
SPECTRAL CLUSTER ESTIMATES FOR C1,1 METRICS

HART F. SMITH

Abstract. In this paper, we establish Lp norm bounds for spectral clusters on com-
pact manifolds, under the assumption that the metric is C1,1. Precisely, we show
that the Lp estimates proven by Sogge [12] in the case of smooth metrics hold under

this limited regularity assumption. It is known by examples of Smith-Sogge [11] that
such estimates fail for C1,α metrics if α < 1.

1. Introduction

Let M be a compact manifold without boundary, of dimension n ≥ 2, and let P
be an elliptic differential operator of second order on M which annihilates the constant
function. Assume that P is self-adjoint and non-positive with respect to some density
dµ, and denote the eigenvalues of P by {−λ2

j}. Let Πλ be the projection of L2(dµ) onto
the subspace spanned by the eigenfunctions for which λj ∈ [λ, λ+ 1].

In the case that the coefficients of P are smooth, Sogge [12] established the following
bounds for the L2 → Lq operator norm of Πλ:

(1.1)
∥∥Πλf

∥∥
Lq(M)

≤ C λ
n−1

2 ( 1
2−

1
q ) ‖f‖L2(M) , 2 ≤ q ≤ 2(n+1)

n−1 .

(1.2)
∥∥Πλf

∥∥
Lq(M)

≤ C λn( 1
2−

1
q )− 1

2 ‖f‖L2(M) ,
2(n+1)

n−1 ≤ q ≤ ∞ ,

Both exponents can be shown to be best possible for each q.

In this paper we establish these estimates under the assumption that the coefficients
of P are of regularity C1,1 (the first derivatives of the coefficient functions are Lipschitz.)
In Smith-Sogge [11], for each α < 1 examples of operators with coefficients of regularity
C1,α were constructed for which estimate (1.1) fails for q 6= 2, showing that the regularity
C1,1 is sharp among the Hölder classes.

We begin by making our assumptions on P more precise. We assume that M is covered
by a finite collection of coordinate patches, and that in the induced local coordinates

(1.3)
(
Pf

)
(x) = ρ(x)−1

n∑
i,j=1

∂i

(
ρ(x) gij(x) ∂jf(x)

)
, dµ = ρ(x) dx .

Our assumption is that ρ(x) and each gij(x) is the restriction to the patch of a function
in C1,1(Rn) , with ρ(x) and the matrix valued function g(x) both real and uniformly
positive.
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2 HART F. SMITH

Theorem 1.1. Let M and P be as above. Then (1.1) and (1.2) hold for n ≥ 2.

Theorem 1.1 will follow as a corollary of the square function estimates for the Cauchy
problem stated in Theorem 1.2 below. Since the square function estimates involve Sobolev
spaces of index equal to the exponent of λ in (1.2), the limited regularity of the coefficients
places a restriction on how large q can be in Theorem 1.2. In particular, we require
δ(q) ≤ 2, where

δ(q) = n
( 1

2
− 1
q

)
− 1

2
.

However, as noted below the estimates (1.1) and (1.2) for the full range of q follow by
establishing them at the critical exponent qn = 2(n+1)

n−1 , and Theorem 1.2 applies since
δ(qn) ≤ 1 in all dimensions.

We define Sobolev spaces on M by the rule

‖f‖Hδ(M) =
∞∑

j=0

(
1 + λ2

j

)δ |cj |2 , f =
∞∑

j=0

cj ψj ,

where Pψj = −λ2
jψj is the orthonormal eigenbasis. By elliptic regularity (see, for exam-

ple, Theorem 8.10 of [4]), this norm is equivalent to that defined by the standard Sobolev
space in local coordinates, provided 0 ≤ δ ≤ 3. (This requires that the coordinate patches
on M be of regularity C3. In our applications we consider only 0 ≤ δ ≤ 2, so that C2

coordinate patches are sufficient for what follows.)

Theorem 1.2. Let P and M be as above, and suppose that {ψj} is the eigenbasis for P ,
with eigenvalues {−λ2

j}. Then, with

u(t, x) =
∞∑

j=0

cj cos(tλj)ψj(x) , f(x) =
∞∑

j=0

cj ψj(x) ,

the following estimate holds, provided 2(n+1)
n−1 ≤ q ≤ ∞ and δ(q) ≤ 2,

(1.4) ‖u‖Lq
xL2

t (M×[−1,1]) ≤ C ‖f‖Hδ(q)(M)

To see that Theorem 1.1 follows from Theorem 1.2, we first consider estimate (1.2) for
q such that δ(q) ≤ 2. Observe that

Πλf =
∫ 1

−1

e−itλ
∑

j:λj∈[λ,λ+1]

c̃j cos(tλj)ψj ,

where

c̃j =
[

sin(λj − λ)
λj − λ

+
sin(λj + λ)
λj + λ

]−1

cj .

For λj ∈ [λ, λ + 1] the term in brackets lies in the range [12 , 2], and the c̃j are thus
coefficients of a function of comparable Hδ(q) norm. The bound (1.2) for δ(q) ≤ 2 then
follows immediately from (1.4). Since δ(qn) = q−1

n < 1
2 , the case q = qn holds for (1.2),

hence for (1.1). Estimate (1.1) follows on its full range by interpolation of q = qn and
q = 2.

The condition δ(q) ≤ 2 fails for large q if n ≥ 6 . To obtain (1.2) for all n and q we
apply heat kernel methods. We first note that by interpolation it suffices to consider the
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case q = ∞. Let Hλ = exp(λ−2P ) denote the heat kernel at time λ−2 ≤ 1. By Markov
semigroup results of Varopoulos [16], specifically the Theorem of section 7, page 259, it
holds for n > 2 that

‖Hλg‖L∞(M) ≤ C λn ‖g‖L1(M) .

For this we need to check the inequality

‖g‖
L

2n
n−2 (M)

≤ C
(
(−Pg, g) 1

2 + ‖g‖L2(M)

)
,

which holds since the right hand side is equivalent to ‖f‖H1(M). Interpolation with the
bound

‖Hλg‖L∞(M) ≤ ‖g‖L∞(M)

yields that
‖Hλg‖L∞(M) ≤ C λ

n
q ‖g‖Lq(M) .

If λj ∈ [λ, λ+ 1] then exp(−λ2
j/λ

2) is bounded away from 0, and we may write

Πλf = HλΠλf̃ , ‖f̃‖L2(M) ≈ ‖f‖L2(M) .

The case q = ∞ of (1.2) thus follows from the case q = qn, which as noted above follows
from (1.4) in all dimensions.

Theorem 1.2 has the advantage of being localizable to a coordinate patch by finite
propagation velocity, after observing that u satisfies the Cauchy problem for ∂2

t −P . By
covering M × [−1, 1] by a finite collection of sets, and scaling the coordinate patches, we
may assume that in each local coordinate patch P is arbitrarily close to the standard
Laplace operator, and thus reduce Theorem 1.2 to the following result on Rn.

Theorem 1.3. Suppose that the operator P takes the form (1.3), where for |x| ≥ 3
4 we

have gij(x) = δij and ρ(x) = 1. Assume also that
n∑

i,j=1

‖gij − δij‖C1,1(Rn) + ‖ρ− 1‖C1,1(Rn) ≤ c0 ,

where c0 is a small number to be fixed. Then, if u(t, x) solves the Cauchy problem

∂2
t u(t, x) = Pu(t, x) , u(0, x) = f(x) , ∂tu(0, x) = g(x) ,

the following estimate holds, provided qn ≤ q ≤ ∞ and δ(q) ≤ 2,

‖u‖Lq
xL2

t (Rn×[−1,1]) ≤ C
(
‖f‖Hδ(q) + ‖g‖Hδ(q)−1

)
.

The version of Theorem 1.3 for smooth coefficients, without the restriction on δ(q), was
established by Mockenhoupt-Seeger-Sogge [8]. The result of Theorem 1.3 is closely related
to the Strichartz estimates, which bound Lp

tL
q
x norms of u. The Strichartz estimates were

proven in the setting of C1,1 coefficients by the author in [10] for dimensions n = 2, 3, and
subsequently by Tataru [14] in all dimensions. We remark that the results of this paper,
in particular the estimate (3.15), yield an alternate proof of the homogeneous Strichartz
estimates, in the more general time-dependent setting considered by Tataru [14]. We
provide the details in the last section.

This paper follows the same initial steps as [10] and [14] by first reducing the estimates,
via a Littlewood-Paley decomposition, to the case of u localized in frequency to a dyadic
region. One then mollifies the coefficients of P at the scale of the square root of the given
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frequency, thus reducing the problem to proving uniform estimates on dyadic frequency
scales for a family of smooth metrics.

The difference between this paper and the above works is in the control of solutions
for the mollified equation. The proofs of the Strichartz estimates essentially are estab-
lished through dispersive estimates; that is, through the time decay of an approximate
fundamental solution to the wave equation. Squarefunction estimates, on the other hand,
depend on spatial decay of the approximate fundamental solution away from the light
cone. The complication is that, for small t, the smoothing procedure applied to the coef-
ficients involves averaging over a spatial scale larger than the decay scale. To get around
this problem, we use a parametrix construction that behaves well under time-space di-
lation. The desired decay properties of the parametrix for small t are then obtained by
scaling from the spatial decay estimates on the kernel at t = 1.

A rough outline of the proof is as follows. We begin by reducing Theorem 1.3 to
establishing estimates for a first-order equation, essentially the half-wave equation, with
both the solution and the coefficients of the equation appropriately localized in frequency.
We next apply a continuous wave-packet transform in the x-variables to the solution
u(t, x) of the first-order equation, lifting u to a function v(t, x, ξ). The wave-packet
transform is at the right scale so that the lift of the half-wave operator applied to u
equals the derivative of v along the Hamiltonian flow, modulo an error term bounded
in energy. This error term can be absorbed into the driving force, and thus v(t, x, ξ)
satisfies an inhomogeneous first-order differential equation. By variation of parameters,
we are then reduced to establishing estimates for functions whose lifts are constant along
the Hamiltonian flow. The Hamiltonian flow generates a unitary transform on L2(dx dξ),
which lets the crucial “WtW

∗
s = Wt−s” step go through. We then scale t − s to 1, and

show that the rescaled kernel has the desired decay estimates away from the light cone.

