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ABSTRACT

The spatiotemporal temperature variability for several gridded instrumental and general circulation climate

model data is characterized, contrasting power spectra of local and global temperatures, land and sea tem-

peratures, and temperatures of different regions. There is generally a high degree of agreement between the

spectral characteristics of instrumental and climate model data. All but the equatorial spectra exhibit a power-

law shape and are hence more consistent with the spectra expected from long-memory processes than from

short-memory processes. The power-law exponent b of the spectra is a measure of memory, or persistence, of

the temperatures and is observed to be about twice as large for global temperature than for local temperatures.

However, there are large variations, in particular between land and sea surface temperatures. This is shown by

estimates of the spectra for different regions and globalmaps ofb. It is also demonstrated that global spectra are

related to local spectra via teleconnections between local temperatures.

1. Introduction

This paper aims to characterize spatiotemporal vari-

ability of surface temperatures by studying their spectral

properties. We will analyze several gridded instrumental

data and long control runs from a selection of climate

models, and we will systematically study the differences

between local and global temperatures and between land

and sea surface temperatures.

Recent analyses show that long-range memory

(LRM) stochastic processes are good models for Earth

surface temperatures. This is confirmed in many cli-

mate model and instrumental data for both globally

and hemispherically averaged temperatures (Rypdal

and Rypdal 2014; Rypdal et al. 2013; Rybski et al. 2006;

Østvand et al. 2014; Lennartz and Bunde 2009) and

many local temperatures (Blender and Fraedrich 2003;

Fraedrich and Blender 2003; Huybers and Curry 2006;

Rybski et al. 2008; Franzke 2010; Koscielny-Bunde

et al. 1998). The physical origin of the long memory

appears to be a delayed energy exchange between

different parts of the climate system, in particular

between the surface and the deeper oceans (Fraedrich

and Blender 2003; Fraedrich et al. 2004; Rypdal 2012;

Rypdal and Rypdal 2014). However, a systematic

study of the differences in the memory properties on

local, global, and intermediate spatial scales has yet to

be made.

Stationary long-range memory processes are char-

acterized by autocovariance functions of the power-law

form: g(t) } tb21, where t is the time lag and 0 , b,1

is a scaling exponent characterizing the persistence, or

memory, of the process. It is related to the commonly

used Hurst exponentH by b5 2H2 1. Since b. 0, the

function decays so slowly to zero as t / ‘ that the

integral over it will be infinite, and the temperature will

depend strongly on past temperatures also for the long

time scales, hence, the notion of long-range memory. A

long-range memory model also implies the power-law

form of the power spectral density S( f ) } f2b. The

power spectral density diverges as f / 0, but the

spectral power for frequencies lower than f is
Ð f

0
S( f 0) df 0 ; f12b

/ 0 as f/ 0. The dominance of the

low frequencies in the spectral density is a manifesta-

tion of the long-range memory, and the power-law

shape signifies the scale invariance or scaling of the

stochastic process. One important break of scaling is

the seasonal variation recorded in local and regional
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data. These variations are commonly subtracted from

the temperature records before spectral analysis is

performed. In contrast, we have the short-range

memory (SRM) models, such as the autoregressive

processes of first order [AR(1)], which exhibit weaker

dependence on the long time scales. An AR(1) process

has a finite autocorrelation time tc and exhibits a

Lorentzian spectrum that is flat for f � t21
c and ap-

proaches f22 for f � t21
c . Lack of memory at longer

time scales implies that the system will relax to equi-

librium at time scales longer the tc if it is not subjected

to further forcing. However, Rypdal and Rypdal (2014)

demonstrate that the presence of long memory may

prevent relaxation to an equilibrium state even at

centennial time scales if the climate system is subject to

persisting anthropogenic forcing.

The spectral properties in this paper will be estimated

by computing the periodogram of global temperatures,

and of local and regionally averaged temperatures from

different regions. From these spectra wewill estimate and

plot the spectral exponent b in a global map. Maps

showing the spatial distribution of locally estimated

b have beenmade for some datasets (Vyushin et al. 2012;

Blender and Fraedrich 2003; Fraedrich andBlender 2003;

Huybers and Curry 2006; Franke et al. 2013). Some of

these papers, including Monetti et al. (2003), also point

out that there is a clear difference between the spectral

exponents observed for continental interiors and those

observed for sea surface temperatures. For land areas

b could be as low as zero, while for sea surface temper-

atures it can approach unity. Furthermore, Huybers and

Curry (2006) suggest that b decreases with increasing

latitude and that it is tightly linked to the strength of the

seasonal variations.

In the existing literature b for global temperature is

estimated to be in the range 0.8–0.9, which is higher

than for most local temperatures. A fractional energy

balance model (FEBM) was proposed by Rypdal

et al. (2015) that yields LRM behavior of both local

and global temperatures and b for global tempera-

ture twice that of local temperatures. This simple

model treats a uniform spherical Earth surface with

an LRM temporal response and horizontal transport

modeled by a linear diffusion term. This model does

not take into account large regional differences. In

the present paper, we explore further how well the

observational data, and data from atmosphere–ocean

general circulation models (AOGCMs), are de-

scribed by the FEBM.

