) and (8).

[
E(σ̂ − σ)2

]1/2 [
E(γ̂ − γ)2

]1/2 [
E(λ̂− λ)2

]1/2 [
E ‖ν̂ − ν‖2

L2

]1/2

0.000350 0.003237 0.038097 0.487033

Table 2. MSE estimated using 500 Monte Carlo simu-
lations under optimal (oracle) choices of U and Uν .
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Sample Size: N = 100

Noise Level: δ = 0.1
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Figure 2. Left: Sample (Oj). Right: True ν (dashed)
and estimated ν̂ (solid) Lévy densities.

σ̂ γ̂ λ̂

0.10208 0.35187 5.06226

Table 3. Parameters estimates for the sample shown in
Fig. 2 obtained using U and Uν given by (7) and (8).

[
E(σ̂ − σ)2

]1/2 [
E(γ̂ − γ)2

]1/2 [
E(λ̂− λ)2

]1/2 [
E ‖ν̂ − ν‖2

L2

]1/2

0.000721 0.008502 0.047850 0.632208

Table 4. MSE estimated using 500 Monte Carlo simu-
lations under optimal (oracle) choices of U and Uν .
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Sample Size: N = 50

Noise Level: δ = 0.05

−1.5 −1.0 −0.5 0.0 0.5 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

log−moneyness

O
j

−2 −1 0 1 2

0
2

4
6

8
10

x

ν(
x)

Figure 3. Left: Sample (Oj). Right: True ν (dashed)
and estimated ν̂ (solid) Lévy densities.

σ̂ γ̂ λ̂

0.11637 0.38541 4.73875

Table 5. Parameters estimates for the sample shown in
Fig. 3 obtained using U and Uν given by (7) and (8).

[
E(σ̂ − σ)2

]1/2 [
E(γ̂ − γ)2

]1/2 [
E(λ̂− λ)2

]1/2 [
E ‖ν̂ − ν‖2

L2

]1/2

0.000882 0.013349 0.043730 0.662298

Table 6. MSE estimated using 500 Monte Carlo simu-
lations under optimal (oracle) choices of U and Uν .
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Sample Size: N = 50

Noise Level: δ = 0.1
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Figure 4. Left: Sample (Oj). Right: True ν (dashed)
and estimated ν̂ (solid) Lévy densities.

σ̂ γ̂ λ̂

0.12870 0.36274 4.96426

Table 7. Parameters estimates for the sample shown in
Fig. 4 obtained using U and Uν given by (7) and (8).

[
E(σ̂ − σ)2

]1/2 [
E(γ̂ − γ)2

]1/2 [
E(λ̂− λ)2

]1/2 [
E ‖ν̂ − ν‖2

L2

]1/2

0.001852 0.030394 0.060641 0.859707

Table 8. MSE estimated using 500 Monte Carlo simu-
lations under optimal (oracle) choices of U and Uν .
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3.2. Kou Model.

Sample Size: N = 100

Noise Level: δ = 0.05
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Figure 5. Left: Sample (Oj). Right: True ν (dashed)
and estimated ν̂ (solid) Lévy densities.

σ̂ γ̂ λ̂

0.10071 0.43404 5.04483

Table 9. Parameters estimates for the sample shown in
Fig. 5 obtained using U and Uν given by (7) and (8).

[
E(σ̂ − σ)2

]1/2 [
E(γ̂ − γ)2

]1/2 [
E(λ̂− λ)2

]1/2 [
E ‖ν̂ − ν‖2

L2

]1/2

0.001006 0.005631 0.044007 0.662266

Table 10. MSE estimated using 500 Monte Carlo sim-
ulations under optimal (oracle) choices of U and Uν .
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Sample Size: N = 100

Noise Level: δ = 0.1
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Figure 6. Left: Sample (Oj). Right: True ν (dashed)
and estimated ν̂ (solid) Lévy densities.