Our use of a continuous wave-packet transform is inspired by Tataru’s proof of the
Strichartz estimates [14]. The main difference is that we here take a wave-packet trans-
form in the x-variable only, rather than in (t, x). We also use a Schwartz function of
compact support in ξ as the basis for the transform, as opposed to the Gaussian based
FBI transform used in [14], which has the benefit that the transform of a function u is
compactly supported in ξ if the Fourier transform of u is. This is important for intended
future applications, since as a result one has to deal with the Hamiltonian flow only on a
localized set in ξ. For more information on the Fourier-Bros-Iagolnitzer transform, and
its applications for wave equations, we refer to [3] and the references therein. The partic-
ular scale of FBI transform used here coincides with the Córdoba-Fefferman wave-packet
transform, [2].

The outline of this paper is as follows. After generalizing the class of operators we
consider, section 2 is concerned with reducing Theorem 1.3 to Theorem 2.5, which involves
the half wave equation localized to a dyadic frequency shell. In section 3 we introduce
the wave-packet transform used to analyze the solution u. The main result is Lemma
3.3, relating the half-wave operator to differentiation along the Hamiltonian flow. We
then reduce matters to proving pointwise estimates for an integral kernel arising from
the Hamiltonian flow conjugated by the wave-packet transform. In section 4, we establish
the estimates on the Hamiltonian flow necessary to establish the desired decay estimates
on the kernel. The main result is that, after rescaling t− s to 1, the kernel of interest has
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the same decay off of the light cone as one would have for the smooth case. In section 5
we show how these techniques also yield a proof of the homogeneous Strichartz estimates,
in the setting of Tataru’s result [14].

Notation. We write a . b to mean that a ≤ C b where C is an allowable constant, in
that it depends only on universal quantities (such as the dimension n). We also allow
C to depend on the integer N in case of decay statements involving arbitrary N , and α
and β in case of estimates involving arbitrary multi-indices α and β. We say that a ≈ b
if a . b and b . a. We write a � b if a ≤ c b, where c is a constant that can be taken
arbitrarily small by making c0 in (2.2) below small.

We use dx to denote the gradient operation that takes scalar functions of x to vector
fields, and vector fields to matrix valued functions. We also use d k

x f(x) to denote a
generic derivative of f(x) of order exactly k. We use d to denote the space-time gradient
(dt, dx).

In summations, we let ∂0 = ∂t, and ξ0 = τ be the dual variable to t. The symbol ξ
denotes (ξ1, . . . , ξn).

2. Reduction to the first order case

The goal of this section is to reduce Theorem 1.3 to the case of a hyperbolic operator
of first order, with solution localized to a dyadic frequency shell. We start by introducing
a more general class of time-dependent operators, of the type considered by Tataru [14].

We let gij(t, x) denote a matrix valued function with 0 ≤ i, j ≤ n, such that

(2.1) g00(t, x) = 1 , gij(t, x) = ηij if |x|+ |t| ≥ 3
4
,

where η is the Minkowski metric

η = diag(1,−1, . . . ,−1) .

We assume that the second derivatives of the functions gij(t, x) are sufficiently small in
L1

tL
∞
x norm,

(2.2) sup
i,j

sup
|α|=2

‖∂α
t,xgij(t, x)‖L1

t L∞x
≤ c0 ,

where c0 is a constant that will be chosen sufficiently small, depending only on the
dimension n. Together with (2.1) this implies that g is close to the Minkowski metric in
the Lipschitz norm,

(2.3) sup
i,j

sup
|α|≤1

‖∂α
t,x(gij(t, x)− ηij)‖L∞t L∞x . c0 .

Notice that if g(t, x) is the smooth cutoff of a time-independent metric, as is the case of
interest for Theorem 1.2, then we have the stronger estimate

(2.4) sup
i,j

sup
|α|=2

‖∂α
t,xgij(t, x)‖L2

t L∞x
≤ c0 .

In the following, we let ∂0 = ∂t, and ∂i = ∂xi
for 1 ≤ i ≤ n.
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Theorem 2.1. Assume that (2.1) and (2.2) hold. If u(t, x) solves the Cauchy problem

(2.5)
n∑

i,j=0

∂i

(
gij(t, x) ∂ju(t, x)

)
= 0 , u(0, x) = f(x) , ∂tu(0, x) = g(x) ,

then the following estimate holds, provided qn ≤ q <∞ and δ(q) ≤ 2,

‖u‖Lq
xL2

t (Rn×[−1,1]) ≤ Cq

(
‖f‖Hδ(q) + ‖g‖Hδ(q)−1

)
.

If (2.1) and (2.4) hold, then the estimate holds provided qn ≤ q ≤ ∞ and δ(q) ≤ 2.

We start by reducing the proof of Theorem 2.1 to the case that u, F , and gij are all
appropriately localized in frequency space. We let

1 = β0(ξ) +
∞∑

k=1

βk(ξ) , βk(ξ) = β1(2−kξ)

denote a Littlewood-Paley partition of unity on Rn,

support(β0) ⊆ { |ξ| ≤ 1} , support(β1) ⊆ { 3
4 ≤ |ξ| ≤ 2} .

We also introduce a cutoff function χ(τ, ξ) supported in the unit ball, which equals 1 for
|τ, ξ| ≤ 1

2 . Let φ(t) be a smooth cutoff to |t| ≤ 1, which vanishes on |t| ≥ 3
2 . We then let

uk(t, x) = φ(t)βk(Dx)u(t, x) , gij
k (t, x) = χ(2−

k
2Dt, 2−

k
2Dx)gij(t, x) .

Lemma 2.2. If u satisfies (2.5), then the functions uk(t, x) satisfy

(2.6)
n∑

i,j=0

∂i

(
gij

k (t, x) ∂juk(t, x)
)

= Fk(t, x) , uk(0, x) = fk(x) , ∂tuk(0, x) = gk(x) ,

where we have the bound, for all 0 ≤ δ ≤ 2,
∞∑

k=0

‖fk‖2Hδ + ‖gk‖2Hδ−1 + ‖Fk‖2L1
t Hδ−1 . ‖f‖2Hδ + ‖g‖2Hδ−1 .

If (2.4) holds, we have the bound, for all 0 ≤ δ ≤ 2,
∞∑

k=0

‖fk‖2Hδ + ‖gk‖2Hδ−1 + ‖Fk‖2L2
t Hδ−1 . ‖f‖2Hδ + ‖g‖2Hδ−1 .

Proof. We begin by observing that the energy inequality

(2.7) sup
t∈[−2,2]

∑
0≤j≤2

‖∂j
t u(t, · )‖Hδ−j(Rn) . ‖f‖Hδ + ‖g‖Hδ−1

holds for 0 ≤ δ ≤ 2. This is a consequence of [5] Proposition 6.3.2 and commutation
arguments, as well as using the equation to control ∂2

t u.

The estimates for fk and gk follow by orthogonality, as fk = βk(Dx)f, gk = βk(Dx)g .
We next write

Fk =
n∑

i,j=0

[
∂i

(
( gij

k − gij) ∂juk

)
+ ∂i

(
[ gij , βk(Dx)] ∂j(φu)

)
+ βk(Dx)

(
∂i

(
gij(∂jφ)u

)
+ (∂iφ)gij∂ju

) ]
.
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Observe that, by (2.6), Fk is localised to frequencies in the range 2k−1 ≤ |ξ| ≤ 2k+1,
since uk is similarly limited, and gij

k is limited to |ξ| ≤ 2−
k
2 . Thus, we need only control

the restriction of each term to frequencies of scale 2k.

The first term in braces is controlled by bounding

‖β̃k(Dx)d((gk − g)duk)‖`2kL1
t Hδ−1 ≤ ‖β̃k(Dx)d((gk − g)duk)‖L1

t `2kHδ−1

. ‖dg‖L1
t L∞x

‖2k(δ−1)duk‖L∞t `2kL2
x

+ ‖d2g‖L1
t L∞x

‖2k(δ−2)d2uk‖L∞t `2kL2
x

. c0
(
‖f‖Hδ + ‖g‖Hδ−1 ) ,

where we used (2.2), (2.7), and the bound

‖ gij
k − gij‖L1

t L∞x
. 2−k‖d2gij‖L1

t L∞x
.

If (2.4) is satisfied, the estimate holds with L1
t replaced by L2

t in each instance.

To handle the second term in braces, it suffices by the Minkowski inequality to bound

‖2k(δ−1) [ dg, βk(Dx)] d(φu)‖L1
t `2kL2

x
+ ‖2k(δ−1) [ g, βk(Dx)] d2(φu)‖L1

t `2kL2
x
.

We consider the order δ − 1 multiplier P =
∑

k εk2k(δ−1)βk(Dx), for an arbitrary choice
of εk = ±1. By considering εk = rk(t) for t ∈ [0, 1], where rk(t) is the k-th Rademacher
function, a standard argument (see e.g. [13] page 464) shows that it suffices to prove
that, if a(x) ∈ C0,1(Rn), and b(x) ∈ C1,1(Rn), then

(2.8) ‖ [a, P ] f‖L2 . ‖a‖C0,1‖f‖Hδ−1 , ‖ [b, P ] g‖L2 . ‖b‖C1,1‖g‖Hδ−2 ,

for 0 ≤ δ ≤ 2. The first estimate in (2.8) is trivial; one can consider the terms aP and
Pa separately. For δ = 2, the second estimate in (2.8) follows from the Coifman-Meyer
commutator theorem [1], and holds for b ∈ C0,1. See also [15], (3.6.2) and (3.6.35). For
δ = 0, 1, the second estimate holds by commutating this result with dx, and intermediate
values of δ follow by analytic interpolation.

If (2.4) holds, we can similarly replace L1
t by L2

t in each instance.

Finally, the remaining terms in the braces are controlled by estimating

‖∂i

(
gij(∂jφ)u

)
+ (∂iφ)gij∂ju‖L1

t Hδ−1 . ‖f‖Hδ + ‖g‖Hδ−1 ,

and similarly with L1
t replaced by L2

t if (2.4) holds, which is a simple consequence of
(2.7) and (2.2) or (2.4). �

Our goal is to reduce matters to establishing uniform estimates over k for a first order
hyperbolic equation. Fix a function h+(s) ∈ C∞(R), supported in the set 0 ≤ s ≤ 2,
with h(s) = 1 for 1

2 ≤ s ≤ 3
2 . We set h−(s) = h+(−s), and let

u±k = h±(2−kDt)uk .

Lemma 2.3. The function vk = uk − u+
k − u−k satisfies, for 2 ≤ q ≤ ∞,

‖vk‖Lq
xL2

t
. ‖fk‖Hδ(q) + ‖gk‖Hδ(q)−1 + ‖Fk‖L1

t Hδ(q)−1 .