Section 2 gives an overview of the datasets used in

this paper, section 3 describes how we estimate the

spectrum and relates the spectrum for global temper-

ature to the spectra for local temperatures. The results

are presented in section 4, followed by discussions and

conclusions in section 5.

2. The datasets

a. Instrumental data

The three most widely used gridded temperature

datasets—HadCRUT4 (Morice et al. 2012), GISTEMP

(Hansen et al. 2010), and NOAA Merged Land–Ocean

Surface Temperature Analysis (MLOST) (Smith et al.

2008)—are all analyzed in this paper. In addition, we

have analyzed the relatively new dataset Berkeley Earth

Surface Temperature (BEST) (Rohde et al. 2013a,b).

All the datasets were downloaded in November 2014,

and some details about the datasets can be found in

Table 1. In the following we will briefly describe the

construction of these datasets, since it will be of impor-

tance for the final statistical properties.

All the datasets have included some land temper-

ature data from the Global Historical Climatology

Network (GHCN) (Peterson and Vose 1997), but

various other sources of land temperatures are also used.

In total, around 5000–7000 stations are included, except for

BEST, which includes almost 37 000 stations. All the

datasets incorporate sea surface temperature (SST) ob-

servations from the Comprehensive Ocean–Atmosphere

Dataset (COADS) (Slutz et al. 1985; Woodruff et al.

2011).Hence, the sources of observational data employed

in the construction of the different datasets probably

have some overlap, but there are many differences in

how the data are processed in the construction of a

global gridded temperature dataset. Both GISTEMP

and NOAA MLOST are based on the same gridded

SST dataset, the Extended Reconstructed Sea Surface

Temperature (ERSST) (Smith et al. 2008). HadCRUT4

incorporates the sea surface data the Hadley Centre

TABLE 1. The instrumental and reanalysis datasets. In the rows

where several datasets are specified, the second name is that of the

SST dataset and the third is that of the land temperature dataset.

For the other datasets, land and sea are separated using a land

mask. (CRUTEM4 5 Climatic Research Unit Temperature, ver-

sion 4.)

Dataset

No. of

grid boxes Time (yr)

20CRv2 180 3 91 1871–2012

HadCRUT4, HadSST3,

and CRUTEM4

72 3 36 1850–2014

BEST 15 984 1850–2014

GISTEMP (1200 km), ERSST,

and GISTEMP (250 km)

180 3 90 (89) 1880 (1854)–2014

NOAA MLOST 72 3 36 1880–2014
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SST, version 3 (HadSST3) (Kennedy et al. 2011a,b), and a

modified version of HadSST3 is also used by BEST.

In the construction of all datasets, there were some

quality control and bias corrections. BEST applies pure

statistical techniques when processing the land temper-

ature observations. Rather than adjusting the records,

they are split into several subrecords at the points

where a bias is suspected, and each is treated separately

(the scalpel approach; Rohde et al. 2013b). Themethods

employed for interpolating the records in the construc-

tion of a global gridded field also differ among the

datasets. BEST uses kriging, which is also known as

Gaussian process regression (see Rohde et al. 2013b

and references therein); HadCRUT4 employs no in-

terpolation; and GISS Surface Temperature Analysis

(GISTEMP) interpolates temperatures in a radius of

1200km, with weights decreasing linearly with distance

from the point. NOAA MLOST employs a more com-

plex routine, involving splitting up the data into low-

and high-frequency components, and tuning data to a

climate model. The low-frequency components are in-

terpolated in 258 3 258 boxes.

The methods employed to analyze the data in this pa-

per require contiguous time series, but the observational

data contain many gaps. So, we have to either disregard

the gappy time series or try to fill these gaps. We have

chosen to do a combination of these two, because we also

want to keep the information from the time series that are

almost complete. To fill the gaps, we have copied a seg-

ment of the same length as the gap from another part of

the time series and spliced it in the gap. The segment was

chosen to minimize the discontinuities at the ends of the

gap. Since many of the missing data are at the start of a

time series, we have chosen to disregard all data before

the first segment of at least six contiguous measurements.

We retain only for analysis time records that, after this

processing, are contiguous over a time interval longer

than 1200 months. The method is tested on synthetic

fractional Gaussian noises, removing data at random and

splicing data back in according to the method described.

No large biases are observed for the temporal statistics.

An important issue in this paper is to study scaling

properties of the time series after different degrees of

spatial averaging. To compute such averages, some data

gaps can be tolerated in the individual local data records.

Hence, we perform those averages on the unprocessed

records in order to avoid destruction of spatial correlation

through the splicing procedure. Gaps are filled only if

there are some remaining after averaging.

b. Reanalysis data

Reanalysis data are included in our studies to explore

how their statistics compare with the statistics for the

gappy observational data. The Twentieth Century Re-

analysis, version 2 (20CRv2) (Compo et al. 2011), is

chosen since it is the longest available reanalysis data

series, ranging from January 1871 to December 2012.

Other widely used reanalyses extend no longer back in

time than 1948 and are considered too short for our

purpose of studying long-term dependencies. As for all

other datasets in the present study, we have chosen the

monthly average surface temperatures.