σ̂ γ̂ λ̂

0.09696 0.38269 5.19702

Table 11. Parameters estimates for the sample shown
in Fig. 6 obtained using U and Uν given by (7) and (8).

[
E(σ̂ − σ)2

]1/2 [
E(γ̂ − γ)2

]1/2 [
E(λ̂− λ)2

]1/2 [
E ‖ν̂ − ν‖2

L2

]1/2

0.001786 0.012310 0.054588 0.944580

Table 12. MSE estimated using 500 Monte Carlo sim-
ulations under optimal (oracle) choices of U and Uν .
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Sample Size: N = 50

Noise Level: δ = 0.05
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Figure 7. Left: Sample (Oj). Right: True ν (dashed)
and estimated ν̂ (solid) Lévy densities.

σ̂ γ̂ λ̂

0.10889 0.41842 4.99187

Table 13. Parameters estimates for the sample shown
in Fig. 7 obtained using U and Uν given by (7) and (8).

[
E(σ̂ − σ)2

]1/2 [
E(γ̂ − γ)2

]1/2 [
E(λ̂− λ)2

]1/2 [
E ‖ν̂ − ν‖2

L2

]1/2

0.002444 0.018898 0.064104 0.998157

Table 14. MSE estimated using 500 Monte Carlo sim-
ulations under optimal (oracle) choices of U and Uν .
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Sample Size: N = 50

Noise Level: δ = 0.1
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Figure 8. Left: Sample (Oj). Right: True ν (dashed)
and estimated ν̂ (solid) Lévy densities.

σ̂ γ̂ λ̂

0.13086 0.42390 4.98324

Table 15. Parameters estimates for the sample shown
in Fig. 8 obtained using U and Uν given by (7) and (8).

[
E(σ̂ − σ)2

]1/2 [
E(γ̂ − γ)2

]1/2 [
E(λ̂− λ)2

]1/2 [
E ‖ν̂ − ν‖2

L2

]1/2

0.004917 0.037315 0.108304 1.40540

Table 16. MSE estimated using 500 Monte Carlo sim-
ulations under optimal (oracle) choices of U and Uν
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3.3. Real Data Examples.

DAX options, 22 March 1999
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Figure 9. Left: Observed (triangles) and fitted (solid
line) put (xj < 0) and call (xj ≥ 0) prices for different
maturities. Right: Estimated Lévy densities.

T N σ̂ γ̂ λ̂

28 37 0.0673 0.0379 0.2105

91 56 0.0699 0.0360 0.2118

182 38 0.0819 0.0417 0.0019

Table 17. Parameters of Lévy triple estimated from
DAX data shown in Fig. 9 with U chosen via the criteria
(9) with α = 1e− 8

All options data used here are publicly available in MDBase at
http://www.quantlet.org/mdbase
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DAX options, 21 Juni 1999
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Figure 10. Left: Observed (triangles) and fitted (solid
line) put (xj < 0) and call (xj ≥ 0) prices for different
maturities. Right: Estimated Lévy densities.

T N σ̂ γ̂ λ̂

28 28 0.0353 0.0416 0.2317

91 38 0.0381 0.0347 0.1876

182 42 0.0446 0.0214 0.0887

Table 18. Parameters of Lévy triple estimated from
DAX data shown in Fig. 10 with U chosen via the crite-
ria (9) with α = 1e− 8
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4. Conclusions

• The performance of the procedure depends strongly on the noise
level and the number of observations the first being dominating.

• The smoother is the Lévy density the better is the perfor-
mance of the procedure the difference being more pronounced
for smaller noise levels.

• The main features of Lévy measures (different tails behavior,
negative mean jump size) are preserved during the reconstruc-
tion.

• In the real data examples the algorithm produces stable esti-
mates for σ, λ decreasing with maturity, jump distributions
with negative mean jump sizes, and by rather small complexity
of Lévy measures fits the data in a reasonable way.
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