The following bound also holds

‖vk‖Lq
xL2

t
. 2−

k
2
(
‖fk‖Hδ(q) + ‖gk‖Hδ(q)−1 + ‖Fk‖L2

t Hδ(q)−1

)
.
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Proof. The function vk is microlocally supported away from the characteristic set of our
equation, and the lemma thus reduces to elliptic estimates. Precisely, let

b(τ, ξ) =
(
1− h+(2−kτ)− h−(2−kτ)

)
β̃k(ξ) ,

where β̃k(ξ)βk(ξ) = βk(ξ) and β̃k(ξ) is supported in |ξ| ≈ 2k, and let B = b(Dt, Dx). We
show that there exist pseudodifferential operators Q and R on Rn+1 such that

(2.9) B = BQ
n∑

i,j=0

∂i gij
k ∂j +BR ,

with the property that

‖BQFk‖Lq
xL2

t
. min

(
‖Fk‖L1

t Hδ(q)−1 , 2−
k
2 ‖Fk‖L2

t Hδ(q)−1

)
(2.10)

‖BRuk‖Lq
xL2

t
. 2−

k
2 ‖uk‖L∞t Hδ(q) .(2.11)

The last quantity in (2.11) is controlled using the energy estimates (2.7), and the lemma
follows by (2.6), since Buk = vk.

We let a(τ, ξ) be a standard multiplier of order 0, supported in the region |τ |+ |ξ| & 2k

and away from the characteristics of the equation, with a(τ, ξ)b(τ, ξ) = b(τ, ξ).

The coefficients gij
k (t, x) satisfy

|∂β
t,xgij

k (t, x)| . 2
k
2 max(0,|β|−1) .

It follows that, given N , there exists symbol Q(t, x, τ, ξ) ∈ S−2
1, 1

2
, supported in the region

|τ |+ |ξ| & 2k, such that

a(Dt, Dx) = Q

n∑
i,j=0

∂i gij
k ∂j +R ,

with R ∈ S−N
1, 1

2
. Furthermore, since gij

k (t, x) − ηij is Schwartz class for |t| + |x| ≥ 1,
the symbol of R will be rapidly decreasing in t and x. The estimate (2.11) then follows
easily. To establish (2.10), we may replace Q by Qβ̃k(Dx), since Fk is supported in the
set |ξ| ≈ 2k. We then decompose

Q(t, x, τ, ξ)β̃k(ξ) =
∞∑

j=k

Qj(t, x, τ, ξ) , support(Qj) ⊂

{
|τ | ≈ 2j , |ξ| ≈ 2k , j > k

|τ | . 2k , |ξ| ≈ 2k , j = k

The integral kernel Kj of Qj satisfies

|Kj(t, x, s, y)| . 2−2j 2j+nk
(
1 + 2j |t− s|+ 2k|x− y|

)−N
,

and hence by boundedness of B, the Minkowski inequality, and Young’s inequality

‖BQjFk‖Lq
xL2

t
≤ ‖QjFk‖L2

t Lq
x

. 2−
3
2 j2kn( 1

2−
1
q ) min

(
‖Fk‖L1

t L2
x
, 2−

j
2 ‖Fk‖L2

t L2
x

)
.

The inequality (2.10) follows by summing over j ≥ k. �

We now set v =
∑∞

k=1 vk. By Littlewood-Paley theory, for qn ≤ q <∞ we may bound

‖v‖Lq
xL2

t
≤ Cq‖vk‖Lq

x`2kL2
t
≤ Cq‖vk‖`2kLq

xL2
t
≤ Cq

(
‖f‖Hδ(q) + ‖g‖Hδ(q)−1

)
,
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where we use Lemmas 2.2 and 2.3. If (2.4) holds, we control the L2
tH

δ(q)−1 norm of F
and, by the second part of Lemma 2.3, for q ≤ ∞ we may bound

‖v‖Lq
xL2

t
≤ ‖vk‖`1kLq

xL2
t
≤ C

(
‖f‖Hδ(q) + ‖g‖Hδ(q)−1

)
.

Thus, Theorem 2.1 is reduced to establishing the estimate

‖u− v‖Lq
xL2

t
≤ C

(
‖f‖Hδ(q) + ‖g‖Hδ(q)−1

)
,

which we will show holds for qn ≤ q ≤ ∞ under the weaker assumption (2.2). For this,
note that the functions u±k are essentially orthogonal in t, since their Fourier transforms
are localized to dyadic intervals ±τ ∈ [2k, 2k+1]. Consequently, for qn ≤ q ≤ ∞,

‖
∑

k u
±
k ‖Lq

xL2
t

. ‖u±k ‖Lq
x`2kL2

t
. ‖u±k ‖`2kLq

xL2
t
,

where at the last step we may use Minkowski’s inequality since q > 2. Consequently, by
Lemma 2.2, the proof of Theorem 2.1 is reduced to establishing, uniformly over k, the
following estimate

(2.12) ‖u±k ‖Lq
xL2

t
. ‖fk‖Hδ(q) + ‖gk‖Hδ(q)−1 + ‖Fk‖L1

t Hδ(q)−1 ,

where uk solves (2.6). Due to the use of orthogonality in t, we need to establish (2.12)
where the left hand side norm is taken over t ∈ R. However, since u±k are obtained by
convolving in t a 2k-scaled Schwartz function with uk, which is supported in the interval
|t| ≤ 3

2 , the norm over |t| ≥ 2 in (2.12) is dominated by 2−Nk‖uk‖L2
xL2

t
, which is easily

controlled by the right hand side. Thus, we may assume that t ∈ [−2, 2] in (2.12).

We will in fact prove (2.12) in all dimensions, for the full range 2(n+1)
n−1 ≤ q ≤ ∞ . The

restriction δ(q) ≤ 2 in Theorem 2.1 arises only due to Lemma 2.2.

We now show that the u±k satisfy an appropriate first order equation. We factor
n∑

i,j=0

gij
k (t, x) ξi ξj = g00

k (t, x)
(
τ − q+k (t, x, ξ)

)(
τ + q−k (t, x, ξ)

)
,

where on the left ξj denotes the time dual variable τ in case j = 0, and where the
functions q±k are smooth positive functions away from ξ = 0, homogeneous of degree 1
in ξ = (ξ1, . . . , ξn). Since the functions gij

k are truncations of gij to frequencies less than
2−

k
2 , the assumptions (2.1) and (2.2) imply that for |ξ| = 1,

(2.13)
∣∣∂β

t,x∂
α
ξ ( q±k (t, x, ξ)− |ξ| )

∣∣ . c0 2−Nk
(
1 + |t|+ |x|

)−N if |t|+ |x| ≥ 1 .

Also, by (2.2) and (2.3), we have the following derivative estimates on the set |ξ| = 1,∥∥∂β
t,x∂

α
ξ ( q±k (t, x, ξ)− |ξ| )

∥∥
L1

t L∞x
. c0 2

k
2 max(0,|β|−2) ,(2.14)

∥∥∂β
t,x∂

α
ξ ( q±k (t, x, ξ)− |ξ| )

∥∥
L∞t L∞x

. c0 2
k
2 max(0,|β|−1) .(2.15)

Finally, we let
p±k (t, x, ξ) = χ(2−

k
2Dt, 2−

k
2Dx) q±k (t, x, ξ)

be the truncation of the symbols q±k to frequencies of size at most 2
k
2 in the t and x

variables.
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Lemma 2.4. The functions u±k satisfy the Cauchy equations

∂tu
±
k (t, x) = ± ip±k (t, x,Dx)u±k (t, x) + F±

k (t, x) , u±k (0, x) = f±k (x) ,

where

(2.16) ‖f±k ‖Hδ(q) + ‖F±
k ‖L1

t Hδ(q) . ‖fk‖Hδ(q) + ‖gk‖Hδ(q)−1 + ‖Fk‖L1
t Hδ(q)−1 .

Proof. We concern ourselves with u−k , the case of u+
k being identical. We first observe

that

(2.17) ‖u−k ‖L∞t Hδ(q) . ‖uk‖L∞t Hδ(q) . ‖fk‖Hδ(q) + ‖gk‖Hδ(q)−1 + ‖Fk‖L1
t Hδ(q)−1 ,

which yields the part of (2.16) concerning f±k .

Set H−
k = β̃k(Dx)h−(2−kDt), so that H−

k uk = u−k . The estimate (2.15) shows that
the symbols q±k and ∂t,xq

±
k are of class S1

1, 1
2

on the set |ξ| ≈ 2k. We can thus find
pseudodifferential operators Q and R such that(

∂t + iq−k (t, x,Dx)
)
H−

k = Q
n∑

i,j=0

∂i gij
k ∂j H

−
k +R ,

where
Q(t, x, τ, ξ) ∈ S−1

1, 1
2
, (t2 + |x|2)NR(t, x, τ, ξ) ∈ S0

1, 1
2

∀N .

Then, ∂tu
−
k = −ip−k (t, x,Dx)u−k + F−

k , where

(2.18) F−
k = i(p−k − q−k )H−

k uk +QH−
k Fk +Q

n∑
i,j=0

∂i [ gij
k ,H

−
k ] ∂juk +Ruk .

We thus need to show that each of the four terms on the right hand side of (2.18) has
L1

tH
δ(q) norm bounded by the right hand side of (2.16).

The operator QH−
k has symbol of type S−1

1, 1
2

supported where |τ |, |ξ| ≈ 2k, and thus

maps L1
tH

δ(q)−1 → L1
tH

δ(q), which handles the second term. The fourth term is easily
handled using the rapid decrease of the symbol of R in t and x. To handle the first term,
we note by (2.14) that

∂2
t,xq

−
k · β̃k ∈ L1

tS
1
1, 1

2
(R2n

x,ξ) ⇒ (p−k − q−k )H−
k ∈ L1

t Ψ
0
1, 1

2
(Rn) .

To handle the third term, we show that

(2.19) ∂i [ gij
k ,H

−
k ] : L∞t H

δ(q)−1 → L1
tH

δ(q)−1 .

Since ‖∂juk‖L∞t Hδ(q)−1 is bounded by the right side of (2.16), and Q maps L1
tH

δ(q)−1 →
L1

tH
δ(q) (note that we are applying Q to a frequency localized term) the bound for the

fourth term follows.

The estimate (2.19) follows by using the S1, 1
2

calculus on Rn+1. The symbol of

[ gij
k ,H

−
k ] is of class S−1

1, 1
2
, and localised to |τ |, |ξ| ≈ 2k. Furthermore, it is rapidly decreas-

ing in t and x since gij
k is. The estimate is a simple consequence. �
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We summarize here the reductions we have made. For the rest of this paper, we fix a
scale λ = 2k, and let p = p−k . Then p(t, x, ξ) is a real symbol, homogeneous of degree 1
in ξ, which is spectrally limited in t and x to frequencies of size λ

1
2 , in that for all ξ,

(2.20)
∫
ei〈x,η〉+itτp(t, x, ξ) dt dx = 0 if |η|+ |τ | ≥ λ

1
2 .