The 20CRv2 data were computed using the ensemble

Kalman filter data assimilation system. First, an atmo-

spheric climate model was run to generate a first-guess

background field, with sea surface temperatures and sea

ice data from the Hadley Centre as lower boundary con-

ditions. Then observations of synoptic surface pressure

were used to adjust the first-guess field in an iterative

manner to fit the observations better. This process resul-

ted in a complete 28 3 28 spatial field of temperatures,

which is more convenient to work with than pure obser-

vational data, although the results may be less reliable.

c. Climate model data

A selection of control runs from phase 5 of the

Coupled Model Intercomparison Project (CMIP5)

with lengths of 500 years or more is analyzed (Taylor

et al. 2012). In addition, we have analyzed a 1000-yr

control run from the ECHO-G model (Zorita et al.

2003), a coupled model using the ECHAM4 atmo-

sphere and HOPE ocean models. Fraedrich and

Blender (2003) and Fraedrich et al. (2004) have pre-

viously documented LRM properties of this model, so

we think it is interesting to investigate how the latest

climate models compare with this one. Some details

about the models are found in Table 2.

A major source of uncertainty of the long-term vari-

ability observed in these control runs is model drift. As

discussed by Sen Gupta et al. (2013), drift refers to

TABLE 2. The climate model control runs. (Expansions of acronyms

are available at http://www.ametsoc.org/PubsAcronymList.)

Model No. of grid boxes

Length

(yr)

ECHO-G (Zorita et al. 2003) 96 3 48 1000

CanESM2 (Chylek et al. 2011) 128 3 64 996

CCSM4 (Gent et al. 2011) 288 3 192 501

CNRM-CM5 (Voldoire et al. 2013) 256 3 128 850

GFDL CM3 (Donner et al. 2011) 144 3 90 500

IPSL-CM5A-LR (Dufresne et al.

2013)

90 3 90 1000

MIROC-ESM (Watanabe et al. 2011) 128 3 64 630

MPI-ESM-LR (Raddatz et al. 2007) 192 3 96 1000

MPI-ESM-P (Raddatz et al. 2007) 192 3 96 1156

MRI-CGCM3 (Yukimoto et al. 2011) 320 3 160 500

NorESM1-M (Bentsen et al. 2013) 144 3 96 501
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spurious long-term changes not related to forcing or

internal long-term variability. There can be several

causes for this, like numerical errors, or that the system

is not in equilibrium for diverse reasons. Spinups of

models are done to reduce such errors, but it may take

thousands of years for the deep oceans to fully equili-

brate, so these errors are hard to get rid of. It is not

possible to categorically distinguish between what is

drift and what is natural variability. Perhaps it is not

even possible to accurately estimate the long-term var-

iability without influences of previous disturbances of

the climate system, since the models cannot be initial-

ized from a perfect equilibrium state. Sen Gupta et al.

(2013) recommends using as long of portions of the time

series as possible when estimating a drift to reduce the

chance of mistakenly taking natural variability to be a

drift, so we chose to reduce possible effects of drifts by

subtracting linear trends from the full records.

3. Methods

a. The periodogram spectral estimator

The power spectral density (PSD) of a discrete-time,

stationary, stochastic process fT(t)g, for t 5 1, 2, . . . , ‘

can be defined by

S( f )5 lim
n/‘

E[j ~T
n
( f )j2]

n
, (1)

where n is a positive integer and ~Tn is the discrete

Fourier transform of T(t) on the interval t 2 [1, n]. The

symbol E denotes the expectation value, which in

physics literature is often conceived as an ensemble

average, that is, an average over an (infinite) ensemble

of independent realizations of the stochastic process.

Usually we do not have many realizations of the process

but have to estimate the PSD from one realization. The

periodogram is an estimator for the PSD for evenly

sampled time series of length n and is defined by

Ŝ
n
( f )5

j ~T
n
( f )j2

n
. (2)

For the finite-length time series (n , ‘), the fre-

quency f is discrete and takes the values fm 5 m/n,

where m 2 f2n/2, 2n/2 1 1, . . . , n/2 2 1, n/2g. The

periodogram has a poor signal-to-noise ratio, making

the power in individual peaks uncertain. However,

this is not a problem for us, since we are only in-

terested in studying the shape of the smoothed

spectrum. In our analyses we will also reduce the

noise by log binning, that is, an averaging over fre-

quencies within equally wide bins in a log–log plot.

By presenting the periodogram in a log–log plot, the

scaling exponent b can be estimated by a linear fit to

the power spectrum: logS( f ) 5 2b logf 1c. The log

binning ensures that each time scale is weighted

equally.

b. Local, regional, and global spectra

The gridded temperature fields consist of local temper-

ature time series fTi(t)g, for i5 1, . . . ,N and t5 1, . . . , n,

representing the temperature associated with grid box i.

Here n is the length of the time series and N is the total

number of grid boxes on the globe. If we spatially av-

erage these temperature time series over a region with

area A (a continent, an ocean, or the entire globe) and

weight each temperature by the area Ai of each grid

cell, we obtain a time series averaged over the area

A5�
NA

i51Ai. This averaged temperature series is

T
A
(t)5

1

A
�
NA

i51

A
i
T
i
(t) , (3)

which has the power spectral density

S
A
( f )5 lim

n/‘

E[j ~T
A
( f )j2]

n
, (4)

where ~TA( f ) denotes the Fourier transform of TA(t).

c. The influence of spatial dependence on regional

and global spectra

The SA( f) is the weighted sum of all the spectra and

cross spectra of the regional temperatures:

S
A
( f )5 lim

n/‘

E[ ~T
A
( f ) ~T

A
( f )*]

n
5 lim

n/‘

E

("

�
NA

i51

A
i
~T
i
( f )

#"

�
NA

j51

A
j
~T
j
( f )

#

*
)

nA2

5 lim
n/‘

E

"

�
NA

i51
�
NA

j51

A
i
A

j
~T
i
( f ) ~T

j
( f )*

#

nA2
5

1

A2 �
NA

i51
�
NA

j51

A
i
A

j
S
ij
( f ) , (5)

where
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S
ij
( f )5 lim

n/‘

E[ ~T
i
( f ) ~T

j
( f )*]

n
(6)

is the cross-power spectrum between the time series in

cells i and j. An estimator for the cross spectrum is the

cross periodogram,

Ŝ
ij
( f )5

~T
i
( f ) ~T

j
( f )*

n
. (7)

Equation (5) expresses the PSD of the spatially aver-

aged temperature record as a weighted sum over all the

cross spectra, that is, the sum over all elements in the

matrix (AiAj/A
2)Sij( f). If there were no spatial correla-

tions between Fourier transforms, then the off-diagonal

elements would be zero, and SA( f) would simply be the

trace of this matrix. In general the off-diagonal elements

are nonzero, the matrix is Hermitian (Sij 5 Sji*), and the

matrix

C
ij
( f )5

A
i
A

j

A2

(

[S
ij
( f )1S

ij
( f )*] , for i 6¼ j

S
ii
( f ) , for i5 j

(8)

is real and symmetric. For i 6¼ j, each entry of Cij( f)

represents the contribution to SA( f) from the correla-

tions between the spatial locations i and j at the fre-

quency f. The equation Sii( f) 5 Si( f) is the PSD of the

local temperature Ti(t), and Cii( f) 5 (Ai/A)2Si( f) is the

contribution from the PSD in grid cell i to SA( f). If we

again consider the case of no spatial correlations, then

SA( f) reduces to

Sself
A ( f )5 �

NA

i51

C
ii
( f )5

�

1

A

�2

�
NA

i51

A2
i Si

( f ) , (9)

which is just a weighted average of the local spectra.

If all of the grid cells had the same area (Ai 5A/NA),

then this reduces further to the simple average

Sself
A ( f )5 (1/NA)SA( f ), where SA( f )5 (1/NA)�

NA

i51Si( f )

is the average local spectrum in the region A. This

shows that in the absence of spatial correlations the

power in the temperature averaged over an area is

inversely proportional to the magnitude of this area.

In the presence of spatial correlations, the contri-

butions from the off-diagonal terms cause a smaller

reduction in the power with increasing area.

In principle Cij( f ) can of course be negative and

hence give a negative contribution to SA( f ). However,

from Eq. (6) we observe that we get a nonzero cross-

spectral power after performing the ensemble average

indicated by the symbol E if the phases ui( f ) and

uj( f ) of ~T i( f ) and ~T j( f ), respectively, are correlated.

Assuming for simplicity of the argument that the

moduli j ~T i( f )j and j ~T j( f )j are approximately constant

over the ensemble, we can write

C
ij
( f )’ lim

n/‘

A
i
A

j

A2

j ~T
i
( f )jj ~T

j
( f )j

n
2E[cosDu

ij
( f )] , (10)

where Duij( f ) 5 ui( f ) 2 uj( f ). If the phases are per-

fectly correlated, then we have Duij( f ) 5 0 and hence

E[cosDuij( f )] 5 1. If they are perfectly uncorrelated,

then cosDuij( f ) will have random values in the interval

[21, 1], and E[cosDuij( f )] 5 0. If they are correlated,

but not perfectly, jDuij( f )j is typically less than p/2 in

an ensemble member and hence 0,E[cosDuij( f )], 1.

This implies that typically Cij $ 0 and that it con-

tributes positively to the spectral density of the spa-

tially averaged signal SA( f ). Ensemble averaging is

usually not what we do when performing estimation,

but the argument can easily be transferred to aver-

aging over nearby frequencies. Let us rewrite Eq. (5)

in the form

S
A
( f )5Sself

A ( f )1 �
NA

i51

Scorr
i ( f ) , (11)

where

Scorr
i ( f )5

1

2
�
NA

j51

C
ij
( f )(12 d

ij
) (12)

contributes to SA( f) from the correlations between the

grid cell i and all of the other grid cells within regionA. If

A represents the entire globe, then a plot of Scorr
i ( f ) as a

function of i will reveal information about how strongly

the variability on the frequency f at each location is

teleconnected to the variability on this frequency over

the rest of the globe.

The term �
NA

i51S
corr
i ( f ) in Eq. (11) modifies the shape

of the local PSDs given by Sself
A ( f ). The spatial correla-

tions are stronger on longer time scales, so Scorr
i ( f ) has

more power on the low frequencies. In the FEBM de-

scribed in Rypdal et al. (2015), this increased power on

low frequencies effectively retains the power-law shape

but enhances the spectral exponent b.