We also have that p(t, x, ξ) is close to |ξ| up to second order, in that for all ξ with |ξ| = 1,

(2.21)
∑

|α|+|β|≤2

∥∥∂β
t,x∂

α
ξ

(
p(t, x, ξ)− |ξ|

) ∥∥
L1

t L∞x

+
∑

|α|+|β|≤2
|β|≤1

∥∥∂β
t,x∂

α
ξ

(
p(t, x, ξ)− |ξ|

) ∥∥
L∞t L∞x

≤ c0 ,

where c0 is a number to be fixed sufficiently small. Furthermore, for all ξ with |ξ| = 1,
and all α, β, we have∥∥∂β

t,x∂
α
ξ

(
p(t, x, ξ)− |ξ|

) ∥∥
L1

t L∞x
. λ

1
2 max(0,|β|−2) ,(2.22)

∥∥∂β
t,x∂

α
ξ

(
p(t, x, ξ)− |ξ|

) ∥∥
L∞t L∞x

. λ
1
2 max(0,|β|−1) .(2.23)

Also, (2.21) yields

(2.24) sup
|ξ|=1

sup
t,x

∣∣ d2
ξ p(t, x, ξ)−Π⊥

ξ

∣∣ ≤ c0 ,

where Π⊥
ξ denotes projection onto the plane normal to ξ, and d2

ξ the Hessian with respect
to ξ.

Let p(t, x,Dx) denote the corresponding pseudodifferential operator acting on Rn,
parametrized by t. Then, by the results of this section, we have reduced Theorem 2.1 to
establishing the following, uniformly over λ ≥ 1.

Theorem 2.5. Suppose that ∂tu(t, x) = −i p(t, x,Dx)u(t, x) + F (t, x), where the symbol
of p satisfies conditions (2.20)– (2.24). Assume also that, for all t, the partial Fourier
transform û(t, ξ) is supported in the region 1

4λ < |ξ| < λ . If

2(n+1)
n−1 ≤ q ≤ ∞ , δ(q) = n

(
1
2 −

1
q

)
− 1

2 ,

then the following estimate holds

‖u‖Lq
xL2

t ([−1,1]×Rn) . λδ(q)
(
‖u‖L∞t L2

x([−1,1]×Rn) + ‖F‖L1
t L2

x([−1,1]×Rn)

)
.

3. The wave transform
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We fix a real, even Schwartz function g(x) ∈ S(Rn), with ‖g‖L2 = (2π)−
n
2 , and assume

that its Fourier transform h(ξ) = ĝ(ξ) is supported in the unit ball {|ξ| ≤ 1} . For λ ≥ 1,
we define Tλ : S′(Rn) → C∞(R2n) by the rule(

Tλf
)
(x, ξ) = λ

n
4

∫
e−i〈ξ,z−x〉 g

(
λ

1
2 (z − x)

)
f(z) dz .

A simple calculation shows that

f(y) = λ
n
4

∫
ei〈ξ,y−x〉 g

(
λ

1
2 (y − x)

) (
Tλf

)
(x, ξ) dx dξ ,

so that T ∗λTλ = I . In particular,

(3.1) ‖Tλf‖L2(R2n
x,ξ) = ‖f‖L2(Rn

x ) .

It will be useful to note that this holds in a more general setting.

Lemma 3.1. Suppose that gx,ξ(z) is a family of Schwartz functions on Rn
z , depending

on the parameters x and ξ, with uniform bounds over x and ξ on each Schwartz norm of
g. Then the operator(

Tλf
)
(x, ξ) = λ

n
4

∫
e−i〈ξ,z−x〉 gx,ξ

(
λ

1
2 (z − x)

)
f(z) dz

satisfies the bound
‖Tλf‖L2(R2n

x,ξ) . ‖f‖L2(Rn
z ) .

Proof. The operator TλT
∗
λ is an integral operator with kernel

K(x, ξ; x̃, ξ̃) = λ
n
2 ei〈ξ,x〉−i〈ξ̃,x̃〉

∫
ei〈ξ̃−ξ,z〉gx,ξ

(
λ

1
2 (z − x)

)
gx̃,ξ̃

(
λ

1
2 (z − x̃)

)
dz .

A simple integration by parts argument shows that∣∣K(x, ξ; x̃, ξ̃)
∣∣ .

(
1 + λ−

1
2 |ξ − ξ̃|+ λ

1
2 |x− x̃|

)−N
,

with constants depending only on uniform bounds for a finite collection of seminorms of
gx,ξ depending onN . The L2(R2n

x,ξ) boundedness ofK then follows by Schur’s Lemma. �

Lemma 3.2. For λ ≥ 210, and 1
8λ < |ξ| < 2λ, we may write(

p∗(t, y,Dy)− idξp(t, x, ξ) · dx + idxp(t, x, ξ) · dξ

)[
ei〈ξ,y−x〉 g

(
λ

1
2 (y − x)

)]
= ei〈ξ,y−x〉 gt,x,ξ

(
λ

1
2 (y − x)

)
where gt,x,ξ( · ) denotes a family of Schwartz functions depending on the parameters t, x
and ξ, each of which has Fourier transform supported in the ball of radius 2. Furthermore,
the Schwartz norms of ρ(t)−1 gt,x,ξ( · ) are bounded uniformly over t, x and ξ, where

ρ(t) = sup
|ξ|=1

sup
x

∑
|α|+|β|=2

∣∣ ∂β
x∂

α
ξ p(t, x, ξ)

∣∣ .
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Proof. Letting F denote the Fourier transform with respect to y, we write

F ◦
(
p∗(t, y,Dy)− idξp(t, x, ξ) · dx + idxp(t, x, ξ) · dξ

)[
ei〈ξ,y−x〉 g

(
λ

1
2 (y − x)

) ]
(η)

= e−i〈η,x〉 λ−
n
2 ht,x,ξ

(
λ−

1
2 (η − ξ)

)
,

where ht,x,ξ(ζ) = ĝt,x,ξ(ζ) is equal to∫
e−i〈ζ,y〉

[
p(x+ λ−

1
2 y, ξ + λ

1
2 ζ)− p(x, ξ)− λ 1

2 dξp(x, ξ) · ζ − λ−
1
2 dxp(x, ξ) · y

]
g(y) dy

=
∫ ∫ 1

0

e−i〈ζ,y〉(1− s) ∂ 2
s

(
λ p

(
t, x+ sλ−

1
2 y, λ−1ξ + sλ−

1
2 ζ

))
g(y) ds dy .

The spectral restriction on p and g imply that this vanishes for |ζ| ≥ 2 . Consequently,
we are reduced to establishing C∞ bounds on ρ(t)−1 ht,x,ξ(ζ), uniformly over t, x and ξ ,
for |ζ| < 2 . Since 1

8 < |λ−1ξ| < 1 and |sλ− 1
2 ζ| < 1

16 , the estimates (2.23) imply that any
ζ derivative of the integrand is bounded by CN (1 + |y|2)−Nρ(t), with CN independent
of t, y, ξ and ζ for |ζ| < 2 . The result follows. �

Suppose now that u is as in Theorem 2.5, and let

v(t, x, ξ) =
(
Tλu

)
(t, x, ξ) ,

where Tλ acts in the x variable. We assume that λ > 210, so that v(t, x, ξ) vanishes unless
1
8λ < |ξ| < 2λ .

Lemma 3.3. Under the above conditions, we have

∂tv(t, x, ξ) =
(
dξp(t, x, ξ) · dx − dxp(t, x, ξ) · dξ

)
v(t, x, ξ) +

(
TλF

)
(t, x, ξ) +G(t, x, ξ) ,

where G(t, x, ξ) = 0 unless 1
8λ < |ξ| < 2λ, and

(3.2) ‖G(t, · )‖L2(R2n
x,ξ) . ρ(t) ‖u(t, · )‖L2(Rn

x ) .

Proof. Differentiating under the integral sign yields

∂tv(t, x, ξ) =
(
TλF

)
(t, x, ξ)− i λ

n
4

∫
p∗(t, y,Dy)

[
ei〈ξ,y−x〉 g

(
λ

1
2 (y − x)

) ]
u(t, y) dy ,

By Lemma 3.2, we are done if we can prove the estimate (3.2) for the term

G(t, x, ξ) = λ
n
4

∫
e−i〈ξ,y−x〉 gt,x,ξ

(
λ

1
2 (y − x)

)
u(t, y) dy .

By Lemma 3.2, each Schwartz norm of ρ(t)−1gt,x,ξ is uniformly bounded over x and ξ.
The estimate (3.2) then follows by Lemma 3.1. �

Let χs,t denote the canonical transform on R2n
x,ξ = T ∗(Rn) generated by the hamilton-

ian flow of p. Thus, χs,t(x, ξ) = γ(s), where γ is the integral curve with γ(t) = (x, ξ).
Then we have

v(t, x, ξ) =
(
Tλf

)
(χ0,t(x, ξ)) +

∫ t

0

G(r, χr,t(x, ξ)) dr +
∫ t

0

(
TλF

)
(r, χr,t(x, ξ)) dr .
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Writing u(t, · ) = T ∗λv(t, · ) = T ∗λvt yields

|u(t, · )| ≤
∣∣T ∗λ(

Tλf ◦ χ0,t

)∣∣ +
∫ 1

−1

∣∣T ∗λ(
Gr ◦ χr,t

)∣∣ dr +
∫ 1

−1

∣∣T ∗λ(
TλFr ◦ χr,t

)∣∣ dr .
For each r, we define a map Wr taking a function f̃ on R2n

x,ξ to a function on R1+n
s,y(

Wrf̃
)
(s, y) = T ∗λ

(
f̃ ◦ χr,s

)
(y)

= λ
n
4

∫
ei〈ξ,y−x〉g

(
λ

1
2 (y − x)

)
f̃(χr,s(x, ξ)) dx dξ .