4. Results

a. Globally averaged local PSDs and PSDs of

global average

In Figs. 1 and 2 we show local and global temperature

spectra for many instrumental and climate model data.

This is done separately for land and sea surface
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temperatures, since their spectra differ substantially.

On time scales up to about 20 yr, the scaling charac-

teristics in observational or reanalysis spectra and the

model spectra are remarkably consistent. The general

tendency is that the spectral slopes increase and that

the power density decreases as one moves from local

to global scales. For land, the local spectral index b is

approximately 0.2 and the global-average index is

approximately 0.4. For sea, the corresponding values

are 0.5 and 1.0. These tendencies are consistent with

the theoretical discussion in section 3c and are in

quantitative agreement with the results derived from

the FEBM of Rypdal et al. (2015).

The average local spectra for instrumental data ex-

hibit lower high-frequency variability than the spectra

for control runs but comparable low-frequency vari-

ability. This can be explained by the fact that most of the

grid cells in the climate models are smaller than the grid

cells for the instrumental data. As we will discuss further

below, there is also large variations among spectra for

local instrumental temperatures.

When considering globally averaged temperatures,

the power for observational or reanalysis data and

model data is similar for the highest frequencies, despite

that model data are averaged over a larger area than

observational data. Some of the observed sea surface

temperatures show even lower high-frequency power

than the model data. In Figs. 3j,k and 4j,k, we observe

that the average over the equatorial region contains less

high-frequency variability than the global average. This

implies that missing observational values at high lati-

tudes give the equatorial temperatures more weight in a

global average, hence reducing high-frequency vari-

ability for observed global temperature.

On longer time scales, the global observational and

reanalysis data contain more power than the global

model data; the former contains more power on

the century time scale than derived from the scaling

FIG. 1. The mean local and global spectra for (a) land temperatures and (b) SSTs. All temperatures are detrended

prior to the analysis to reduce the influence from anthropogenic warming.

FIG. 2. The mean local and global spectra for (a) land temperatures and (b) SSTs. All temperatures are linearly

detrended to reduce possible drifts in the climate models.
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slope, whereas the latter contains less. One cannot

conclude from this, however, that the models do not

reproduce correctly the variability on these time

scales. There are two reasons for this; the first is that

the model simulations are control runs and do not

reflect variability caused by external forcing. The

detrended observational records, on the other hand,

are influenced by the component of the forcing that is

not eliminated by the linear detrending. The second

reason is that the model data are averaged over a

larger area than the instrumental data, and the power

may hence be generally lower just because of the

averaging.

That said, it is quite evident that the larger power on

multidecadal scales in the observational data is due to

the oscillation with a period around 70 yr that is ob-

served in the instrumental records. This oscillation is

well described by the Atlantic multidecadal oscillation

FIG. 3. The mean local spectra in several regions specified in Table 3. The thick lines are the mean spectra of the local temperatures,

while the thin lines are the spectra of the mean temperature in the region. All temperatures are linearly detrended to reduce the an-

thropogenic influence. The black dashed lines are reference lines with (a),(b) b 5 0.4 for the land-only temperatures and (c)–(l) b 5 1.

Note that the range of S( f ) is different for each panel.
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(AMO), which is probably linked to the Atlantic Ocean

circulation (McCarthy et al. 2015). AMO is possibly

present in the control runs as well, since there are no

large differences between models and observations in

the mean local spectra. But if it is present, there must

be regions included in the mean temperature for the

models that have a similar oscillation out of phase with

the regions included in the average for observations. In

that way, the variability on a global scale can be partially

averaged out and produce the lower power observed for

model data on the long time scales.

b. Regionally averaged local PSDs and PSDs of

regional average

Some regions have been selected for study, as speci-

fied in Table 3. For each of these regions, the mean

spectrum of the local temperatures and the spectrum

of the mean temperature are estimated. The resulting

FIG. 4. The mean local spectra in several regions specified in Table 3. The thick lines are the mean spectra of the local temperatures,

while the thin lines are the spectra of themean temperature in the region.All temperatures are linearly detrended to reduce possible drifts

in the climatemodels. The black dashed lines are reference lines with (a),(b) b5 0.4 for the land temperatures and (c)–(l) b5 1. Note that

the range of S( f ) is different for each panel.
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spectra are plotted for observational data in Fig. 3 and

for model data in Fig. 4. The overall absolute values

of the slopes (b) of the thin lines displaying the log–

log spectra for average temperatures are in general

higher, and the total power lower, than the corre-

sponding features shown by the thick lines for the

averaged local spectra. The increased b after spatial

averaging are in agreement with the predictions

from the FEBM of Rypdal et al. (2015), and the re-

duced power follows from Eq. (9) and the subsequent

discussion.

For most of the regions the spectra are close to

power laws. The land regions have higher power and

lower b than all of the ocean regions, as we have al-

ready observed for global mean land and sea in Figs. 1

and 2. The largest deviations from a power-law

spectrum are found in the eastern equatorial Pacific

Ocean, which exhibits increased power at time scales

of a few years due to the dynamics of El Niño–

Southern Oscillation (ENSO). At longer time scales

these spectra appear flat and are hence closer to what

we can expect from short-range memory processes,

for example, as in Ault et al. (2013). Since ENSO also

has an influence on other areas near the equator, the

same tendencies are observed for spectra for all

equatorial temperatures.

The general agreement between spectra for obser-

vations or reanalyses and control runs in all regions

is remarkable, although the model spectra are more

variable. The most apparent discrepancy seems to be

that the spectral peak due to the 70-yr oscillation

(related to the AMO) seems to disappear in the spa-

tially averaged model temperatures, while it prevails

in the corresponding averaged instrumental temper-

atures. This indicates that this oscillation is more

spatially coherent in the instrumental observations

than in the model control runs.

In many regions, the spectra observed for the vari-

ous control runs are quite similar, and the variability

among the simulations do not seem to depend sys-

tematically on the size of the grid boxes. However, in

the Atlantic, and in particular in the North Atlantic,

the variability is larger than elsewhere. There is also

some variability in the power on centennial time scales

in the southern oceans.

From the theory in section 3c and the results dis-

cussed in section 4a, we should expect temperatures

from the datasets with the large grid boxes to have a

slightly higher b and less power than temperatures

given in small grid boxes, if the temperatures were

representative average temperatures over the areas

of the grid boxes. Both HadCRUT4 and NOAA

MLOST are given on a 58 3 58 grid and hence should

have similar statistics. So should the Twentieth Cen-

tury Reanalysis and GISTEMP, both of which are

given on a 28 3 28 grid. BEST is difficult to compare,

since it has larger grid boxes than other datasets near

the poles and it has smaller grid boxes near the

equator. By studying the thin lines in Fig. 3, we ob-

serve that there is no systematic difference between

the local spectra for datasets given on a 58 3 58 grid

and the datasets given on a 28 3 28 grid. The spectra

for the Eurasian and North American land tempera-

tures are all very similar, with some exceptions for the

reanalysis data, but for sea surface temperatures

there are large variations. The power in HadCRUT4

temperatures is quite high, while the spectra for

NOAA MLOST seem to be more comparable to

those derived from GISTEMP. The latter can prob-

ably be explained by the fact that both GISTEMP

and NOAA MLOST are based on the same data for

sea surface temperatures. The higher values of the

spectra of HadCRUT4 may be attributed to the lack

of spatial interpolation, making this a more local

dataset.

The variations of spatial coverage could explain

some differences between the spectra for the observa-

tional and reanalysis datasets, in particular for aver-

aged temperatures. Datasets with a higher degree of

spatial interpolation allow for averaging over larger

areas. The good coverage of land temperatures com-

pared to sea surface temperatures makes the degree of

interpolation less important for land than for sea, and it

is likely important for understanding why sea surface

temperatures varymore between the datasets than land

temperatures.

The differences between spectra of observational and

model data could also be partially explained by the

larger data coverage in the models than in the obser-

vations.We observe for instance particularly high power

TABLE 3. Specifications of regions used in Figs. 3 and 4.

Region Lat Lon

Global 908S–908N All longitudes

Equatorial 208S–208N All longitudes

Global without

equatorial

208–908S and 208–908N All longitudes

Eurasian land 408–908N Eastern

Hemisphere

North American land 408–908N 1808–608W

North Atlantic Ocean 408–608N 508–108W

South Atlantic Ocean 408–608S 508W–08

Atlantic Ocean 608S–608N 608W–08

Niño-3.4 region 58S–58N 1708–1208W

Indian Ocean 408S–208N 408–1208E

North Pacific Ocean 208–608N 1208E–1208W

Southern oceans 408–908S All longitudes
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for the reanalysis data on the low frequencies for North

American temperatures. This can be explained by a

steep warming near the Arctic in the latter half of the

time series that will not be fully removed by a linear

detrending of the entire time series. In this region we do

not have sufficient observations to include statistics from

the instrumental datasets.

c. Long-range memory in temperature data

Since most of the spectra are close to straight lines in

log–log plots, we can estimate the persistence of the

temperatures by fitting straight lines to the log–log

periodograms. The slopes of the lines will be2b, and in

Fig. 5 we estimate b for three gridded observational

data and the Twentieth Century Reanalysis data. Only

frequencies corresponding to time scales between 1 and

10 yr are used here, since the statistics at long time

scales are poor for these short records. Figures 6 and 7

show b estimated for the control runs on time scales

between 1 and 10 yr and between 10 and 100 yr, re-

spectively. As we noticed in Figs. 3 and 4, there are

some regions where the spectra deviate from a power

law, so the values estimated for b should be interpreted

with care. In particular, the fits on time scales between 1

and 10 yr in the eastern equatorial Pacific will be poor,

because the lines will be fitted through the ENSO peak.

The estimated slope in most of this region will be very

high as a result of the steep increase of the spectrum

toward this peak. In some cases the slope could also be

estimated to be negative.