Then, by (3.1) and (3.2), and since the volume form dx ∧ dξ is invariant under the
symplectic map χr,t, we have reduced Theorem 2.5 to establishing, uniformly over r,

‖Sλ(Dx)Wrf̃ ‖Lp
xL2

t ([−1,1]×Rn) . λδ(p)‖f̃ ‖L2(R2n) ,

where Sλ(Dx) is a Littlewood-Paley cutoff to frequencies at scale λ in x. This is equivalent
to proving that

(3.3) ‖Sλ(Dx)WrW
∗
r Sλ(Dx)F‖Lp

xL2
t ([−1,1]×Rn) . λ2δ(p)‖F‖

Lp′
x L2

t ([−1,1]×Rn)
,

with p′ the dual index to p. The operator WrW
∗
r Sλ(Dx) takes the form

λ
n
2

∫
ei〈ξ,y−x〉−i〈ξt,s,z−xt,s〉g

(
λ

1
2 (y − x)

)
g
(
λ

1
2 (z − xt,s)

) (
Sλ(Dz)F

)
(t, z) dt dz dx dξ ,

where (xt,s, ξt,s) = χt,s(x, ξ) . In this calculation, we used the fact that dx∧dξ is invariant
under χr,t, and that χt,r ◦ χr,s = χt,s .

The integral over z vanishes unless |ξt,s| ≈ λ, hence unless |ξ| ≈ λ, thus we are reduced
to establishing Lp′

z L
2
t → Lp

yL
2
s estimates, with norm λ2δ(p), for the integral kernel

K(s, y; t, z) = λ
n
2

∫
ei〈ξ,y−x〉−i〈ξt,s,z−xt,s〉g

(
λ

1
2 (y − x)

)
g
(
λ

1
2 (z − xt,s)

)
β(λ−1ξ) dx dξ ,

with β(ζ) a smooth function supported in the region |ζ| ≈ 1.

We next follow the steps of [8], by localizing the operator in the Fourier variables and
reducing matters to dispersive type estimates. By decomposing β into a finite number
of terms, we may assume that it is supported in a cone of small angle, and without loss
of generality we assume that β is supported in a small cone about the ξ1 axis. We then
split z = (z1, z′) and y = (y1, y′), and will prove the following pair of estimates

(3.4)
∥∥∥∫

K(s, y; t, z) f(t, z′) dt dz′
∥∥∥

L2
y′L

2
s([−1,1]×Rn−1)

. ‖f‖L2
z′L

2
t ([−1,1]×Rn−1) ,

(3.5)
∥∥∥∫

K(s, y; t, z) f(t, z′) dt dz′
∥∥∥

L∞
y′L

2
s([−1,1]×Rn−1)

. λn−1
(
1 + λ |y1 − z1|

)−n−1
2 ‖f‖L1

z′L
2
t ([−1,1]×Rn−1) .
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Interpolation yields that, for 2(n+1)
n−1 ≤ p ≤ ∞,∥∥∥∫

K(s, y; t, z) f(t, z′) dt dz′
∥∥∥

Lp

y′L
2
s([−1,1]×Rn−1)

. λ2δ(p)|y1 − z1|−1+ 1
p′−

1
p ‖f‖

Lp′
z′L

2
t ([−1,1]×Rn−1)

,

and an application of the Hardy-Littlewood inequality yields the desired bound.

Proof of the estimate (3.4). We make the measure preserving change of variables χ0,s

in x and ξ to write

K(s, y; t, z) = λ
n
2

∫
ei〈ξs,y−xs〉−i〈ξt,z−xt〉g

(
λ

1
2 (y − xs)

)
g
(
λ

1
2 (z − xt)

)
β(λ−1ξs) dx dξ ,

where (xs, ξs) = χs,0(x, ξ) and (xt, ξt) = χt,0(x, ξ).

We will show that, for fixed y1, the map T y1
λ defined by(

T y1
λ f̃

)
(s, y′) = λ

n
4

∫
ei〈ξs,y−xs〉g

(
λ

1
2 (y − xs)

)
β(λ−1ξs) f̃(x, ξ) dx dξ

is bounded from L2(R2n
x,ξ) → L2(Rn

s,y′) . The operator K is essentially of the form
T y1

λ (T z1
λ )∗, since we can insert a harmless cutoff like β(λ−1ξt) as ξt is restricted to a

small neighborhood if ξs is, and the L2 boundedness of K follows.

Fix y1. Given (x, ξ), let s̄ denote the unique time s at which xs lies over y1, which
exists since (∂sxs)1 ≈ 1. Then, with ȳ′ = x′s̄ , σ̄ = −p(s̄, xs̄ , ξs̄) , and η̄′ = ξ′s̄, the point
(s̄, ȳ′; σ̄, η̄′) is the intersection of the null Hamiltonian curve determined by (x, ξ) with
the cotangent bundle T ∗(Rn

s,y′). We now show that we may write

(3.6) ei〈ξs,y−xs〉g
(
λ

1
2 (y − xs)

)
β(λ−1ξs) = eiσ̄(s−s̄)+i〈η̄′,y′−ȳ′〉gx,ξ

(
λ

1
2 (s− s̄, y′ − ȳ′)

)
,

where gx,ξ( · ) denotes a family of Schwartz functions parametrized by (x, ξ), with uniform
bounds as x and ξ vary.

We use the following facts about the Hamiltonian flow, where y = (y1, y′) with y1 fixed
as above, and (x, ξ) fixed but arbitrary.

(3.7) |y − xs| ≈ |s− s̄|+ |y′ − ȳ′| , s ∈ R , y′ ∈ Rn−1 ,

and

(3.8)
∣∣∂j+1

s xs| . λ
j
2 ,

∣∣∂j+1
s ξs| . λ

j
2+1 , if j ≥ 0 and |ξ| ≈ λ .

The estimate (3.7) follows since (∂sxs)1 ≈ 1 and |∂sx
′
s| . 1; the estimate (3.8) follows by

repeatedly differentiating the Hamilton equations and using (2.23) and (2.22).

We also observe that we may write

(3.9) 〈ξs, y − xs〉 − σ̄(s− s̄)− 〈η̄′, y′ − ȳ′〉 = q0(s)(s− s̄)2 +
n∑

j=2

qj(s)(s− s̄)(y′ − ȳ′)j ,

with

(3.10) ∂m
s qi(s) . λ

m
2 .
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To do this, we note that by homogeneity of p we have σ = −〈ξs̄, (∂sxs)|s=s̄〉, and thus
can write the left hand side as

〈ξ′s − ξ′s̄, y
′ − ȳ′〉 − 〈ξs − ξs̄, xs − xs̄〉 − 〈ξs̄, xs − xs̄ − (s− s̄)(∂sxs)|s=s̄〉 .

The result follows by Taylor’s theorem and (3.8). Finally, we note that∣∣∂j
s∂

β
y′

[
g
(
λ

1
2 (y − xs)

)
β(λ−1ξs)

]∣∣ . λ
1
2 (j+|β|)( 1 + λ

1
2 |y′ − ȳ′|+ λ

1
2 |s− s̄|

)−N
,

which follows from (3.7) and (3.8). Together with (3.9) and (3.10), this implies (3.6).

We can thus write(
T y1

λ f
)
(s, y′) = λ

n
4

∫
eiσ̄(s−s̄)+i〈η̄′,y′−ȳ′〉gx,ξ

(
λ

1
2 (s− s̄, y′ − ȳ′)

)
f(x, ξ) dx dξ .

The map (x, ξ) → (s̄, ȳ′, σ̄, η̄′) is a measure preserving diffeomorphism, since it is sym-
plectic. After this change of variables, the adjoint of T y1

λ is then of the type for which
L2(Rn) → L2(R2n) boundedness was established in Lemma 3.1. �

We establish estimate (3.5) through pointwise bounds on the kernel K(s, y; t, z). We
will show in the next section that

(3.11) |K(s, y; t, z)| . λn
(
1 + λ |y1 − z1|

)−n−1
2

(
1 + λ | s− Φ±

t,z(y)|
)−N

.

Here, Φ+
t,z is the function such that s = Φ+

t,z(y) defines the forward light cone centered
at (t, z) in the region 2 ≥ s ≥ t, and Φ+

t,z(y) = 2 if (s, y) is not in the light cone for any
2 ≥ s ≥ t. Similarly, Φ−

t,z(y) defines the backward light cone centered at (t, z) in the
region −2 ≤ s ≤ t, and Φ−

t,z(y) = −2 if y is not in the appropriate domain. The above
estimate then holds taking Φ+

t,z for s ≥ t and Φ−
t,z for s ≤ t.

Symmetry of the form of K shows that (3.11) holds with (t, z) and (s, y) exchanged.
The estimate (3.5) then follows by Schur’s Lemma.

The next section is devoted to proving these pointwise estimates, which we do through
a scaling argument. Without loss of generality we assume that s = 0 and t ∈ [0, 1] . Let
ε denote a scaling factor with λ−1 ≤ ε ≤ 1, and introduce the scaled kernel

Kε(y; t, z) = εnK(0, εy; εt, εz) .

Introducing the scaled parameters

R = ελ
1
2 , µ = ελ ,

we have

Kε(y; t, z) = Rn

∫
ei〈ξ,y−x〉−i〈ξt,z−xt〉 g

(
R(y − x)

)
g
(
R(z − xt)

)
β(µ−1ξ) dx dξ ,

where now (xt, ξt) is an integral curve of the Hamiltonian function

(3.12) H(t, x, ξ) = p(εt, εx, ξ)

with (x0, ξ0) = (x, ξ) . In the next section we prove the following estimate.
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Lemma 3.4. Let Γz denote the time s = 0 slice of the light cone centered at (1, z). Then
the following bounds hold uniformly for µ ≥ 1,

(3.13) |Kε(y; 1, z)| . µ
n+1

2
(
1 + µd(y,Γz)

)−N
.

And for µ = 1, the following bounds hold uniformly for t ∈ [0, 1],

(3.14) |Kε(y; t, z)| .
(
1 + |y − z|

)−N
.

To deduce the estimate (3.11) (for s = 0 and t ∈ [0, 1]), we consider separately the
cases t ≥ λ−1 and t < λ−1. In case t ≥ λ−1, we take ε = t, and deduce from (3.13) and
a scaling argument that

(3.15) |K(0, y; t, z)| . λn
(
1 + λ t

)−n−1
2

(
1 + λ d(y,Γt,z)

)−N
,

where Γt,z is the time 0 slice of the light cone centered at (t, z). If |y − z| ≥ 3
2 , then

d(y,Γt,z) & 1+|y−z|, and the estimate (3.11) follows easily, since |Φ−
t,z| ≤ 3 . If |y−z| ≤ 3

2 ,
then y belongs to the domain of Φt,z, and by (4.13) below we conclude that

|K(0, y; t, z)| . λn
(
1 + λ t

)−n−1
2

(
1 + λ |Φ−

t,z(y)|
)−N

.