These plots confirm our previous results of a lower

persistence over land than over sea, at least for the

Northern Hemisphere. In the Southern Hemisphere,

we find many values of b for land that are comparable

to those found for sea. Except for Antarctica, the

majority of landmasses in the Southern Hemisphere

are at low latitudes, where the atmospheric circulation

is largely influenced by the Hadley cell and theWalker

cell, causing more persistent wind patterns. Because

of this and the weak weather noise forcing, North et al.

(2011) argue that the tropical length scales are much

longer than elsewhere. Moreover, landmasses in the

Southern Hemisphere are more fragmented and

hence more likely to be influenced by sea surface

temperatures.

On the longest time scales, we could have effects of

drift in the control runs, so we have done a linear

detrending prior to the analysis in order to reduce pos-

sible drift effects. We have also performed the analysis

without the detrending (not shown), and the results are

almost the same in that case. The southern oceans in the

MIROC-ESM are an exception, where trends result in

higher values of b. The values of b estimated on time

scales between 10 and 100 yr are generally lower than

those estimated between 1 and 10 yr. The strongest

persistence on the long time scales is found in the

southern oceans and in the North Atlantic. Some of the

strong centennial variability in the southern oceans is

possibly linked to ocean–sea ice interactions, causing

abrupt surface temperature changes in the Weddell Sea

(Martin et al. 2013), where the time interval between

each abrupt change is on the order of centuries. There

are also some regions with negative values of b and

others with b ’ 0.5. On these multidecadal time scales,

FIG. 5. Spectral exponent b estimated from the periodogram of linearly detrended instrumental and reanalysis

datasets on time scales between 1 and 10 yr.
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there is no systematic difference between land and sea

surface temperatures.

In Fig. 4 the ECHO-G model is seen to exhibit

stronger long-term variability than the CMIP5 models,

particularly in the North Atlantic and the southern

oceans. Its strong variability is also observed in Fig. 7 as

high values of b. Our results hence confirm previous

findings of LRM in this model (Fraedrich and Blender

2003; Fraedrich et al. 2004). Other models also show the

presence of LRM on global scales and in most regional

temperatures, but it seems to be weaker for the CMIP5

models analyzed here than for ECHO-G. The differ-

ences can probably be attributed to further de-

velopments of the climate models since the ECHO-G

run was completed, including the removal of the addi-

tional heat and freshwater flux used to correct for drifts

in ECHO-G.

d. Regions with strong teleconnections in

NorESM1-M

In this subsection we consider data from the control

run of NorESM1-M and compute the following esti-

mator for each grid cell i:

Ŝ
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where n is the length of the time series. The sum

�iŜi(f1, f2) is themean power density of the globalmean

temperature in the frequency band f1 , f , f2. Hence,

Ŝi(f1, f2) is the contribution from each grid cell i to the

mean spectrum of global temperature over the specified

frequency range and depends on the strength of its

teleconnection to other parts of the globe, as measured

by the sumof the cross spectra. The diagonal elements of

thematrix in Eq. (13)—that is, when j5 i—represent the

area-weighted auto-power spectral density in the fre-

quency band in the grid cell i, and a global map is plotted

for different ranges of time scales 1/f2, t, 1/f1 in Fig. 8.

The full sum over the diagonal and cross-diagonal ele-

ments (the cross powers) is between two and three or-

ders of magnitude larger and is plotted in Fig. 9. This

demonstrates that cross power (teleconnections) on the

time scale in question contributes much more to the

power in the global mean temperature than the auto-

power in the respective grid cells. However, the maps in

FIG. 6. Spectral exponent b estimated from the periodogram of temperatures from climate model control runs on time scales between 1

and 10 yr.
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Figs. 8 and 9 have quite similar structure, indicating that

regions with high spectral auto-power in a given fre-

quency band also contributemore to the power of global

mean temperature in this band.

For the time scales 0.5 , t , 1.5 yr, continental in-

teriors, in particular Eurasia and North America,

contribute strongly to the power in global mean tem-

perature, consistent with the observation in Figs. 3 and

4 of land temperatures having more power than other

regions on these time scales. On time scales 2 ,

t , 4 yr, the eastern equatorial Pacific plays of cour-

se a large role. The dynamics of ENSO is known to

have an impact on the climate more or less every-

where, and our results suggest that it could have es-

pecially strong couplings to Australia and to the

northwest region of the United States, although we

need to explore the entire cross-power matrix to

draw a firm conclusion on this point. As we increase

the time scale, we have fewer frequencies to analyze in

the estimated spectrum, so we have averaged over

longer time scales to reduce the uncertainty. For 20 ,

t , 40 yr, there is high power in the North Pacific,

similar to what is observed for the Pacific decadal

oscillation (Mantua et al. 1997) and some smaller

structures in other parts of the world. At the very

longest time scales, regions contribute more evenly,

although there are some areas in the southern oceans

that still have higher power.

Note that although most points have positive values,

there are some regions with negative values as well.

Equation (10) suggests that such negative contributions

can arise from teleconnections more or less in antiphase.

Another interesting feature of this figure is the small

influence from Antarctica on all time scales, suggesting

that no essential interior variability is left out if we

compute global temperature without values from Ant-

arctica. This may not be true for forced variability. The

methodology employed in this section could be useful

for those who want to construct global temperatures and

need to determine the relative weights from each region

in the global average.