On the other hand, by the first part of (4.11) below,∣∣ Φ−
t,z(y)−

(
t− |y − z|

) ∣∣ � |y − z| .

Since |y − z| ≥ |y1 − z1| , these estimates together imply (3.11).

In case t ≤ λ−1, we take ε = λ−1 . The estimate (3.14) and a scaling argument yield

(3.16) |K(0, y; t, z)| . λn
(
1 + λ |y − z|

)−N
.

Together with the preceeding estimate, and the fact that λ t ≤ 1, this implies (3.11) for
this case.

4. Regularity for the Hamiltonian flow

We work in this section with the Hamiltonian function defined above by (3.12). By
(2.23), the following estimates are then satisfied,

(4.1)
∫ 2

−2

sup
|ξ|=1

sup
x

∣∣∂β
t,x∂

α
ξ H(t, x, ξ)

∣∣ dt ≤

Cα , |β| = 0
Cα ε , |β| = 1
Cα,β εR

|β|−2 , |β| ≥ 2

Lemma 4.1. Let
(
xt(x, ξ) , ξt(x, ξ)

)
denote the solution to the Hamiltonian flow,

∂txt =
(
dξH

)
(t, xt, ξt) , ∂tξt = −

(
dxH

)
(t, xt, ξt) , x0 = x , ξ0 = ξ .

Then, uniformly for −2 ≤ t ≤ 2 and |ξ| = 1, the following hold

(4.2)
∣∣xt − tξ

∣∣ +
∣∣ ξt − ξ

∣∣ � t ,

and

(4.3)
∣∣ dxxt − I

∣∣ +
∣∣ dxξt

∣∣ +
∣∣ dξxt −

∫ t

0

d 2
ξ H(s, xs, ξs) ds

∣∣ +
∣∣ dξξt − I

∣∣ � 1 .
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Furthermore, for derivatives of order |α|+|β| ≥ 2, the following estimates hold, uniformly
for 0 < t < 1 and |ξ| = 1,

For R ≤ 1,

∣∣ ∂β
x∂

α
ξ xt

∣∣ .


1 , |β| = 0
ε , |β| = 1
εR|β|−2 , |β| ≥ 2

(4.4)

∣∣ ∂β
x∂

α
ξ ξt

∣∣ .

{
ε , |β| = 0
εR|β|−1 , |β| ≥ 1

(4.5)

For R ≥ 1,

∣∣ ∂β
x∂

α
ξ xt

∣∣ .

{
1 + εR|α|−1 , |β| = 0
εR|α|+|β|−1 , |β| ≥ 1

(4.6) ∣∣ ∂β
x∂

α
ξ ξt

∣∣ . εR|α|+|β|−1(4.7)

Proof. To begin we note that∣∣∂tH(t, xt, ξt)
∣∣ =

∣∣(∂tH
)
(t, xt, ξt)

∣∣ . H
(
t, xt, ξt) ,

and consequently by the Gronwall Lemma that, for −2 ≤ t ≤ 2 , and |ξ| = 1 ,

(4.8) |ξt(x, ξ)| ≈ 1 .

The estimate (4.2) is a simple consequence of (2.21).

We next differentiate the Hamilton equations to write

∂t

dxxt

dxξt

 = M(t, xt, ξt) ·

dxxt

dxξt

 , ∂t

dξxt

dξξt

 = M(t, xt, ξt) ·

dξxt

dξξt


where

M =

 (
dxdξH

) (
dξdξH

)
−

(
dxdxH

)
−

(
dξdxH

)


By (4.1) and (4.8), the upper right hand block of M is of norm ≈ 1 in L1
t [−2, 2], and

all other blocks in M are of norm � 1 in L1
t [−2, 2], uniformly over x and ξ. Since at

t = 0 we have dxξ0 = dξx0 = 0 , and dxx0 = dξξ0 = I , the estimate (4.3) follows by the
Gronwall Lemma.

To control higher order derivatives we proceed by induction. We write

∂t

∂β
x∂

α
ξ xt

∂β
x∂

α
ξ ξt

 = M(t, xt, ξt) ·

∂β
x∂

α
ξ xt

∂β
x∂

α
ξ ξt

 +

E1

E2


where E1 is a sum of terms of the form(

d k
x d

j+1
ξ H

)
(t, xt, ξt) ·

(
∂β1

x ∂α1
ξ xt

)
· · ·

(
∂βk

x ∂αk

ξ xt

)(
∂βk+1

x ∂
αk+1
ξ ξt

)
· · ·

(
∂

βk+j
x ∂

αk+j

ξ ξt
)
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and E2 is similarly a sum of such terms, but with d k+1
x d j

ξH. In both cases, βi+αi < β+α
for each i, and β1 + · · ·βj+k = β , α1 + · · ·αj+k = α . We thus assume that the estimates
(4.3)–(4.7) hold for all terms arising in E1 and E2. We use the notation

|||Ej ||| = sup
|ξ|=1

sup
x

∫ 2

−2

|Ej(t, x, ξ)| dt .

We first consider the case R < 1. The estimates (4.3) and (4.4) show that all derivatives
of xt and ξt are bounded by ≈ 1, and (4.1) implies that

|||E1||| . 1 , |||E2||| . ε ,

which implies the case β = 0 of (4.3) and (4.4). In case |β| = 1, this estimate can be
improved to

|||E1||| . ε , |||E2||| . ε ,

since at least one term in the product arising in E1 must be of size ε. For |β| ≥ 2, we
must show that

|||E1||| . εR|β|−2 , |||E2||| . εR|β|−1 .

It is helpful to note that, since ε < R < 1, estimates (4.4) and (4.5) imply

(4.9) |∂β
x∂

α
ξ xt| . min

(
1, R|β|−1

)
, |∂β

x∂
α
ξ ξt| . εR|β|−1 ≤ R|β| .

For E1, considering separately the cases k = 0 , k = 1 , and k ≥ 2 leads to

|||E1||| . 1 · εR|β|−1 + ε ·R|β|−1 + εRk−2 ·R|β|−k . εR|β|−2 .

The estimate for E2 follows similarly.

For R ≥ 1, it is useful to note that (4.6) and (4.7) imply

(4.10) |∂β
x∂

α
ξ xt| . R|α|+|β|−1 , |∂β

x∂
α
ξ ξt| . R|α|+|β|−1 ,

since ε ≤ 1. Considering separately the cases k = 0 and k = 1 then leads to the estimate

|||E2||| . ε ·R|α|+|β|−j + εRk−1 ·R|α|+|β|−k−j . εR|α|+|β|−1 .

This bound also holds for any term arising in the expansion for E1 for which k 6= 0. In
case |β| = 0 and k = 0, we have the bound

|||E1||| . 1 · 1 + εR|α|−j . 1 + εR|α|−1 ,

where the term 1 arises in case |αi| = 1 for all i. For |β| ≥ 1 and k = 0 we have the
bound

|||E1||| . εR|α|+|β|−1 ,

since |∂β
x∂

α
ξ ξt| . εR|α|+|β|−1 whenever |β| ≥ 1. Together with the Gronwall Lemma,

these estimates imply (4.6) and (4.7). �

We now study the geometry and regularity of the light cones. By translation invariance
of the conditions on the Hamiltonian, it suffices to consider the forward cone centered at
the origin. Thus, let Γ ⊂ [0, 2)×Rn denote the forward light cone centered at t = 0 and
x = 0,

Γ = ∪
t∈[0,2)

∪
ξ∈Rn\0

(
t, xt(0, ξ)

)
,

and let Γs ⊂ Rn denote the slice of Γ at time t = s.
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Theorem 4.2. The set Γ can be written as the graph s = Φ(y) of a function Φ(y) defined
on an open subset of Rn. The function Φ satisfies

(4.11)
∣∣ Φ(y)− |y|

∣∣ � |y| ,
∣∣∣ dyΦ(y)− y

|y|

∣∣∣ � 1 ,
∣∣ d 2

y Φ(y)
∣∣ .

1
|y|

.

Furthermore, for each 0 < s < 2, the level set Γs : {Φ(y) = s} is a convex hypersurface
in Rn, and for x, y ∈ Γt we have

(4.12)
∣∣∣ dxΦ(x)
|dxΦ(x)|

− dyΦ(y)
|dyΦ(y)|

∣∣∣ ≈ s |x− y| .

Finally, for each y belonging to the domain of Φ(y), and s ∈ [0, 2), we have

(4.13) d(y,Γs) ≈
∣∣ s− Φ(y)

∣∣ .
Proof. We prove the result for the part of Γ corresponding to 1 < t < 2; the case of
2−j−1 < t < 2−j for j ≥ 0 will follow by a scaling argument. We consider the map z → y
defined as follows, for |z| < 2. We write z = rω, where |ω| = 1 and r ∈ [0, 2) , and let

y(z) = xr(0, ω) , ξ(z) = ξr(0, ω) .

Then by (4.2)–(4.3), (2.21) and (2.24), we have∣∣∂ry − ω
∣∣ � 1 ,

∣∣∂ωy − rΠ⊥
ω

∣∣ � 1 ,
∣∣∂rξ

∣∣ � 1 ,
∣∣∂ωξ −Π⊥

ω

∣∣ � 1 .

Consequently, on the set 1 < |z| < 2, it follows that

‖ y(z)− z ‖C1 � 1 , ‖ ξ(z)− ω ‖C1 � 1 .

It follows that the map z → y is a C1 diffeomorphism on the set 1 < |z| < 2 .

The set Γ is defined by the condition s = r . Letting Φ(y) = r yields that Γ is the
graph of Φ(y). To see that Φ is C2 as a function of y, we note that its differential is given
by (

dyΦ
)
(y(z)) =

ξ(z)
H

(
r, y(z), ξ(z)

)
which follows from the fact that ξ is normal to dωx, since the flow is symplectic, and the
fact that ξ · ∂rx = H(r, x, ξ) . Consequently, dyΦ(y) is C1 close to ω in the coordinates
z, hence C1 close in the coordinates y. The estimates in (4.2) follow for 1 < |z| < 2, and
then for 0 < |z| < 2 by scaling.

We next observe that for y ∈ Γ1,

dyΦ(y)
|dyΦ(y)|

=
ξ(ω)
|ξ(ω)|

if y = y(ω). By the above, the map ω → y(ω) is bilipschitz from Sn−1 → Γ1. Also,∣∣ dωξ(ω)−Π⊥
ω

∣∣ � 1 ,

where Π⊥
ω denotes the differential of the inclusion of Sn−1 → Rn. This implies (4.12) for

t = 1, as well as the fact that Γ1 is convex. The result for t ∈ (0, 2) follows by scaling.