5. Discussion and conclusions

There have been some discussions in the literature as

to whether surface temperatures are best described by a

FIG. 7. Spectral exponent b estimated from the periodogram of linearly detrended temperatures from climate model control runs on time

scales between 10 and 100 yr.
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short-range or a long-range memory process (Vyushin

et al. 2012). We have shown here that log–log spectra

for equatorial temperatures have a steep slope for

high frequencies but are flat for lower frequencies,

reasonably consistent with a Lorentzian spectrum.

Nonequatorial temperature spectra seem to be better

described by a long-range persistent process, since the

spectra continue to increase with decreasing fre-

quency, even at frequencies corresponding to cen-

tennial time scales. Some spectra exhibit a weaker

slope at lower frequencies and are perhaps best de-

scribed by something in between these two classes of

stochastic models, consistent with the conclusions of

Vyushin et al. (2012). There are, however, indications

that climate models produce internal low-frequency

variability that is too low at regional scales (Laepple

and Huybers 2014), particularly at low latitudes.

When considering an average over many local tem-

peratures, or an average over many local spectra, a

reasonable straight-line fit to a log–log spectrum is

possible, both for models and observations.

Land temperatures are in general less persistent than

sea surface temperatures. Interior land temperatures

over large continents like Eurasia and North America

FIG. 9. The weighted sum of the spectrum and all the cross spectra at each grid point i for NorESM1-M, as given by

Eq. (13).

FIG. 8. The average area-weighted power of NorESM1-M surface temperatures in each grid box on the given

time scales.
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are well approximated by a white noise, while the per-

sistence is somewhat higher at the coast, in agreement

with previous studies (Blender and Fraedrich 2003;

Fraedrich and Blender 2003). Land temperatures close

to the equator seem to be more persistent as a result of

the strong influence of ENSO.

Our results suggest that most of the latitudinal de-

pendence of b observed by Huybers and Curry (2006)

can be explained by the strong influence of ENSO

closer to the equator. Because of ENSO, characterizing

the spectrum in equatorial regions by one single slope

does not make much sense. Sea surface temperatures

exhibit higher b than land temperatures because of the

high thermal inertia of the ocean. Land temperatures

experience a stronger seasonal cycle than sea surface

temperatures because of the small heat capacity of the

land surface. This means that if we exempt regions

strongly influenced by ENSO, then the correlation

observed by Huybers and Curry (2006) between b and

the strength of the annual cycle can be explained by the

different thermal inertia of land and sea, without in-

voking their suggested nonlinear cascade driven by the

latitude-dependent seasonal forcing.

When averaging temperatures over a larger area, we

observe that the power spectral density decreases, and it

decreases more for the high frequencies than for the low

frequencies. This is because high-frequency variability is

generally more localized in space and will be reduced by

spatial averaging. A consequence is that the persistence

of the temperature increases with the degree of spatial

averaging. As for most of our other results, the equa-

torial region is exceptional, in this case because it

shows a very small decrease of ENSO frequencies

compared to higher frequencies.

The local spectral power of the gridded data analyzed

in this paper does not depend systematically on the size

of the grid boxes, perhaps partly because local and re-

gional variability is similar up to some spatial scale that

is larger than the size of the grid boxes. For the obser-

vational data, however, we find that temperatures from

datasets with large grid boxes may exhibit larger vari-

ability than temperatures from small grid boxes, which is

contrary to our expectations. We suspect this may be

due to the different degree of spatial interpolation used

when constructing the datasets. Interpolation in space

could have similar effects as averaging over space, hence

causing temperatures to effectively represent an average

over a larger or smaller area than the area of its grid box.

Further analysis needs to be done to determine whether

datasets represent variability correctly according to

their grid size. If HadSST3 happens to have more local

characteristics than an ideal 58 3 58 dataset should have,

then it could partially explain why Laepple and Huybers

(2014) observe a discrepancy between regional climate

model variability and observations from HadSST3. The

discrepancy they observe is particularly clear in the

North Atlantic. This is also where we observe the largest

spread among models, implying that at least some of the

models could produce too weak regional variability.

The analysis made in this paper demonstrates a re-

markable general agreement between the power spectral

characteristics of local, regional, and global temperatures

derived from instrumental, reanalysis, and global circu-

lation model data. With the exception of the equatorial

region, local and regional power spectra are well de-

scribed by a power law on time scales from months to

centuries, which suggests describing the temperature time

series as realizations of long-memory stochastic processes.

The spectral exponent b, which measures the degree of

long-range memory, is much greater over oceans than

over land, and b increases with the degree of spatial av-

eraging, yielding a b for global temperature that is gen-

erally twice that for local temperatures. This is due to

increased spatial coherence with increasing time scale,

and it lends additional observational support to the frac-

tional energy balance model of Rypdal et al. (2015). In

this model this increased spatial coherence appears as a

result of long-range memory in the temporal response,

which can be interpreted as a result of a delayed energy

exchange between the surface and other components of

the climate system with long response times. Since the

model is linear and horizontal energy transport is repre-

sented by a simple diffusion term, a nonlinear (turbulent)

cascade is not invoked in explaining the spatiotemporal

spectral characteristics and the power-law nature of the

spectra.
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