To establish (4.13), we note that, since Γ is contained in the set .99 s < |y| < 1.01 s,
we may restrict to the case .98 s < |y| < 1.02 s. After scaling, we may then assume t = 1
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and .98 < |y| < 1.02. There is then a unique point x ∈ Γ1 closest to y, and since y− x is
normal to Γ1 at x, hence close in angle to the vector x, then∣∣ d(y,Γ1)− |〈x, y − x〉|

∣∣ � 1 .

On the other hand,∣∣ Φ(y)− 1
∣∣ =

∣∣∣ (y − x) ·
∫ 1

0

(
dyΦ

)
(sx+ (1− s)y) ds

∣∣∣ ,
and by the preceeding estimate and (4.11) this is close to d(y,Γ1). �

The first estimate in (4.3) implies that, for each fixed ξ 6= 0, and each t ∈ [−2, 2], the
map x→ z = xt(x, ξ) is a local diffeomorphism of Rn. It is proper since |z− x| ≤ 5 , and
consequently is both an open and a closed mapping, which by connectivity of Rn implies
that it is onto. By simple connectivity it is one-to-one, and hence a global diffeomorphism
of Rn, for each fixed t and ξ 6= 0 . We may thus take its inverse to define a map x̄t(z, ξ).
The inverse function theorem, together with (4.3), shows that, for |ξ| = 1 and |t| ≤ 2,

(4.14)
∣∣ dz,ξx̄t(z, ξ)

∣∣ . 1 .

For higher order derivatives, we have the following.

Corollary 4.3. The following hold for |α|+ |β| ≥ 2, uniformly for |ξ| = 1 and |t| ≤ 2.

For R ≤ 1,

(4.15)
∣∣ ∂β

z ∂
α
ξ x̄t(z, ξ)

∣∣ .


1 , |β| = 0
ε , |β| = 1
εR|β|−2 , |β| ≥ 2

For R ≥ 1,

(4.16)
∣∣ ∂β

z ∂
α
ξ x̄t(z, ξ)

∣∣ .

{
1 + εR|α|−1 , |β| = 0
εR|α|+|β|−1 , |β| ≥ 1

Proof. The estimates follow from (4.4)–(4.7), by writing ∂β
z ∂

α
ξ dz,ξx̄t(z, ξ) as a sum of

terms
f(dx,ξxt)

(
∂β1

x ∂α1
ξ dx,ξxt

)
· · ·

(
∂βk

x ∂αk

ξ dx,ξxt

)
where f is a rational function, smooth on the range of its argument, where

α1 + · · ·+ αk = α , β1 + · · ·+ βk = β ,

and where the right hand side is evaluated at x = x̄t(z, ξ) . �

We introduce the phase function

(4.17) ϕt(z, ξ) = ξ · x̄t(z, ξ) =
n∑

i=1

ξi x̄
i
t(z, ξ) .

This is a generating function for the symplectic map (x, ξ) → (xt, ξt), in that

(4.18) dzϕt

(
z, ξ) = ξt

(
x̄t(z, ξ), ξ

)
, dξϕt(z, ξ) = x̄t(z, ξ) .
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We will need symbol bounds only for the second order in z derivatives of ϕt. To state
them succinctly, we use the bracket norm

〈R〉 =
(
1 +R2

) 1
2 ≈ 1 +R .

Lemma 4.4. The following estimates hold, uniformly for |ξ| = 1 and |t| ≤ 2 .∣∣∂β
z ∂

α
ξ d

2
z ϕt(z, ξ)

∣∣ . εR|β| 〈R〉|α| .

Proof. We use (4.18) to write ∂β
z ∂

α
ξ d

2
z ϕt(z, ξ) as a sum of terms of the following form,(

d k
x d

j
ξ ξt

)(
x̄t(z, ξ), ξ

)
· ∂γ1

z ∂θ1
ξ x̄t(z, ξ) · · · ∂γk

z ∂θk

ξ x̄t(z, ξ) ,

where |γ1|+ · · ·+ |γk| = |β|+ 1 , and j + |θ1|+ · · ·+ |θk| = |α| . By (4.5), (4.15) and the
fact that ε < R, this is dominated, for R ≤ 1, by

εRk−1 ·R|γ|−k = εR|β| .

For R ≥ 1, we use the bound (4.7) and (4.16), together with ε < 1, to dominate this by

εRj+k−1 ·R|γ1|+ ···+|γk|+|θ1|+ ···+|θk|−k = εR|α|+|β| .

�

We now consider the estimates (3.13) and (3.14), where t ∈ [0, 1] and µ ≥ 1. By taking
the Fourier transform of the first factor of g, we write

Kε(y; t, z) =
∫
ei〈η,y−x〉−i〈ξt,z−xt〉h

(
R−1(η − ξ)

)
g
(
R(z − xt)

)
dx dξ dη

=
∫
ei〈y,η〉−iϕt(z,η) at(z, η) dη ,

where we define the symbol

(4.19) at(z, η) =
∫
eiϕt(z,η)−i〈x,η〉−i〈ξt(x,ξ),z−xt(x,ξ)〉

h
(
R−1(η − ξ)

)
g
(
R (z − xt(x, ξ))

)
β
(
µ−1ξ

)
dx dξ .

Recall that h is a smooth function supported in the unit ball of Rn, and β is a smooth
function supported in the ball of radius 1

4 about (1, 0, . . . , 0). The function g is of Schwartz
class. By taking λ large we have R ≤ 1

8µ, so that at(z, η) is supported in a ball of radius
3
8 µ about (µ, 0, . . . , 0).

Recall also that µ = ελ and R = ελ
1
2 , so that

(4.20) ε µR−2 = 1 .

Theorem 4.5. The symbol at(z, η) defined by (4.19) satisfies, uniformly for t ∈ [0, 1],

(4.21)
∣∣∂α

η 〈η, dη〉kat(z, η)
∣∣ . 〈R〉|α| µ−|α| .

Proof. We first consider the case k = 0 of (4.21). We will say that a function p(x, z, ξ, η)
is a symbol of size A if it satisfies bounds∣∣∂θ

η∂
α
ξ p(x, z, ξ, η)

∣∣ . A · 〈R〉|α|+|θ|µ−|α|−|θ| .
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We then consider a more general integral of the form

at(z, η) =
∫
eiϕt(z,η)−i〈x,η〉−i〈ξt(x,ξ),z−xt(x,ξ)〉

p(x, z, ξ, η)h
(
R−1(η − ξ)

)
g
(
R (z − xt(x, ξ))

)
β
(
µ−1ξ

)
dx dξ .

Simple absolute bounds on g and h, and the fact that x → xt(x, ξ) is a diffeomorphism
for fixed t, ξ, show that if |p| . 1 then |at(z, η)| . 1 . We next show that, if p(x, z, ξ, η)
is a symbol of size one, then ∂ηat(z, η) can be written in the same form (that is, with
modified g, h, and β which satisfy the conditions stated following (4.19)) but with p
replaced by a symbol of size 〈R〉µ−1 . The theorem for k = 0 then follows by induction.

The operator ∂ηj
applied to the integrand can act either on the phase or on h (we

ignore the effect on p, which is handled trivially.) The effect on h is the same as applying
−∂ξj to h, and integrating by parts leads to terms where ∂ξj acts on the phase or on g.
(The effect of ∂ξj on p or β is handled trivially.) Consequently, ignoring trivial terms,
the effect of applying ∂ηj

to the integrand is the same as multiplying it by the symbol

∂ηjϕt(z, η)− xj − ∂ξj 〈ξt(x, ξ), z − xt(x, ξ)〉 −R∂ξjxt(x, ξ) ,

and we need to show that this expression is in effect a symbol of order 〈R〉µ−1 , where
“in effect” means that it can be written as such a symbol after replacing z − xt(x, ξ) by
R−1, and η− ξ by R, which can be done at the expense of changing the form of g and h.

By (4.9) and (4.10) and homogeneity, the function ∂ξj
xt(x, ξ) is a symbol of size µ−1,

which handles the last term. By (4.18), we may write

dηϕt(z, η)− dξϕt(z, ξ) = x̄t(z, η)− x̄t(z, ξ)

=
∫ 1

0

(dξx̄t)(z, sη + (1− s)ξ) · (η − ξ) .

Replacing η− ξ by R, the estimates (4.15) and (4.16) and homogeneity show that this is
in effect a symbol of size Rµ−1 .

Since the terms (xt, ξt;x, ξ) lie on the graph of (z, dzϕt(z, ξ); dξϕt(z, ξ), ξ), we observe
that ξt(x, ξ) =

(
dzϕt

)
(xt(x, ξ), ξ) , and 〈x, ξ〉 = ϕt(xt(x, ξ), ξ) . We are then left to show

that the expression

∂ξj

[
ϕt(z, ξ)− ϕt(xt(x, ξ), ξ)−

(
z − xt(x, ξ)

)
·
(
dzϕt

)
(xt(x, ξ), ξ)

]
is in effect a symbol of size 〈R〉µ−1 . We write this as

(4.22) ∂ξj

[ (
z − xt(x, ξ)

)2 ·
∫ 1

0

(
d 2

z ϕt

)
(sz + (1− s)xt(x, ξ), ξ) (1− s) ds

]
.

Finally, we note that, uniformly for each fixed s,
(
d 2

z ϕt

)
(sz+(1−s)xt(x, ξ), ξ) is a symbol

of size ε µ . This is a simple consequence of Lemma 4.4 and the fact that ∂ξj
xt(x, ξ) is a

symbol of size µ−1 . The first order derivatives in ξ of (d 2
z ϕt)(· · · ) are then symbols of

size ε 〈R〉 . The expression (4.22) is then in effect a symbol of size

R−1 · µ−1 · ε µ+R−2 · ε 〈R〉 . 〈R〉µ−1 ,

where we use (4.20) for the last inequality.
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We now consider the case k ≥ 1 of (4.21). Note that

〈η, dη〉ka(z, η) = (r∂r)ka(z, rη)
∣∣
r=1

and, by changing variables ξ → rξ, that

a(z, rη) = rn

∫
eir[ ϕt(z,η)−i〈x,η〉−i〈ξt(x,ξ),z−xt(x,ξ)〉 ]

h
(
rR−1(η − ξ)

)
g
(
R (z − xt(x, ξ))

)
β
(
rµ−1ξ

)
dx dξ .

Acting on the h or β terms with ∂r simply changes the particular form of h or β. Thus,
the theorem will follow by showing that the phase function

ϕt(z, η)− 〈x, η〉 − 〈ξt(x, ξ), z − xt(x, ξ)〉

is in effect a symbol of size 1. The function

ϕt(z, ξ)− 〈x, ξ〉 − 〈ξt(x, ξ), z − xt(x, ξ)〉

is the same as the expression in braces in (4.22), and the first line following (4.22) shows
that this is in effect a symbol of size R−2 ε µ = 1 . It remains to show that

ϕt(z, η)− ϕt(z, ξ)− 〈x, η〉+ 〈x, ξ〉 =
∫ 1

0

〈dξϕt(z, sη + (1− s)ξ)− x, η − ξ〉 ds

=
∫ 1

0

〈x̄t(z, sη + (1− s)ξ)− x, η − ξ〉 ds

is in effect a symbol of size 1, which will follow if we show that the last integrand is in
effect a symbol of size 1, uniformly for each s ∈ [0, 1].

We now write x = x̄t(xt(x, ξ), ξ), and note that

〈x̄t(z, ξ)− x̄t(xt(x, ξ), ξ), η− ξ〉 = (z−xt(x, ξ)) · (η− ξ) ·
∫ 1

0

dzx̄t(sz+(1−s)xt(x, ξ), ξ) ds .

Corollary 4.3, with the fact that dξxt(x, ξ) is a symbol of size µ−1, shows that the integral
is a symbol of size 1, and hence this term is in effect of size R−1 ·R · 1 = 1.

This leaves the term

〈x̄t(z, sη + (1− s)ξ)− x̄t(z, ξ), η − ξ〉 = (η − ξ)2 ·
∫ 1

0

dξx̄t(z, ξ + rs(η − ξ)) dr .

The last integral is a symbol of size µ−1, so this term is in effect of size R2 µ−1 = ε . �

Proof of the estimate (3.13). We use a second-dyadic decomposition partition of unity
over angles (see Stein [13]) to write a1(z, η) =

∑
ν a

ν(z, η) , where aν(z, η) is supported
in a cone of angle µ−

1
2 about the unit vector ων , and satisfies the estimates

(4.23)
∣∣〈ων , dη〉k∂α

η a
ν(z, η)

∣∣ . µ−k− 1
2 |α| .

These estimates follow by (4.21), and the fact that R ≤ µ
1
2 . We may take the vectors ων

to be separated by distance µ−
1
2 .

Next, on the support of aν(z, η) we write

ϕ1(z, η) = 〈(dηϕ1)(z, ων), η〉+Rν(z, η) ,
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where

(4.24)
∣∣〈ων , dη〉k∂α

ηR
ν(z, η)

∣∣ . µ−k− 1
2 |α| .

The proof of the estimates (4.24) is essentially from Seeger-Sogge-Stein [9], where it was
established for smooth phase functions. To prove them, note that by homogeneity we
may consider k = 0, and observe that Rν(z, η) is equal to the error for second order
Taylor expansion of ϕ1(z, η) in η about any conveniently chosen point on the ray through
ων . By fixing the point within distance µ

1
2 of η, the estimates then follow from Corollary

4.3, and the fact that d 2
ηϕ1(z, η) = dηx̄1(z, η) .

We now write Kε(y; 1, z) =
∑

ν K
ν
ε (y; z), with

Kν
ε (y; z) =

∫
ei〈y,η〉−iϕ1(z,η) aν(z, η) dη

=
∫
ei〈y−xν ,η〉

[
e−iRν(z,η) aν(z, η)

]
dη ,

where we set xν = (dηϕ1)(z, ων) = x̄1(z, ων). The term in braces satisfies the same
estimates (4.23) as aν(z, η), and thus∣∣Kν

ε (y, z)
∣∣ . µ

n+1
2

(
1 + µ |〈ων , y − xν〉|+ µ |y − xν |2

)−N
.

The point xν is the unique point on Γz at which the normal equals ων . Consequently,

|xν − xν′ | ≈ |ων − ων′ |
We may assume that d(y,Γz) ≤ .01, since the result is immediate otherwise. Let x0

denote the unique point on Γz closest to y, and ω0 the normal at x0, so that

d(y,Γz) = | y − x0| = |〈ω0, y − x0〉| .
We claim that

(4.25) |〈ων , y − xν〉|+ | y − xν |2 ≈ |〈ω0, y − x0〉|+ |ω0 − ων |2 .
To show this, we first observe that, since |y − x0| ≤ |y − xν |, then

| y − xν |2 ≈ | y − x0|2 + |x0 − xν |2 ≈ | y − x0|2 + |ω0 − ων |2 .
On the other hand,∣∣∣ |〈ω0, y − x0〉| − |〈ων , y − xν〉|

∣∣∣ ≤ |〈ω0 − ων , y − x0〉|+ |〈ω0, xν − x0〉|

. | y − x0|2 + |ω0 − ων |2

where we use that Γz is C2 close to the unit sphere and ω0 is normal to Γz at x0. Together,
these imply (4.25).

We now have∣∣Kε(y; z)
∣∣ ≤ ∑

ν

∣∣Kν
ε (y, z)

∣∣
≤ µ

n+1
2

∑
ν

(
1 + µd(y,Γz) + µ |ω0 − ων |2

)−N

≤ µ
n+1

2
(
1 + µd(y,Γz)

)−N

where we use that the points ων are µ
1
2 evenly spaced over the unit sphere. �
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Proof of the estimate (3.14). In this case µ = 1, R ≤ 1, and t ∈ [0, 1] . It follows by
(4.14) and (4.15) that ∣∣ ∂α

η x̄t(z, η)
∣∣ . 1 .

We write ϕt(z, η) = 〈x̄t(z, η), η〉. Since | x̄t(z, η)− z| ≤ 2, together with (4.21) this yields∣∣∣ ∂α
η

(
ei〈z,η〉−ϕt(z,η) at(z, η)

) ∣∣∣ . 1 .

The symbol at(z, η) is supported in the set |η| ≤ 2. Writing

Kε(y; t, z) =
∫
ei〈y−z,η〉

(
ei〈z,η〉−ϕt(z,η) at(z, η)

)
dη

easily yields (3.14) . �

5. Strichartz estimates

We provide here details on how the results of the previous sections can be adapted
to give an alternate proof of Strichartz estimates for the homogeneous wave equation,
for time dependent metrics satisfying (2.1)– (2.2). Tataru established Lr

tL
s
x → Lp

tL
q
x

estimates for the inhomogeneous equation for such metrics in [14]. The steps in section
3 which reduce matters to bounds for the operator Wr work only for the homogeneous
Hδ → Lp

tL
q
x estimates, however.

Theorem 5.1. Suppose that the metric gij(t, x) satisfies conditions (2.1)– (2.2). Let u
satisfy the Cauchy problem

(5.1)
n∑

i,j=0

∂i

(
gij(t, x) ∂ju(t, x)

)
= 0 , u(0, x) = f(x) , ∂tu(0, x) = g(x) .

Then for n ≥ 2 the following estimates hold,

‖u‖Lp
t Lq

x(Rn×[−1,1]) ≤ Cp,q

(
‖f‖Hδ(p,q) + ‖g‖Hδ(p,q)−1

)
,

provided that 2 ≤ p ≤ ∞ , 2 ≤ q <∞,

δ(p, q) = n
( 1

2
− 1
q

)
− 1
p
,

2
p

+
n− 1
q

≤ n− 1
2

,

and δ(p, q) ≤ 2 .

The condition δ(p, q) ≤ 2 is necessary to apply Lemma 2.2 to localize matters to a
fixed dyadic frequency range. This condition may be dropped if one considers instead
the estimate

‖〈Dx〉1−δ(p,q)u‖Lp
t Lq

x(Rn×[−1,1]) ≤ Cp,q

(
‖f‖H1 + ‖g‖L2

)
.

For the Minkowski wave operator the above theorem was established under the restriction
p > 2 by Lindblad and Sogge [7]. It was shown there that such estimates are a consequence
of the L1 → L∞ dispersive estimates for the wave group. The endpoint case p = 2
was settled by Keel and Tao [6] using a bilinear interpolation scheme. That paper also
formulated the general results for p ≥ 2 in an abstract Hilbert space setting that works
well for the operators Wr of section 3.
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We start by observing that, for q < ∞, the results of Section 2 reduce matters to
proving the following analogue of Theorem 2.5.

Theorem 5.2. Suppose that ∂tu(t, x) = −i p(t, x,Dx)u(t, x) + F (t, x), where the symbol
of p satisfies conditions (2.20)– (2.24). Assume also that, for all t, the partial Fourier
transform û(t, ξ) is supported in the region 1

4λ < |ξ| < λ . Then

‖u‖Lp
t Lq

x([−1,1]×Rn) . λδ(p,q)
(
‖u‖L∞t L2

x([−1,1]×Rn) + ‖F‖L1
t L2

x([−1,1]×Rn)

)
,

for p, q, and δ(p, q) as above.

The wave-transform methods of section 3 then reduce matters to proving the mapping
properties, uniformly over r ∈ [−1, 1],

(5.2) ‖Sλ(Dx)Wrf̃‖Lp
t Lq

x([−1,1]×Rn) ≤ Cp,q λ
δ(p,q) ‖f̃‖L2(R2n)

where f̃ is a function of (x, ξ), and as before

(Wrf̃ )(s, y) = T ∗λ
[
f̃ ◦ χr,s

]
(y) .

To work in the setting of Theorem 1.2 of [6], we fix r and let

U(s)f̃ = Sλ(Dx)(Wrf̃ )(s, · ) .
Since χr,s preserves dx ∧ dξ, the L2 boundedness of Tλ implies

‖U(s)f̃ ‖L2(Rn) ≤ ‖f̃ ‖L2(R2n) .

On the other hand,

‖U(s)U(t)∗g‖L∞(Rn) . λn
(
1 + λ |s− t|

)−n−1
2 ‖g‖L1(Rn) .

To verify this, we note that U(s)U(t)∗ = Sλ(Dx)Ks,tSλ(Dx), where Ks,t is the integral
kernel of section 3 for fixed variables s and t. The preceding bound is then a consequence
of (3.15) and (3.16).

The setting of [6] thus applies with H = L2(dx dξ). Precisely, conditions (1) and (3) of
that paper are satisfied by the rescaled operator δλ ◦U(s), where δλ is space-time dilation
by λ, normalized to preserve the L2(Rn) norm. Theorem 1.2 of [6] then yields (5.2). �
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Birkhäuser, Boston, 1991.
[16] N. Varopoulos, Hardy-Littlewood theory for semigroups, J. Funct. Anal. 63 (1985), 240–260.

Department of Mathematics, University of Washington, Seattle, WA 98195

E-mail address: hart@math.washington.edu


